The warm absorber of the type 1 Seyfert galaxy H1419+480

X. Barcons, F. J. Carrera and M. T. Ceballos
Instituto de Física de Cantabria (CSIC-UC), 39005 Santander, Spain

ABSTRACT
The bright type 1 Seyfert galaxy H1419+480 (z ~ 0.072), whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton. The EPIC spectrum above 2 keV is well fitted by a power law with photon index Γ = 1.84 ± 0.01 and an Fe Kα line of equivalent width ~250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields log ξ ~ 1.15–1.30 (ξ in erg cm s⁻¹) with N_H ~ 5 × 10^{21} cm⁻² for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ~1800 km s⁻¹. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.

Key words: galaxies: active – galaxies: individual: H1419+480 – galaxies: Seyfert – X-rays: galaxies.

1 INTRODUCTION
X-ray spectral studies of radio-quiet active galactic nuclei (AGNs) reveal very frequently the presence of ionized material. This was first noted by Halpern (1984), based on Einstein IPC data, where it was also noted that these absorbers vary. Evidence for ionized absorption along the line of sight was provided by Nandra & Pounds (1992), based on the detection of an absorption edge in ROSAT observations of the type 1 Seyfert galaxy MCG-6-30-15. Fabian et al. (1994) were able to disentangle the O vii and O viii K-edges of this warm absorber using the much better spectral resolution of ASCA.

In the years that followed, it became evident that warm absorbers are ubiquitous among type 1 Seyfert galaxies. Reynolds (1997) and George et al. (1998) showed that more than 50 per cent of type 1 Seyfert galaxies contain a warm absorber. These are produced by partially ionized gas with total column density in the range N_H ~ 10^{21}–10^{23} cm⁻², probably located at or outside the broad-line region (BLR) (Reynolds & Fabian 1995).

With the advent of higher-resolution grating spectrographs on board Chandra and XMM–Newton, much more detailed studies of ionized absorbers have become possible. X-ray spectra obtained with the Reflection Grating Spectrograph (RGS) (den Herder et al. 2001) on board XMM–Newton have shown that the absorbing gas often has various components with different outflowing velocities and clearly distinct ionization states [see Sako et al. (2001) for IRAS 13349+2438 and Blustin et al. (2002) for NGC 3783]. One of the most remarkable features discovered in these spectra is the presence of unresolved transition arrays (UTAs) of Fe M lines, which could mimic the shape of absorption edges when observed at the lower spectral resolution typical of charge-coupled devices (CCDs).

Detailed studies of particular AGN that exhibit X-ray ionized absorption features also demonstrate that there is frequently a narrow-line absorber related to the AGN (i.e. an associated absorber) in the ultraviolet (UV) band, normally showing up as a C iv λλ1548, 1550 absorption feature (Mathur 1994; Mathur et al. 1994; Mathur, Elvis & Wilkes 1995). The same photoionized outflowing gas can provide the UV absorption lines and the ionized absorption features seen in X-ray spectra. More recently, Crenshaw et al. (1999) found in a systematic study of UV absorption lines towards nearby radio-quiet AGN that all objects showing UV associated absorption systems have a corresponding warm absorber in the X-rays.

Variability has also been found in some of these warm absorbers. Fabian et al. (1994) reported different absorption optical depths in the best-studied warm absorber towards MCG-6-30-15. Later, Otani et al. (1996) showed, using a 4-d long ASCA observation of this particular type 1 Seyfert galaxy, that the O viii K-edge (at a rest-frame energy of 0.871 keV) varied on scales of ~10 ks, while the O vii K-edge (at a rest-frame energy of 0.739 keV) remained constant. Otani et al. (1996) interpreted this in terms of two different ionized absorbers, a high-ionization (O viii) absorber located within the BLR, and a lower-ionization absorber (O vii) probably associated with the narrow-line region (NLR).

