Individual variation in the extent of milk fat depression in dairy ewes: rumen fermentation and biohydrogenation of fatty acids

Pilar Frutos1, Gonzalo Hervás1, Álvaro Belenguer4, Alejandro G. Mendoza1, Federica D’Aniello1,2, Stefano Sanna1,2, Pablo G. Toral1
1Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain, 2University of Pisa, Pisa, Italy, 3University of Sassari, Sassari, Italy
E-mail: p.frutos@csic.es

Take home message Individual variation in the severity of milk fat depression cannot be explained by a single mechanism (e.g., changes in rumen VFA or biohydrogenation metabolites) but most probably by a complex combination of factors.

Introduction Dairy ewes fed diets supplemented with marine lipids show large individual variations in the extent of milk fat depression (MFD) but reasons behind this variability are still uncertain. In a previous study (Frutos et al., 2017), we were not able to demonstrate that differences in the milk concentration of some fatty acids (FA), particularly antilipogenic FA, and in transcript abundances of candidate genes involved in mammary lipogenesis explained individual variations in fish oil-induced MFD severity. It is known that MFD is related to active biohydrogenation (BH) intermediates that are produced under certain feeding conditions that alter rumen function (Bauman and Griinari, 2001). Therefore, we hypothesized that differences in the processes of ruminal fermentation and BH of unsaturated FA would account for the individual response in the susceptibility to the low-fat milk syndrome.

Materials & methods We used 15 lactating Assaf ewes fed a total mixed ration supplemented with 0 (control; n=5) or 20 g of fish oil/kg DM [10 animals were selected out of 22 receiving this supplemented diet and were divided in two groups: ewes showing a strong MFD (RESPON+, n=5) or a slight MFD (RESPON-, n=5); see Frutos et al. (2017) for details]. After 36 days on the diets, samples of rumen fluid were collected through stomach tube for pH, ammonia and volatile FA (VFA) concentrations, and for lipid analysis. Ammonia was determined by colorimetry, and VFA and biohydrogenation intermediates by gas chromatography. Data were analysed with the MIXED procedure of SAS 9.4 using orthogonal contrasts [namely, Control vs. (RESPON− and RESPON+), and RESPON− vs. RESPON+].

Results & discussion After 5 weeks on diets, the decrease in milk fat content, compared with the control, averaged 7.7% in RESPON− and 25.4% in RESPON+. Feeding marine lipids affected all rumen fermentation parameters (pH, ammonia and VFA) but only changes in VFA concentrations were linked to MFD severity (P ≤ 0.05). Thus, the total VFA content (in mmol/L) fell from 117 in the control to 107 in RESPON− and 92 in RESPON+. Similar decreases were observed in acetate (74 vs. 68 vs. 58 mmol/L) and propionate (23 vs. 21 vs. 18 mmol/L) contents for control, RESPON− and RESPON+, respectively, while butyrate concentrations showed comparable reductions in both supplemented groups and molar proportions remained stable. A role of VFA on MFD has been consistently dismissed (see review by Bauman and Griinari, 2001). In fact, despite acetate is the main substrate for de novo synthesis of FA in dairy ruminants, it was widely accepted that its supply did not affect milk fat yield. Nevertheless, this has been recently challenged by Urrutia and Harvatine (2017) and would merit further research. Concerning BH metabolites, dietary fish oil had a strong effect on 18:0, with ruminal concentration in animals displaying MFD averaging only 15% of the control value (P < 0.001) but without significant variation between RESPON− and RESPON+. Only few minor FA (e.g., cis-6+7:16:1 or 17:0 anteiso) differed between these treatments (P < 0.05). Most cis and trans 18:1 isomers (e.g., cis-9 or trans-11 18:1) were favoured in rumen digesta from supplemented ewes, but no differences were found in relation to variability in responsiveness to MFD-inducing marine lipids. As expected, most demonstrated or putative antilipogenic FA (e.g., cis-9 16:1, 10-oxo-18:0, cis-11 18:1, trans-10 cis-12 CLA, trans-10 cis-15 18:2, which coeluted with trans-11 cis-15 18:2, or 22:6n-3) showed a higher concentration in ewes fed the fish oil-supplemented diet (P < 0.05). On the contrary, surprisingly, none of them differed significantly in relation to MFD intensity (i.e., between RESPON− and RESPON+). These results agree with those observed previously about changes in milk FA profile and mRNA abundances of lipogenic genes (Frutos et al., 2017) and suggest that most probably the individual variability in the extent of diet-induced MFD will rely on a complex combination of factors.

Conclusion Rumen concentrations of VFA that are precursors of milk FA, mainly acetate, show lower values in animals with a strong MFD (i.e., in RESPON+). Quite the opposite, changes in rumen BH metabolites show very little variation in ewes displaying different degrees of the syndrome, which would rule out their role as main responsible for MFD severity.

Acknowledgements This work was supported by the Spanish MINECO (AGL2014-54587-R). P.G. Toral benefits from a Ramón y Cajal research contract. Cofunding by the European Regional Development Fund is also acknowledged.

References

461 Session 4: Nutrition to improve milk and meat quality

Proceedings
of the 10th International Symposium
on the Nutrition of Herbivores
2018

Herbivore nutrition supporting sustainable intensification
and agro-ecological approaches

Advances in Animal Biosciences

This book is part of a series, which is a companion to the journal ANIMAL

2 to 6 September 2018, Clermont-Ferrand, France

Summaries have been reviewed and edited for English language; however, the Organising Committee and publisher accept no responsibility for their accuracy. Views expressed in all contributions are those of the authors and not those of the symposium’s committee members.

This publication contains all summaries that were available at the time of going to press.

