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Abstract 1 

The glycosylation of plant polyphenols may modulate their solubility and 2 

bioavailability, and protect these molecules from oxygen, light degradation and 3 

during gastrointestinal transit. In this work, the synthesis of various α-glucosyl 4 

derivatives of (‒)-epigallocatechin gallate (EGCG), the predominant catechin in green 5 

tea, was performed in water at 50 °C by a transglycosylation reaction catalyzed by 6 

cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. The 7 

molecular weight of reaction products was determined by HPLC-MS. Using 8 

hydrolyzed potato starch as glucosyl donor, two main monoglucosides were obtained 9 

with conversion yields of 58% and 13%, respectively. The products were isolated and 10 

chemically characterized by combining 2D-NMR methods. The major derivative was 11 

epigallocatechin gallate 3’-O-α-D-glucopyranoside (1) and the minor epigallocatechin 12 

gallate 7-O-α-D-glucopyranoside (2).  13 

Keywords: Glycosylation; Tea polyphenols; Antioxidants; Catechins; Cyclodextrin 14 

glucosyltransferase; Enzymatic glucosylation.  15 
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INTRODUCTION 16 

Plant polyphenols are gaining importance owing to their capacity to delay the 17 

appearance of several degenerative illnesses and pathologic processes such as 18 

Alzheimer’s and Parkinson’s diseases, schizophrenia, cancer, chronic inflammatory 19 

disease, atherosclerosis or myocardial infarction.1-3 Their action is based on the 20 

enhancement of the antioxidant system due to their ability to lower the level of 21 

reactive oxygen species (ROS).4 Most polyphenols are hydrophobic molecules that 22 

exhibit poor absorption in vivo, giving rise to a negligible concentration in the 23 

circulatory streams.5 24 

Several polyphenols appear glycosylated in nature6 and the sugar moiety seems to 25 

play a significant function in their human absorption.7,8 Glycosylation of polyphenols 26 

may thus modulate their bioavailability,9 bioactivity,10 and various physicochemical 27 

features such as the solubility11 and the partition coefficient.12 Glycosylation may also 28 

facilitate the entrance of several flavonoids into intestinal enterocytes.9 For instance, 29 

3-O-glycosides of quercetin displayed improved bioavailability compared with the 30 

aglycon.13 However, it has been reported that a prior hydrolysis of the glycosides is 31 

critical to obtain an efficient cellular uptake.14,15 In this context, the main advantage of 32 

glycosylation could be thus related with the increase of polyphenol stability, in 33 

particular during storage and gastrointestinal transit after ingestion.16 34 

Glycosylation may also exert other benefits to the polyphenols including a 35 

protection from oxygen and/or light degradation by masking certain phenolic groups, 36 

or an increased efficiency for the prevention of skin photo-ageing damages.17 Due to 37 

the excellent specificity of enzymes and to the mild conditions required, the 38 

enzymatic glycosylation is preferred over other methodologies based on traditional 39 
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chemistry, which require various steps of protection/deprotection of functional 40 

groups.18-22 41 

(‒)-Epigallocatechin gallate (EGCG) is the prevailing flavanol (≥ 50%) in green tea 42 

(Camellia sinensis). Its antioxidant,23 antihypertensive,24 antitumoral,25,26 43 

bactericidal27 and anti-inflammatory28 properties, among others, have been widely 44 

studied. However, the bioavailability of EGCG is low29 as it also undergoes rapid 45 

degradation in aqueous solutions.30,31 EGCG has arisen a lot of attention as a potential 46 

therapeutic substance for the prevention, among others, of neurodegenerative 47 

diseases.32-34 Various investigations proved the potential of EGCG to promote healthy 48 

aging, suppress cognitive dysfunction, boost learning ability and minimize oxidative 49 

damage in the brain.35,36 50 

The enzymatic glycosylation of EGCG has been explored as a means to increase its 51 

stability, solubility, bioavailability and browning resistance,37 as well as to reduce its 52 

astringency for food applications.38 Thus, the α-glucosylation of EGCG has been 53 

described using a sucrose phosphorylase39 or a glucansucrase37,40,41 from Leuconostoc 54 

mesenteroides, and an α-amylase from Trichoderma viride.38  55 

In this article, we report the enzymatic preparation of various α-glucosylated 56 

derivatives of EGCG by a transglucosylation reaction catalyzed by a cyclodextrin 57 

glycosyltransferase (CGTase, EC 2.4.1.19) from Thermoanaerobacter sp.42 This 58 

biocatalyst was anteriorly employed in our laboratory for the α–glucosylation of 59 

resveratrol43 and pterostilbene.44 A variant of the same enzyme from Bacillus 60 

macerans was reported to glucosylate catechin but with low yield (1.2%).45 Our 61 

objective was to develop a friendly and efficient process for α-glucosylation of EGCG. 62 
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MATERIALS AND METHODS 63 

