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Abstract. In this study we assess the suitability of a recently introduced

analog-based Model Output Statistics (MOS) downscaling method (referred

to as MOS-Analog, Turco et al., 2011) for climate change studies, and com-

pare the results with a quantile mapping bias correction method. To this aim,

we focus on Spain and consider daily precipitation output from an ensem-

ble of Regional Climate Models provided by the ENSEMBLES project. The

reanalysis-driven RCM data provide the historical data (with day-to-day cor-

respondence with observations induced by the forcing boundary conditions)

to conduct the analog search of the control (20C3M) and future (A1B) GCM-

driven RCM values. First, we show that the MOS-Analog method outper-

forms the raw RCM output in the control 20C3M scenario (period 1971-2000)

for all considered regions and precipitation indices, although for the worst-

performing models the method is less effective. Second, we show that the MOS-

Analog method broadly preserves the original RCM climate change signal

for different future periods (2011-2040, 2041-2070, 2071-2100), except for those

indices related to extreme precipitation. This could be explained by the lim-

itation of the analog method to extrapolate unobserved precipitation records.

These results suggest that the MOS-Analog is a spatially consistent alter-

4Meteorology Group, Instituto de F́ısica

de Cantabria, CSIC-Universidad de

Cantabria, Santander, Spain.

c©2017 American Geophysical Union. All Rights Reserved.



native to standard bias correction methods, although the limitation for ex-

treme values should be taken with caution in cases where this aspect is rel-

evant for the problem.

Keypoints:

• We assess the analog-based Model Output Statistics (MOS) downscal-

ing method for climate change studies.

• The MOS-Analog downscaling method is a spatially consistent alterna-

tive to standard bias correction methods.

• The downscaled results broadly preserve the original RCM climate change

signal, except for extreme precipitation indices.
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1. Introduction

Precipitation is a challenging variable which is crucial in several sectors, such as agricul-

ture [see, e.g. Ceglar et al., 2016] and hydrology [see, e.g. Llasat et al., 2016], particularly

in the context of climate change and/or in applications involving extreme events [Foley ,

2010; Rummukainen, 2010]. The coarse resolution (generally few hundred kilometres) and

the systematic biases of Global Climate Models (GCMs) prevents the direct application of

global climate projections at a regional scale (generally few kilometres) for impact studies.

Therefore, dynamical and/or statistical downscaling techniques are typically applied to

bridge this gap in order to obtain plausible regional climate change projections of pre-

cipitation (see Fowler et al., 2007; Maraun et al., 2010, and references therein). During

the last decade, downscaling has become an strategic topic in national and international

climate programs (see, e.g. the WCRP–endorsed CORDEX initiative, Giorgi et al., 2009,

or the EU–funded COST Action VALUE, Maraun et al., 2015).

The dynamical downscaling approach is based on Regional Climate Models (RCMs) —

with typical resolutions of tens of kilometres— running over limited geographical domains

with boundary conditions given by the GCM to be downscaled [Giorgi and Mearns , 1991].

These RCMs explicitly solve mesoscale atmospheric processes and provide spatially and

physically consistent outputs. However, they still have considerable biases [Christensen

et al., 2008; Herrera et al., 2010; Turco et al., 2013] which are typically adjusted in practical

applications using a variety of Model Output Statistics (MOS) methods. Formally, in the

MOS downscaling approach, the target variable (e.g. precipitation) simulated by the
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RCM is directly corrected against the available local–scale observations using appropriate

statistical techniques [Marzban et al., 2006; Maraun et al., 2010; Ruiz-Ramos et al., 2016].

The most popular MOS techniques for climate change studies are distribution-wise,

that is, the correction function is derived from the observed and simulated distributions.

This approach is usually referred to as (distributional) bias correction and includes several

variants of the quantile mapping (QQM hereinafter) as the most popular techniques [see

Teutschbein and Seibert , 2012; Gutjahr and Heinemann, 2013; Sunyer Pinya et al., 2015,

for a review]. However a number of limitations have been recently reported for these

methods. One important drawback of QQM is that it can modify the raw climate change

signal [Hagemann et al., 2011; Pierce et al., 2013; Maraun, 2013; Maurer and Pierce,

2014; Cannon et al., 2015; Dosio, 2016]. Also QQM is not able to correct for biases

related to model error in large-scale circulation [Eden et al., 2012; Addor et al., 2016]

or heterogeneous biases in space [Maraun and Widmann, 2015], and, importantly, QQM

is not effective in cases where the observations and RCM outputs have different spatial

resolutions, i.e. when downscaling is also required [White and Toumi , 2013; Maraun,

2013; Teutschbein and Seibert , 2013].

