
DEEP-HybridDataCloud
ASSESSMENT OF AVAILABLE TECHNOLOGIES FOR
SUPPORTING ACCELERATORS AND HPC, INITIAL

DESIGN AND IMPLEMENTATION PLAN

DELIVERABLE: D4.1

Document identifier:  DEEP-JRA1-D4.1 

Date: 29/04/2018

Activity: WP4 

Lead partner: IISAS 

Status: FINAL  

Dissemination level: PUBLIC  

Permalink: http://hdl.handle.net/10261/164313 

Abstract
This document describes the state of the art of technologies for supporting bare-metal, accelerators
and HPC in cloud and proposes an initial  implementation plan.  Available technologies will  be
analyzed  from different  points  of  views:  stand-alone  use,  integration  with  cloud  middleware,
support  for  accelerators  and  HPC  platforms.  Based  on  results  of  these  analyses,  an  initial
implementation  plan  will  be  proposed  containing  information  on  what  features  should  be
developed and what components should be improved in the next period of the project. 

DEEP-HybridDataCloud – 777435 1

http://hdl.handle.net/10261/164313


Copyright Notice
Copyright © Members of the DEEP-HybridDataCloud Collaboration, 2017-2020.

Delivery Slip

Name Partner/Activity Date

From Viet Tran IISAS / JRA1 25/04/2018 

Reviewed by

Marcin Plociennik
Cristina Duma Aiftimiei

Zdeněk Šustr  

PSNC
INFN

CESNET 

 20/04/2018
25/04/2018
25/04/2018

Approved by Steering Committee 30/04/2018

Document Log

Issue Date Comment Author/Partner

TOC 17/01/2018 Table of Contents Viet Tran / IISAS

0.01 06/02/2018 Writing assignment Viet Tran / IISAS

0.99 10/04/2018 Partner contributions WP members

1.0 19/04/2018 Version for first review Viet Tran / IISAS

1.1 22/04/2018 Updated version according to
recommendations from first review Viet Tran / IISAS

2.0 24/04/2018 Version for second review Viet Tran / IISAS

2.1 27/04/2018 Updated version according to
recommendations from second review Viet Tran / IISAS

3.0 29/04/2018 Final version Viet Tran / IISAS

DEEP-HybridDataCloud – 777435 2



Table of Contents
Executive Summary.............................................................................................................................5
1. Introduction.....................................................................................................................................6
2. Available technologies for obtaining bare-metal like performance.................................................6

2.1. Paravirtualization technologies................................................................................................7
2.1.1.  SR-IOV and PCI Passthough..........................................................................................7
2.1.2.  virtio................................................................................................................................8

2.2. Container technologies.............................................................................................................9
2.2.1.  Docker.............................................................................................................................9
2.2.2.  udocker............................................................................................................................9
2.2.3.  Linux containers (LXC/LXD).......................................................................................10
2.2.4.  Singularity.....................................................................................................................11
2.2.5.  Other available technologies.........................................................................................11

2.3. Comparison of technologies..................................................................................................12
3. Supports for paravirtualization and containers in cloud middleware............................................13

3.1. OpenStack..............................................................................................................................13
3.1.1.  OpenStack Heat.............................................................................................................14
3.1.2.  OpenStack Magnum......................................................................................................15
3.1.3.  OpenStack nova-lxd......................................................................................................16

3.2. OpenNebula...........................................................................................................................17
3.2.1.  OpenNebula LXDoNe...................................................................................................18
3.2.2.  ONEDock......................................................................................................................18

3.3. Kubernetes.............................................................................................................................19
3.4. Apache Mesos + Marathon + Chronos..................................................................................21

4. Support for Accelerated computing...............................................................................................26
4.1. Accelerators and Deep Learning............................................................................................26

4.1.1. Types of accelerators......................................................................................................26
4.1.2.  Using accelerators in Deep Learning............................................................................27

4.2. Support for accelerators at hypervisor/container level..........................................................31
4.2.1.  PCI passthrough and SR-IOV.......................................................................................32
4.2.2.  GPU-specific virtualization methods............................................................................32
4.2.3. Device mapping (passthrough) for LXD/Docker...........................................................34
4.2.4. nvidia-docker runtime....................................................................................................35
4.2.5. Comparison of approaches for supporting accelerators.................................................36

4.3. Support for accelerators at cloud middleware level...............................................................36
4.3.1.  OpenStack.....................................................................................................................36
4.3.2.  OpenNebula...................................................................................................................37
4.3.3.  Kubernetes.....................................................................................................................37
4.3.4. Apache Mesos................................................................................................................38

5. Interaction with HPC resources using PaaS approach...................................................................39
5.1. Specifics of HPC systems......................................................................................................39
5.2. Using containers in HPC........................................................................................................43
5.3. Local schedulers.....................................................................................................................44
5.4. PaaS Interaction and interfaces..............................................................................................46

6. Initial implementation plan............................................................................................................47
6.1. Task structure and coordination activities..............................................................................48
6.2. Coordination with other WPs.................................................................................................49

6.2.1.  Coordination with WP 5................................................................................................49
6.2.2.  Coordination with WP3.................................................................................................49

DEEP-HybridDataCloud – 777435 3



6.3. Initial implementation plan....................................................................................................50
6.3.1.  Improving support for containers in cloud middleware................................................51
6.3.2.  Improving support for accelerators in cloud middleware.............................................52
6.3.3.  Interaction with HPC resources....................................................................................52

6.4. Risk assessments....................................................................................................................53
7. Conclusion.....................................................................................................................................54
8. List of Figures................................................................................................................................55
9. List of tables..................................................................................................................................55
10. Acronyms.....................................................................................................................................55
11. References and links....................................................................................................................58

11.1. References............................................................................................................................58
11.2. Links.....................................................................................................................................59

DEEP-HybridDataCloud – 777435 4



Executive Summary
The  DEEP-HybridDataCloud  (Designing  and  Enabling  E-Infrastructures  for  intensive  data
Processing in a Hybrid DataCloud) is a project approved in July 2017 within the EINFRA-21-2017
call  of  the  Horizon  2020  framework  program  of  the  European  Commission.  It  will  develop
innovative  services  to  support  intensive  computing  techniques  that  require  specialized  HPC
hardware, such as GPUs or low-latency interconnects, to explore very large datasets.

This document describes the state of the art of technologies for supporting bare-metal, accelerators
and HPC in cloud. Based on the analysis, an initial implementation plan for improving the support
of accelerators and HPC in DEEP-HybridDataCloud is proposed.

There are two main approaches to reducing the overhead of virtualization layers and reaching bare-
metal like performance in cloud computing: 1) to use paravirtualization technologies in hypervisors
and 2) to replace hypervisors with container technologies. Although paravirtualization technologies
in hypervisors can improve performance, they are still cumbersome for deployment and use. On the
other hand container technologies have been rapidly improving in recent years and have proved
themselves  as  viable  alternative  to  application  delivery  and  even  full  virtualization  for  cloud
computing.  There are many different implementations of container technologies and also cloud
platforms supporting them, from traditional  Cloud management  frameworks like OpenStack or
container-centric management environment like Kubernetes.

For  what  concerns  support  for  accelerators,  paravirtualization  techniques  have  several  severe
limitations while GPU virtualization is still not generally available on common hardware. On the
other hand, recent developments in GPU runtime support like nvidia-docker have greatly improved
the usability,  portability  and stability  of container  technologies.  Therefore the use of container
technologies  will  be  the  approach  chosen  in  DEEP-HybridDataCloud  project.  The  DEEP-
HybridDataCloud  has  selected  two  implementations  to  be  further  improved:  nova-lxd,  as  a
replacement of full Cloud hypervisors, and udocker, as container technology to be used in the case
of HPC platforms.

HPC computing model is different from Cloud computing model in many aspects: architecture,
software installation, queuing system, user access and so on. Therefore it is necessary to work out a
solution that allows to efficiently use HPC resources by high level services. There are two possible
approaches  to  making  HPC  resources  available  for  PaaS  services:  1)  to  access  an  HPC
management system and submit batch jobs, and 2) to allow HPC nodes to be managed by a Cloud
management system. These approaches are not exclusive and none of them can be chosen as the
best solution, as it strongly depends on local HPC conditions and politics. The work on integration
with an HPC platform will be tightly coordinated with WP5 addressing the PaaS layer.