ISNH 2018 Committee Members

Local Organising Committee
Yannick Faulconnier
(General Secretary)
Pascal Champciaux
Christiane Espinasse
Pascale Francisco
Sabrina Gasser
Benoît Graulet
Pascal Payard
Bernard Sepchat
Mathieu Silberberg
Maryse Teyssedre

Local Scientific Committee
Isabelle Cassar-Malek (Chair)
René Baumont (Chair)
Fabienne Blanc
Maryline Boval
Bertrand Dumont
Philippe Faverdin
Géraldine Fleurance
Evelyne Forano
Nicolas Friggens
Elie Gonzalez-Garcia
Diego Morgavi
Brigitte Picard
Mathieu Silberberg
Isabelle Veissier

International Advisory Committee
Ilias Kyriazakis, UK (Chair)
André Bannink, Netherlands
Isabelle Cassar-Malek, France
Trevor DeVries, Canada
Robert Forster, Canada
Pilar de Frutos, Spain
Pablo Gregorini, New Zealand
Sabrina Louise Greenwood, USA
Dianne Mayberry, Australia
David Pacheco, New Zealand
Tanda Panjaitan, India
Debra Patterson, UK
Nigel Scollan, UK
W. Brandon Smith, USA
Isabelle A. M. A. Teixeira, Brazil
Aila Vanhatalo, Finland
Guangyong Zhao, China

Editors
René Baumont
Mathieu Silberberg
Isabelle Cassar-Malek

ISNH 2018 Website: https://symposium.inra.fr/isnh2018

© 2018 Animal Consortium
ISSN 2040-4700
Current and Upcoming Conferences in Advances in Animal Biosciences and Animal

British Society of Animal Science (Published April 2018)
International Bull Fertility (Published May 2018)
International Symposium on the Nutrition of Herbivores
EU Cost Action IPEMA
Biology of Lactation in Farm Animals
International Symposium on Digestive Physiology of Pigs
British Society of Animal Science
International Symposium on Ruminant Physiology
Individual variation in the severity of milk fat depression cannot be explained by a single mechanism (e.g., changes in rumen biohydrogenation or milk concentration of antilipogenic fatty acids) but most probably by a complex combination of factors.

In a previous study (Frutos et al., 2017), we were not able to demonstrate that differences in the milk concentration of some fatty acids (FA), particularly antilipogenic FA, and in transcript abundances of candidate genes involved in mammary lipogenesis explained individual variations in fish oil-induced MFD severity.

It is known that MFD is related to active biohydrogenation intermediates that are produced under certain feeding conditions that alter rumen function. Therefore, hypothesis → Differences in the processes of ruminal fermentation and biohydrogenation (BH) of unsaturated FA would account for the individual response in the susceptibility to the low-fat milk syndrome.

RESULTS

Expected differences due to fish oil supplementation

Despite acetate is the main substrate for de novo synthesis of FA in dairy ruminants, it was widely accepted that its supply did not affect milk fat yield (Bauman & Grinari, 2001). However, this has been recently challenged by Urrutia and Harvate (2017) and would merit further research.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>RESPON-</th>
<th>RESPON+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia (mg/L)</td>
<td>134</td>
<td>165</td>
<td>182</td>
</tr>
<tr>
<td>Total VFA (mmol/L)</td>
<td>117</td>
<td>107</td>
<td>92</td>
</tr>
<tr>
<td>Acetate</td>
<td>74.1</td>
<td>67.5</td>
<td>57.6</td>
</tr>
<tr>
<td>Propionate</td>
<td>22.7</td>
<td>21.4</td>
<td>17.9</td>
</tr>
<tr>
<td>Butyrate</td>
<td>16.1</td>
<td>14.3</td>
<td>13.0</td>
</tr>
<tr>
<td>FA (g/100 g of total FA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c6+7 16:1</td>
<td>0.12</td>
<td>0.37</td>
<td>0.49</td>
</tr>
<tr>
<td>c9 16:1</td>
<td>0.10</td>
<td>0.65</td>
<td>0.77</td>
</tr>
<tr>
<td>17:0 anteiso</td>
<td>0.45</td>
<td>0.40</td>
<td>0.47</td>
</tr>
<tr>
<td>18:0</td>
<td>46.7</td>
<td>7.56</td>
<td>6.38</td>
</tr>
<tr>
<td>10-oxo-18:0</td>
<td><0.01</td>
<td>2.04</td>
<td>2.06</td>
</tr>
<tr>
<td>c9 18:1</td>
<td>4.36</td>
<td>6.01</td>
<td>6.90</td>
</tr>
<tr>
<td>c11 18:1</td>
<td>0.55</td>
<td>1.72</td>
<td>1.73</td>
</tr>
<tr>
<td>t11 18:1</td>
<td>3.11</td>
<td>20.8</td>
<td>20.9</td>
</tr>
<tr>
<td>t11c15 + t10c15 18:2</td>
<td>0.18</td>
<td>0.80</td>
<td>0.89</td>
</tr>
<tr>
<td>t10c12 CLA</td>
<td>0.01</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>22:6n-3</td>
<td>-</td>
<td>0.83</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Most demonstrated or putative antilipogenic FA showed a higher concentration in ewes fed the fish oil-supplemented diet. On the contrary, surprisingly, none of them differed significantly in relation to MFD intensity (i.e., between RESPON- and RESPON+)

CONCLUSION

Rumen concentrations of VFA that are precursors of milk FA, mainly acetate, show lower values in animals with a strong MFD (i.e., in RESPON+). Quite the opposite, changes in rumen BH metabolites show very little variation in ewes displaying different degrees of the syndrome, which would rule out their role as main responsible for MFD severity.

The individual variation in the extent of diet-induced MFD in dairy ewes will probably rely on a complex combination of factors.