As an alternative to these popular techniques, a number of event-wise MOS methods

which use the temporal correspondence between simulations and observations have been

recently developed, e.g. conditioning the distribution-wise methods to different weather

types [Wetterhall et al., 2012], or considering RCM simulations nudged to (or driven

by) reanalysis data to train the statistical methods using the temporal correspondence

(between simulations and observations) existing in this case [Turco et al., 2011; Eden

et al., 2014]. Although the temporal correspondence is weaker for reanalysis-driven RCM
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climate simulations (driven only at the boundaries of the simulation domain) than for

the (grid or spectral) nudged ones, the former simulations are those currently available in

most of the international downscaling initiatives —such as ENSEMBLES [van der Linden

and Mitchell , 2009], NARCAP [Mearns et al., 2012], and CORDEX [Giorgi et al., 2009;

Jacob et al., 2014]— and, therefore, they can be more widely applied in practise.

Turco et al. [2011] introduced a MOS downscaling method based on the application of

the analog technique to the reanalysis (ERA40)-driven RCM outputs from the ENSEM-

BLES project. They showed that the application of this methodology (hereafter referred

to as MOS-Analog) improves the representation of the mean regimes, the seasonal cycle,

the frequency and the extremes of precipitation for all the RCMs. It is worth noting that

the main advantages of the analog methodology are that (i) it is conceptually simple and

easy to implement with low computational cost, (ii) is able to reproduce nonlinear rela-

tionship between predictors and predictands, and (iii) can reproduce realistic and spatially

coherent precipitation patterns. The main drawback is that it cannot simulate unobserved

weather patterns and this limitation should be cautiously taken into account for climate

change studies [see, e.g. Gutiérrez et al., 2013].

In this paper we analyse the application of the MOS-Analog method to downscale future

RCM projections. To this aim, we consider the different GCM-RCM combinations avail-

able from the ENSEMBLES projects for both the historical (20C3M) and future (A1B)

emission scenarios, together with the corresponding reanalysis driven RCM simulations.

Firstly, we evaluate the performance of the method in a control historical period, showing

that it can satisfactorily reproduce the observed spatial and temporal climate patterns

of mean and extreme precipitation. Secondly, we analyse the downscaled climate change
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signal as compared with that corresponding to the direct RCM output for different fu-

ture periods (2011-2040, 2041-2070, 2071-2100). Overall, similar regional climate change

signals are observed, particularly in cases with a strong signal agreement among members.

The domain of study is the Spanish Iberian Peninsula, which is geographically complex

and heterogeneous, and it is characterized by large climate variability due to the influ-

ences of different climatological regimes. This is a challenging area for the statistical and

dynamical downscaling, since they must be able to simulate very different climates in a rel-

atively small area with notable orographic complexity. Herrera et al. [2010] analysed the

performance of the ERA40-driven RCM simulations in this region, showing that they can

capture the annual cycle of precipitation in the different river basins. However they also

indicated that some of these models have strong biases and exhibit a poor performance as

they overestimate the frequency of rainfall. Moreover, they deficiently represent extreme

events. Generally, the MOS-Analog method is able to reduce the biases of these models

[Turco et al., 2011]. On the other hand, Turco et al. [2013] analysed the GCM-driven

control runs (20C3M scenario) and found large biases for some RCM-GCM combinations

attributable to RCM in-house coupling problems with some particular GCMs. Impor-

tantly, these biases are shown to distort the corresponding climate change signal. The

lessons learnt in these previous studies set the basis for the present work.

The study is organized as follows. After this introduction, Section 2 describes the

RCMs and observational datasets used; Section 3 presents the downscaling method and

Section 4 analyses the validation results in a control period. Finally, Section 5 analyses

the projection results and Section 6 synthesizes the main results of this study.
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2. Observed and Simulated Data

2.1. ENSEMBLES RCM dataset

The EU-funded project ENSEMBLES [van der Linden and Mitchell , 2009] was a collab-

orative effort of different European institutions focused on the generation of climate change

scenarios over Europe. Regional simulations were produced with the latest-generation

RCMs at that time over a common area covering the entire continental European region

with a common resolution of 25 km. The resulting dataset is publicly available for research

activities (http://ensemblesrt3.dmi.dk).

A first experiment was carried out using the ERA40 reanalyses from the European

Centre for Medium Range Weather Forecasts (ECMWF, Uppala et al., 2005) as boundary

conditions for the RCMs. All RCMs were run over a common period of 40 years 1961-2000.