DEEP-HybridDataCloud – 777435 5



1. Introduction
The  DEEP-HybridDataCloud  (Designing  and  Enabling  E-Infrastructures  for  intensive  data
Processing in a Hybrid DataCloud) is a project approved in July 2017 within the EINFRA-21-2017
call  of  the  Horizon  2020  framework  program  of  the  European  Community.  It  will  develop
innovative services to support intensive computing techniques that require bare-metal performance,
specialized accelerators such as GPUs and HPC platform in cloud, to explore very large datasets.

The  objective  of  WP4  of  the  DEEP-HybridDataCloud  project  is  to  fulfill  the  requirements
mentioned above by working as closely as possible with hardware resources, exploiting the full
potential of computation performance provided by the hardware including accelerators, low-latency
interconnects and HPC platforms. This workpackage will cooperate tightly with WP5 High Level
Hybrid Cloud solutions where the resources provided in this workpackage will be managed and
accessed via PaaS Orchestration service provided by WP5.

This document describes the state of the art of technologies for supporting bare-metal, accelerators
and HPC in cloud and initial implementation plan for WP4. The bare-metal performance can be
achieved either by using paravirtualization technologies or by using container technologies. The
later mentioned technologies have been emerging as a viable alternative to application delivery and
even replacement for traditional full virtualization for cloud computing. Available technologies will
be  analyzed  from  different  views:  stand-alone  use,  within  cloud  middleware,  support  for
accelerators and HPC platforms. Based on the results of these analyses, an initial implementation
plan  will  be proposed containing information  on what  features  should  be developed and what
components should be improved in the next period of the project.

2. Available technologies for obtaining bare-metal 
like performance
Virtualization is one of the key technologies for enabling cloud computing. With the introduction of
hardware  assisted  virtualization  in  common  processors  (Intel  VT-x  and  AMD  AMD-V),  it  is
possible  to  create  a  fully  simulated  hardware  environment  (virtual  machine)  for  executing
unmodified guest operating system in complete isolation. That is the base of "Infrastructure as a
service" (IaaS) cloud computing.

Full virtualization requires explicit supports in hardware components for performing efficiently.
The supports are commonly available in modern processors, but not in other devices like network
and graphic cards. As the results, there are high additional overheads for accessing these devices,
for example network latency that is critical for high performance computing. There are two main
approaches to reduce the overhead of virtualization layers and to reach bare-metal like performance
in  cloud computing:  1)  to  use  paravirtualization technologies  in  hypervisors  and 2)  to  replace
hypervisors by container technologies.

Paravirtualization  approach  allows  virtual  machines  to  access  the  devices  directly,  bypassing
hypervisor layers  (PCI passthrough, SR-IOV) or via special modified drivers (virtio). That can

DEEP-HybridDataCloud – 777435 6



reduce the overheads of virtualization but also create certain flaws in virtualization layers because
of bypassing. On the other hand, container technologies rely on isolation provided by operating
systems, e.g. namespaces in Linux, instead of hardware virtualization. As the results, the container
technologies eliminate overheads caused by hardware virtualization, however, the containers must
share the kernel with the host operating system. The container technologies have lower level of
isolation than full virtualization and the containers must use the same operating system as the host.
More  details  about  the  technologies  and  their  comparison  are  provided  in  the  following
subsections.

2.1. Paravirtualization technologies

2.1.1. SR-IOV and PCI Passthough
PCI Passthrough is a technology that allows assigning direct access to a PCI/PCIe device to a
virtual machine guest. This removes the virtualization overhead associated with copying of data
from a  virtual  to  a  real  device  driver.  Since  GPUs  are  nowadays  usually  PCIe  devices,  PCI
Passthrough technology allows the virtualization of GPU access.

PCI Passthrough is supported in both the KVM [KVMSRIOV] and Xen [XENSRIOV] hypervisors
(and the derived commercial products by Red Hat and Citrix), and numerous others Level 1 and
Level 2 hypervisors.

PCI Passthrough is enabled by the PCI-SIG Single Root I/O Virtualization standard [PCISIGa]
(SR-IOV). This standard provides a consistent way to bypass the VM host’s involvement in data
movement by providing each virtual machine with its  own memory space,  DMA channels and
interrupts. As a result, a real PCI device will appear in the device tree as several devices, each
assignable to a different virtual guest. While the original PCI device is called a Physical Function
(PF) and is discovered, configured and managed as a normal PCI device. This PF is also the point
of management of Virtual Functions (VF) – the virtual representations of the device, with more
restricted set of functionality. However, even VFs need to be supported by the hardware of the PCI
device, so the number of VFs one PF can configure is limited. The relationship between a physical
PCI device, its PF and VFs, the host and guests is shown in Figure 1. Unlike direct assignment of
hardware  to  a  virtual  machine  in  PCI  Passthough,  using  SR-IOV's  VFs  provides  a  level  of
flexibility and the option to reassign the device to more than one virtual machine.

Hardware support of the SR-IOV standard is called VT-d [VTD] by Intel and IOMMU by AMD. It
is usually necessary to enable these standards in the BIOS of the computer on which we wish to use
the SR-IOV virtualization capabilities.

On  Linux,  the  SR-IOV standard  and  its  configuration  capabilities  are  supported  by  a  kernel
module. As the VFs are configured anew at each boot, the configuration of a virtual PCI device
may not be persistent, for example, a NIC VF will have a different MAC address assigned after
each reboot. 

DEEP-HybridDataCloud – 777435 7



Figure 1. The illustration of SR-IOV relationships between a physical PCI device, its PF and VFs
and the host and guests in a virtualization environment

2.1.2. virtio
Virtio  [VIRTIO]  is  a  paravirtualization  method  of  virtualizing  access  to  mainly  disks  (block
devices) and network interfaces. It is architecturally similar to Xen’s paravirtualized driver – the
disk or NIC driver in the guest machine is aware of being virtualized and cooperates with the
hypervisor.  It  is  implemented  as  an  abstraction  layer  over  devices,  providing  a  standardized
interface  through  which  a  guest  OS  can  access  simplified  versions  of  block  devices  or  NIC
adapters.

Virtio is essentially a set of virtual devices and their drivers. It was devised by Rusty Russell as part
of the Lguest [LGUEST], a Linux virtualization hypervisor included in the Linux kernel from
version 2.6.23 (October 2007) to version 4.14 (November 2017). Lguest is capable of virtualizing
only 32-bit kernels, though an experimental version of Lguest64 [LGUEST64] exists.

A virtual device provided by virtio appears to the guest OS as a standard PCI device with Vendor
ID of 0x1AF4 and Device ID between 0x1000 and 0x103F. The Subsystem ID identifies the type of
the virtual device:

01            Network Card
02            Block Device
03            Console
04            Entropy Source
05            Memory Ballooning
06            IO Memory
07            RPMSG
08            SCSI Host

DEEP-HybridDataCloud – 777435 8



09            9P Transport
10            MAC802.11 WLAN 

2.2. Container technologies
Most  scientific  computing  facilities,  such  as  HPC  or  grid  infrastructures,  are  shared  among
different  research  disciplines,  and  thus  the  system  software  environment  needs  to  be  generic
enough  to  accommodate  different  user  and  applications  profiles;  hence  they  are  multi-user
environments.

Because of managerial and technical constraints, such infrastructures cannot afford offering every
research project a tailored environment in their machines. Therefore, the interest of exploring the
applicability of containers technology on such systems is rather evident from the end-user point of
view.

Researchers  need  then  to  customize  their  applications  software  to  fit  the  computing  center
environment at the level of system software and batch system. Containers provide a way to pack
and deploy software including all the dependencies in a way that can be executed in a seamless
way, independently of the underlying Linux Operating System and environment. The main benefit
of integrating the execution of containers in  HPC systems would then be to provide a way to
execute applications homogeneously across different resource centers [Gomes 2017].

2.2.1. Docker
Docker is a popular container platform intended both for own infrastructure and cloud. The basic
building block is an image – a lightweight, standalone, executable package of a piece of software
that  includes  everything  needed  to  run  it;  i.e.,  code,  runtime,  system  tools,  system  libraries,
settings. Images are built from file system layers and share common files, thus minimizing disk
usage and image size. An instantiated docker image is called a container and there can be multiple
containers of the same image instantiated on the same machine.

