GEOESTADISTICA MULTIVARIANTE APLICADA A ESTUDIOS REGIONALES DE EVAPOTRANSPIRACION

A. MARTINEZ-COB, R. H. CUENCA, J. Mª FACI

Investigación Agraria
Producción y Protección Vegetales

Vol. 7 (3) - 1992 Separata núm. 1
GEOESTADISTICA MULTIVARIANTE APLICADA A ESTUDIOS REGIONALES DE EVAPOTRANSPIRACION

A. MARTINEZ-COB1
RICHARD H. CUENCA2
J. Mª FACI1

1 Unidad de Suelos y Riegos, Servicio de Investigación Agraria,
 Apartado 727, 50080 Zaragoza
2 Dept. of Bioresource Engineering, Oregon State University,
 Corvallis, OR 97331, Estados Unidos

RESUMEN

Se presentan los resultados de un estudio realizado en Oregón (Estados Unidos) cuyo objetivo principal fue el análisis de la mejora en la precisión de las estimas de la evapotranspiración mediante el empleo de geoestadística multivariante. La variable principal fue la evapotranspiración de referencia (ET₀) calculada por el método de FAO-USDA Blaney-Crysdale y la variable secundaria fue la elevación sobre el nivel del mar.

Los resultados mostraron que el empleo de la geoestadística multivariante mejoró las estimas de ET₀. Así, los valores promedio de las desviaciones estándar de los errores esperados en las estimas de la ET₀ mensual obtenidas con krigedado fueron entre un 10 y un 30 p. 100 menores que las obtenidas con krigedado. En el caso de la ET₀ anual esta disminución fue de un 25 p. 100. Sin embargo, estas mejoras dependen fundamentalmente de la correlación existente entre la ET₀ y la elevación de la región estudiada.

PALABRAS CLAVE: Geoestadística
 Krigedado
 Cokrigedado
 Evapotranspiración
 Elevación

INTRODUCCION

Una evaluación cuantitativa de la evapotranspiración tiene gran importancia en problemas tales como estudios de balances hidrológicos, manejo de los recursos hídricos y valoraciones ambientales. La eficiencia de los sistemas y programación de regadíos y un uso más racional del agua en los regadíos se podrán beneficiar sustancialmente de la mejora en la precisión de las estimas de las necesidades hídricas de los cultivos. En este tipo de situaciones, la evapotranspiración se estima generalmente a partir de variables meteorológicas registradas en una estación agroclimática cuya localización se considere representativa del área de interés y las estimas locales de evapotranspiración así obtenidas se interpolan en zonas más o menos alejadas de la estación.

La mayoría de las técnicas de interpolación ponderan arbitrariamente los valores disponibles sin considerar los aspectos físicos del problema y, en general, no permiten la determinación de la precisión de los resultados (Delhomme, 1978). Sin
embargo, la geoestadística permite la caracterización de la variabilidad espacial de variables como la evapotranspiración y aplica esta variabilidad para interpolar la variable bajo estudio en puntos en los que no se ha medido (Delhomme, 1978; Journel, Huijbregts, 1978).

La ventajas de la geoestadística frente a otros métodos empíricos de interpolación son (Journel, Huijbregts, 1978): 1) las estimas obtenidas no tienen sesgo; 2) es un método exacto, es decir, en puntos de interpolación que coincidan con los muestrales, la estima obtenida es igual al valor muestral; 3) permite determinar la precisión de las estimas y 4) los errores esperados en la estimación son minimizados. La principal desventaja de la geoestadística es la complejidad de su aplicación por sus altos requerimientos de cálculo en comparación con otras técnicas de interpolación.

La geoestadística univariante se ha utilizado con resultados satisfactorios en estudios regionales de evapotranspiración en Estados Unidos (Cuenca, Amegee, 1987; Nuss, 1989) y, dentro de España, en Aragón (Faci et al., 1990) y la zona de Lérida y Huesca (Cuchí et al., 1990). Una limitación en el uso de la geoestadística univariante es la relativa escasez de estaciones agroclimáticas. La geoestadística multivariante permite la mejora de las estimas de una variable escasamente muestreada, como la evapotranspiración, mediante la inclusión de otra variable, más frecuentemente muestreada, en la modelización de la variabilidad espacial de aquélla (Aboufiras, Mariño, 1984). La magnitud de la mejora depende, entre otros factores, del grado de correlación estadística entre las dos variables (Hoeksema et al., 1989).

Este trabajo presenta los resultados de un estudio realizado en Oregón (Estados Unidos), cuyo objetivo principal fue analizar la mejora en la precisión de las estimas de evapotranspiración en puntos de cuadrículas regulares mediante el empleo de geoestadística multivariante en la que se incluyó la elevación sobre el nivel del mar como segunda variable.

MATERIAL Y MÉTODOS

El presente estudio se realizó en la región Centro Norte del estado de Oregón (Estados Unidos). Esta región se encuentra entre los 118° 10' y 122° 00' de longitud W respecto a Greenwich y los 44° 25' y 46° 00' de latitud N (Fig. 1). La Figura 2 muestra un mapa de curvas de nivel de la elevación con los rasgos topográficos más relevantes de esta región.

En cada una de las 41 estaciones agroclimáticas de esta región se disponía de valores medios mensuales de diversas variables meteorológicas (temperatura media del aire, humedad relativa mínima del aire, insolación diaria y velocidad diurna del viento a 2 m sobre el nivel del suelo) para un período de entre 10 y 88 años. En cada estación agroclimática se calcularon, a partir de esos datos meteorológicos y mediante el método de FAO-USDA Blaney-Criddle (Doorenbos, Pruiit, 1977; Allen, Pruiit, 1986; Cuenca, 1989), los valores medios mensuales (febrero a noviembre) de evapotranspiración de referencia (ET$_0$) diaria (mm/día) y los valores de ET$_0$ anual (mm) para un año medio, por lo que hubo un total de 11 casos de estudio. Asimismo, se disponía de valores de elevación sobre el nivel del mar (m) en esas 41 estaciones y en otros 1.504 puntos más, situados en cuadrículas de unos 5 km de lado.

En cada caso de estudio, los análisis geoestadísticos realizados incluyeron los siguientes pasos (Journel, Huijbregts, 1978): 1) modelización de semivariogramas; 2) validación de los modelos de semivariogramas y 3) krigeadó y cokrigeadó.
Modelización de semivariogramas

Los semivariogramas describen la variabilidad espacial de las variables de interés (Journel, Huijbregts, 1978; Samper, Carrera, 1990). Un semivariograma directo representa la correlación espacial entre los valores de una variable registrados en dos puntos separados una cierta distancia h en el espacio, mientras que un semivariograma cruzado representa la correlación espacial entre dos variables registradas en esos dos puntos. A medida que la distancia entre puntos aumenta, las diferencias entre los valores registrados en esos puntos aumentan, por lo que la correlación espacial disminuye hasta que se hace constante a una determinada distancia denominada alcance, a partir de la cual dos valores o dos variables no están correlacionados espacialmente. El valor constante del semivariograma a partir del alcance se denomina meseta. El valor del semivariograma a distancia cero se denomina efecto pepita y representa el error registrado en los valores experimentales o variaciones a distancias más pequeñas que la mínima distancia de muestreo (Journel, Huijbregts, 1978).