A second experiment for climate change studies was done using different GCM simu-

lations over two periods: A control one using the 20C3M scenario (1961-2000), i.e. with

observed greenhouse gasses, and a future one based on the A1B scenario (2001-2100),

which is consistent with the emission trend over recent decades [Peters et al., 2012].

For this study we consider the ten RCMs available in the ENSEMBLES archive that

cover the period until 2100 (Table 1). For practical reasons, the daily outputs of the RCMs

were bilinearly interpolated from their original resolution (25 km) to the grid defined by

Spain02 (20 km approximately) described in the next section.

2.2. Observed data

The observed data is the high-resolution (0.2◦ × 0.2◦, 20 km × 20 km approx.)

gridded dataset Spain02 [Herrera et al., 2012, 2016] of daily precipitation over Spain.

This recently developed dataset —which is publicly available for research activities

c©2017 American Geophysical Union. All Rights Reserved.



at http://www.meteo.unican.es/datasets/spain02,— was produced using data from

2756 quality-controlled stations from the Spanish Meteorological Agency (AEMET), cov-

ering the Spanish Iberian Peninsula and the Balearic Islands over the period 1950-2008

(see Figure 1).

An analysis of upper percentiles and extreme indicators revealed the capability of

Spain02 to reproduce the intensity and spatial variability of extremes [Herrera et al.,

2012]. The high quality of this dataset has been confirmed also by Turco and Llasat

[2011] and it has been used to validate [Herrera et al., 2010; Gómez-Navarro et al., 2012],

post process [Turco et al., 2011] and apply [Turco et al., 2014] the ENSEMBLES RCMs

described in the Section 2.1.

3. Methodology

3.1. MOS based on Analogs: MOS-Analog

The analog method [Lorenz , 1963, 1969] is based on the hypothesis that “analog” at-

mospheric patterns (predictors) should cause “analog” local effects (predictands). This is

one of the most popular downscaling techniques and has been used in many applications

[see, e.g. Zorita et al., 1995; Matulla et al., 2008; Gutiérrez et al., 2012; Radanovics et al.,

2013].

The predictand used in this paper is the interpolated 0.2◦ observed precipitation over

the Iberian Peninsula given by Spain02, whereas the RCM simulated precipitation field

is used as predictor. Note that this variable is one of the most informative variable for

precipitation downscaling purposes [Eden et al., 2012], but generally it is avoided in perfect

prognosis downscaling studies (e.g. precipitation is not used per se as predictor) since it

is very model dependent [see, e.g. Jerez et al., 2013] and, thus, there may be significant
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differences between the reanalysis and the GCMs. This problem does not exist in the

MOS setting. Indeed, the RCM precipitation is used both for training (considering the

ERA40-driven simulations) and for test or future periods (considering the GCM-driven

simulations), allowing us to define a simple and parsimonious method. Therefore, the

predictor pattern considered in this paper is defined by the RCM precipitation in a 0.2◦

grid covering the Iberian Peninsula (see Turco et al., 2011 or more details on the sensitivity

of the method to different configurations).

The MOS-Analog downscaling consists of two main steps, which are repeated for each

day to be downscaled (see Figure 2):

1. For each daily precipitation pattern A(t) from the GCM-driven RCM simulation

(from a control or future scenario run), the closest precipitation pattern of the ERA40-

driven simulation B(t′) in the historical period is obtained based on the Euclidean distance

between both fields.

2. Then, the precipitation b(t′) observed during this analog historical date t′ is assigned

as the downscaled value a(t) for the GCM-driven RCM.

Note that, as result of this process, the method can only generate values which have been

observed in the historical period and, therefore, this limitation can affect its extrapolation

capability in future climate change simulations, particularly for extreme values [Gutiérrez

et al., 2013].

3.2. Quantile Mapping Method: QQM

We use the popular parametric quantile mapping method introduced by Piani et al.,

2010, including the frequency adaptation proposed by Themeßl et al [2012] (hereafter

QQM). This method assumes that both observed and simulated precipitation intensity
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distributions are well approximated by the gamma distribution. For the sake of the

comparability with the MOS-Analog method, the transfer function has been adjusted

considering the ERA40-driven simulation and applied to calibrate the GCM-driven sim-

ulation for both the historical 20C3M (1961-2000) and future A1B (2001-2100) scenarios

as follows:

X∗GCM = F−1Obs(FERA40(XGCM)), (1)

where XGCM and X∗GCM are the original and corrected values of the GCM-driven sim-

ulation, and FObs and FERA40 the adjusted Gamma distribution of the observations and

the ERA40-driven simulation. Note that, in the standard application of these techniques,

the adjustment is done considering the historical GCM driven simulations.