H1419+480 was discovered in the Modulation Collimator – Large Area Sky Survey (MC-LASS) conducted with the HEAO-1 observatory (Wood et al. 1984). The inferred 2–10 keV flux was ~2 × 10⁻¹¹erg cm⁻² s⁻¹, assuming a power-law spectrum with...
a canonical $\Gamma = 1.7$ (Ceballos & Barcons 1996). Although the modulation collimator helped to pin down the position of the X-ray source, the flux could be severely affected by the contribution of unresolved sources within the collimator field of view. The ROSAT All-Sky Survey (RASS) also detected this source (see Schwope et al. 2000), with a 0.5–2 keV flux (corrected for Galactic absorption) of $\sim 7 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$, and an additional PSPC pointed observation conducted in 1992 found a flux of $\sim 3 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$. In both cases the PSPC hardness ratio was ~ 0, which excluded a significant photoelectric absorption by cold gas.

Remillard et al. (1993) identified H1419+480 with a broad-line type 1 AGN at $z = 0.072$ (RA = $14^h21^m29.60$, Dec. = $+47^\circ47^\prime27^\prime$). Appendix A presents our own optical spectroscopic observations of H1419+480, which confirm that this source is a broad-line AGN with $z = 0.07229$, as derived from the [O iii] emission doublet.

Ceballos & Barcons (1996) analysed a sample of sources detected both in the MC-LASS sample and by ROSAT (which included H1419+480). The large decrement of the flux from hard to soft X-rays is suggestive of heavy photoelectric absorption, which is at odds with the value reported for the PSPC hardness ratio. This was interpreted by Ceballos & Barcons (1996) as evidence for complex absorption, which could be modelled in terms of either an ionized absorber or a partial covering cold absorber.

In this paper we present XMM–Newton EPIC observations of H1419+480. We find that the source has changed the soft X-ray flux again and that its 2–10 keV flux is almost a factor of 3 lower than the HEAO-1 one. A warm absorber is unambiguously seen in the XMM–Newton data, through mostly O vi absorption, but we argue that this warm absorber was weaker or absent in the previous pointed ROSAT observation. An associated C iv absorption line is seen in an International Ultraviolet Explorer (IUE) spectrum of this source taken more than 20 yr ago, but it is not seen in a similar observation taken a year later. We find that both X-ray and UV absorption can be explained in terms of the same amount of gas but varying ionizing conditions.

2 X-RAY PROPERTIES

2.1 XMM–Newton observations

H1419+480 was observed by XMM–Newton (Jansen et al. 2001) for 27 ks on 2002 May 27, during revolution 451 (obs. i.d. = 0094740201), as part of the Guaranteed Time programme of the Survey Science Centre. In this paper we analyse only the data obtained by the EPIC MOS (Turner et al. 2001) and EPIC pn (Strüder et al. 2001) cameras. The source is clearly detected by the RGS spectrographs, but it is far too faint to deliver any scientifically interesting results. The OM (Mason et al. 2001) was used to obtain images in the filters U, B and UVW1.

All three EPIC cameras had the ‘Thin 1’ filter on, and they were operated in partial window mode (MOS1 and MOS2) and small window mode (pn). Exposure times (excluding overheads) were 13 ks for the MOS cameras and 20 ks for the pn camera. However, most of the exposure time was lost due to high background flaring. After cleaning out these intervals, good time intervals of ~ 8 ks were left for the MOS1 and MOS2 detectors, and 3 ks were left for the pn detector. Fortunately H1419+480 is bright enough (5 count s$^{-1}$ in the EPIC pn camera) to provide a large enough number of counts for spectral analysis.

Event files for the three EPIC detectors were taken from the distributed pipeline products, which were obtained by processing the observation data file with SAS v5.3.3. We filtered out high-background intervals, keeping only the most reliable single and double events and, in the case of EPIC pn, by removing those with low spectral quality. Calibration matrices were generated by using SAS v5.4.1, which we found to solve some problems at energies 0.5–1 keV with respect to the SAS v5.3.3 calibration.