En cada uno de los casos estudiados, se modelizaron un semivariograma directo para la E_{T_0} y un semivariograma cruzado entre la E_{T_0} y la elevación. Para la elevación se modelizó un único semivariograma directo. Previamente a su modelización, es preciso calcular los valores experimentales de los distintos semivariogramas. El valor experimental de un semivariograma directo para una distancia h se calculó mediante la siguiente expresión (David, 1977; Journel, Huijbregts, 1978).

Fig. 2.—Mapa de isolíneas de la elevación sobre el nivel del mar (m) de la región Centro Norte de Oregón.
Map of contour lines of elevation above sea level (m) at the North Central region of Oregon.

\[
\gamma^e(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [z(x_i + h) - z(x_i)]^2
\]

[1]

donde: \(\gamma^e(h) \) = valor experimental de un semivariograma directo a distancia \(h \)

\(N(h) \) = número de pares de puntos muestrales separados por la distancia \(h \)

\(z(x_i) \) = valor de la variable (ET₀ o elevación) en el punto muestral \(x_i \)

\(z(x_i + h) \) = valor de la variable (ET₀ o elevación) en el punto muestral \(x_i + h \)

Asimismo, el cálculo del valor experimental de un semivariograma cruzado para una distancia \(h \) se realizó mediante la expresión (David, 1977; Journel, Huijbregts, 1978):

\[
\gamma_{xyz}^c(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [(z_1(x_i + h) - z_1(x_i)) [z_2(x_i + h) - z_2(x_i)]]
\]

[2]

donde: \(\gamma_{xyz}^c(h) \) = valor experimental del semivariograma cruzado a distancia \(h \).

\(z_1(x_i) \) = valor de la ET₀ en el punto muestral \(x_i \)

\(z_1(x_i + h) \) = valor de la ET₀ en el punto muestral \(x_i + h \)

\(z_2(x_i) \) = valor de la elevación en el punto muestral \(x_i \)

\(z_2(x_i + h) \) = valor de la elevación en el punto muestral \(x_i + h \)
Los valores experimentales de los semivariogramas directos para la ET₀ se calcularon con los valores locales de ET₀ de las 41 estaciones agroclimáticas. Los valores experimentales del semivariograma directo para la elevación se calcularon con los valores de elevación de las 41 estaciones agroclimáticas y de 1.504 puntos situados en cuadrículas de unos 5 km de lado. Los valores experimentales de los semivariogramas cruzados se calcularon con los valores locales de la ET₀ y la elevación de las 41 estaciones agroclimáticas.

Los puntos donde se localizaban las estaciones agroclimáticas no estaban situados a distancias regulares por lo que los pares de puntos muestrales se agruparon en intervalos de distancia para el cálculo de los valores experimentales de los semivariogramas directos para la ET₀ y de los semivariogramas cruzados. Así, el valor de un semivariograma a distancia h se calculó con todos los pares de puntos muestrales separados por la distancia h±Δh/2. Se consideraron tres factores para determinar Δh y el número de intervalos de distancia a utilizar (Journel, Huijbregts, 1978; Clark, 1979): 1) los valores experimentales de un semivariograma no son válidos en general para distancias mayores que la mitad de la distancia máxima entre dos puntos muestrales; 2) cada valor experimental del semivariograma se debería calcular, al menos, con unos 30 a 50 pares de puntos muestrales para que sea fiable estadísticamente; 3) el número de valores experimentales de un semivariograma ha de ser suficientemente alto para poder determinar el tipo de modelo al que se ajustan. Tratando de armonizar estos factores, los valores experimentales de los semivariogramas directos para la ET₀ y semivariogramas cruzados se calcularon para 15 intervalos de distancia, siendo Δh = 10,1 km (Tabla 1). En el caso de la elevación, el semivariograma experimental se calculó en intervalos de 5 km (Tabla 2).

TABLA 1

| INTERVALOS DE DISTANCIA (INDIS), DISTANCIA MEDIA (DISM) ENTRE PARES DE PUNTOS Y NUMERO DE PARES DE PUNTOS (NPP), EN CADA INTERVALO DE DISTANCIA EMPLEADO PARA CALCULAR LOS SEMIVARIOGRAMAS DIRECTOS PARA LA ET₀ Y LOS SEMIVARIOGRAMAS CRUZADOS |

Distance intervals (INDIS), average distance (DISM) between point pairs and number of point pairs (NPP), for each distance interval used to compute the direct-semivariograms for ET₀ and the cross-semivariograms

<table>
<thead>
<tr>
<th>INDIS (1)</th>
<th>DISM (1)</th>
<th>NPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0 - 10,1</td>
<td>5,6</td>
<td>6</td>
</tr>
<tr>
<td>10,1 - 20,2</td>
<td>15,5</td>
<td>16</td>
</tr>
<tr>
<td>20,2 - 30,3</td>
<td>26,0</td>
<td>26</td>
</tr>
<tr>
<td>30,3 - 40,4</td>
<td>34,6</td>
<td>30</td>
</tr>
<tr>
<td>40,4 - 50,5</td>
<td>44,2</td>
<td>33</td>
</tr>
<tr>
<td>50,5 - 60,6</td>
<td>55,2</td>
<td>34</td>
</tr>
<tr>
<td>60,6 - 70,7</td>
<td>65,2</td>
<td>46</td>
</tr>
<tr>
<td>70,7 - 80,8</td>
<td>76,4</td>
<td>41</td>
</tr>
<tr>
<td>80,8 - 90,9</td>
<td>85,9</td>
<td>32</td>
</tr>
<tr>
<td>90,9 - 101,0</td>
<td>96,6</td>
<td>52</td>
</tr>
<tr>
<td>101,0 - 111,1</td>
<td>105,8</td>
<td>53</td>
</tr>
<tr>
<td>111,1 - 121,2</td>
<td>115,9</td>
<td>50</td>
</tr>
<tr>
<td>121,2 - 131,3</td>
<td>125,4</td>
<td>46</td>
</tr>
<tr>
<td>131,3 - 141,4</td>
<td>135,5</td>
<td>33</td>
</tr>
<tr>
<td>141,4 - 151,5</td>
<td>146,6</td>
<td>39</td>
</tr>
</tbody>
</table>

(1) km.

La determinación del modelo de ajuste más adecuado y de sus parámetros (alcance, meseta y efecto pepita) se realizó visualmente a partir de los valores experimentales de los semivariogramas correspondientes (David, 1977; Journel, Huijbregts, 1978). Las técnicas de ajuste automático, como las de mínimos cuadrados, no se recomiendan excepto si se modifican de modo que permitan dar más peso a los valores experimentales del semivariograma calculados con mayor número de pares de puntos muestrales (Vieira et al., 1983). Asimismo, hay que destacar que las varianzas de los errores esperados en la estimación son poco sensibles a errores cometidos en la determinación de los parámetros de los modelos de semivariograma (Brooker, 1986). La validez de los diferentes modelos se comprobó con una técnica denominada validación cruzada, descrita más adelante, de modo que los parámetros de los modelos se fueron modificando, en un procedimiento de ensayo y error, hasta la obtención de estadísticos adecuados de validación cruzada (Delhomme, 1978; Cooper, Istok, 1988).