Enzyme and reagents 64 

(-)-Epigallocatequin gallate (EGCG) was acquired from Zhejiang Yixin Pharmaceutical 65 

Co. (Zhejiang, China). Toruzyme 3.0L, a commercial preparation of cyclodextrin 66 

glucanotransferase (CGTase) from Thermoanaerobacter sp., was gently provided by 67 

Novozymes. It was partially purified using a PD-10 desalting column (GE Healthcare). 68 

Partially hydrolyzed starch from potato (Passelli SA2) was from Avebe (Foxhol, The 69 

Netherlands). All other reagents and solvents were of the maximum available purity 70 

and used as acquired. 71 

General procedure for enzymatic glucosylation  72 

Epigallocatequin gallate (9.2 mg, 20 mM) and starch (20 mg) were dissolved in 1 mL 73 

of water. Desalted CGTase from Thermoanaerobacter sp was incorporated to a final 74 

concentration of 10% (v/v). The mixture was held at 50 °C with 150 rpm orbital 75 

stirring (model SI50, Stuart Scientific). Aliquots (100 μL) were withdrawn at 76 

intervals, filtered with 0.45 μm nylon filters (Cosela) and the formation of products 77 

was followed by TLC and HPLC. 78 

Thin-Layer Chromatography (TLC) 79 

TLC analysis was carried out on silica gel plates with fluorescent indicator (Polygram 80 

SIL G/UV254, Macherey-Nagel) using ethyl acetate/methanol (9:1, v/v) as eluent. 81 

Phenolic compounds were observed under UV light (UV transiluminator, UVP, USA) 82 

and the carbohydrates were stained with a solution containing (NH4)6Mo7O21·4H2O 83 

and Ce(SO4)2 in 10% (v/v) H2SO4. 84 

High-Performance Liquid Chromatography (HPLC) 85 
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HPLC analyses were performed employing a quaternary pump (model 600, Waters) 86 

coupled to an autosampler (Varian ProStar, model 420). The injection volume was 10 87 

µL. The column was maintained at 40 °C. The detection of peaks was carried out using 88 

a photodiode array detector (ProStar, Varian) and integration was performed using 89 

the Varian Star LC workstation 6.41. The column was a Zorbax Eclipse Plus C-18 (4.6 90 

x 100 mm, 5 μm, Agilent Technologies) and the mobile phase was H2O/methanol 91 

85:15 (v/v), degassed with helium. The solvents were acidified with formic acid 92 

(0.1% v/v). The flow rate was 0.5 mL/min.  93 

HPLC coupled to Mass Spectrometry (HPLC-MS) 94 

The molecular weight of synthesized derivatives was determined by HPLC-MS using a 95 

HPLC 1100 (Agilent Tecnologies) coupled to a photodiode array detector and a mass 96 

spectrometer (Maxis II, Bruker) with hybrid QTOF analyzer. Samples were ionized by 97 

electrospray (with nitrogen to desolvate the mobile phase) and analyzed in positive 98 

reflector mode. The column and elution conditions were the same as described above, 99 

except for the flow rate that was 0.3 mL/min. 100 

Purification of glucosylated derivatives of EGCG by semipreparative HPLC 101 

The glucosylation reaction was scaled up. The reaction mixture was formed by EGCG 102 

(92 mg), soluble starch (200 mg), partially purified Toruzyme 3.0 L (1 mL), and 9 ml 103 

of water. The mixture was maintained at 50 °C for 2 h with orbital shaking (150 rpm). 104 

Then it was cooled and concentrated by rotary evaporation, and the glucosylated 105 

derivatives of EGCG were isolated by semipreparative HPLC. A Zorbax Eclipse XDB C-106 