X-ray spectra for H1419+480 and background were extracted from the three EPIC cameras. The background spectrum was extracted from regions in the same chip as the source but not illuminated by H1419+480. This was also done in the MOS data, as opposed to source-free regions in the outer chips, to prevent vignetting affecting the background subtraction. The source plus background pn, MOS1 and MOS2 spectra were binned individually into bins containing at least 20 counts each. To fit spectral models to these data, XSPEC version 11.2.0 was used (Arnaud 1996). Bins outside the 0.2–12 keV bandpass were ignored. At the time of performing this analysis, a calibration problem (probably produced by an incorrect redistribution matrix) of the MOS detectors below 0.5 has been reported. In this paper we have taken the conservative approach of ignoring all MOS data below 0.5 keV.

2.2 The 2–12 keV X-ray spectrum

We first fitted the 2–12 keV spectrum to determine the underlying continuum. A single power-law fit gave $\chi^2 = 305.96$ for 311 degrees of freedom (two parameters fitted), but with obvious residuals around 6 keV. Adding a redshifted Gaussian emission line improved the fit substantially to $\chi^2 = 290.17$ for 308 degrees of freedom. The F test assigned a significance to the detection of this line of 99.90 per cent. Parameters resulting from the fit are listed in Table 1, while Fig. 1 shows the confidence contours in the line flux versus Dispersion of the Fe line.

Table 1. X-ray spectral parameters of H1419+480 for the 2–12 keV fit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>zgauss</td>
<td>0.07229</td>
<td></td>
</tr>
<tr>
<td>E_{line}</td>
<td>$6.52^{+0.12}_{-0.11}$</td>
<td>keV</td>
</tr>
<tr>
<td>σ_{line}</td>
<td>$0.17^{+0.14}_{-0.06}$</td>
<td>keV</td>
</tr>
<tr>
<td>F_{line}</td>
<td>$(1.7^{+0.8}_{-0.8}) \times 10^{-5}$</td>
<td>ph cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>zpowerlaw</td>
<td>0.07229</td>
<td></td>
</tr>
<tr>
<td>Γ</td>
<td>$1.84^{+0.02}_{-0.01}$</td>
<td></td>
</tr>
<tr>
<td>A_{Γ}</td>
<td>$(2.53 \pm 0.03) \times 10^{-3}$</td>
<td>ph cm$^{-2}$ s$^{-1}$ keV$^{-1}$</td>
</tr>
</tbody>
</table>

Figure 1. Confidence contours (1σ, 2σ and 3σ) for the flux versus dispersion of the Fe line.

from the Galaxy (Nandra & Pounds 1994). The EPIC pn spectrum shows a hint of a residual towards low energies, reminiscent of relativistic effects in a disc line, but since the MOS1 and MOS2 spectra do not show such residuals we do not explore this point any further. This emphasizes again the importance of calibration in the detection of weak features (such as relativistic line profiles) in data with moderate signal-to-noise ratio. In what follows the energy of the Fe line and its width have been fixed to their best-fitted values (see Table 1) in order to prevent runaway solutions with unphysical parameters (e.g. extremely broad lines).

2.3 The 0.2–2 keV X-ray spectrum

We then extend the fit to 0.2 keV, including photoelectric absorption from the Galaxy (N_H = 1.65 × 10^{20} cm^{-2}). The fit is not good, with \chi^2 = 1140.45 for 795 degrees of freedom. There are obvious negative residuals as shown in Fig. 2, where the 0.5–1 keV band has been excluded from the fitting region. We have explored a number of model fits in trying to understand this feature.

2.3.1 Absorption plus soft excess

We first try to fit the spectrum with an absorbed power law plus a soft excess in trying to mimic the negative feature seen in the residuals. The soft excess is modelled as a steep power law (a blackbody model did not converge to a better value of the \chi^2). The best fit yields a minimal reduced \chi^2 = 936.03/792, corresponding to a \Gamma_{\text{soft}} = 2.40 ± 0.09 and to an intrinsic absorption (at the redshift of the type 1 Seyfert galaxy of z = 0.07229) of \N_{\text{H}} = (5.7_{-1.0}^{+1.2}) × 10^{21} \text{cm}^{-2}. Although the improvement in the \chi^2 is very significant, strongly correlated negative residuals in the 0.5–1 keV band persist. One of the models suggested by Ceballos & Barcons (1996) to explain the unusual X-ray colours of this source on the basis of a partial covering cold absorber yields an even worse \chi^2 = 983.78.