Tabla 2

<table>
<thead>
<tr>
<th>INDIS (1)</th>
<th>DISM (1)</th>
<th>NPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>4,8</td>
<td>3,015</td>
</tr>
<tr>
<td>5 - 10</td>
<td>8,3</td>
<td>5,960</td>
</tr>
<tr>
<td>10 - 15</td>
<td>12,6</td>
<td>11,792</td>
</tr>
<tr>
<td>15 - 20</td>
<td>17,6</td>
<td>16,327</td>
</tr>
<tr>
<td>20 - 25</td>
<td>22,7</td>
<td>19,976</td>
</tr>
<tr>
<td>25 - 30</td>
<td>27,8</td>
<td>22,846</td>
</tr>
<tr>
<td>30 - 35</td>
<td>32,7</td>
<td>25,208</td>
</tr>
<tr>
<td>35 - 40</td>
<td>37,7</td>
<td>29,491</td>
</tr>
<tr>
<td>40 - 45</td>
<td>42,8</td>
<td>30,316</td>
</tr>
<tr>
<td>45 - 50</td>
<td>47,8</td>
<td>32,413</td>
</tr>
<tr>
<td>50 - 55</td>
<td>52,7</td>
<td>33,384</td>
</tr>
<tr>
<td>55 - 60</td>
<td>57,7</td>
<td>37,565</td>
</tr>
<tr>
<td>60 - 65</td>
<td>62,7</td>
<td>35,165</td>
</tr>
<tr>
<td>65 - 70</td>
<td>67,6</td>
<td>38,631</td>
</tr>
<tr>
<td>70 - 75</td>
<td>72,6</td>
<td>37,824</td>
</tr>
<tr>
<td>75 - 80</td>
<td>77,7</td>
<td>39,851</td>
</tr>
<tr>
<td>80 - 85</td>
<td>82,7</td>
<td>38,823</td>
</tr>
<tr>
<td>85 - 90</td>
<td>87,6</td>
<td>39,019</td>
</tr>
<tr>
<td>90 - 95</td>
<td>92,6</td>
<td>38,831</td>
</tr>
<tr>
<td>95 - 100</td>
<td>97,6</td>
<td>38,798</td>
</tr>
</tbody>
</table>

(1) km.
de semivariograma a validar. Este proceso se efectúa sucesivamente con todos los puntos muestrales y las diferencias entre los valores experimentales y los estimados se resumen mediante los siguientes estadísticos de validación cruzada (Cooper, Istok, 1988): media de los errores (AKE), error cuadrático medio (MSE) y error cuadrático medio estandarizado (SMSE).

Si el AKE no es significativamente distinto de cero (test t), el modelo de semivariograma permitirá el cálculo de estimas no sesgadas.

\[AKE = \frac{1}{n} \sum_{i=1}^{n} [z^*(x_i) - z(x_i)] \]

[3] donde:

\[z^*(x_i) = \text{valor estimado de la ET}_0 \text{ (o elevación) en el punto } x_i, \]

\[n = \text{número de puntos muestrales.} \]

Un modelo se considera adecuado si, como regla práctica, el MSE es menor que la varianza de los valores muestrales (Cooper, Istok, 1988) en cuyo caso la estima calculada con el krigeado (o cokrigeado) es mejor que la estima proporcionada por la media de todos los valores muestrales.

\[MSE = \frac{1}{n} \sum_{i=1}^{n} [z^*(x_i) - z(x_i)]^2 \]

[4]

El SMSE indica la consistencia de las varianzas de los errores esperados en la estimación con krigeado (o cokrigeado) en cada punto \(x_i \), \(\sigma^2_k (x_i) \), con respecto al MSE. La validez del modelo se satisface si el SMSE está comprendido en el intervalo \(1 \pm 2\sqrt{2/n} \) (Delhomme, 1978).

\[SMSE = \frac{1}{n-1} \sum_{i=1}^{n} \frac{[z^*(x_i) - z(x_i)]^2}{\sigma^2_k} \]

[5]

Los modelos de semivariogramas ajustados a los valores experimentales han de ser funciones condicionalmente positivas definidas (Journel, Huijbregts, 1978; Samper, Carrera, 1990). En el caso de los semivariogramas directos esta condición se satisface si los semivariogramas experimentales se ajustan a modelos (esférico, gaussiano, exponencial, etc.) que cumplen dicha condición (Armstrong, Jabin, 1981). La condición de que el modelo de un semivariograma cruzado sea una función condicionalmente positiva definida se puede comprobar mediante la comparación del modelo a validar con una curva positiva definida (curva PDC), calculada con la siguiente expresión (Hevesi et al., 1992).

\[|PDC| = \sqrt{\gamma_{11}(h) \gamma_{22}(h)} \]

[6] donde:

\[\gamma_{11}(h) = \text{valor del modelo de semivariograma directo para la ET}_0 \text{ a distancia h} \]

\[\gamma_{22}(h) = \text{valor del modelo de semivariograma directo para elevación a distancia h} \]

Con este criterio, el modelo de semivariograma cruzado cumple la condición de ser una función condicionalmente positiva definida si el valor absoluto del mismo es menor que el correspondiente valor absoluto de la curva PDC y si la pendiente del modelo no es mayor que la de la curva PDC para cualquier distancia h (Hevesi, et al., 1992).
Krigeado y Cokrigeado

Los modelos de semivariogramas directos y cruzados validados se utilizaron para la estimación de los valores de la ET$_0$ en 1,504 puntos situados en cuadrículas de unos 5 km mediante las técnicas geoestadísticas de interpolación de krigeado y cokrigeado. En el krigeado, la ET$_0$ en un punto x_0, en donde ésta no se conoce, se estimó a partir de una combinación lineal de valores de ET$_0$ conocidos en n_1 estaciones agroclimáticas mediante la ecuación (Journel, Huijbregts, 1978; Cuenca, Amegee, 1987).

$$z_1^*(x_0) = \sum_{i=1}^{n_1} \lambda_i \ z_1(x_i)$$ [7]

donde:

$z_1^*(x_0) = \text{valor estimado de la ET}_0 \text{ en el punto } x_0$.
$\lambda_i = \text{peso de ponderación asignado al valor de la ET}_0 \text{ en el punto } x_i$.

Los n_1 pesos λ_i toman en consideración la correlación espacial expresada en los semivariogramas directos y la relación geométrica entre los puntos muestrales. Bajo las condiciones de no sesgo del estimador y de mínima varianza del error esperado en la estimación con krigeado, se estableció un sistema de n_1+1 ecuaciones lineales para despejar n_1+1 incógnitas, los n_1 pesos λ_i y una variable auxiliar, el multiplicador de Lagrange μ (David, 1977; Journel, Huijbregts, 1978; Cuenca, Amegee, 1987). La desviación estándar del error esperado en la estimación con krigeado o desviación estándar del krigeado, $\sigma_{OK}(x_0)$, en el punto x_0 se calculó como:

$$\sigma_{OK}(x_0) = \left(\sum_{i=1}^{n_1} \lambda_i \gamma(h_{i0}) + \mu \right)^{0.5}$$ [8]

donde:

$\gamma(h_{i0}) = \text{valor del modelo de semivariograma directo de la ET}_0 \text{ para la distancia } h_{i0} \text{ que separa el punto muestral } x_i \text{ del punto } x_0$.

