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MOTIVATION



  

The latest Planck 2015 analysis of
the power spectrum of the CMB
reveals some anomalies  at large
angular scales.  

Standard Cosmology
(Lambda-CDM model)

MOTIVATION



  

Provide a consistent framework for the quantum description of the evolution
of cosmological scalar perturbations in the Early Universe.

Elaborate a quantization program for a realistic
inhomogeneous cosmological model, which includes
both the background geometry and the perturbations.

Explore the quantum nature of spacetime, beyond
treating perturbations as test fields in a generalized QFT.

Develop theoretical tools to improve our control on the
quantitative predictions.

Investigate whether it is possible to find observational
signatures in the primordial quantum fluctuations. 

GOALS



  

CLASSICAL SYSTEM



  

Scalar perturbations in: 

FLRW universe + minimally coupled scalar field

Approximation: 

Truncation at quadratic perturbative order in the action

●   Compact flat spatial topology,      .

●   Scalar field is subject to a potential (e.g. a mass term).  

T 3

PERTURBED FLRW



  

H = N 0 [ H ∣0+∑ H ∣2
n⃗ ,± ]+∑ g n⃗ ,± H̃ ∣1

n⃗ ,±+∑ k n⃗ ,± H̃ 1
n⃗ ,±

  Mode expansion of the inhomogeneities: metric and field.

  Adopt the real modes of the Laplace-Beltrami operator compatible with the metric.

  PHASE SPACE 

 We call           and          the (properly scaled) Fourier coefficients of the lapse 
 function and shift vector.

  Truncated action at quadratic order:  

PERTURBED FLRW 

g n⃗ ,± k n⃗ ,±

{an⃗ ,± ,bn⃗ ,± , f n⃗ ,± }

- Zero-modes

- Inhomogeneities

{α ,φ}



  

 GAUGE INVARIANT FORMULATION

{X l
n⃗ ,± } ≡ {an⃗ ,± , bn⃗ ,± , f n⃗ ,± ; πa n⃗ ,±

,πb n⃗ ,±
,πf n⃗ ,±

} {V l
n⃗ ,± } ≡ {v n⃗ ,± ,C ∣1

n⃗ ,± ,C 1
n⃗ ,± ; πv n⃗ ,±

, H̆ ∣1
n⃗ ,± , H̃ 1

n⃗ ,± }.

v n⃗ ,±= eα [ f n⃗ ,±+
πφ
πα (a n⃗ ,±+bn⃗ ,± ) ] .

Abelianize the algebra of
constraints

  Consider (for a moment) the homogeneous sector as a fixed background.  

  Canonical transformation for perturbations: 

 Mukhanov-Sasaki variables
  (gauge invariant)

Complete the transformation and make a specific choice of momentum 
for the MS variable. 

Inhomogeneous sector

 Redefinition of the lapse function. 

H̆ ∣1
n⃗ ,±= H̃ ∣1

n⃗ ,±−3e3αH ∣0 a n⃗ ,± .



  

 

{wq
a ; w p

a } := {α ,φ; πα , πφ} {w̃q
a ; w̃ p

a } := {α̃ , φ̃ ; π̃α , π̃φ} ,

Symplectic structure of the total system is preserved.

Homogeneous sector

 Complete the canonical transformation in the entire system. 

  Find a transformation for the zero modes,

   

such that the Legendre term  retains its canonical form (at the considered
perturbative order) when expressed in terms of the gauge invariants for the
perturbations.

FULL SYSTEM

The difference is precisely QUADRATIC in the perturbations.



  

HAMILTONIAN 

The Hamiltonian constraint in the new formulation: 

where 

Hamiltonian: 

● Redefiniton of the zero-mode of the lapse function and the Lagrange multipliers.

●             is the Mukhanov-Sasaki Hamiltonian and it has no linear contributions of
the MS momentum, just quadratic ones. In addition, it is linear in the momentum of
the homogeneous scalar field.

H ∣0 ( w̃a ) +∑ H̃ ∣2
n⃗ ,± ( w̃a , V l

n⃗ ,± ) ,

H̃ ∣2
n⃗ ,± = H ∣2

n⃗ ,± ( w̃a ,V l
n⃗ ,± )+∑ [ (wq

a−w̃q
a) ∂H ∣0

∂ w̃q
a +(w p

a−w̃ p
a ) ∂H ∣0

∂ w̃ p
a ]

= H̆ ∣2
n⃗ ,±+F ∣2

n⃗ ,± H ∣0+F ∣1
n⃗ ,± V p2

n⃗ ,±+( F 1
n⃗ ,±−3

e−3 α̃

π̃α
V p2

n⃗ ,±+ 9
2
e−3α̃V p3

n⃗ ,± )V p3
n⃗ ,± .

H̆ ∣2
n⃗ ,±

H = N 0 [H ∣0+∑ H̆ ∣2
n⃗ ,± ]+∑G n⃗ ,±V p2

n⃗ ,±+∑ K n⃗ ,±V p3
n⃗ ,± .
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HYBRID QUANTIZATION



  

  Strategy: 

PHASE SPACE

HYBRID QUANTIZATION

UNIQUENESS criteria

●  Homogeneous sector         Quantum Cosmology. 