3.3. Comparison measures

Three main approaches have been applied to evaluate the applicability of the MOS-

Analog approach. Firstly, we compare the simulated (both RCM outputs and MOS down-

scaled ones) and observed climatologies (spatial patterns) for the precipitation indices

shown in Table 2 computed from daily data and characterizing total precipitation, dry

and wet spells, and extreme precipitation, as defined by the joint CCl/CLIVAR/JCOMM

Expert Team on Climate Change Detection and Indices (ETCCDI indices; WMO , 2009;

Zhang et al., 2011). The comparisons between the simulated and observed climatologies

are summarized using Taylor diagrams [Taylor , 2001]. This diagram synthesizes three

spatial measures —standard deviation (S), centred root-mean-square difference (R) and

correlation (C)— in a single bidimensional plot. Two variations from the standard Taylor

diagram have been applied in this study:
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• The measures S and R are normalized, dividing them by the standard deviation of

the observations. In this way it is possible to compare the different indices.

• Information about spatial average of the bias (M) has been introduced (using colours)

for each point in the Taylor diagram. In particular we use the difference between the

simulated and observed mean, normalized by the observed mean.

Secondly, in order to assess the correspondence of the simulated and observed annual

cycles, we analyse the performance of the method in the different river basins (according

to Figure 1) at a monthly scale. To this aim, we calculated several monthly indices

spatially averaged for each river basin. These standard measures (both regarding the

spatial patterns of the precipitation climatologies and considering the annual cycle) have

been calculated over the period 1971-2000, which is later used to estimate the climate

change signal (i.e. the difference between the downscaled values for the future A1B period

and the control 20C3M ones).

Finally, we analyse how well the MOS-Analog downscaled results preserve the climate

change signal of the RCMs (see Section 5 for more details). In order to assess this con-

sistency, and for the sake of comparison with standard bias correction techniques, we

compare the results of the MOS-Analog method with those resulting from the popular

bias correction quantile mapping technique describe in Section 3.2.

In order to graphically show both the climate change signal and the ensemble agreement,

we have adopted the technique used in Hemming et al. [2010], in which the map combines

the ensemble mean scenario, with different colours, and the percentage agreement in the

direction of change among the ensemble members, with different intensity of colours [Kaye

et al., 2012].
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4. Validation Results in the Control Period

In this section we analyse the results obtained when downscaling the historical (20C3M)

GCM-driven RCMs in the control period 1971-2000.

4.1. Maps of mean and extreme climates

As an illustrative example, and for the sake of brevity, in Figure 3 we show the com-

parison maps for the KNMI model and the corresponding MOS-Analog values; note that

this RCM has been chosen since it is one of the most skilful for precipitation in this region

[Herrera et al., 2010], thus could be more challenging for the MOS method to improve it.

The panels in this figure show the annual values of the indices (averaged over the common

period 1971-2000) for the observations (Spain02, first column), the regional KNMI sim-

ulations (second column), and the corresponding MOS-Analog downscaled values (third

column); the numbers below the panels in this figure indicate the bias (or mean error, M),

the relative standard deviation (S), the centred root-mean-square (R) and the correlation

(C). These metrics are then used to produce a Taylor diagram summarizing this informa-

tion. This figure shows that the MOS-Analog downscaled values clearly outperform the

raw RCM outputs. The Taylor diagrams shown in Figure 4 summarize the verification

results for all the models and indices in the control period (1971-2000).

These figures show that, overall, the MOS-Analog method improves considerably the

RCM results for all the indices (less evident for the CDD index, as already noticed by

Turco et al., 2011), with larger spatial correlation values and standard deviation closer

to the observed ones. In terms of errors, the MOS-Analog downscaling method also

improves the RCMs results for the bias (M) and the centred root mean square error (R).

In particular, the MOS-Analog clearly reduces their overestimation of rainfall frequency,
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common on the RCMs as they tend to drizzle [Gutowski et al., 2003], correcting partially

their underestimation of CDD while the bias for CWD shifts from RCM positive values

to MOS-Analog positive or negative values depending on the RCM. Finally, although the

MOS-Analog is able to reduce the overestimation of R20, R1 and PRCPTOT given by

the RCMs, there is yet a positive bias for these indicators which could affect the future

climate change signal. These results are generally confirmed also repeating this analysis

for each sub regions of Figure 1 (Figures S1-S7).

Overall, the MOS-Analog method is able to improve the above-considered scores for

different indices for all RCMs, although for the worst-performing models the downscaling is

less effective. Note that three GCM-driven RCMs (3. DMI-BCM; 4. DMI-ECHAM5; 10.