De igual modo, en el cokrigeado, la ET$_0$ en el punto x_0 se estimó a partir de una combinación lineal de valores de ET$_0$ conocidos en n_1 estaciones agroclimáticas y una combinación lineal de n_2 valores de elevación, de los cuales n_1 corresponden a la elevación de las estaciones agroclimáticas, mediante la siguiente ecuación (Journel, Huijbregts, 1978; Vieira et al., 1983):

$$z_1^*(x_0) = \sum_{i=1}^{n_1} \lambda_{1i} \ z_1(x_i) + \sum_{j=1}^{n_2} \lambda_{2j} \ z_2(x_j)$$ [9]

donde:

$\lambda_{1i} = \text{peso de ponderación asignado al valor de la ET}_0 \text{ en el punto } x_i$.
$\lambda_{2j} = \text{peso de ponderación asignado al valor de la elevación en el punto } x_j$.

Bajo las condiciones de no sesgo del estimador y de mínima varianza del error esperado en la estimación con cokrigeado, se estableció un sistema de n_1+n_2+2 ecuaciones lineales para despejar los n_1+n_2 pesos y dos multiplicadores de Lagrange, μ_1 y μ_2 (Journel, Huijbregts, 1978; Vieira et al., 1983). La desviación es-
tándar del error esperado en la estimación con cokrigeado o desviación estándar del cokrigeado, $\sigma_{CK}(x_0)$, en el punto x_0 se calcula como:

$$
\sigma_{CK}(x_0) = \left(\sum_{i=1}^{n_1} \lambda_{1i} \gamma(h_{i0}) + \sum_{j=1}^{n_2} \lambda_{2j} \gamma_{12}(h_{j0}) + \mu_1 \right)^{0.5}
$$

[10]

donde:

$\gamma_{12}(h_{j0}) = \text{valor del modelo de semivariograma cruzado para la distancia } h_{j0} \text{ que separa el punto muestral } x_j \text{ del punto } x_0.$

En cada caso de estudio, se determinaron y compararon los valores máximos, mínimos y promedios de las desviaciones estándar del kriged y cokrigeado, calculadas mediante las ecuaciones [8] y [10] en cada uno de los 1.504 puntos de estimación, situados en cuadrículas de unos 5 km de lado.

El último paso en el análisis geoestadístico fue la elaboración de mapas de isolíneas de las estimas de la ET_0 obtenidas con kriged y cokrigeado, así como de las respectivas desviaciones estándar de los errores esperados en la estimación.

RESULTADOS Y DISCUSION

En general, los valores experimentales de los semivariogramas directos para la ET_0 aumentaban con la distancia y exhibían una fluctuación alrededor de un valor constante a partir de una determinada distancia (Fig. 3). El modelo teórico más apropiado de ajuste a los valores experimentales no era obvio debido a la dispersión relativamente alta de los valores experimentales. Uno de los modelos de semivariogramas más utilizados en hidrología es el modelo esférico, el cual ya se ha aplicado satisfactoriamente en estudios regionales previos de la ET_0 (Cuenca, Amegee, 1987; Nuss, 1989). Los resultados de la validación cruzada (Tabla 3) y su aceptable ajuste visual a los valores experimentales de los semivariogramas (Fig. 3) se emplearon como los principales criterios para aceptar el modelo esférico como igualmente adecuado en este estudio para caracterizar la variabilidad espacial de la ET_0. El modelo gausiano también mostró en algunos casos resultados adecuados de validación cruzada pero sus valores para el parámetro alcance fueron muy altos, en general por encima de la distancia hasta la que se calcularon valores experimentales de los semivariogramas. Por ello, se consideró que el modelo gausiano no representaba adecuadamente la variabilidad espacial de la ET_0. La Tabla 3 presenta los valores de los parámetros (alcance, meseta y efecto pepita) de los modelos esféricos de semivariogramas directos para la ET_0 ajustados en cada caso estudiado. Un semivariograma esférico se describe matemáticamente por la expresión (David, 1977; Journel, Huijbregts, 1978):

$$
\gamma(h) = C_o + C \left(\frac{3h}{2a} - \frac{h^3}{2a^3} \right) \quad h \leq a
$$

[11]

$$
\gamma(h) = C_o + C \quad h > a
$$

donde:

$C_o = \text{efecto pepita.}$

$C = \text{meseta del semivariograma.}$

$a = \text{alcance del semivariograma.}$

Fig. 3.—Modelo esférico de semivariograma directo para la ET₀. (A) ET₀ anual. (B) ET₀ de julio.
Spheric model of direct-semivariogram for ET₀. (A) Annual ET₀. (B) July ET₀.
TABLA 3

PARAMETROS (EFECTO PEPITA, MESETA Y ALCANCE) DE LOS MODELOS ESFERICOS AJUSTADOS A LOS SEMIVARIORAGRAMOS DIRECTOS PARA LA \(\text{ET}_0 \), VALORES DE LOS ESTADISTICOS DE LA VALIDACION CRUZADA (MEDIA DE LOS ERRORES, AKE, ERROR CUADRATICO MEDIO, MSE, Y ERROR CUADRATICO MEDIO Estandarizado, SMSE) Y VARIANZAS (VM) DE LOS VALORES LOCALES DE LA \(\text{ET}_0 \)

Parameters (nugget effect, sill and range) of the spherical models fitted to the direct-semivariograms of \(\text{ET}_0 \), values of the cross-validation statistics (average error, AKE, mean squared error, MSE, and standardized error variance, SMSE), and variances (VM) of the local values of \(\text{ET}_0 \).

<table>
<thead>
<tr>
<th>Mes</th>
<th>E. pepita (1)</th>
<th>Meseta (1)</th>
<th>Alcance (2)</th>
<th>AKE (3)</th>
<th>MSE (1)</th>
<th>VM (1)</th>
<th>SMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb.</td>
<td>0,005</td>
<td>0,021</td>
<td>65</td>
<td>-0,003</td>
<td>0,019</td>
<td>0,024</td>
<td>0,990</td>
</tr>
<tr>
<td>Mar.</td>
<td>0,007</td>
<td>0,066</td>
<td>75</td>
<td>-0,009</td>
<td>0,048</td>
<td>0,069</td>
<td>1,032</td>
</tr>
<tr>
<td>Abr.</td>
<td>0,010</td>
<td>0,205</td>
<td>80</td>
<td>-0,014</td>
<td>0,118</td>
<td>0,213</td>
<td>1,024</td>
</tr>
<tr>
<td>May.</td>
<td>0,018</td>
<td>0,301</td>
<td>100</td>
<td>-0,011</td>
<td>0,148</td>
<td>0,356</td>
<td>1,022</td>
</tr>
<tr>
<td>Jun.</td>
<td>0,065</td>
<td>0,325</td>
<td>95</td>
<td>-0,012</td>
<td>0,217</td>
<td>0,406</td>
<td>0,978</td>
</tr>
<tr>
<td>Jul.</td>
<td>0,040</td>
<td>0,334</td>
<td>100</td>
<td>-0,013</td>
<td>0,176</td>
<td>0,373</td>
<td>0,990</td>
</tr>
<tr>
<td>Ago.</td>
<td>0,048</td>
<td>0,306</td>
<td>105</td>
<td>-0,009</td>
<td>0,162</td>
<td>0,365</td>
<td>0,914</td>
</tr>
<tr>
<td>Sep.</td>
<td>0,025</td>
<td>0,114</td>
<td>100</td>
<td>-0,012</td>
<td>0,073</td>
<td>0,146</td>
<td>0,960</td>
</tr>
<tr>
<td>Oct.</td>
<td>0,006</td>
<td>0,053</td>
<td>80</td>
<td>-0,014</td>
<td>0,036</td>
<td>0,059</td>
<td>1,030</td>
</tr>
<tr>
<td>Nov.</td>
<td>0,002</td>
<td>0,010</td>
<td>80</td>
<td>-0,007</td>
<td>0,008</td>
<td>0,014</td>
<td>1,030</td>
</tr>
<tr>
<td>Año</td>
<td>2,020</td>
<td>12,280</td>
<td>105</td>
<td>-2,2</td>
<td>7,380</td>
<td>13,280</td>
<td>1,012</td>
</tr>
</tbody>
</table>