On a single machine, containers share the host’s system kernel, so they can start instantly and use
fewer resources; i.e., RAM and CPU. Regardless of the environment, the software in the container
will  always  run  the  same.  The difference  between containers  and virtual  machines  is  in  their
functionality. While virtual machines virtualize hardware, containers as an abstraction at the app
layer virtualize the operating system. This makes containers more portable and efficient.

2.2.2. udocker
A basic  user  tool  to  execute  simple  docker  containers  in  user  space  without  requiring  root
privileges. Enables download and execution of docker containers by non-privileged users in Linux
systems where docker is not available. It can be used to pull and execute docker containers in
Linux  batch  systems  and  interactive  clusters  that  are  managed  by  other  entities  such  as  grid
infrastructures or externally managed batch or interactive systems.

This tool is a wrapper around several tools to mimic a subset of the docker capabilities including
pulling images and running containers with minimal functionality. It does not require any type of

DEEP-HybridDataCloud – 777435 9



privileges nor the deployment of services by system administrators.  It  can be downloaded and
executed entirely by the end user.

udocker is written in Python, it has a minimal set of dependencies so that can be executed in a wide
range of Linux systems. It does not make use of docker nor requires its presence.

udocker "executes" the containers by simply providing a chroot like environment over the extracted
container.  The  current  implementation  supports  different  methods  to  mimic  chroot,  enabling
execution  of  containers  without  requiring  privileges  under  a  chroot  like  environment.  udocker
transparently supports several methods to execute the containers using tools and libraries such as:

• PRoot
• Fakechroot
• runC
• Singularity

2.2.3. Linux containers (LXC/LXD)
LXD is a next generation system container manager. It offers a user experience similar to virtual
machines but using Linux containers instead. LXD is built on top of LXC to provide a better user
experience.  Under  the  hood,  LXD uses  LXC through liblxc  and its  Go binding to  create  and
manage the containers.

It's an alternative to LXC's tools and distribution template system with the added features that come
from being controllable over the network.

Clients, such as the command line tool provided with LXD itself, then do everything through that
REST API. It means that whether you are talking to your local host or a remote server, everything
works the same way.

It's image based with pre-made images available for a wide number of Linux distributions and is
built around a REST API. The core of LXD is a privileged daemon that exposes a REST API over a
local unix socket as well as over the network (if enabled).

Some of the biggest features of LXD are:

• Secure by design (unprivileged containers, resource restrictions and much more); 
• Scalable (from containers on your laptop to thousands of compute nodes); 
• Intuitive (simple, clear API and crisp command line experience); 
• Image based (with a wide variety of Linux distributions published daily); 
• Support for Cross-host container and image transfer (including live migration with CRIU); 
• Advanced resource control (cpu, memory, network I/O, block I/O, disk usage and kernel

resources); 
• Device passthrough (USB, GPU, unix character and block devices, NICs, disks and paths); 
• Network management (bridge creation and configuration, cross-host tunnels, …); 
• Storage  management  (support  for  multiple  storage  backends,  storage  pools  and storage

volumes). 

DEEP-HybridDataCloud – 777435 10



2.2.4. Singularity
Singularity  is  a  container  solution  created  by  necessity  for  scientific  and  application  driven
workloads [Singularity]. This technology has been developed having in mind the necessities and
specificities of HPC environments. Its goal is to have Linux Containers' advantages like portability,
reproducibility and user freedom while maintaining traditional HPC security standards. It makes
use  of  Kernel  features  like  chroot,  bind  mounts,  Linux  namespaces,  cgroups,  etc.  [Younge]
[Godlove].

Like other container solutions, Singularity containers are distributed in image files. It uses a custom
single image file that wraps all the necessary data to run that container. Although this technology
supports Docker image files, those must be imported beforehand.

Pros

• Developed having HPC systems in mind;
• Experimental GPU support;
• Single image file;
• Docker images compatible (through import)
• Support for MPI applications (capability of running containerized, multi-node jobs using

native RDMA-enabled MPI)
Cons

• Own format image files;
• Experimental GPU support;
• Requires image import procedure for non-Singularity images; 
• Requires root privileges for installation;
• Requires system administrator's intervention.

2.2.5. Other available technologies
Shifter

Shifter is a platform designed to allow users to “safely and efficiently run Docker containers in an
HPC environment”, developed at NERSC [Shifter]. It is released by CRAY as a part of the default
installation in its CLE6.0 operating system, even though tools are available to install it on CentOS6
and CentOS7. It is  currently used in production environments at  a handful of sites,  notably at
NERSC in the US and CSCS in Switzerland.

Like Singularity, the core idea is to run user-defined containers in userspace.

Main features:

• Specifically designed to run Docker images, no image building capabilities
• Image Gateway service pulls images from DockerHub (or private repo) and converts them

to single-file squashFS-based
• Simple binary on execution node starts the image
• Minimal MPI support, GPU support is currently being refactored.

DEEP-HybridDataCloud – 777435 11



Charliecloud

Charliecloud [CharlieCloud] is a lightweight tool to run unprivileged Linux containers on HPC
facilities.  Developed at  LANL,  it  is  a  minimal  system (about  1000 LoC)  with  an API  to  run
containers  on  worker  nodes.  Container  building  is  done  by  wrapping  Docker  in  a  sandboxed
environment, and the Docker ecosystem, including DockerHub, is available. The container is then
run on nodes by a separate runtime, independent of Docker.

2.3. Comparison of technologies
The brief comparison of available technologies for virtualization is provided in Table 1.

Technology Full
virtualization

Paravirtualization OS container Application
container

Performance

Low 
performance 
for GPUs and 
network due to
high overhead 
of 
virtualization

Better performance
for specific devices
supporting 
paravirtualization

Practically native 
performance

Practically native 
performance

Limitation No

Hardware 
dependence, 
potential problem 
with 
suspending/migrati
on

The same kernel 
between host and 
container (therefore
same type of 
operating system)
Possible problems 
when applications 
try to modify kernel
configuration (e.g. 
loading driver)

The same kernel 
between host and 
container (therefore 
same type of 
operating system)
Possible problems 
when applications 
try to modify kernel 
configuration (e.g. 
loading driver)

Security Highest level 
of isolation

Hardware-assisted 
isolation (IOMMU)

Software isolation 
in OS kernel 
(namespaces)

Software isolation in
OS kernel 
(namespaces)

Software / 
Privilege 
requirement

Pre-installed 
hypervisor

Pre-installed 
hypervisor

Installation requires
root access, 
creating container 
in user space

Various: Docker 
requires root access 
for creating 
container, 
Singularity requires 
root access for 
installation but can 
create container in 
user space, udocker 
does not require root
access at all

Usability Virtualization 
of unprepared 

Virtualization of 
environments and 

Replacement of 
VMs

Application delivery

DEEP-HybridDataCloud – 777435 12



environments, 
operating 
systems not 
supporting 
virtualization 
(as a guest)

operating systems 
that support the 
concept of 
paravirtualization, 
obtaining better 
performance than 
full virtualization

Portability

Depending on 
type of 
hypervisor:
Type 1 – most 
are portable 
across 
hardware
Type 2 - 
requires 
support for 
specific OS on 
which the 
hypervisor is 
to be deployed

Both the host OS 
and the guest OS 
have to support 
paravirtualization; 
not very portable

Supported only on 
certain operating 
systems, the created
container is not 
easily portable to a 
different host

Portability depends 
on the support of 
respective container 
technologies for 
various operating 
systems. Very 
portable across 
supported operating 
systems.

Implementation

KVM, 
VirutalBox, 
VMWare, Xen,
Hyper-V

virtio, SR-IOV, 
Xen LXC/LXD Docker, udocker, 

Singularity

Table 1. Virtualization technology comparison

3. Supports for paravirtualization and containers in 
cloud middleware

3.1. OpenStack
OpenStack  is  a  manager  of  cloud  systems  that  governs  large  pools  of  compute,  storage,  and
networking  resources.  Currently,  it  supports  many  hypervisors  for  the  management  of  virtual
machines as well as containers (see Figure 2). Most installations use only one hypervisor type.
However, it is possible to schedule different hypervisors within the same installation, but multi-
hypervisor OpenStack cloud requires at least one compute node for each hypervisor type.