2.3.2 Single-ion absorption

The absorption trough seen in the residuals is clearly reminiscent of an absorption edge or a UTA. The ‘equivalent width’ of the absorption feature seen in the data is ~0.7 Å, which is twice as large as the values typically found in the Fe M UTAs. Besides, the absorption feature in H1419+480 spreads over ~5 Å, while the Fe M UTAs spread over 1.5 Å in the RGS. The spectral resolution of EPIC at the energies of interest is 0.6–1 Å, and therefore would be unable to spread a UTA up to 5 Å. A further argument against the bulk of this feature being due to an Fe M UTA comes from the fit to a multicomponent absorber (see Section 2.3.3) where all Fe M lines are included and yet the absorber’s parameters are very similar to those fitted by assigning the feature to (mostly) the O vii absorption edge. Therefore we conclude that, although UTAs can contribute to the detected absorption feature, they cannot account for all of it. We therefore start by attempting to interpret the negative spectral feature in terms of an absorption edge.

Indeed, adding a single absorption redshifted edge to the data results in a minimal \chi^2 = 854.11/793 (i.e. substantially better than the soft excess model). The edge energy is \E_{\text{edge}} = 715_{-12}^{+10} \text{eV} with a maximum depth of \tau_{\text{edge}} = 0.58_{-0.03}^{+0.07}. If interpreted as an intrinsic O vii absorption K-edge, at a rest-frame energy of 739 eV, the absorber should be infalling towards H1419+480 at a velocity \nu = 9100_{-3800}^{+7200} \text{km s}^{-1}. This velocity shift is significantly larger than the velocity outflow found in the best-studied cases with the X-ray gratings.

One fact that might contribute, at least partly, to this shift is the presence of resonance absorption lines from the same ion, which are unresolved by EPIC, but still contribute to the shape of the absorption feature. This fact has been noted, among others, by Lee et al. (2001) in the analysis of the Chandra data of the type 1 Seyfert galaxy MCG-6-30-15. We therefore prefer to model the single-ion absorption by the SIABS model released in the PHOTON package (Kinkhabwala et al. 2003), under the assumption that the feature corresponds to O vii. The fit results in a \chi^2 = 851.41/793 corresponding to a column density \N_{\text{O vii}} = (2.1_{-0.3}^{+0.2}) × 10^{18} \text{cm}^{-2} and an infall velocity of \nu = 6000_{-7500}^{+3500} \text{km s}^{-1} towards the source. Fig. 3 shows the confidence contours for these two parameters. We note that the fit is even marginally better than the one provided by the K-edge solely and that the velocity shift is now much more moderate (and consistent with zero), as in better-studied warm absorbers.

2.3.3 Multiple-ion absorption

Although the single-ion absorption fit does not leave obvious residuals in the X-ray data, we have attempted to add an O viii absorber with the same recession velocity as the O vii absorber fixed at the...
Figure 4. Best-fitting and confidence contours (1σ, 2σ and 3σ) for the O vii and O viii column densities by fitting two single-ion absorptions with infall velocity fixed at 6000 km s⁻¹. The dashed lines show the predictions for a thermal ($T = 3 \times 10^5$ K) photoionized gas and representative values of the ionization parameter ξ, for a range of H column densities.

Figure 5. XMM–Newton EPIC spectrum and residuals with respect to the best-fitting model consisting of a power-law plus Fe line and absorption for both O vii and O viii. Crosses are from EPIC pn, filled circles from EPIC MOS1 and open circles from EPIC MOS2.

Figure 6. Best-fitting and confidence contours (1σ, 2σ and 3σ) for the total column density and ionization parameter ξ (in units of erg cm s⁻¹) after fitting the X-ray spectrum to a photoionized gas with solar abundances (model XIABS).

Figure 7. EPIC pn light curves of H1419+480 in the 0.5–2 keV and 2–12 keV bands. The gaps are due to high-background flaring intervals.

best-fitted value of 6000 km s⁻¹. The χ^2 further decreases to 846.68/792 by just adding one parameter (the O viii column density). The F-test statistic yields a significance of only 96.4 per cent for this new component. Fig. 4 shows the confidence contours in the O vii and O viii column density parameter space. Fig. 5 shows the EPIC spectrum together with the two single-ion absorptions spectral fit, along with the featureless residuals.