(1) (mm/día)2, (ET$_0$ anual, mm2)
(2) km
(3) mm/día, (ET$_0$ anual, mm)

Como se mencionó previamente, los valores locales de la ET$_0$ empleados para calcular los semivariogramas experimentales eran estimas obtenidas mediante el método de FAO-USDA Blaney-Criddle. Este método se seleccionó a causa de la similitud entre las condiciones climáticas generales y de aridez de Oregon y las de Idaho, donde el método de FAO-USDA Blaney-Criddle se calibró y verificó para los meses de abril a octubre (Allen. Pruitt, 1986). Sin embargo, existe una cierta incertidumbre sobre el rendimiento real del método en cada lugar donde se localiza una estación agroclimatológica a causa de sus peculiaridades de condiciones climáticas y de aridez locales, que varían espacial y temporalmente. En consecuencia, cabría esperar que los errores en los valores locales de la ET$_0$ y, por tanto, el efecto pepita, varíen de mes a mes y de lugar a lugar. El efecto pepita, en general, fue mayor en los meses de verano, lo cual también pudo deberse, al menos parcialmente, a que la varianza de la ET$_0$ durante estos meses fue mayor que durante los meses de invierno (Tabla 3).

Un aspecto que no ha sido analizado en este estudio ha sido el de la variabilidad temporal de los semivariogramas. En este estudio, se han empleado valores locales de la ET$_0$ para un año medio para calcular y modelizar su variabilidad espacial. Sin embargo, los semivariogramas modelizados puede que no representen adecuadamente la variabilidad espacial de la ET$_0$ en años individuales. Así, en un estudio, realizado asimismo en Oregon, sobre la aplicación de la geostadística univariante en estudios regionales de la ET$_0$, se concluyó que los semivariogramas modelizados con promedios de ET$_0$ para tres años no representaban adecuadamente la variabilidad espacial de la ET$_0$ en años individuales (Nuss, 1989).
En el caso de elevación, la existencia de semivariogramas anisotrópicos fue evidente (Martínez-Cob, 1990). Un semivariograma anisotrópico es aquel que depende no sólo de la distancia sino también de la dirección en el espacio. Sin embargo, el tamaño muestral relativamente pequeño de la ET_0 no permitió la modelización de semivariogramas anisotrópicos directos para la ET_0. Por ello, y por razones de consistencia entre modelos de semivariogramas (Hevesi et al., 1992), se utilizó un semivariograma directo isotrópico para la elevación. El modelo esférico ajustado en el caso de la elevación (Fig. 4) tenía un efecto pepita de 8.500 m2, una meseta de 197.500 m2 y un alcance de 175 km, con los siguientes estadísticos de validación cruzada: 1) AKE, 0.14 m; 2) MSE, 15.600 m2 (varianza muestral, 148.300 m2) y 3) SMSE, 0.936.

En el caso de los semivariogramas cruzados, también se ajustaron modelos esféricos a los valores experimentales ya que este mismo tipo de modelos se ajustó a los semivariogramas directos de la ET_0 y la elevación y, bajo las suposiciones de los modelos lineales de corregionalización (Journel, Huijbregts, 1978), cualquier estructura presente en un semivariograma cruzado debe aparecer en ambos semivariogramas directos. En algunos semivariogramas cruzados los valores absolutos de algunos valores experimentales eran mayores que los valores absolutos de la curva PDC, lo que dificultaba, en principio, la modelización adecuada de dichos semivariogramas (Fig. 5). En estos casos, se consideró que aquellos valores experimentales cuyos valores absolutos eran menores que los de la curva PDC representaban más adecuadamente a la estructura espacial subyacente en el semivariograma. Como en los casos de los semi-
variogamarios directos, los resultados de la validación cruzada se emplearon como criterio principal para aceptar un modelo como apropiado. La Tabla 4 presenta los parámetros de los modelos ajustados y los resultados de la validación cruzada. En el caso de los semivariogramas cruzados no hubo evidencias de la existencia de efectos pepita, aun cuando éstos eran de esperar por las mismas razones apuntadas en el caso de los semivariogramas directos. En consecuencia, los efectos pepita se supusieron igual a cero, suposición apoyada por los resultados de la validación cruzada.

TABLA 4

PARAMETROS (EFECTO PEPITA, MESETA Y ALCANCE) DE LOS MODELOS ESFERICOS AJUSTADOS A LOS SEMIVARIogramAS CRUZADOS, VALORES DE LOS ESTADISTICOS DE LA VALIDACION CRUZADA (MEDIA DE LOS ERRORES, AKE, ERROR CUADRATICO MEDIO, MSE, Y ERROR CUADRATICO MEDIO ESTANDARIZADO, SMSE) Y VARIANZAS (VM) DE LOS VALORES LOCALES DE LA ET\(_0\)

Parameters (nugget effect, sill and range) of the spherical models fitted to the cross-semivariograms of ET\(_0\) values of the cross-validation statistics (average error, AKE, mean squared error, MSE, and standardized error variance, SMSE), and variances (VM) of the local values of ET\(_0\)