OpenStack supports following hypervisor drivers:

• Ironic – Not a hypervisor in the traditional sense, this driver provisions physical hardware
through pluggable  sub-drivers  (for  example,  PXE for  image deployment,  and IPMI for
power management);

DEEP-HybridDataCloud – 777435 13



• KVM – Kernel-based Virtual Machine. The virtual disk format that it supports is inherited
from QEMU since it uses a modified QEMU program to launch the virtual machine. The
supported formats include raw images, the qcow2, and VMware formats;

• VMware vSphere – runs VMware-based Linux and Windows images through a connection
with a vCenter server or directly with an ESXi host;

• Xen –  XenServer,  Xen  Cloud  Platform (XCP),  used  to  run  Linux  or  Windows virtual
machines (a user must install the nova-compute service in a para-virtualized VM);

• Hyper-V – Server virtualization with Microsoft’s Hyper-V, use to run Windows, Linux, and
FreeBSD virtual  machines.  Runs  nova-compute  natively  on  the  Windows virtualization
platform;

• Virtuozzo –  or  its  community  edition  OpenVZ,  provides  both  types  of  virtualization:
Kernel Virtual Machines and OS Containers;

• LXD – is supported by nova-lxd plugin, used to run Linux Containers (through libvirt);

• Magnum – It supports containers within Docker Swarm, Kubernetes, and Apache Mesos.

Figure 2. Overview of OpenStack resources

3.1.1. OpenStack Heat
OpenStack  Heat  is  the  orchestration  service  in  OpenStack  whose  main  objective  is  the
implementation  of  a  whole  engine  for  managing  the  entire  lifecycle  of  infrastructure  and
applications within an OpenStack Cloud. Orchestration not only makes it possible to reproduce a
given deployment whenever needed, it also allows sharing these topologies with other users or
Cloud infrastructures. This tool allows the IT administrator the automation of all the tasks involved
in the process in one only step and finally, the creation of an orchestration service where the final
users can launch their applications. The whole implementation of the service is based on a template

DEEP-HybridDataCloud – 777435 14



where all  the topology is  defined by means of declarative languages,  like HOT in the case of
OpenStack Heat. 

Heat provides an OpenStack native API and an API compatible with AWS CloudFormation. The
architecture of Heat is shown in Figure 3. The user creates the template where the application is
defined, and the OpenStack client sends this request to Heat for deploying the final environment in
Cloud. Heat is composed by the following services:

• Heat:  is  the  client,  which  communicates  with  the  heat-api-cfn  to  execute  AWS
CloudFormation APIs;

• Heat-api:  is an OpenStack REST API that processes user requests by sending them to the
heat-engine;

• Heat-api-cfn: is an API compatible with AWS CloudFormation that process the requests by
sending them to the heat-engine;

• Heat-engine:  is  the  main  component  that  provides  connection  with  other  OpenStack
services (like Nova, Glance or Neutron) to deploy the final application as well as to receive
events from the two other services. 

Figure 3. OpenStack Heat Architecture

3.1.2. OpenStack Magnum
OpenStack Magnum [Magnum] is technology for supporting containers in OpenStack environment.
It  started  as  an  interface  between Docker  and OpenStack compute  module  (nova).  OpenStack
Containers  Team develops  it  since  2014.  The  tool  is  written  in  Python.  Currently,  OpenStack
Magnum supports Docker Swarm, Kubernetes, and Apache Mesos. The software is licensed under
the Apache license.

Its main aim is to provide an API for container orchestration. There are two main components: API
REST server and Conductor. The REST server accepts requests and outputs messages. The API
REST supports 6 main objects (see Figure 4): 1) bay (cluster at newer versions) – collection of

DEEP-HybridDataCloud – 777435 15



virtual machines for hosting containers, 2) bay model (cluster template at newer versions) – similar
to flavor at bay level (os image, orchestration engine), 3) pod – collection of containers running on
single host, 4) service – logical set of pods and access policy, 5) replication controller – manager of
pods (also provides scaling and upgrade), and 6) node – nova instance.

Figure 4. Magnum API resources [Otto 2015]

Conductor processes the messages and creates the outputs, which means interaction with containers
and handling of container orchestration by interaction with OpenStack Heat. The multi-tenancy is
provided by Keystone. The whole integration of Magnum into OpenStack environment is shown in
Figure 5. It exploits: 1) Nova for instances management, 2) Neutron for configuration of a private
network (inside the bay), 3) Glance for images management, and 4) Cinder for management of
mounting points (inside containers).

 Figure 5. Magnum architecture [Cacciatore 2015]

3.1.3. OpenStack nova-lxd
OpenStack  nova-lxd  [nova-lxd],  [nova-lxd_GitHub]  is  a  plugin  allowing  managing  Linux
Containers (LXC) in an OpenStack cloud. Its development started in 2015. The plugin is written in
Python. OpenStack nova-lxd is installed on nova servers only. It bridges nova-compute daemon
with LXD, which is a daemon for LXC. It enables to use LXD as a hypervisor in OpenStack

DEEP-HybridDataCloud – 777435 16



environment  (alongside  KVM, VMware,  and Hyper-V).  Thus a  user  is  able  to  execute  all  the
standard  operations  (like  boot,  reboot,  stop,  delete,  make  snapshots,  do  resize  operations,  do
migration operations, and so on) on a LXC and also s/he is able to manage resources of a container
(like number of CPU, size of memory, disk). The plugin implements a RESTful API on top of the
LXC libraries and offers it to an OpenStack user (see Figure 6). LXC containers are managed in the
same manner as KVM containers – either via Horizon or via the Nova CLI. It is released under the
Apache 2.0 license.

Functionalities implemented or tested

• Life cycle control: deploy, shutdown, restart, reset, suspend and resume containers.

• Monitor hosts and containers.

• Network attachment and Floating IP association.

• Security Groups association.

• Ubuntu Xenial LXD flavored image made available.

• Image custom properties "Hypervisor_type: lxd"

Functionalities not implemented

• Native LXD Ceph support

• Live migration between compute hosts

Figure 6. OpenStack nova-lxd architecture diagram. Modification of  [Graber 2016]

3.2. OpenNebula
OpenNebula [OpenNebula] was first established as a research project in 2005 and the first public
release of  software was in  March 2008,  it  has  evolved through open-source  releases  and now
operates as an open source project. It provides a simple but feature-rich and flexible solution for the
comprehensive management of virtualized data centers to enable private, public and hybrid IaaS

DEEP-HybridDataCloud – 777435 17



clouds. The last series of releases (5.4.x) has improved storage and network management and high
availability.

3.2.1. OpenNebula LXDoNe
LXDoNe [LXDoNe] is an addon for OpenNebula to manage LXD Containers. It uses the pylxd
API for several container tasks. Its development started in 2017. LXD is a daemon which provides
a REST API to drive LXC containers,  which are lightweight OS-level  virtualization instances.
Unlike Virtual Machines they don't share the kernel with the host and, therefore, they don't suffer
from hardware emulation processing penalties.

Functionalities implemented

• Life cycle control: deploy, shutdown, restart, reset, suspend and resume containers.

• Support for Direct Attached Storage (DAS) file systems such as ext4 and btrfs.

• Support for Storage Area Networks (SAN) implemented with Ceph.

• Monitor hosts and containers.

• Limit container’s resources usage: RAM and CPU.

• Support for VNC sessions.

• Deploy containers with several disks and Network Interface Cards (NICs)

• Support for dummy and VLAN network drivers.

• Full  support for OpenNebula’s contextualization in LXD containers (using special  LXD
images that will be uploaded to the market).

Functionalities not implemented

• Native LXD Ceph support: LXD's Ceph module is not cloud ready.

Installation

• Frontend setup linear and supported.

• Virtualization of the node standard for Ubuntu 16.04 (Xenial Xenus),  not supported for
CentOS7 (containers run only if privileged).

• Usage of pre-built image downloadable from ONE marketplace

• LXD virtualization node, bridged network and template creation in ONE supported and
linear.  