We have also explored the possibility of describing the absorption feature in terms of a solar abundance photoionized gas, by using the model XIABS from the PHOTOION package (Kinkhabwala et al. 2003). The best fit, by fixing the infall velocity at 6000 km s⁻¹, is reached for $\log \xi = 1.30 \pm 0.1$ and a total H column density of $N_H \sim (5.1 \pm 0.7) \times 10^{21}$ cm⁻² with a $\chi^2 = 871.32/793$. Contour plots are shown in Fig. 6. However, the fit is not as good as that for the O vii and O viii absorption only, presumably due to unmatched features from other elements.

The XIABS model used does not include thermal (collisional) ionization in the absorbing gas. We illustrate the effects of collisional ionization by computing the values of N_{OVII} and N_{OVIIT} for a photoionized gas at a temperature $T = 3 \times 10^5$ K (typical of warm absorber models) and assuming a gas density of 10^{10} cm⁻³ (e.g. as in the Mathur et al. 1994, models), although this last parameter is only marginally relevant as the gas is optically thin. We have used xstar (version 2.1) along with solar abundances, and the results are shown in Fig. 4 for a few values of the ionization parameter. In this case, some of the ionization takes place by collisions and therefore the required ionization parameter is marginally smaller ($\log \xi \sim 1.15$). The required value for the column density is also around $N_H \sim 5 \times 10^{21}$ cm⁻². With this we conclude that both the ionization parameter and the amount of gas along the line of sight are fairly well established.

2.4 Variability

Although the XMM–Newton exposure is relatively short, we have also explored whether the source varied within the observation. Counts have been accumulated in the 0.5–2 keV and 2–12 keV band. The reason for this resides in the fact that the 0.5–2 keV band is dominated mostly by the absorbed component and the 2–12 keV by the underlying continuum (plus Fe line).

Counts have been grouped into 100-s bins, which produced an EPIC pn count rate of 1.7 count s⁻¹ in the 0.5–2 keV band and 0.6 count s⁻¹ in the 2–12 keV band. Although it is a minor correction, the light curve of the background has been scaled and subtracted from the source’s light curve. Fig. 7 shows the resulting light curves of H1419+480. In order to look for the significance of any variability,
we fit a constant value to every light curve and compute the minimum χ^2. For the 0.5–2 keV band, $\chi^2 = 48.58$ for 41 points, which yields a probability of the source being variable of only 83 per cent. In the 2–12 keV band $\chi^2 = 60.9$, with a probability of the source being variable of 98 per cent. We have further checked whether any marginal variations are different in both bands, by fitting a constant to the difference between the 2–12 keV and 0.5–2 keV count rates. The χ^2 fit to a constant yields $\chi^2 = 32.0$ for 40 points, which is entirely consistent with no X-ray colour variations. We therefore conclude that there is no significant variability of the source within the XMM–Newton observation and that in any case variations preserve the X-ray colours of the source. Therefore there are no constraints on the physical models for this source derived from variability.

2.5 Comparison to previous X-ray observations

Using the best-fitting model with two single-ion absorptions (O vii and O viii), the flux of H1419+480, corrected for Galactic absorption, is computed as 4.5×10^{-12} erg cm$^{-2}$ s$^{-1}$ in the 0.5–2 keV band and 7.3×10^{-12} erg cm$^{-2}$ s$^{-1}$ in the 2–10 keV band. Adopting currently fashionable cosmological parameters ($H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$ and $\Omega_\Lambda = 0.7$), the luminosity of H1419+480 is 5.7×10^{43} erg s$^{-1}$ in the 0.5–2 keV band and 9.2×10^{43} erg s$^{-1}$ in the 2–10 keV band.

The XMM–Newton 2–10 keV flux is almost a factor of 3 smaller than the HEAO-1 flux, a fact that can be explained at least in part by source confusion in the HEAO-1 collimators [see Barcons, Carrera & Ceballos (2003), for a discussion on a similar situation for another source].