SMHI-BCM) show significantly worse performance than the other simulations. This result

confirms the study of Turco et al. [2013], which analysed a greater ensemble of RCMs from

ENSEMBLES containing the 15 models with data up to 2050. They found large biases for

some RCM-GCM combinations and these biases are shown to distort the corresponding

climate change signal. Therefore, it is not advisable ignoring the performance of the

RCM-GCM runs in the control period and the side effects of large biases. Thus, hereafter

we consider the ensemble of the best seven models (highlighted with an asterisk in Table

1).

4.2. Seasonal cycle

In this section, we analyse the ability of the RCMs and the MOS-Analog downscaled

results to reproduce the strong seasonal cycle of rainfall, which differs considerably among

the different river basins (according to Figure 1). Here we focus on a seven-member

ensemble formed by the best performing RCMs identified in the previous section. We
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consider the seasonal cycle of the number of precipitation days (R1; Figure 5) and the

monthly maximum (RX1DAY ; Figure 6). Similar results have been found for the total

precipitation (Figure S8).

Despite of the differences in values, the three indices have a similar cycle among the

basins, with two maximum periods in the Mediterranean basin, the major one in autumn

and the secondary in spring, and, for the remaining basins, a maximum in winter and

a minimum in summer. The performance of the RCMs and the MOS-Analog method

to reproduce the observed seasonal cycles of the indices, in the different basins, is quite

remarkable, with generally a reduced spread (smaller uncertainty) in the latter case (see

also Tables S1-S3 for a quantification of the error for each index and each river basin).

In particular, as pointed out in the previous section, the RCMs clearly overestimate the

R1 index and the MOS-Analog is able to correct this problem (Figure 5). Also, it is

worth noting the good performance of both the RCMs and the MOS-Analog method to

reproduce the observed seasonal cycle of the RX1DAY index (Figure 6). Finally, note

that the greater error are generally found for the Mediterranean basins (panels (g)-(k) in

Figures 5 and 6, and basins “Segura”, “Levante”, “Ebro”, “Catalana” and “Baleares” in

Tables S1-S3), as also found by Herrera et al. [2010] and Turco et al. [2011] considering

the ERA40-driven RCMs.

5. Future Scenarios

In this section we analyse the regional climate change signals for different future peri-

ods (2011-2040, 2041-2070, 2071-2100), obtained as the ratio (expressed as percentage of

change) of the mean values for the corresponding A1B GCM-driven RCM simulations and

the 20C3M control ones in the baseline (1971-2000) period. For the sake of comparison
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with standard bias correction techniques, in addition to the MOS-Analog method, this

analysis also includes the results corresponding to the Piani quantile mapping method

(QQM).

Figure 7 shows the regional climate change signal for all indices shown in Table 2 for

the future period 2071-2100 for the seven-member (see Table 1) RCM ensemble (ENS),

together with results for the MOS-Analog downscaling method (MOS) and the quantile

mapping method (QQM). High agreement for the RCM climate change signals appear in

most of the Iberian Peninsula for the indices PRCPTOT , R1, and CWD (with negative

changes), and for the index CDD (with positive changes, larger than +25%). Instead,

the other indices display more heterogeneous signals (with large areas either positive or

negative) and more disagreement between the models. For instance, for the SDII and

RX1DAY indices, large part of the maps show no agreement among the RCMs.

Overall, the RCM regional climate change signal for the different indices is preserved

by the QQM, with the exception of SDII, where the QQM exhibits a larger region with

positive signal. These differences are probably due to the use of the reanalysis-driven

RCM outputs to calibrate the bias correction method —for the sake of comparability with

the MOS-Analog method, — and are induced by the difference of rain frequencies in the

reanalysis- and control-driven simulations. Note that the standard application of the QQM

method (using the control simulations for calibration) could reduce this disagreement. On

the other hand, the MOS-Analog method broadly preserves the climate change signal for

non-extreme indices, but exhibits large differences for R20 and RX1DAY , particularly for

those regions with positive signals. This could be a result of the limitation of the analog

method to extrapolate unobserved values, particularly for the RX1DAY results. Overall,
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similar conclusions are obtained for the climate change signals relative to the different

periods 2011-2040 and 2041-2070 (see Figures S9 and S10, respectively), although with

lower values of changes (in absolute value) and lower level of agreement between the

models compared to the pattern shown for the end of the century (Figure 7).

We also explored the seasonal projections for some representative indices for three future

A1B periods. Figure 8 shows the seasonal climate change signal for the total precipitation

(PRCPTOT index). These projections indicate regional changes in the range from -25%

to -5% with greater agreement in spring, summer and autumn (MAM, JJA and SON

respectively), mostly in the West of the region, for the end of the century. Interestingly,

in the Mediterranean coast the agreement in JJA is small even for the last period. The

winter (DJF) projections show large fluctuations in the direction of change, from mainly

negative in the first period, 2011-2040, to mainly positive in 2041-2070, and again negative

in 2071-2100. This is also the season with large areas of the maps with no agreement on

the sign of the changes.