3.2.2. ONEDock
ONEDock [ONEDock] is a development of the INDIGO-DataCloud project, which includes a set
of extensions for OpenNebula to use Docker containers as first-class entities, just as if they were
lightweight Virtual Machines (VM). For that, Docker is configured to act as a hypervisor so that it

DEEP-HybridDataCloud – 777435 18



behaves just as KVM or other hypervisors do in the context of OpenNebula. When OpenNebula is
asked for a VM, a Docker container will be deployed instead. In the context of OpenNebula, it is
managed as if it was a VM, and the user will be able to use IP addresses to access to the container.
ONEDock deploys Docker containers on top of bare-metal nodes. 

ONEDock provides four components that need to be integrated into the OpenNebula deployment: 

• ONEDock Datastore that  makes  it  possible  to  create  a  datastore  that  contains  Docker
images.  It  is  self-managed  in  the  sense  that  images  are  created  as  references  that  are
automatically downloaded from Docker Hub;

• ONEDock Transfer Manager that stages the Docker images that are in a Docker datastore
into the virtualization hosts;

• ONEDock Monitoring Driver that monitors the virtualization hosts in the context of the
Docker hypervisor;

• ONEDock Virtual Machine Manager that carries out the tasks related to the lifecycle of
the Docker containers as if they were VMs.

ONEDock  seamlessly  integrates  the  benefits  of  Docker  containers  (quick  deployment,  limited
overhead,  availability  of  Docker  images,  etc.)  in  a  Cloud  Management  Platform  such  as
OpenNebula. On the other side, it provides new features for containers that are usually reserved for
VMs (e.g. enhanced IP addressing, attachment of block devices, etc.).

3.3. Kubernetes
Kubernetes  is  an  open-source  platform written  in  Go  for  managing  containerized  applications
across multiple hosts, providing basic mechanisms for deployment, maintenance, and scaling of
applications [Kubernetes]. It can run on various platforms on local-machine, VMs on a Cloud IaaS
provider, or a rack of bare metal servers. A Kubernetes cluster is made of a master node and a set of
worker nodes. In a production environment, these run in a distributed setup on multiple nodes.
Kubernetes has six main components that form a functioning cluster (see Figure 7): 1) API server;
2)  Scheduler;  3)  Controller  manager;  4)  kubelet;  5)  kube-proxy;  and  6)  etcd.  Each  of  these
components can run as standard Linux processes, or they can run as Docker containers [Schroder
2017].

Kubernetes cluster consists of nodes, previously known as minions. Nodes are working machines
in Kubernetes cluster. Depending on cluster nature, a node can be a virtual or physical machine.
Kubernetes do not inherently create  nodes.  They already exist  in  a pool of virtual  or physical
machines.  When such node is  added into Kubernetes it  is  checked, whether  it  contains all  the
necessary services.

Nodes are managed by the master components running on a master node. Master components make
global decisions about the cluster and include components such as kube-apiserver – horizontally
scalable front-end to the Kubernetes control plane, kube-scheduler for scheduling Pods on nodes,
kube-controller-manager  running controllers (Node controller,  Replication Controller,  Endpoints

DEEP-HybridDataCloud – 777435 19



Controller and Service Account & Token Controllers). All the cluster data is stored in distributed
key-value store etcd, which is also a part of the master components.

Figure 7. Kubernetes architecture [Parthasarathy 2017]

Each node in the cluster has the services necessary to run Pods, which are the basic building blocks
of Kubernetes. A Pod represents a unit of deployment; i.e., a single instance of an application on
Kubernetes  cluster.  It  is  used  to  encapsulate  a  single  application  container  or  multiple  tightly
coupled  containers  working  together  with  storage  resource,  unique  network  IP  and  run-time
options. The most common container in Kubernetes is Docker, but there can be other runtimes
integrated via Container Runtime Interface (CRI), without the need to recompile such as cri-o,
rtklet, or frakti.

To scale applications horizontally in Kubernetes, Pods have to be replicated with a Controller, so
there is one Pod for each replicated instance of the application.

Running  a  container  on  a  laptop  is  relatively  simple.  However,  connecting  containers  across
multiple hosts, scaling them when needed, deploying applications without downtime, and service
discovery among several aspects, are hard challenges. Kubernetes addresses those challenges with
a set of primitives and a powerful API.

Pros

• Kubernetes  is  mature,  production-grade  container  orchestration.  It  is  purely  API-driven
container  orchestrator,  API server,  scheduler,  and a  controller  with fault-tolerance,  self-
discovery and scaling. 

DEEP-HybridDataCloud – 777435 20



• Kubernetes is distinguished from similar container orchestration systems, such as Apache
Mesos [Mesos] and Docker Swarm [DockerSwarm], by its Google heritage. Borg, the very
advanced internal datacenter management system used by Google for a decade, inspired
Kubernetes.  Google  donated  Kubernetes  to  the  Cloud  Native  Computing  Foundation
[CNCF], hosted at the Linux Foundation [LinuxFoundation] and supported by a number of
big companies including Google, Cisco, Docker, IBM, and Intel. The idea is to create a
reference architecture for cloud technologies that anyone can use.

Cons

• Manual  installation can be complex,  but flexible.  There are  many deployment tools for
Kubernetes like kubeadm, kops, kargo, and others. 

There  are  available  several  tools  for  monitoring  Kubernetes  cluster.  The Web UI (Dashboard)
allows users to manage and troubleshoot applications running in the cluster, as well as the cluster
itself. Kubernetes is supported by Heapster monitoring platform allowing it to inspect application
performance at different levels (containers, pods, services, and whole clusters). Heapster runs as a
pod in the cluster and gathers usage information from all the nodes of the cluster. Collected data is
pushed to a configurable backend for storage and visualization such as InfluxDB+Grafana, Google
Cloud Monitoring,  Kafka,  Elastic  search  and many others.  These  tools  differ  in  what  kind of
information  they  support  from Heapster;  i.e.,  monitoring  metrics,  events,  or  both.  Kubernetes
cluster can be created via a hosted solution on one of many cloud providers (currently counted 13
providers). Another similar option is Turnkey Cloud solution, which allows creating Kubernetes
cluster on a range of Cloud IaaS providers. Turnkey Cloud solution is also available for running it
on  own  internal,  secure,  cloud  network  via  IBM  Cloud  Private  or  Kubermatic  (On-Premises
turnkey  cloud  solutions).  There  is  kubeadm  toolkit  for  a  complete  control  over  the  cluster
installation, which expects existing machines to be executed on. The type of the machines does not
matter, which makes it easier to integrate kubeadm with other different systems; e.g., Ansible.

3.4. Apache Mesos + Marathon + Chronos
Apache Mesos
Apache Mesos abstracts CPU, memory, storage, and other compute resources away from machines
(physical or virtual), enabling fault-tolerant and elastic distributed systems to be easily built and
run effectively. Mesos is built using the same principles as the Linux kernel, only at a different
level  of  abstraction.  The Mesos kernel  runs  on every  machine  and provides  applications  (e.g.
Hadoop, Spark, Kafka, Elasticsearch) with API’s for resource management and scheduling across
entire datacenter and cloud environments. Mesos aims to provide a scalable and resilient core for
enabling various frameworks to efficiently share clusters. Because cluster frameworks are both
highly diverse and rapidly evolving,  Mesos overriding design philosophy has been to  define a
minimal interface that enables efficient resource sharing across frameworks, and otherwise push
control of task scheduling and execution to the frameworks. Pushing control to the frameworks has
two benefits. First, it allows frameworks to implement diverse approaches to various problems in
the  cluster  (e.g.,  achieving  data  locality,  dealing  with  faults),  and  to  evolve  these  solutions

DEEP-HybridDataCloud – 777435 21



independently. Second, it keeps Mesos simple and minimizes the rate of change required of the
system, which makes it easier to keep Mesos scalable and robust. 