18 column (9.4 x 250 mm, Agilent) and a three-way flow splitter (Accurate, LC 107 

Packings) were used. The mobile phase was H2O/methanol 85:15 v/v (both solvents 108 

containing 0.1% of acetic acid) at 7.0 mL/min. The column was kept at 40 ᵒC. A 109 
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photodiode array detector (PDA, Varian Prostar) was used. After collecting the 110 

glucosylated derivatives of epigallocatechin gallate, the solvents were evaporated in 111 

an R-210 rotavapor (Buchi). The purified products were further characterized by 112 

mass spectroscopy and NMR.  113 

Mass spectrometry (MS) 114 

The molecular mass of synthesized EGCG glucosides was determined employing a 115 

mass spectrometer coupled to a hybrid QTOF analyzer (model QSTAR, Pulsar i, AB 116 

Sciex). The compounds were analyzed by direct infusion and ionized by electrospray 117 

(ESI) in negative reflector mode. The ionizing phase was methanol basified with 1% 118 

of NH4OH.  119 

Nuclear Magnetic Resonance (NMR) analysis 120 

The structure of the glucosylated derivatives was assessed using a combination of 1D 121 

(1H, 1D-selective NOESY experiments) and 2D (COSY, DEPT-HSQC, NOESY) NMR 122 

techniques. The compounds were solubilized in deuterated water (ca. 10 mM). The 123 

spectra were recorded on a Bruker IVDr 600 spectrometer equipped with a BBI probe 124 

with gradients in the Z axis, at 300 or 313 K. Chemical shifts were expressed in parts 125 

per million (ppm) with respect to the 0 ppm point of DSS (4-dimethyl-4-silapentane-126 

1-sulfonic acid), employed as internal standard. All the pulse sequences were 127 

provided by Bruker. For the DEPT-HSQC experiment, values of 7 ppm and 2K points, 128 

for the 1H dimension, and 160 ppm and 256 points for the 13C dimension, were 129 

utilized. For the homonuclear COSY and NOESY experiments, 7 ppm windows were 130 

used with a 2K x 256 point matrix. For the NOESY and 1D-selective NOESY 131 

experiments, the mixing times were 500-600 ms.  132 
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RESULTS AND DISCUSSION 133 

EGCG glycosylation and optimization of the reaction 134 

It is well reported that the stability of EGCG in aqueous solutions is rather limited.39 135 

The two main processes involved in the degradation of EGCG are epimerization and 136 

oxidative coupling.30 The stability of EGCG is concentration-dependent and can be 137 

also influenced by temperature, pH and the amount of oxygen in the solution, among 138 

other parameters.31 In order to avoid interferences in the enzymatic glycosylation of 139 

EGCG, the stability of this compound was studied in different buffers at room 140 

temperature and 50 °C (Fig. 1). 141 

In presence of phosphate buffer (pH 7.6), the degradation of EGCG was fairly fast, 142 

especially at 50 °C (38% degradation in 24 h). This process was concomitant with the 143 

appearance of (-)-gallocatechin gallate (GCG) as a result of EGCG epimerization (Fig. 144 

2, chromatogram I). In addition, the color of the solutions became brown upon 145 

incubation, as a consequence of the formation by oxidative coupling of dimers and 146 

compounds of higher molecular-weight.46 At lower pH values (e.g. 5.6) the stability of 147 

EGCG was notably improved (Fig. 1), in accordance with previous reports.47,48 148 

However, the maximum stability of EGCG was found in water, with negligible 149 

degradation during 24 h even at 50 °C. Considering that most glycosidases display 150 

certain degree of activity at neutral pH,49 we selected water as reaction medium to 151 

screen the glycosylation of EGCG. 152 

Amongst the glycosidases and glycosyltransferases tested by TLC analysis, only 153 

cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp.50,51 resulted 154 

in a significant formation of glycosylated EGCG derivatives. Previously, CGTases had 155 

been successfully employed in the glycosylation of other polyphenols such as 156 
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resveratrol,43,52 genistein,53 pterostilbene44 or hydroquinone.54 Fig. 2 (chromatogram 157 