Figure 9 considers the RX1DAY index and shows a quite heterogeneous pattern, with

low level of agreement, although there are some areas with consistent pattern of positive

changes (between 5% and 25%) in DJF, and negative (between -25% and -5%) in the

other seasons, mainly in summer (with changes even lower than < -25%). Generally,

higher agreement is found for the end of the century.

Finally, Figure 10 suggests a high agreement in the increase in the CDD index (i.e.

longer periods without rain), especially for the period 2071-2100, with most of the area

agree on more than 25% of change, regardless the considered season. It is worth noting

that for the period 2041-2070, both the QQM and the MOS-Analog methods show a
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negative change over most of the domain, while ENS displays low level of agreement

among the RCMs.

6. Summary and Conclusions

The present study has investigated (i) the potential of the recently introduced MOS-

Analog downscaling method for climate change projections when applied to RCM precip-

itation outputs and (ii) how well the method preserves the RCM climate change signal for

a set of precipitation indices. The analysis focuses on precipitation over Spain and, besides

the MOS-Analog method, a standard distributional-based quantile mapping approach is

also considered for comparison purposes.

The validation against the observed gridded data Spain02 shows that the MOS-Analog

method clearly outperforms the raw RCM outputs in the control period (20C3M scenario).

Specifically, the MOS-Analog downscaling method improves considerably the RCM results

for all the indices considered, although for the worst-performing models (DMI-BCM, DMI-

ECHAM5 and SMHI-BCM) the downscaling method is less effective. These RCMs have

very large biases and can be considered outliers/errors of the ensemble [Turco et al., 2013].

The projected changes are quite consistent among the RCMs for total precipitation, wet-

day frequency and spell indices. High level of consistency in the geographical patterns are

found for all the seasons, except for winter towards the end of the century. In particular,

the higher agreement between models in the later period could be due to a relative smaller

influence of natural variability towards the end of the century. The main drivers of these

projections are probably the synoptic structures that drive the decreasing precipitation

(e.g. persistence of anticyclones; Sumner et al., 2003; Garćıa-Valero et al., 2012; Cortesi

et al., 2014) and the land-surface atmosphere interactions (e.g. soil moisture feedbacks;
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Seneviratne et al., 2010; Jerez et al., 2012). Our confidence in the physical mechanism and

the model results, give some credibility to the increasing drought risk in the Mediterranean

region [Orlowsky and Seneviratne, 2011; Dai , 2011]. In spite of the agreement of the

projected changes for total precipitation, wet-day frequency and spell indices, the overall

uncertainties in heavy rainfall climate projections remain quite large, even for the end of

the century. Indeed, due to the importance of the convective process for intense rainfall

in this region [Llasat , 2001; Llasat et al., 2014] and the common weakness of the models

to simulate these processes [Hohenegger et al., 2008; Rowell , 2011], the heavy rainfall

projections should be taken with caution [Kendon et al., 2014]. There is also a large

uncertainty for extreme indices (R20 and RX1DAY ) with large regions with negative

and positive signals.

The RCM climate change signal is broadly preserved by the distributional-based quantile

mapping method, with some differences mainly for SDII due to the procedure used to

calibrate the model (using reanalysis-driven RCM data, for the sake of comparability

with MOS-Analog results) and to the different wet-day frequencies of the reanalysis- and

control-driven RCM simulations. The MOS-Analog method also broadly preserves the

climate change signal with the exception of extreme indices (R20 and RX1DAY in this

work). This is probably due to the limitation of the MOS-Analog method to simulate

unobserved records. This could make this method unsuitable to downscale climate change

projections for those applications where extreme values are important. However, it is

worth noting that this method can produce accumulated values or frequencies over several

days larger (or smaller) than the historical values and, therefore, can extrapolate non-

observed values for these types of indices. Finally, it must be noted that standard bias
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correction methods are not intended to correct climate trends [Maraun, 2016] and methods

that deliberately constrain the climate change signals based on process understanding are

rare [Collins et al., 2012; Walton et al., 2015]. In this study, the cases where the MOS-

Analog method modifies the RCM climate signals (for extreme indices) could be simply

explained by the limitation of the method to extrapolate unobserved values (e.g. higher

extremes simulated by the RCM for a future period), and not by a merit of the method

to introduce plausible changes in the regional climate change signal —which could be the

case in other situations, since the MOS-Analog can potentially introduce extra regional

information in the downscaling process.—

In the case of the MOS-Analog method, since the analog search is performed at a na-

tional level, the downscaled values preserve the spatial coherence of the observed fields.