Figure 8. Mesos architecture diagram, showing two running frameworks (Hadoop and MPI)
[Hindman 2011]

Mesos consists of a master process that manages slave daemons running on each cluster node, and
frameworks that  run tasks on these slaves.  The master  implements  fine-grained sharing across
frameworks using resource offers. Each resource offer is a list of free resources on multiple slaves.
The master decides how many resources to offer to each framework according to an organizational
policy,  such as  fair  sharing  or  priority.  To support  a  diverse  set  of  inter-framework allocation
policies,  Mesos lets  organizations  define their  own policies via  a pluggable allocation module.
Each framework running on Mesos consists of two components: a scheduler that registers with the
master to be offered resources, and an executor process that is launched on slave nodes to run the
framework’s tasks (see Figure 8). While the master determines how many resources to offer to each
framework,  the  framework’s  schedulers  select  which  of  the  offered  resources  to  use.  When  a
framework accepts offered resources, it passes Mesos a description of the tasks it wants to launch
on them. To maintain a thin interface and enable frameworks to evolve independently, Mesos does
not require frameworks to specify their resource requirements or constraints. Instead, Mesos gives
frameworks the ability to reject offers. A framework can reject resources that do not satisfy its
constraints in order to wait for ones that do. Thus, the rejection mechanism enables frameworks to
support arbitrarily complex resource constraints while keeping Mesos simple and scalable.

Example of resource offer

Figure 9 below shows an example of how a framework gets scheduled to run a task:

DEEP-HybridDataCloud – 777435 22



Figure 9. Resource offer example [Hindman 2011]

1. Agent 1 reports to the master that it has 4 CPUs and 4 GB of memory free. The master then
invokes the allocation policy module, which tells it that framework 1 should be offered all
available resources.

2. The master sends a resource offer describing what is available on agent 1 to framework 1.

3. The framework’s scheduler replies to the master with information about two tasks to run on
the agent, using <2 CPUs, 1 GB RAM> for the first task, and <1 CPUs, 2 GB RAM> for
the second task.

4. Finally, the master sends the tasks to the agent, which allocates appropriate resources to the
framework’s  executor,  which  in  turn  launches  the  two  tasks  (depicted  with  dotted-line
borders  in  the  figure).  Because  1  CPU  and  1  GB  of  RAM  are  still  unallocated,  the
allocation module may now offer them to framework 2.

In addition, this resource offer process repeats when tasks finish and new resources become free.

Pros

• Support for Composing, Docker, Mesos virtualization containers

• Running several frameworks (even the same frameworks only different versions) on the
same cluster

• Proven to scale, used at Apple with 75.000 nodes

• Extremely flexible,  it  is currently used in production by many enterprises and there are
many Mesos frameworks available that can fit different needs

• Relatively old, easier to find production stories and best practices to use it

Cons

• Little bit old

DEEP-HybridDataCloud – 777435 23



• Too many languages.  To have  a  running Mesos stack,  many components  are  involved:
Mesos (C++), Marathon (Scala), Mesos-DNS (Golang), etc. It is not so common to find
developers that can be proficient in so many languages at the same time

Marathon
Marathon is a framework (or meta framework) that can launch applications and other frameworks.
Marathon can also serve as a container orchestration platform, which can provide scaling and self-
healing  for  containerized  workloads.   Figure  10  below  shows  the  architecture  of  Mesos  +
Marathon.

 

Figure 10. Marathon architecture

Chronos

Chronos is a replacement for cron. A distributed and fault-tolerant scheduler runs on top of Apache
Mesos that can be used for job orchestration. It supports custom Mesos executors as well as the
default command executor. Thus by default, Chronos executes sh (on most systems bash) scripts.
Chronos can be used to interact with systems such as Hadoop (incl. EMR), even if the Mesos
slaves on which execution happens do not have Hadoop installed. Chronos is also natively able to
schedule jobs that run inside Docker containers. Chronos has a number of advantages over regular
cron. It allows you to schedule your jobs using ISO8601 repeating interval notation, which enables
more flexibility in job scheduling. Chronos also supports the definition of jobs triggered by the
completion of other jobs. It supports arbitrarily long dependency chains.

DEEP-HybridDataCloud – 777435 24



Chronos is a Mesos scheduler for running schedule and dependency based jobs. Scheduled jobs are
configured with ISO8601-based schedules with repeating intervals. Typically, a job is scheduled to
run indefinitely, such as once per day or per hour. Dependent jobs may have multiple parents, and
will  be  triggered  once  all  parents  have  been successfully  invoked at  least  once  since  the  last
invocation of the dependent job.

Internally,  the Chronos scheduler  main loop is  quite  simple (see Figure 11).  The pattern is  as
follows:

1. Chronos reads all job states from the state store (ZooKeeper);

2. Jobs  are  registered  within  the  scheduler  and  loaded  into  the  job  graph  for  tracking
dependencies;

3. Jobs are separated into a list of those which should be run at the current time (based on the
clock of the host machine), and those which should not;

4. Jobs in the list of jobs to run are queued, and will be launched as soon as a sufficient offer
becomes available;

5. Chronos will sleep until the next job is scheduled to run, and begin again from step 1.

Furthermore,  a  dependent  job will  be queued for  execution  once all  parents  have successfully
completed at least once since the last time it ran. After the dependent job runs, the cycle resets.

Figure 11. Chronos architecture

DEEP-HybridDataCloud – 777435 25



4. Support for Accelerated computing

4.1. Accelerators and Deep Learning
Nowadays,  accelerators  are  designed  to  accelerate  NNs  and  other  Ml/DL  algorithms  [AI
Accelerator]. They are often many core designs and generally focus on low-precision arithmetic.
Early attempts of using accelerators to improve artificial intelligence applications are dated to early
1990s.  Digital  Signal  Processors  (DSP)  were  used  to  accelerate  OCR  software,  FPGA-based
accelerators were used for NNs and heterogeneous multiprocessors with specialized processors for
different tasks (e.g., cell microprocessor). With the advent of general-purpose computing on GPU
accelerators (GPGPU), the GPU accelerators quickly became popular also for ML/DL applications
[Cano 2017] [Sze 2017]. The reason is, mainly, that the mathematical basis of NNs and image
manipulation are similar.

4.1.1.Types of accelerators
A list  of DL Accelerator  technology providers [DLAccList]  is  already quite  long and includes
global  technology companies  like Google,  Intel,  IBM, Microsoft  or  NVIDIA along with many
worldwide startups. NVIDIA GPU-based accelerators are among the most popular ones for both
training and inference. Cloud providers provide virtualized or bare-metal servers equipped with
NVIDIA Tesla  accelerators  and  NVIDIA put  significant  effort  to  providing  users  with  GPU-
optimised  containers  including  DL frameworks.  The  two  recent  intensive-mentioned  NVIDIA
architectures from 2016 and 2018 are (respectively) NVIDIA Pascal and NVIDIA Volta.

NVIDIA Pascal is the first NVIDIA architecture to integrate the revolutionary NVIDIA NVLink
high-speed  bidirectional  interconnect  [NVIDIAPascal].  This  technology  is  designed  to  scale
applications across multiple GPUs, delivering a 5× acceleration in interconnect bandwidth.

NVIDIA included optimizations for DL frameworks already into their Pascal architecture. Half-
precision,  16-bit  floating  point  instructions  and  8-bit  integer  instructions  along  with  NVLink
allowed to reach significant speed-up in both NN training and DL inference.

NVIDIA Volta,  which is the current architecture,  goes even further [NVIDIAVolta].  It  contains
special ASIC “Tensor cores” designed to speed-up convolutions and matrix operations along with
doubled throughput of NVLink. Equipped with 640 Tensor Cores, Volta delivers over 100 Teraflops
per  second  (TFLOPS)  of  DL performance,  over  a  5×  increase  compared  to  prior  generation
NVIDIA Pascal architecture.

NVIDIA Volta uses next generation NVIDIA NVLink high-speed interconnect technology. This
delivers 2× the throughput, compared to the previous generation of NVLink. This enables more
advanced model and data parallel approaches for strong scaling to achieve the absolute highest
application performance.

NVIDIA Volta also comes with Volta-optimized CUDA and NVIDIA Deep Learning SDK libraries
like cuDNN, NCCL, and TensorRT,  for existing frameworks and applications.