<table>
<thead>
<tr>
<th>Mes</th>
<th>E. pepita (1)</th>
<th>Meseta (1)</th>
<th>Alcance (2)</th>
<th>AKE (3)</th>
<th>MSE (4)</th>
<th>VM (4)</th>
<th>SMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb.</td>
<td>0.000</td>
<td>-34.5</td>
<td>65</td>
<td>-0.029</td>
<td>0.009</td>
<td>0.024</td>
<td>1.030</td>
</tr>
<tr>
<td>Mar.</td>
<td>0.000</td>
<td>-76.5</td>
<td>90</td>
<td>-0.052</td>
<td>0.019</td>
<td>0.069</td>
<td>0.978</td>
</tr>
<tr>
<td>Abr.</td>
<td>0.000</td>
<td>-143.5</td>
<td>100</td>
<td>-0.085</td>
<td>0.048</td>
<td>0.213</td>
<td>0.979</td>
</tr>
<tr>
<td>May.</td>
<td>0.000</td>
<td>-192.0</td>
<td>120</td>
<td>-0.083</td>
<td>0.060</td>
<td>0.356</td>
<td>0.947</td>
</tr>
<tr>
<td>Jun.</td>
<td>0.000</td>
<td>-205.0</td>
<td>115</td>
<td>-0.110</td>
<td>0.104</td>
<td>0.406</td>
<td>0.921</td>
</tr>
<tr>
<td>Jul.</td>
<td>0.000</td>
<td>-193.0</td>
<td>120</td>
<td>-0.084</td>
<td>0.108</td>
<td>0.373</td>
<td>1.067</td>
</tr>
<tr>
<td>Ago.</td>
<td>0.000</td>
<td>-178.9</td>
<td>125</td>
<td>-0.071</td>
<td>0.127</td>
<td>0.365</td>
<td>1.125</td>
</tr>
<tr>
<td>Sep.</td>
<td>0.000</td>
<td>-125.5</td>
<td>125</td>
<td>-0.063</td>
<td>0.047</td>
<td>0.146</td>
<td>1.088</td>
</tr>
<tr>
<td>Oct.</td>
<td>0.000</td>
<td>-63.5</td>
<td>90</td>
<td>-0.047</td>
<td>0.017</td>
<td>0.059</td>
<td>0.940</td>
</tr>
<tr>
<td>Nov.</td>
<td>0.000</td>
<td>-17.6</td>
<td>80</td>
<td>-0.016</td>
<td>0.004</td>
<td>0.014</td>
<td>0.680</td>
</tr>
<tr>
<td>Año</td>
<td>0.000</td>
<td>-37.900</td>
<td>115</td>
<td>-20.2</td>
<td>3.450</td>
<td>13.280</td>
<td>0.969</td>
</tr>
</tbody>
</table>

(1) m. mm/día, (ET\(_0\) anual, m. mm)
(2) km
(3) mm/día, (ET\(_0\) anual, mm)
(4) (mm/día)\(^2\), (ET\(_0\) anual, mm\(^2\))

La Tabla 5 presenta los valores máximos, mínimos y medios de los 1.504 valores estimados de la ET\(_0\) con kriogeo y cokriogeo para todos los casos de estudio. En general, las diferencias entre kriogeo y cokriogeo para los valores máximos de las estimas fueron pequeñas. A causa de la correlación inversa entre la ET\(_0\) y la elevación, los valores máximos de ET\(_0\) se producen preferentemente en zonas de poca elevación (Figs. 2 y 6). Las estimas de la ET\(_0\) en estas zonas se verían menos afectadas por el cokriogeo que las estimas en zonas de elevación más alta, en donde se esperaría que las diferencias entre kriogeo y cokriogeo fuesen mayores. Así, en todos los casos, los valores máximos de las estimas de la ET\(_0\) con cokriogeo fueron consistentemente menores que con kriogeo. En el caso de la ET\(_0\) anual, los valores mínimos de las estimas con cokriogeo fueron un 20 p.100 menores que con kriogeo. Este descenso varió entre un 13 y un 21 p. 100 para los meses más cálidos, mayo a septiembre.
Fig. 5.—Modelo esférico de semivariograma cruzado y curva positiva definida (PDC).
(A) ET₀ anual y elevación. (B) ET₀ de julio y elevación.
Spheric model of cross-semivariogram and positive definite (PDC) curve.
(A) Annual ET₀ and elevation. (B) July ET₀ and elevation.
La Figura 6 presenta mapas de isólinas de las estimas de la ET_0 anual obtenidas con kriego y con cokriego. Para una misma equidistanza, las isólinas obtenidas con kriego siguen groseramente los principales rasgos de la elevación, mientras que las obtenidas con cokriego se asemejan mucho más a los cambios de elevación (Figs. 2 y 6). Las isólinas son muy similares en ambos casos en áreas de baja elevación, como se ve en la zona norte de la región bajo estudio. Sin embargo, en áreas de alta elevación, las isólinas obtenidas con cokriego proporcionan un detalle más fino de los cambios de la ET_0 a medida que lo hace la elevación. Obsérvese, por ejemplo, que en la zona sur de la región estudiada las isólinas obtenidas con cokriego se aproximan bastante a las de la elevación, mientras que las obtenidas con kriego no se parecen apenas (Figs. 2 y 6). En general, las isólinas de la ET_0 mensual obtenidas con cokriego tienen el mismo comportamiento que las isólinas de la ET_0 anual (Martínez-Cob, 1990).

La Tabla 6 presenta los valores máximos, mínimos y medios de las desviaciones estándar de los errores esperados en la estimación obtenidas con kriego y cokriego en los 1.504 puntos de estimación. No se observaron diferencias apreciables entre los valores mínimos. En el caso del kriego, estos mínimos errores se producen, por lo general, en las cercanías de las estaciones agroclimáticas (Fig. 7A) y, a medida que los puntos de estimación se alejan de las estaciones agroclimáticas, los errores esperados en la estimación aumentan considerablemente. Por el contrario, en el cokriego, y debido a la alta densidad de los puntos muestrales de la elevación, los errores esperados en la estimación apenas varían a lo largo de la región estudiada (Fig. 7B). En consecuencia, es de esperar que los valores máximos y medios de los errores esperados en la estimación con cokriego fuesen menores que en el caso del kriego. Así, los valores medios de los errores esperados con cokriego disminuyeron de un 10 p. 100 en noviembre a un 30 p. 100 en abril, con un descenso del 25 p. 100 para el caso de la ET_0 total anual (Tabla 6). Los errores esperados en la estimación se incrementa-

TABLA 5

Valores máximos, mínimos y medios de las 1.504 estimas de la ET_0 obtenidas con kriego (KRG) y con cokriego (CKG)

Maximum, minimum and mean values of the 1,504 kriged (KRG) and cokriged (CKG) ET_0 estimates

<table>
<thead>
<tr>
<th>Mes</th>
<th>Máximas</th>
<th>Mínimas</th>
<th>Medias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KRG (1)</td>
<td>CKG (1)</td>
<td>Dif.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td>0,84</td>
<td>0,82</td>
<td>-2,65</td>
</tr>
<tr>
<td>Mar.</td>
<td>2,12</td>
<td>2,04</td>
<td>-3,50</td>
</tr>
<tr>
<td>Abr.</td>
<td>4,33</td>
<td>4,24</td>
<td>-2,03</td>
</tr>
<tr>
<td>May.</td>
<td>6,11</td>
<td>5,94</td>
<td>-2,83</td>
</tr>
<tr>
<td>Jun.</td>
<td>6,98</td>
<td>6,66</td>
<td>-4,49</td>
</tr>
<tr>
<td>Jul.</td>
<td>7,71</td>
<td>7,56</td>
<td>-2,00</td>
</tr>
<tr>
<td>Ago.</td>
<td>6,89</td>
<td>6,69</td>
<td>-2,92</td>
</tr>
<tr>
<td>Sep.</td>
<td>4,60</td>
<td>4,49</td>
<td>-2,28</td>
</tr>
<tr>
<td>Oct.</td>
<td>2,74</td>
<td>2,69</td>
<td>-2,11</td>
</tr>
<tr>
<td>Nov.</td>
<td>0,70</td>
<td>0,70</td>
<td>-0,45</td>
</tr>
<tr>
<td>Año</td>
<td>1,299</td>
<td>1,245</td>
<td>-4,16</td>
</tr>
</tbody>
</table>