II) illustrates a typical reaction mixture with this enzyme after 72 h. It is worth noting 158 

that the major product (Glc-EGCG-1) presented a higher retention time than EGCG in 159 

a C-18 column. A secondary product (Glc-EGCG-2) was also observed. 160 

With a view to optimize the production of glucosylated derivatives, we analyzed 161 

the effect of starch concentration (10-300 mg/mL). Fig. 3 illustrates the maximum 162 

conversion yield of Glc-EGCG-1 and Glc-EGCG-2. As shown, the differences were not 163 

very substantial. Under the optimal conditions (9.2 mg of EGCG and 20 mg/mL of 164 

partially hydrolyzed starch), the conversions to Glc-EGCG-1 and Glc-EGCG-2 were 165 

39% and 10%, respectively. We also found that decreasing the enzyme concentration 166 

from 10% to 5% (v/v) no significant effect on the reaction rate was observed. 167 

The reaction mixture was characterized in detail by HPLC coupled to mass 168 

spectrometry (Fig. 4). As shown, we detected the formation of at least four 169 

monoglucosides and four diglucosides (see mass spectra of the different peaks in 170 

Supplementary Material, part A). 171 

Kinetics of EGCG glucosylation  172 

The progress of formation of the two glucosides under the optimal conditions was 173 

studied by HPLC (Fig. 5). The reaction was quite fast; after 3 hours, the concentration 174 

of the two main products remained stable. The conversion yield of Glc-EGCG-1 and 175 

Glc-EGCG-2 were 58% (7.2 mg/mL) and 13% (1.6 mg/mL), respectively.  176 

Using a similar EGCG concentration and a sucrose phosphorylase from L. 177 

mesenteroides, Kitao et al. reported 30% yield of the EGCG 4’-O-α-D-glucopyranoside 178 

and 40% of the 4’,4’’-O-α-D-diglucopyranoside derivative.39 With a glucansucrase 179 

from the same microorganism, Moon et al. achieved 20% yield of EGCG 4’-O-α-D-180 

glucopyranoside, 9% of the 7-O-α-D-glucopyranoside and approximately 9% of a 181 
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derivative glucosylated at 4’- and 7- positions.40 More recently, Kim et al. reported a 182 

91% conversion yield with the dextransucrase from L. mesenteroides; however, 183 

selectivity was low, as nine different glucosides were isolated and characterized.41 184 

Characterization of the main glucosylated derivatives 185 

The monoglucosides Glc-EGCG-1 and Glc-EGCG-2 were purified by semipreparative 186 

HPLC as described. Their molecular weights were confirmed by ESI-MS employing a 187 

QTOF analyzer in negative mode (see Supplementary Material, part B). In both cases 188 

we observed the presence of a major peak at m/z 619.1 that corresponded to the M-189 

[H]+ ion. 190 

The glycosylation position was deduced by NMR. By comparing the HSQC spectra 191 

of EGCG and Glc-EGCG-1, no significant differences were observed in the NMR cross 192 

peaks belonging to the A- and D-rings, whilst the cross peak assigned to the B-ring of 193 

EGCG was split into two new signals in the monoglucosylated derivative (Fig. 6, top). 194 

This fact implies that the substitution has taken place at B-ring, namely at positions 195 

3’- or 5’- (chemically equivalent). This substitution causes a loss of symmetry in this 196 

ring, and positions 2- and 6- become non-equivalent providing two differentiated 197 

signals. NOE experiments confirmed the vicinity between the anomeric proton H1Glc 198 

and one of the aromatic protons at B-ring (see Supplementary Material, part C).  199 

Taking into account the described results, the proposed non-ambiguous structure for 200 

Glc-EGCG-1 is epigallocatechin gallate 3’-O-α-D-glucopyranoside (Fig. 7, compound 1), 201 

first described by Nanjo et al.46  202 

 A similar analysis was performed for the monoglucoside Glc-EGCG-2. In this case, 203 

the perturbed cross peak corresponds to that of A-ring (Fig. 6, bottom). A selective 204 

1D‒NOE experiment was further performed by inverting the H1-Glc signal, showing 205 

NOEs with H8 and H6 of A-ring besides the obvious intra-residue NOE with H2-Glc 206 
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(see Supplementary Material, part C). The observed NOEs can only be explained if the 207 