DEEP-HybridDataCloud – 777435 26



Although GPU accelerators are the mainstream solution for DL and they provide big speed-up
comparing to CPU, some applications like mobile phones or robotic systems still need better power
efficiency, mainly for DL inference. This leads to the development of AI accelerators based on
application-specific integrated circuits (ASIC). The main drawback of this approach is their lack of
adaptability. The most notable accelerators in this direction are:

• Google Tensor processing unit (TPU) [GoogleTPU2],

• Intel Nervana Neural Network Processor [Kloss 2017],

• Microsoft BrainWave project [Brainware],

• IBM TrueNorth neuromorphic chip [Feldman 2016],

• Accelerators in mobile phones e.g. Apple A11 Bionic chip [Dilger 2017], Huawei Kirin 970
[Boxall 2017], Samsung Exynos 9810 [SamsungExynos], MediaTek Helio P60 [MediaTek].

There are also many more other vendors as in the Table 2.

Vendor type Vendor names

IC Vendors Intel, Qualcomm, NVIDIA, Samsung, AMD, Apple, Xilinx, IBM, 
STMicroelectronics, NXP, MediaTek, HiSilicon, Rockchip

Tech Giants &
HPC Vendors

Google, Amazon_AWS, Microsoft, Aliyun, Tencent Cloud, Baidu, Baidu 
Cloud, HUAWEI Cloud, Fujitsu

IP Vendors ARM, Synopsys, Imagination, CEVA, Cadence, VeriSilicon

Startups in 
China Cambricon, Horizon Robotics, DeePhi, Bitmain, Chipintelli, Thinkforce

Startups 
Worldwide

Cerebras, Wave Computing, Graphcore, PEZY, KnuEdge, Tenstorrent, ThinCI,
Koniku, Adapteva, Knowm, Mythic, Kalray, BrainChip, AImotive, DeepScale, 
Leepmind, Krtkl, NovuMind, REM, TERADEEP, DEEP VISION, Groq, 
KAIST DNPU, Kneron, Vathys, Esperanto Technologies

Table 2. Growing list of accelerator vendors [Shan 2018]

4.1.2. Using accelerators in Deep Learning
CPUs are designed for more general computing workloads. GPUs in contrast  are less flexible,
however GPUs are designed to  compute in parallel  the same instructions (the extended SIMD
paradigm). DNNs are structured in a very uniform manner such that at each layer of the network
thousands of identical artificial neurons perform the same computation. Therefore, the structure of
a DNN fits quite well with the kinds of computation that a GPU can efficiently perform [Perez
2015].  In  comparison  with  CPUs,  GPUs  have  many  more  resources  and  faster  bandwidth  to
memory, which leads to faster computational speed. This issue is  extremely important because
training of DNNs can range from days to weeks.

DEEP-HybridDataCloud – 777435 27



Accelerated libraries

• CUDA [CUDA] is a parallel computing platform and programming model developed by
NVIDIA for general computing on graphical  processing units  (GPUs).  GPU-accelerated
CUDA libraries enable drop-in acceleration across multiple domains such as linear algebra,
image and video processing, deep learning and graph analytics. NVIDIA CUDA Toolkit
[CudaToolkit] provides a development environment for creating high performance GPU-
accelerated applications.

• The  NVIDIA  CUDA  Deep  Neural  Network  library  (cuDNN)  [cuDNN]  is  a  GPU-
accelerated  library  of  primitives  for  DNNs.  The  cuDNN  provides  highly  tuned
implementations for standard routines such as forward and backward convolution, pooling,
normalization, and activation layers. It allows DL users to focus on training neural networks
and  developing  software  applications  rather  than  spending  time  on  low-level  GPU
performance  tuning.  The  cuDNN  accelerates  widely  used  deep  learning  frameworks,
including Caffe2, MATLAB, CNTK, TensorFlow, Theano, PyTorch, etc.

• OpenCL™ (Open Computing Language) [OpenCL] is the open, royalty-free standard for
cross-platform; parallel programming of diverse processors found in personal computers,
servers, mobile devices and embedded platforms. OpenCL greatly improves the speed and
responsiveness of a wide spectrum of applications in numerous market categories including
gaming and entertainment titles, scientific and medical software, professional creative tools,
vision processing, and neural network training and inferencing.

• Intel Math Kernel Library (Intel MKL) [MKL] is a library of optimized math routines for
science,  engineering,  and  financial  applications.  Core  math  functions  include  BLAS,
LAPACK,  ScaLAPACK,  sparse  solvers,  fast  Fourier  transforms,  and  vector  math.  The
routines in MKL are hand-optimized specifically for Intel processors.

Other libraries that can be listed here include the NVIDIA Deep Learning SDK, which is a part of
the NVIDIA toolkit. It provides powerful tools and libraries for designing and deploying GPU-
accelerated DL applications including libraries for DL primitives, inference, video analytics, linear
algebra, sparse matrices, and multi-GPU communications. Except for cuDNN, other SDK libraries
are,  e.g.,  Deep  Learning  Inference  Engine  (TensorRT),  Deep  Learning  for  Video  Analytics
(DeepStream SDK), Linear Algebra (cuBLAS), Sparse Matrix Operations (cuSPARSE) and Multi-
GPU Communication (NCCL).

Deep Learning frameworks and libraries 

Many popular machine learning (ML) and deep learning (DL) frameworks and libraries already
offer the possibility to use accelerators to speed up the learning process (Table 3). These libraries
also use optimised accelerated libraries e.g. CUDA (cuDNN), OpenMP, OpenCL, etc. to improve
the performance even further. The main feature of the many-core accelerators is massively parallel
architecture allowing them to speed up computations that involve matrix-based operations. The
GPGPU interest can be found in many other large-scale life simulation packages with dynamic
progress developments.

DEEP-HybridDataCloud – 777435 28



DL frameworks
and libraries

Creator Description

Tensorflow
TensorFlow [Tensorflow] and TensorFlowLite 
[TensorflowLite] from Google Brain is an open source
software library for numerical computation using data 
flow graphs. TensorFlow is designed for large-scale 
distributed training and inference. The distributed 
Tensorflow architecture consists of the distributed 
master, worker services with kernel implementations 
including mathematical, array manipulation, control 
flow, and state management.

Keras 
Keras [Keras] is a minimalist Python library for DL 
that can run on top of TensorFlow, CNTK, Theano, 
beta version with MXNet and announced 
Deeplearning4j.

CNTK
Microsoft Cognitve Toolkit CNTK implements 
efficient DNNs training for speech, image, 
handwriting and text data [CNTK]. Its network is 
specified as a symbolic graph of vector operations, 
such as matrix add/multiply or convolution with 
building blocks (operations). CNTK supports FFNNs, 
CNNs and RNNs.

Caffe
Caffe [Caffe] is a DL framework developed by 
Yangqing Jia at Berkeley Artificial Intelligence 
Research (BAIR) for image processing.

Caffe2
Caffe2 is a Caffe's lightweight, modular, and scalable 
DL framework focused on mobile developed by 
Yangqing Jia at and his team at Facebook [Caffe2]. It 
aims to provide an easy and straightforward way to 
experiment with DL and leverage community 
contributions of new models and algorithms. Caffe2 is 
used at production level at Facebook while 
development is done in PyTorch

Torch

R. Collobert, K.
Kavukcuoglu, C.

Farabet

Torch is a scientific computing framework with wide 
support for ML algorithms based on the Lua 
programming language [Torch]. It is aimed on large-
scale learning (speech, image, and video applications),
and allows supervised learning, unsupervised learning,
reinforced learning, NNs, optimization, graphical 
models, image processing. 

DEEP-HybridDataCloud – 777435 29



PyTorch

A. Paszke, S.
Gross, S. Chintala,

G. Chanan

PyTorch is a Python package for building DNNs and 
performing complex tensor computations [PyTorch]. 
While Torch uses Lua, PyTorch leverages the rising 
popularity of Python interface of the same optimized C
libraries as Torch's. PyTorch uses a technique called 
reverse-mode auto-differentiation (i.e. dynamic 
computational graph), which allows to change the way
a network behaves with small effort.

MXNet
Apache MXNet is a DL framework that allows mixing
symbolic and imperative programming to maximize 
efficiency and productivity [MXNet]. MXNet contains
a dynamic dependency scheduler that automatically 
parallelises both symbolic and imperative operations 
on the fly.

Theano

Theano [Theano] is a compiler for mathematical 
expressions in Python to transform structures into very
efficient code using NumPy and efficient native 
libraries like BLAS and native code to run as fast as 
possible on CPUs or GPUs. Theano supports 
extensions for multi-GPU data parallelism and has a 
distributed framework for training models. Theano is 
actively maintained – but no longer developed – by 
LISA group, University of Montreal, Quebec. 