Therefore, this method can be considered a spatially consistent alternative for distribu-

tional bias correction methods. Moreover, it could be easily extended to a multi-variable

consistent framework by defining joint patterns (e.g. precipitation-temperature) for the

analog search.

Finally, we underline that bias correction remains a provisional solution until better

models will be available (see Ehret et al., 2012; Pielke and Wilby , 2012; Maraun, 2016,

and references therein for a critical review on the bias-correction techniques). It is worth

noting that a newer generation of climate models are now available (developed in the

framework of the CORDEX program), with up-to-date RCMs, but still affected by biases

[Kotlarski et al., 2014; Jerez et al., 2015]. The application of the MOS-Analog method to

these RCMs remains to be done.
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To sum up, the results shown in this paper suggest that the increasing dryness

could be considered a robust result and indicate the urgency to apply adaptation

and mitigation strategies, according to the Spanish National Climate Change Adapta-

tion Plan (www.magrama.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-

adaptacion/), also considering that, already at present, many areas in Spain suffer from

problems related to water resources [Quiroga et al., 2011]. The MOS downscaled data are

freely available for research purposes by applying to the corresponding author.
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and P. Jiménez-Guerrero (2012), A seasonal study of the atmospheric dynamics over

the iberian peninsula based on circulation types, Theoretical and Applied Climatology,

110 (1-2), 291–310.

c©2017 American Geophysical Union. All Rights Reserved.



Giorgi, F., and L. Mearns (1991), Approaches to the Simulation of Regional Climate

Change - A review, Reviews of Geophysics, 29 (2), 191–216.

Giorgi, F., C. Jones, and G. Asrar (2009), Addressing climate information needs at the

regional level: the CORDEX framework, WMO Bulletin, 58 (3), 175–183.
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What is the role of the observational dataset in the evaluation and scoring of climate

models?, Geophysical Research Letters, 39 (24).

Gutiérrez, J., D. San-Mart́ın, S. Brands, R. Manzanas, and S. Herrera (2012), Reassessing

statistical downscaling techniques for their robust application under climate change

conditions., Journal of Climate.

Gutiérrez, J. M., D. San-Mart́ın, S. Brands, R. Manzanas, and S. Herrera (2013), Re-

assessing statistical downscaling techniques for their robust application under climate

change conditions, Journal of Climate, 26 (1), 171–188.

Gutjahr, O., and G. Heinemann (2013), Comparing precipitation bias correction meth-

ods for high-resolution regional climate simulations using cosmo-clm, Theoretical and

Applied Climatology, 114 (3-4), 511–529.

Gutowski, W. J., S. G. Decker, R. A. Donavon, Z. Pan, R. W. Arritt, and E. S. Takle

(2003), Temporalspatial scales of observed and simulated precipitation in central u.s.

climate, Journal of Climate, 16 (22), 3841–3847.

Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani (2011), Impact

of a statistical bias correction on the projected hydrological changes obtained from three

gcms and two hydrology models, Journal of Hydrometeorology, 12 (4), 556–578.

c©2017 American Geophysical Union. All Rights Reserved.



Haugen, J., and H. Haakensatd (2005), Validation of hirham version 2 with

50km and 25km resolution, Tech. Rep. General Technical report 9, RegClim,

http://regclim.met.no/results/gtr9.pdf.

Hemming, D., C. Buontempo, E. Burke, M. Collins, and N. Kaye (2010), How uncertain

are climate model projections of water availability indicators across the Middle East?,

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences,

368 (1931), 5117–35.

Herrera, S., J. Gutiérrez, R. Ancell, M. Pons, M. Fŕıas, and J. Fernández (2012), Develop-
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of statistical downscaling methods for projection of extreme precipitation in europe,

Hydrology and Earth System Sciences, 19 (4), 1827–1847.

Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single

diagram, J. Geophys. Res., 106 (D7), 7183–7192.

Teutschbein, C., and J. Seibert (2012), Bias correction of regional climate model simula-

tions for hydrological climate-change impact studies: Review and evaluation of different

methods, Journal of Hydrology, 456-457, 12 – 29.

Teutschbein, C., and J. Seibert (2013), Is bias correction of regional climate model (rcm)

simulations possible for non-stationary conditions?, Hydrology and Earth System Sci-

ences, 17 (12), 5061–5077.

Themeßl MJ, Gobiet A, Heinrich G (2012), Empirical-statistical downscaling and error

correction of regional climate models and its impact on the climate change signal, Cli-

matic Change, 112 (2), 449–468, doi:10.1007/s10584-011-0224-4.