●  Inhomogeneous sector    Fock quantization. 

  Assumption: 

Quantum geometry effects are especially relevant in the background.



  

QUANTUM GRAVITY

QUANTUM FIELD THEORY
on curved spacetime

HYBRID QUANTIZATION



  

HYBRID QUANTIZATION

 The system is a constrained symplectic manifold. 

 The Hamiltonian constraint couples both sectors, encoding the backreaction  
 of the perturbations on the homogeneous background.

 We assume: 

i. The zero-modes commute with the perturbations under quantization.

ii.  Operators that represent functions of     act by multiplication. 

Backreaction is included at considered truncation order.

φ̃



  

Annhilation  and creation operators  for our (rescaled) MS modes, naturally
associated with the massless scalar field.

Fock space      :  basis of occupancy number sates.

{∣N 〉=∣N (1,0,0) ,+ , N (1,0 ,0) , − , ... 〉 ; N n⃗ ,±∈ℕ , ∑ N n⃗ ,±<∞ } .

Ambiguity in selecting a Fock representation in QFT can be removed by: 

Fock representation for the inhomogeneities

F

HYBRID QUANTIZATION

i. INVARIANCE under spatial symmetries of the field equations.

ii.UNITARITY of the quantum evolution in a finite time interval.

 The introduced scaling is essential for unitarity. 



  

Linear perturbative constraints  are represented by momenta operators that act
as derivatives.

Hilbert space: 

Physical states still must satisfy the scalar constraint:

Quantum representation of the constraints

Ĥ = e3α ( Ĥ ∣0+
̂̆H ∣2 ) ,

 Quadratic in the MS modes and independent
 of the momentum of the homogeneous field.

H kin
FLRW⊗H kin

matt⊗F .

HYBRID QUANTIZATION

Physical states only depend on the homogeneous variables and
the MS gauge invariants.

e3α ̂̆H ∣2 ∝− [ Θ̂e+( Θ̂o π̂φ̃ )S ] .
e3α Ĥ ∣0 ∝ [ π̂φ̃2 −Ĥ 0

(2)] ,
with



  

BORN-OPPENHEIMER ANSATZ

Consider states whose evolution in the inhomogeneities and the FLRW   geometry
presents different rates of variation:

   

Disregard  nondiagonal elements for the FLRW geometry sector in the
constraint.

where

 

χ(α̃ , φ̃)=Û (α̃ , φ̃)χ0(α̃) .

 The FLRW state is normalized, peaked and evolves unitarily. 

Ψ=χ(α̃ , φ̃)ψ(N , φ̃) ,

π̂φ̃
2 ψ+(2 〈 Ĥ 0 〉χ−〈 Θ̂o 〉χ ) π̂ φ̃ψ= [ 〈 Θ̂e+( Θ̂o Ĥ 0) S 〉χ+i 〈 d φ̃ Ĥ 0−

1
2
d φ̃ Θ̂o 〉

χ]ψ ,

−i d φ̃ Ô := [ π̂φ̃− Ĥ 0, Ô ] .
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presents different rates of variation:
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constraint.

where

 

 The FLRW state is normalized, peaked and evolves unitarily. 

Ψ=χ(α̃ , φ̃)ψ(N , φ̃) ,

π̂φ̃
2 ψ+(2 〈 Ĥ 0 〉χ−〈 Θ̂o 〉χ ) π̂ φ̃ψ= [ 〈 Θ̂e+( Θ̂o Ĥ 0) S 〉χ+i 〈 d φ̃ Ĥ 0−

1
2
d φ̃ Θ̂o 〉

χ]ψ ,

−i d φ̃ Ô := [ π̂φ̃− Ĥ 0, Ô ] .

χ(α̃ , φ̃)=P [exp ( i∫φ̃0

φ̃
d φ̄ Ĥ 0(α̃ , φ̄)) ] χ0(α̃).



  

BORN-OPPENHEIMER ANSATZ

   

Besides, if we can neglect: 

 

 The FLRW state is normalized, peaked and evolves unitarily. 

Ψ=χ(α̃ , φ̃)ψ(N , φ̃) , χ(α̃ , φ̃)=P [exp ( i∫φ̃0

φ̃
d φ̄ Ĥ 0(α̃ , φ̄)) ] χ0(α̃).

 
a)        

b) The total    -derivative of       

π̂φψ=
〈Θ̂e+(Θ̂o Ĥ 0)S 〉χ

2〈 Ĥ 0〉χ
ψ

Schrödinger-like
equation

π̂ φ̃
2 ψ+(2 〈 Ĥ 0 〉χ−〈 Θ̂o 〉χ ) π̂ φ̃ψ= [ 〈 Θ̂e+( Θ̂o Ĥ 0) S 〉χ+i 〈 d φ̃ Ĥ 0−

1
2
d φ̃ Θ̂o 〉

χ]ψ ,

π̂ φ̃
2 ψ

φ̃ 2 Ĥ 0−Θ̂o ,



  

EFFECTIVE MUKHANOV-SASAKI EQUATIONS

Assuming a direct effective counterpart for the inhomogeneities:

                                      
 

Master equation to calculate the power spectrum of the CMB.