(1) mm/día, (ET_0 anual, mm).
(2) tanto por cento.
Fig. 6.—Mapa de isolíneas de las estimas de la ET₀ anual (mm)
(A) Krigeado. (B) Cokrigeado.
Map of contour lines of the estimates of annual ET₀ (mm)
(A) Kriging. (B) Cokriging.
ron en los límites de la región pero de una manera mucho más pronunciada en el caso del krigead. Esto se debe a que no se utilizaron puntos muestrales fuera de la región estudiada. Estos resultados indican, pues, una mejora importante de la precisión de las estímas de la ET₀ obtenidas con cokrigead con respecto a las obtenidas con krigead. Esta mejora, como ya se ha mencionado previamente, depende, entre otros factores, del grado de correlación estadística entre las dos variables bajo estudio (Hoeksema et al., 1989). En este estudio, se observaron altos coeficientes de correlación estadística entre la ET₀ y la elevación. Así, los coeficientes de correlación estadística entre los valores de la ET₀ mensual y la elevación en las estaciones agroclimáticas varían entre −0,75 y −0,94, mientras que entre la ET₀ anual y la elevación, el coeficiente de correlación estadística fue de −0,90 (Martínez-Cob, 1990).

TABLA 6

VALORES MAXIMOS, MINIMOS Y MEDIOS DE LAS DESVIACIONES ESTANDAR DE LOS ERRORES ESPERADOS CON KRIEGADO (KRG) Y CON COKRIGADO (CKG) EN LOS 1.504 PUNTOS DE ESTIMACION DE LA ET₀

Maximum, minimum and mean values of the standard deviations of kriging (KRG) and cokriging (CKG) expected estimation errors at the 1.504 ET₀ estimation points

<table>
<thead>
<tr>
<th>Mes</th>
<th>KRG (1)</th>
<th>CKG (1)</th>
<th>Dif. (2)</th>
<th>KRG (1)</th>
<th>CKG (1)</th>
<th>Dif. (2)</th>
<th>KRG (1)</th>
<th>CKG (1)</th>
<th>Dif. (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb.</td>
<td>0,191</td>
<td>0,137</td>
<td>−27,93</td>
<td>0,090</td>
<td>0,084</td>
<td>−7,15</td>
<td>0,130</td>
<td>0,095</td>
<td>−26,77</td>
</tr>
<tr>
<td>Mar.</td>
<td>0,308</td>
<td>0,197</td>
<td>−36,08</td>
<td>0,116</td>
<td>0,109</td>
<td>−6,20</td>
<td>0,191</td>
<td>0,137</td>
<td>−28,16</td>
</tr>
<tr>
<td>Abr.</td>
<td>0,516</td>
<td>0,317</td>
<td>−38,54</td>
<td>0,150</td>
<td>0,143</td>
<td>−4,57</td>
<td>0,301</td>
<td>0,209</td>
<td>−30,41</td>
</tr>
<tr>
<td>May.</td>
<td>0,581</td>
<td>0,347</td>
<td>−40,28</td>
<td>0,194</td>
<td>0,180</td>
<td>−6,84</td>
<td>0,337</td>
<td>0,237</td>
<td>−29,48</td>
</tr>
<tr>
<td>Jun.</td>
<td>0,699</td>
<td>0,412</td>
<td>−28,37</td>
<td>0,319</td>
<td>0,298</td>
<td>−6,68</td>
<td>0,436</td>
<td>0,329</td>
<td>−24,43</td>
</tr>
<tr>
<td>Jul.</td>
<td>0,636</td>
<td>0,428</td>
<td>−32,78</td>
<td>0,262</td>
<td>0,249</td>
<td>−5,15</td>
<td>0,392</td>
<td>0,306</td>
<td>−21,85</td>
</tr>
<tr>
<td>Ago.</td>
<td>0,613</td>
<td>0,444</td>
<td>−27,59</td>
<td>0,278</td>
<td>0,266</td>
<td>−4,22</td>
<td>0,389</td>
<td>0,321</td>
<td>−17,42</td>
</tr>
<tr>
<td>Sep.</td>
<td>0,394</td>
<td>0,254</td>
<td>−35,39</td>
<td>0,195</td>
<td>0,184</td>
<td>−5,83</td>
<td>0,260</td>
<td>0,205</td>
<td>−21,08</td>
</tr>
<tr>
<td>Oct.</td>
<td>0,272</td>
<td>0,188</td>
<td>−20,77</td>
<td>0,105</td>
<td>0,100</td>
<td>−0,53</td>
<td>0,168</td>
<td>0,128</td>
<td>−23,99</td>
</tr>
<tr>
<td>Nov.</td>
<td>0,123</td>
<td>0,108</td>
<td>−20,54</td>
<td>0,057</td>
<td>0,036</td>
<td>−2,07</td>
<td>0,081</td>
<td>0,073</td>
<td>−9,61</td>
</tr>
<tr>
<td>Año</td>
<td>123</td>
<td>77</td>
<td>−57,95</td>
<td>57</td>
<td>53</td>
<td>−6,84</td>
<td>79</td>
<td>59</td>
<td>−25,34</td>
</tr>
</tbody>
</table>

(1) mm/día, (ET₀ anual, mm)
(2) tanto por ciento

La evapotranspiración es un importante componente del balance hidrológico anual. Estimaciones de evapotranspiración para un año medio como las calculadas en este trabajo podrían utilizarse en la ecuación del balance hidrológico en diversos estudios regionales, como manejo de recursos hídricos y valoraciones ambientales. Debido a la mayor precisión de las estímas de la evapotranspiración obtenidas con cokrigead, podrían esperarse una disminución de la incertidumbre propia de este tipo de estudios y, en consecuencia, mejores predicciones y más precisas de distintos fenómenos hidrológicos.

Esta mejora en la precisión de las estímas obtenidas con cokrigead en la región estudiada es relativamente baja comparada a la observada en un estudio similar realizado en Nevada con valores de precipitación total anual y elevación (Hvesi et al., 1992). Sin embargo, debe puntualizarse que los valores experimentales de la ET₀ fueron estímas por lo que era de esperar un mayor error experimental en
Fig. 7.—Mapa de isolíneas de las desviaciones estándar de los errores de estimación de la ET₀ anual (mm). (A) Kriegoado. (B) Cokriegoado. Las X representan los puntos donde se localizan las estaciones agroclimáticas.

Map of contour lines of the standard deviations of the annual ET₀ estimation errors (mm). (A) Kriging. (B) Cokriging. The X represent the points where the agroclimatic stations are located.
estos valores que en los del trabajo de Hevesi et al. (1992) en el que la precipitación fue medida experimentalmente.