There are two ROSAT observations of H1419+480 recorded from this source: one from the RASS (reported in Schwage et al. 2000) and a second one performed on 1992 January (observation sequence ROR700038) used in Ceballos & Barcons (1996). Table 2 lists some data of these observations, along with expectations from the XMM–Newton observation. We have folded our best-fitting model to the XMM–Newton data through the ROSAT PSPC-B response to compute the expected spectral shape in the ROSAT observations and to convert count rates to fluxes.

The first obvious conclusion is that the 0.5–2 keV flux has changed significantly between the three different observations. The expected spectral shape in the ROSAT observations appears similar (but not identical) to the measured one. The PSPC hardess and softness ratios (see caption of Table 2 for definitions) expected in the ROSAT data from our best-fitting model to the XMM–Newton spectrum have been computed with and without the O vii and O viii absorption components. In particular the value measured for SR$_c$ in the 1992 observation appears consistent with the absence (or weakening) of the absorption features, but largely inconsistent with the presence of the absorption features. We conclude that the absorption features were much weaker or absent during the ROSAT observation of H1419+480 in 1992.

3 An Associated C iv Absorber

The compelling evidence that X-ray warm absorbers share a common origin with associated narrow-line absorbers in the UV (Crenshaw et al. 1999) urged us to search in available archives for UV spectroscopic observations of H1419+480. Unfortunately the Hubble Space Telescope (HST) has not observed this object with any of the UV spectographs, but the IUE did observe it several times. Table 3 lists the observations conducted with the SWP short-wavelength camera (operated at low dispersion ~6 Å), which encompass both the Lyα 1216 and the C iv $\lambda 1549$ emission lines. We analysed the INES (IUE Newly Extracted Spectra) data from both of these observations.

![Figure 8. IUE/SWP spectra of H1419+480 around the C iv emission line. Only data points that have not been flagged by any reason are plotted. Filled (open) circles are from the SWP17265 (SWP18951) observations respectively.](https://example.com/highres-figure.png)
flagged for any reason are plotted. The overall flux shift between both spectra could be either true variability or a calibration problem. The most obvious discrepancy between the two spectra occurs at around $\lambda \sim 1651$ Å, where the earlier observation (SWP17265) shows a dip that could be an absorption line.

To investigate this further, and keeping in mind that detecting absorption lines on top of emission lines is a difficult task, we have taken the eight channels ranging from 1643 to 1656 Å in the SWP17265 spectrum. A linear function was fitted to that range, resulting in $\chi^2 = 17.65$ for six degrees of freedom. Multiplying by a Gaussian absorption line and freezing its width to the resolution of the spectrograph (i.e. searching for an unresolved line) the χ^2 improved to $\chi^2 = 0.99$ for four degrees of freedom. The F-test significance of that feature is 99.7 per cent ($\sim 3\sigma$). The central wavelength is $\lambda_{\text{abs}} = 1651.1 \pm 0.5$ Å, corresponding to an outflowing velocity of $\sim 1800 \pm 90$ km s$^{-1}$. The equivalent width is also very uncertain, due to the poor sampling, but formally the best fits is $3^{+0.7}_{-0.9}$ Å.

We have also explored the wings of the Lyα $\lambda 1216$ and Mg II $\lambda 2800$ (see Fig. 9), but no other obvious absorption lines are evident. We conservatively estimate that a 3σ upper limit for any Lyα absorption line present in this spectrum is about 3 Å.

At the 6-Å resolution of this setup, the C IV doublet ($\lambda \lambda 1548, 1550$) is unresolved and, obviously, we cannot measure the absorbing column density directly. Fig. 10 shows the curve of growth (i.e. equivalent width versus column density) for the whole C IV doublet and a range of velocity dispersion parameters. As usual a Voigt profile has been assumed for each line in the doublet, with velocity width parameter $b = \sqrt{2}\sigma$ (σ is the velocity dispersion of the gas, assumed Maxwellian), damping constant 2.64×10^8 s$^{-1}$ and a total oscillator strength of 0.28 (which is the sum of the oscillator strengths for the two lines). The approximation introduced by Whiting (1968) to the Voigt profile (accurate to better than 5 per cent) has been used.