Glc substitution has taken place at position 7 of the A-ring. On this basis, the proposed 208 

non-ambiguous structure for Glc-EGCG-2 is epigallocatechin gallate 7-O-α-D-209 

glucopyranoside (Fig. 7, compound 2), which was first reported by Moon et al.40  210 

In summary, we synthesized two α-glucosides of EGCG under gentle conditions 211 

(aqueous medium, 50 °C) employing pretreated starch as glucose source and CGTase 212 

as biocatalyst. The major product 1 (58%) contained a glucosyl moiety at C-3’ in the 213 

B-ring. A derivative glucosylated at C-7 of A-ring (compound 2) was also isolated at 214 

lower yield.   215 

The synthesized derivatives are unlikely to reach the blood in their intact form, 216 

because they are expected to be first deglycosylated at the intestinal surface before 217 

diffusing into the enterocytes. However, glucosylation could increase the stability 218 

during processing, storage and gut transit after ingestion. These α-glucosides of EGCG 219 

could act as prodrugs releasing the EGCG in the intestine, as has been seen for other 220 

catechin glucosides.16 However, to determine their full potential, further studies 221 

regarding bioavailability are necessary. The synthesized compounds could be thus 222 

useful for nutraceutical, cosmetic and biomedical applications, as is the case of other 223 

enzymatically-synthesized glycosides of flavonoids, such as hesperidin α-glucoside.55  224 
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(A) HPLC-MS analysis of the reaction of EGCG and partially hydrolyzed starch 229 

catalyzed by the CGTase from Thermoanaerobacter sp. (B) ESI-MS of the isolated 230 
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EGCG 3’-O-α-D-glucopyranoside and EGCG 7-O-α-D-glucopyranoside. (C) 1D-NOE 231 

spectrum of EGCG 3’-O-α-D-glucopyranoside and EGCG 7-O-α-D-glucopyranoside. 232 
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FIGURE CAPTIONS 

Figure 1. Stability of EGCG under different experimental conditions: (●) Distilled 

water; (佹) Sodium acetate buffer (10 mM, pH 5.6); (但)Sodium phosphate buffer (10 

mM, pH 7.6). Graphic (A) corresponds to room temperature, and graphic (B) to 50 °C. 

Figure 2. HPLC chromatograms showing: (I) the degradation of EGCG in 10 mM 

sodium phosphate buffer (pH 7.6); (II) the reaction mixture after 72 h with the 

CGTase from Thermoanaerobacter sp. in water. Glc-EGCG-1 and Glc-EGCG-2 are the 

two main synthesized products. Reaction conditions: EGCG (20 mM), soluble starch 

(100 mg/mL), partially purified Toruzyme 3.0L (10% v/v), 50 °C, 150 rpm. 

Figure 3. Effect of starch concentration on the yield of EGCG glucosylated products. 

Reaction conditions: EGCG (20 mM), soluble starch (10-100 mg/mL), partially 

purified Toruzyme 3.0L (10% v/v), 50 °C, 150 rpm. 

Figure 4. HPLC-MS chromatogram of the reaction mixture after 72 h obtained with 

the CGTase from Thermoanaerobacter sp. Peaks: (1) Unknown; (2) Monoglucoside; 

(3) Diglucoside; (4) Monoglucoside (Glc-EGCG-2); (5) Diglucoside; (6) Diglucoside; 

(7) EGCG; (8) Monoglucoside; (9) Monoglucoside (Glc-EGCG-1); (10) Diglucoside; 

(11) Mixture of products. Reaction conditions: EGCG (20 mM), soluble starch (20 

mg/mL), partially purified Toruzyme 3.0L (5% v/v), 50 °C, 150 rpm. 

Figure 5. Kinetics of formation of EGCG glucosides under optimal conditions. Glc-

EGCG-1 and Glc-EGCG-2 are the two main monoglucosides. Reaction conditions as 

described in Fig. 4. 
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Figure 6. DEPT-HSQC NMR spectra superposition of EGCG with the monoglucosides 

Glc-EGCG-1 (Top) and Glc-EGCG-2 (Bottom). 

Figure 7. Structure of the two main EGCG monoglucosides synthesized: 

epigallocatechin gallate 3’-O-α-D-glucopyranoside (1) and epigallocatechin gallate 7-

O-α-D-glucopyranoside (2).  
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Fig. 3 

 

Page 24 of 29

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



25 

 

Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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