Un estudio similar al descrito en este trabajo se realizó en otras tres regiones climáticas del estado de Oregón (Martínez-Cob, Cuenca, 1992). La mejora de la precisión de las estimas obtenidas con cokrigeado fue similar a la obtenida en la región Willamette Valley, mientras que dicha mejora fue bastante menor en las regiones Centro Sur y Este. En estas dos regiones climáticas la correlación estadística entre la \(\text{ET}_0 \) y la elevación fue menor que la observada en la región Centro Norte (Martínez-Cob, 1990). Este hecho pudo deberse a que la distribución espacial de las estaciones agroclimáticas no era totalmente aleatoria. Estas tienden a situarse en áreas pobladas o en sus cercanías y la densidad de población en las regiones Centro Sur y Este es mucho menor y está más irregularmente distribuida que en las regiones Willamette Valley y Centro Norte. Asimismo, en las regiones Centro Sur y Este la elevación presenta unos coeficientes de variación bastante menores que en las otras dos regiones (Martínez-Cob, 1990). En consecuencia, en determinadas regiones el empleo de la geoestadística multivariante puede que no sea práctico ya que los requerimientos de cálculo de esta técnica son bastante altos respecto a otras técnicas de interpolación más sencillas.

La cuantificación de las desviaciones estándar de los errores esperados en la estimación en cada punto no depende del valor de la variable de interés en los puntos de muestreo como se desprende de las ecuaciones [8] y [10]. Esto permite una segunda aplicación de la geoestadística, la optimización de la red de los puntos de muestreo mediante, por ejemplo, la técnica de los puntos ficticios (Samper, Carrera, 1990). El hecho de que el cokrigeado reduzca por sí mismo los errores de estimación podría ayudar a una utilización más eficaz de la técnica de los puntos ficticios mediante la búsqueda de aquellas zonas en donde los errores esperados de la estimación son más altos y, en consecuencia, la instalación de nuevas estaciones sería más provechosa.

Una de las principales desventajas del cokrigeado es la gran cantidad de cálculos que se necesitan. Sería interesante el estudio de métodos de interpolación que combinen análisis geoestadísticos con técnicas de regresión lineal y su comparación con el cokrigeado. Si se admite que las estimas obtenidas con cokrigeado son las más precisas, esta comparación se podría utilizar para evaluar la precisión de esos métodos de interpolación más sencillos que el cokrigeado, lo que podría reducir considerablemente las necesidades de cálculo a la hora de realizar estudios regionales de \(\text{ET}_0 \). Ahmed y De Marsily (1987) apuntaron que los beneficios del empleo de la geoestadística multivariante se reducen a medida que disminuye el número de puntos muestrales comunes a las dos variables estudiadas.

CONCLUSIONES

La variabilidad espacial de la \(\text{ET}_0 \) ha sido descrita y modelizada adecuadamente mediante semivariogramas de tipo esférico con pequeños efectos pepita. El parámetro alcance de los semivariogramas directos para la \(\text{ET}_0 \) varió entre 65 y 80 km para los meses más fríos del año y entre 95 y 105 km para los meses más cálidos. La variabilidad espacial de la elevación también ha sido adecuadamente descrita mediante un semivariograma de tipo esférico con efecto pepita. La variabilidad y la correlación espaciales entre la \(\text{ET}_0 \) y la elevación han sido descritas y modelizadas mediante semivariogramas de tipo esférico sin efectos pepita. En este caso, el parámetro alcance fue algo mayor que en los semivariogramas directos para la \(\text{ET}_0 \), entre 65 y 100 km para los meses más fríos y entre 115 y 125 km para
A. MARTINEZ-COB et al.

los meses más cálidos. No obstante, en este estudio se han empleado valores locales de la ET_0 para un año medio por lo que conviene ser cauteloso a la hora de emplear los semivariogramas modelizados para representar la variabilidad espacial de la ET_0 y su correlación espacial con la elevación en años individuales.

Los valores de las estimas de la ET_0 obtenidos con kriegerado han sido muy similares a los obtenidos con cokriegerado. Sin embargo, las isolíneas de la ET_0 muestran que el cokriegerado produjo estimas cuyos cambios siguen más fielmente los de la elevación. En consecuencia, las estimas de la ET_0 obtenidas con cokriegerado representan más fielmente los cambios espaciales que se esperarían de esta variable.

Asimismo, los resultados de este estudio muestran que el empleo de la geostadística multivariante mejoró las estimas de la ET_0 en puntos de cuadrículas regulares al incluir la elevación como segunda variable. En general, los errores esperados en la estimación obtenidos con cokriegerado se redujeron en promedio entre un 10 y un 30 p. 100 según meses, respecto a los obtenidos con kriegerado, siendo de un 25 p. 100 la reducción observada en el caso de la ET_0 anual. Sin embargo, esta mejora, como ya se ha indicado anteriormente, depende de la correlación estadística existente entre la ET_0 y la elevación en la región de estudio. Cuando la correlación estadística entre las dos variables bajo estudio es relativamente alta, la mejora en la precisión de las estimas obtenida con cokriegerado es asimismo importante. La aplicación del procedimiento descrito en este trabajo a otras regiones del estado de Oregón produjo resultados diversos y, en aquellas regiones en donde la correlación entre la ET_0 y la elevación no fue demasiado alta, la mejora producida por el cokriegerado fue menor (Martínez-Cob, Cuenca, 1992).

Los resultados de esta investigación indican el potencial de la aplicación de las técnicas geostadísticas descritas en estudios regionales de la evapotranspiración y de otras variables hidrológicas que asimismo muestran una variabilidad espacial susceptible de ser descrita y modelizada mediante semivariogramas. La mejora en la precisión de las estimas de la evapotranspiración podría conducir a una disminución de la incertidumbre propia de diversos estudios realizados a escala regional, basados en la ecuación del balance hidrológico, como manejo de recursos hídricos y valoraciones ambientales, ya que la evapotranspiración es uno de los más importantes componentes del balance hidrológico.

AGRADECIEMIENTOS

Agradecemos al Consejo Asesor de Investigación de la Diputación General de Aragón, al Office of International Cooperation and Development (U. S. Department of Agriculture) y a la Oregon State University Agricultural Experiment Station la financiación de este proyecto. Asimismo, expresamos nuestra gratitud a Joe Hevesi (U. S. Geological Survey, Mercury, Nevada), Kelly Redmond (Climatic Research Institute, Corvallis, Oregon), Clint Jensen (U. S. National Weather Service, Portland, Oregon) y Phil Brown (Computer Center, Oregon State University, Corvallis, Oregon) por su ayuda en la obtención y análisis de datos.

SUMMARY

Multivariate geostatistics applied to regional evapotranspiration studies

This work presents the results of a study carried out in Oregon (United States). The main objective was to analyze the improvements in evapotranspiration estimates using multivariate geostatistics. Reference evapotranspiration (ET_0) calculated by the FAO-USDA Blaney-Criddle method was the main variable and elevation over sea level was the secondary variable.

Results showed that multivariate geostatistics improved ET_0 estimates. Thus, average estimation error standard deviations decreased by about 10 to 30 p. 100 for monthly ET_0 and 25 p. 100 for annual ET_0. However, this improvement depends mainly on the correlation between ET_0 and elevation in the region studied.
KEY WORDS: Geostatistics
Kriging
Cokriging
Evapotranspiration
Elevation

REFERENCIAS BIBLIOGRÁFICAS