The amount of C IV absorbing gas is very uncertain, as the measured equivalent width falls in the saturated part of the curve of growth, but values around $N_{\text{C IV}} \sim 10^{15} - 10^{16}$ cm$^{-2}$ would be appropriate for Doppler velocity parameters around 100 km s$^{-1}$. In Fig. 11 we also plot the curve of growth for H I Lyα, using an oscillator strength of 0.416 and a damping constant of 4.7×10^8 s$^{-1}$, along with the upper limit of 3 Å. We can see that relatively large H I column densities (up to $10^{17} - 10^{18}$ cm$^{-2}$) could go undetected for similar values of the Doppler velocity parameter.

4 DISCUSSION

Establishing a link between the X-ray and the UV absorbing gas is difficult in this case, as the observations are not simultaneous.
We can, however, test whether or not it is plausible that the same or a similar amount of gas (perhaps in a different ionization state) produced both absorption features.

The X-ray absorbing gas has a fairly well-determined column density of \(N_\text{H} \sim 5 \times 10^{21} \text{ cm}^{-2} \) and it is highly ionized (log \(\xi \sim 1.1-1.3 \)). Its velocity with respect to the emission redshift is only poorly defined by the EPIC data but consistent with zero. The absorber was significantly weaker or absent in the 1992 ROSAT observation.

The UV gas detected as a C IV associated absorber in the 1982 IUE observation of H1419+480 has a fairly well-determined outflowing velocity of 1800 \(\pm 90 \) km s\(^{-1}\), but its C IV column density is only poorly constrained, \(\sim 10^{15} N_{\text{C IV}} \text{ cm}^{-2} \), with \(N_{\text{C IV}} \sim 1-10 \). No H I Ly\(\alpha \) or Mg II absorptions are found, although the IUE spectra at the Ly\(\alpha \) region are noisier than around the C IV and Mg II lines. The total column density implied by the C IV absorption is

\[
N_\text{H} = 2.4 \times 10^{18} N_{\text{C IV}} f_{\text{C IV}} \text{ cm}^{-2},
\]

where \(f_{\text{C IV}} \) is the fraction of C that is in the C IV ionization state. This is a completely unknown parameter, as we cannot determine the ionization parameter of this gas which applies to the 1982 observation from a single UV unresolved absorption feature. We must restrict ourselves to check whether a value of \(N_\text{H} \sim 5 \times 10^{21} \text{ cm}^{-2} \), as in the X-ray absorber, can be obtained for reasonable ionization conditions.

Using \texttt{XSTAR} (version 2.1) we have computed ionization fractions for C IV (\(f_{\text{C IV}} \)), H I (\(f_{\text{H I}} \)) and Mg II (\(f_{\text{Mg II}} \)) for a range of values of log \(\xi \sim 1-1.5 \), assuming the gas temperature fixed at \(T = 3 \times 10^{9} \text{ K} \) and with a spectral shape given by a \(\Gamma \) = 1.84 power law. As pointed out by Mathur et al. (1994), for example, this might result in a very inaccurate shape of the UV ionizing continuum, and instead a more accurate shape should be used. However, for the purposes of this illustrative exercise, where the ionizing parameter is essentially unknown, this rough modelling of the ionizing spectrum is good enough.

For this range of parameters, \(f_{\text{C IV}} (f_{\text{H I}}) \) decreases from \(7.1 \times 10^{-3} (3.4 \times 10^{-5}) \) for log \(\xi = 1.0 \) to \(4.4 \times 10^{-3} (4.0 \times 10^{-6}) \) for log \(\xi = 1.5 \). The value of \(f_{\text{Mg II}} \) is zero for this range of ionization. If we adopt the amount of gas seen in the X-ray absorber (\(N_\text{H} \sim 5 \times 10^{21} \text{ cm}^{-2} \)), H I Ly\(\alpha \) would be difficult to detect in all the explored range of ionizations, as the H I column density would be below \(10^{17} \text{ cm}^{-2} \). However, \(N_{\text{C IV}} \) would range from \(1.6 \times 10^{16} \text{ cm}^{-2} \) for the lower ionization states explored down to \(10^{14} \text{ cm}^{-2} \) in the opposite extreme. In conclusion, there is a range of ionization parameters, in fact, with values around those measured from the X-ray absorber (log \(\xi \sim 1.3 \)), where it is plausible to observe the C IV absorption line and no H I Ly\(\alpha \) or Mg II absorptions. A slightly higher ionization brings also the C IV absorption below detection limits.