 

d ηχ
2 v n⃗ , ϵ=−v n⃗ , ϵ 4π [ωn

2 +
〈 θ̂ e

q+(θ̂ o Ĥ 0)S+
1
2 [ π̂ϕ−Ĥ 0,θ̂ o ] 〉

χ

〈θ̂ e〉χ ] ,

θ e= e2α̃ ,

θ e
q= e−2 α̃H 0

(2) (19−18
H 0
(2)

πα̃
2 )+e4 α̃ [W ' ' (φ̃)−4W (φ̃)] .

θ o=−12e4α̃ 1
πα̃

W ' (φ̃) ,

2π d ηχ=〈 θ̂ e 〉 χdT ,with

and where

POTENTIAL



  

HYBRID LOOP QUANTUM COSMOLOGY



  

COSMOLOGÍA CUÁNTICA DE LAZOS

  Homogeneous and isotropic spacetimes (FLRW): flat and spatial curvature (k = 1),

  positive and negative cosmological constant.

  Anisotropies: Bianchi I, Bianchi II, Bianchi IX.
  

  Inhomogeneities: Gowdy model, cosmological perturbations.

  Inflation.
 

Hybrid Quantization  

LOOP QUANTUM COSMOLOGY



  

Quantum bounce

FLRW IN LQC



  

FLRW IN LQC

Geometry:

Contribution to the Hamiltonian constraint:

 The gravitational part      is a difference operator:

Regularized operator of the inverse of the volumen.

   

 

{c , p }=8πG γ/3 , V= ⌈ p ⌉3/2=a3 .

Ĥ 0
(2)= 3

4πG ( 3
4πG γ2

Ω̂0
2− m2V̂ 2 ϕ̂2 ) .

Ω0

Massive scalar field     minimally coupled to a compact, flat FLRW universe: ϕ



  

HYBRID LOOP QUANTIZATION

To quantize the quadratic contribution of the perturbations to the Hamiltonian
we adapt the proposals of the homogeneous sector and use a symmetric
factor ordering: 

  Symmetrized products of the type

  Symmetric geometric factor ordering

  Adopting the LQC representation

 In order to preserve the FLRW superselection sectors, 

 we adopt the prescription                                             

 where        is defined like       but with double steps.

 

f (ϕ̂) π̂ϕ.

V k A→ V̂ k /2 Â V̂ k /2 .

cp2m [ 0
2 ]m .

cp2m1 [ 0
2 ]m /2 0 [ 0

2 ]m /2 ,
Λ̂0 Ω̂0

     



  

If we adopt the LQC representation for the homogeneous sector: 

 

EFFECTIVE MUKHANOV-SASAKI EQUATIONS IN LQC

θ̂ o= 4 √ 3G
π γm2 ϕ̂V̂ 2 /3∣Ω̂0∣

−1
Λ̂0∣Ω̂0∣

−1
V̂ 2/3 ,

θ̂ e=
3

2G
V̂ 2/3 , θ̂ e

q=
1

2π [ 1̂
V ]

1/3

Ĥ 0
(2)(19−24 πG γ2 Ω̂0

−2 Ĥ 0
(2)) [ 1̂

V ]
1/3

+ 3m2

8π2G
V̂ 4/3 (1−8πG

3
ϕ̂) .

d ηχ
2 v n⃗ , ϵ=−v n⃗ , ϵ 4π [ωn

2 +
〈 θ̂ e

q+(θ̂ o Ĥ 0)S+
1
2 [ π̂ϕ−Ĥ 0,θ̂ o ] 〉

χ

〈θ̂ e〉χ ] ,
2π d ηχ=〈 θ̂ e 〉 χdT .with

and 

Ĥ 0
(2)=

3
4πG ( 3

4πG γ2 Ω̂0
2−V̂ 2m2 ϕ̂2) ,



  

CONCLUSIONS

 

We have considered a FLRW universe minimally coupled to a scalar field perturbed at
quadratic order in the action. 

We have found a canonical transformation for the full system that respects covariance 
at the perturbative level of the truncation. 

Perturbations are describe in terms of MS gauge invariants, linear perturbative
constraints, and variables canonically conjugate to them. The zero-modes get quadratic
corrections from perturbations. 

We have proposed a generalized hybrid quantization  of the system. This can be
adapted to a variety of quantum FLRW cosmology approaches. Physical states only
depend on the MS modes and the homogeneous sector. 

A Born-Oppenheimer  ansatz leads to Mukhanov-Sasaki equations  that include
quantum corrections, with no dissipative terms. The ultraviolet regime is hyperbolic. 

We have proposed methods, based on an  interaction picture, for the computation in
LQC of the expectation values that appear in the effective equations. 



  

WHAT'S COMING UP? ....

WHAT'S COMING UP? ....
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