Turco, M., and M. C. Llasat (2011), Trends in indices of daily precipitation extremes

in catalonia (ne spain), 19512003, Natural Hazards and Earth System Science, 11 (12),

3213–3226.
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Table 1. RCM simulations produced in the ENSEMBLES project used in this study with

the corresponding driving GCM. The numbers are used to facilitate the reading of the Taylor

diagrams presented later (see Sec. 4). The asterisks indicate the best performing models in this

region according to previous studies [Herrera et al., 2010; Turco et al., 2013].

Number - Acronym RCM Driving
GCM

Reference

1 - CNRM(*) ALADIN ARPEGE Radu et al. [2008]
2 - DMI(*) HIRHAM ARPEGE Christensen et al. [2008]
3 - DMI-BCM HIRHAM BCM Christensen et al. [2008]
4 - DMI-ECHAM5 HIRHAM ECHAM5-r3 Christensen et al. [2008]
5 - ICTP(*) RegCM3 ECHAM5-r3 Pal et al. [2007]
6 - KNMI(*) RACMO ECHAM5-r3 Van Meijgaard et al. [2008]
7 - HC(*) HadRM3Q0 HadCM3Q0 Haugen and Haakensatd [2005]
8 - MPI(*) M-REMO ECHAM5-r3 Jacob [2001]
9 - SMHI(*) RCA ECHAM5-r3 Samuelsson et al. [2011]
10 - SMHI-BCM RCA BCM Samuelsson et al. [2011]
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Table 2. Climatic mean and extreme ETCCDI indices for precipitation used in this work (see

also http://etccdi.pacificclimate.org).

Label Description Units
PRCPTOT total precipitation mm
R1 number of days with precipitation over 1 mm/day days
SDII mean precipitation amount on a wet day (> 1mm) mm
R20 number of days with precipitation over 20 mm/day days
RX1DAY maximum precipitation in 1 day mm
CDD consecutive dry days (< 1mm) days
CWD consecutive wet days (> 1mm) days
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Figure 1. Topography of Spanish Iberian Peninsula and the Balearic Islands as represented

by Spain02 at 0.2◦ x 0.2◦, showing the main river basins: 0. Catalana, 1. Norte, 2. Duero, 3.

Tajo, 4. Guadiana, 5. Guadalquivir, 6. Sur, 7. Segura, 8. Levante, 9. Ebro, B. Baleares. The

inset shows a geographical map at larger scale.
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Figure 2. Schematic illustration of the MOS-Analog method (adapted from Fernandez and

Saenz , 2003). See the text for details.
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Figure 3. Spatial distribution of the observed (Spain02, left), RCM (central) and MOS-Analog

(right) mean values (averaged over the baseline period 1971-2000) for some of the precipitation

indices shown in Table 2. The spatial validation scores for the RCM and MOS-Analog simulated

values are given below the corresponding panels: mean error M (in % w.r.t. the observed mean);

the relative standard deviation S; the centred root-mean-square R; the correlation C.
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Figure 4. Taylor diagrams for the GCM-driven RCMs for different ETCCDI indices (Table 2).

The squares and the dots with the numbers indicate, respectively, the model output (as referred

on Table 1) and the MOS-Analog applied to this model.
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Figure 5. Seasonal cycle of the spatially averaged R1 index (in days) for each river basin

(according to Fig. 1). The black line represents the observed (Spain02) climatology. The violet

shaded band spans the values for the RCMs while the green one spans the respective MOS

downscaled values.
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Figure 6. As Fig. 5 but for RX1DAY index (in mm/day).
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Figure 7. Future climate change signals (expressed as percentage of change with regards the

baseline control period 1971-2000) for the period 2071-2100 for the precipitation indices shown in

Table 2. The different rows correspond to the results for to the seven-member ensemble (ENS),

the quantile mapping bias correction method (QQM), and the MOS-Analog downscaling method.

The colour saturation level shows the percentage agreement in the direction of change among

the ensemble members.
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Figure 8. Seasonal changes of the precipitation index PRCPTOT for different future periods

(2011-2040, 2041-2070, 2071-2100). Values for MOS-Analog (MOS), the quantile mapping bias

correction method (QQM) and RCMs (ENS) are expressed in percentage of change between

the baseline (1971-2000) and future periods. The colour saturation level shows the percentage

agreement in the direction of change among the ensembles.
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Figure 9. The same as Fig. 8 but for RX1DAY index.
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Figure 10. The same as Fig. 8 but for CDD index.

c©2017 American Geophysical Union. All Rights Reserved.