5 CONCLUSIONS

The bright type 1 Seyfert galaxy H1419+480 has been shown to be variable in X-rays by comparing our XMM–Newton observations with earlier ROSAT data. A warm absorber is clearly seen mostly through O vii absorption, but also with \(\sim 2\sigma \) evidence for O viii absorption, in the XMM–Newton data at the emission redshift. The absorber was weaker or absent in a ROSAT pointed observation performed in 1992. The absorber contains a gas column of \(N_{\text{H}} \sim 5 \times 10^{21} \text{ cm}^{-2} \), and the ionization parameter is around log \(\xi \sim 1.15-1.3 \) depending on whether or not ionization by collisions is included.

An IUE observation of H1419+480 conducted in 1982 shows \(\sim 3\sigma \) detection for a C iv associated absorber, outflowing with a velocity \(\sim 1800 \pm 90 \) km s\(^{-1}\). This confirms the close link between X-ray ionized absorbers and UV associated absorption reported by, among others, Crenshaw et al. (1999). This absorption line was not present in an IUE observation obtained roughly a year later.

We find that a plausible common origin for all these variable absorption phenomena can be understood in terms of the same (or similar) amount of photoionized gas, but with varying ionization state. Indeed, for values of the ionization parameter similar to those inferred from the X-ray observations, we find that the X-ray absorbing gas could have produced the C IV absorption feature without any detectable H I Ly\(\alpha \) or Mg II lines. A slightly higher ionization would explain the lack of the C IV absorption feature in the IUE observation in 1983.

We therefore conclude that H1419+480 has a variable ionized absorber. Both X-ray and associated UV absorbers are detected at different epochs in this object, along the lines of the sample studied by Crenshaw et al. (1999). Furthermore, we have shown that both absorbers are plausibly related.

ACKNOWLEDGMENTS

The work reported herein is based partly on observations obtained with XMM–Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). It is also based on INES data from the IUE observatory. We thank Enrique Solano for assistance with the INES data and an anonymous referee for important suggestions. The WHT telescope is operated by the Isaac Newton Group at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. We acknowledge financial support by the Ministerio de Ciencia y Tecnología (Spain), under grants AYA2000-1690 and ESP2001-4537-PE.

REFERENCES

Fabian A. C. et al., 1994, PASJ, 46, L9

Nandra K., Pounds K. A., 1992, Nat, 359, 21
Otani C. et al., 1996, PASJ, 48, 211
Remillard R., Bradt H. V. D., Brisenden R. J. V., Buckley D. A. H.,

APPENDIX A: THE OPTICAL SPECTRUM OF H1419+480

H1419+480 was observed in the 4.2-m William Herschel Telescope (WHT) at the Observatorio del Roque de Los Muchachos in the island of La Palma (Canary Islands, Spain), on 1998 February 26. We used the ISIS double spectrograph with 600 line mm$^{-1}$ gratings on both the blue and red arms, with the wavelengths centred at 5200 and 7000 Å respectively, in order to observe the Hβ + [O III] region in the blue and the Hα + [N II] + [S II] in the red. Weather conditions were good and probably photometric, but the seeing was around 1.5 arcsec. Two 300-s observations (co-added in the reduction process) were carried out with the slit aligned to parallactic angle. For details on the reduction process, see Barcons et al. (2003), as the same setup and procedure was used.

Fig. A1 shows the optical blue and red spectra of H1419+480. The [O III] lines have some structure, with two peaks separated by \sim60 km s$^{-1}$. This is the main limiting factor in the precision of the redshift, which we measure by fitting both lines to a common redshift and find $z = 0.072296 \pm 0.000004$.

Figure A1. Optical spectrum of H1419+480.