Chainer Chainer is a Python-based DL framework aiming at 
flexibility [Chainer]. It provides automatic 
differentiation APIs based on the define-by-run 
approach, i.e., dynamic computational graphs as well 
as object-oriented high-level APIs to build and train 
NNs.

Deeplearning4J Deeplearning4j or DL4J is an modern open-source, 
distributed DL library implemented in Java (JVM) 
aimed to the industrial Java development ecosystem 
and Big data processing [DL4J].

H2O / Deep Water
H2O, Sparkling Water and Deep Water are developed 
by H2O.ai. They are Hadoop compatible frameworks 
for DL over Big Data as well as for Big Data 
predictive analytics [H2O].

Deep Water is H2O DL with native implementation of 
DL models for GPU-optimized backends TensorFlow, 
MXNet, and Caffe.

Table 3. Deep Learning frameworks and libraries

DEEP-HybridDataCloud – 777435 30



The dependencies among accelerators/HPC, accelerated libraries and DL frameworks and libraries
are depicted in Figure 12.

Figure 12. Deep Learning frameworks and libraries with accelerated support

More details about ML/NN/DL frameworks and libraries are available in the Deliverable D6.1 –
State-of-the-art Deep Learning, Neural Networks and Machine Learning frameworks and libraries. 

4.2. Support for accelerators at hypervisor/container level
In  the  past,  the  supports  for  accelerators  at  hypervisor/container  level  were  not  adequate.
Technologies like PCI passthrough or device mapping are dependent on host configurations, which
makes  generalization  and  system-independent  implementation  difficult.  For  examples,  PCI
passthrough technique of hypervisors needs exact information about location of the PCI slot of the
device;  therefore,  administrators  must  configure  hypervisors  for  each  hardware  manually.
Similarly, device-mapping techniques in container technologies allows containers to have access to
devices, however, the software drivers for the devices must be matched between the host and the
containers, preventing implementation of generic containers with supporting accelerators.

More generic solutions were implemented only recently.  For example the first official  version
(version  1.0)  of  nvidia-docker  was  released  in  Jan  2017  and  version  2.0  in  December  2017.
Similarly LXD 3.0 (released in April 2018) is the first version of LXD with GPU plugins support.
The details of each approach and their comparisons are provided in the following subsections.

DEEP-HybridDataCloud – 777435 31



4.2.1. PCI passthrough and SR-IOV
PCI passthrough [PCIPASS] is a method to attach a PCI device directly to a virtual machine. This
technique  can  be  used  in  cases  where  a  physical  device  does  not  need  to  be  shared  between
multiple virtual guests or when it is not possible to share it. In this case, dedicating the device to
one  guest  by  giving  it  direct  access  to  the  device  on  the  PCI  bus  means  practically  native
performance even in a virtualized environment – a significantly faster access than in the case of
device emulation. Another advantage of PCI passthrough is that the device itself does not need to
be known to the hypervisor,  since it  does not need to be emulated.  However,  PCI passthrough
presents  some  major  disadvantages  as  well.  The  device  cannot  be  shared  between  different
machines (as it is attached exclusively to a VM) and in order to enable live migration of the guest
which has direct access to a PCI device, the device's status needs to be migrated too. For this, PCI
hotplug support in the device is necessary. PCI passthrough requires both hardware support (VT-d
in Intel chipsets, IOMMU in AMD chipsets) and hypervisor support. The guest operating system
must also support PCI passthrough to be able to fully use its capabilities.

SR-IOV stands for Single Root Input/Output Virtualization, and it is a specification that allows to
expose PCI functions in an isolated way, by means of the creation of virtual functions that are
similar  in  functionality  to  the  functions  offered  by  the  physical  resource.  Using  the  SR-IOV
technology, a PCI device will expose several virtual functions; therefore, a single physical PCI
device may be assigned to several virtual guests in a transparent and configurable way. The usage
of PCI passthrough and SR-IOV is the most advantageous situation, since it is possible to attach a
device (like a network card) into one or several virtual machines, since the sharing is done at the
SR-IOV level.

With PCI passthrough it is potentially possible to attach any PCI devices to a VM. However, some
hardware vendors have imposed restrictions in their  device drivers,  that refuse to work if they
detect  that  they  are  being  loaded  inside  a  virtualized  environment.  This  is  the  case  for  some
consumer  focused NVIDIA GPU cards,  whose drivers  refuse to  work under  any virtualization
platform (see [NVIDIA-PATCHES] for instance), even if the card works perfectly inside the VM.
For those circumstances, it is needed to spoof the CPUID opcode so that the systems appears to be
non-virtualized.

4.2.2. GPU-specific virtualization methods
Since GPU’s shaders are excellent parallel processing units, they are being used in an extensive
range of applications where matrix calculations are needed – among them the already mentioned
deep learning. Advent of specialized General Purpose GPUs (GPGPU) has led to the necessity to
devise methods of their virtualization in cloud environments, so there can be a flexible allocation of
pool of GPGPUs to a pool of virtual computation nodes. To this end, every major producer of
GPUs has designed a standard for virtualization of its GPU resources. These standards rely usually
on a combination of hardware and software support and apportion the GPU resources – memory,
shaders, video encoders and decoders – either as physical slices or as time slots. The standards are
NVIDIA GRID vGPU [VGPU], AMD MxGPU [Wong 2016] and Intel GVT [GVT].

DEEP-HybridDataCloud – 777435 32



The following table summarizes current support for these GPU virtualization technologies in the
main hypervisor platforms:

NVIDIA PCI-
passthrough

NVIDIA GRID AMD MxGPU Intel GVT

KVM
partial/coming 
[NVGFORUM]
[NVGDOCS]

partial/coming 
[NVGFORUM]
[NVGDOCS]

available [GIM]
[AMDDRIV]

available 
[GVTLINUX]

Xen
partial/coming 
[NVGFORUM]
[NVGDOCS]

partial/coming 
[NVGFORUM]
[NVGDOCS]

available [GIM]
[AMDDRIV]

available 
[GVTLINUX]

VMWar
e available [XENAPP] available [NVPASS] available 

[AMDDRIV] not available

Table 4. Current support for GPU virtualization technologies in the main hypervisor platforms

NVIDIA GRID vGPU

• Physical sharing of RAM (slices)

• Time sharing of shaders (slots)

• Time sharing of video encoders and decoders (slots)

• Supports CUDA since GRID version 5.0

• Software-based management of virtualization 

◦ Software component for the hypervisor

◦ Virtual GPU driver for the guest OS

AMD MxGPU

• Physical sharing of RAM (slices)

• Physical sharing of shaders (slices)

• No virtualization of video encoding and decoding

• Support for OpenCL

• hardware-based management of virtualization, based on SR-IOV standard

INTEL GVT

• Different modes of operation 

◦ GVT-d for dedicated access to the GPU by one host

◦ GVT-g for time-shared access to the GPU’s shaders and encoders/decoders, and slice-
shared access to the RAM

◦ GVT-s for sharing via a virtual driver

DEEP-HybridDataCloud – 777435 33



◦ Support for OpenCL

◦ Software-based management of GPU virtualization

4.2.3.Device mapping (passthrough) for LXD/Docker
Mellanox docker-passthrough-plugin

This  network  plugin  allows  having  direct/passthrough  access  between  the  native  Ethernet  or
InfiniBand networking device and the Docker container(s). It provides two modes of operation:

• SR-IOV mode – In this mode given netdev interface is used as PCIe physical function to
define a network. All container instances will get one PCIe VF based network device when
they are started. This mode uses PCIe SRIOV capability of the network devices. SR-IOV
mode  provides  native  access  to  the  actual  PCIe  based  networking  device  without  any
overheads of virtual devices. With this mode, every container can get dedicated NIC Tx and
Rx queues to send or receive application data without any contention to other containers.

• Passthrough mode – In this mode a given netdev interface is mapped to a container. Which
means that there is one network device per network, and therefore every container gets one
network.  In  some  cases,  there  would  be  need  to  map  bonded  device  directly  without
additional  layer  and  without  consuming  any  extra  MAC  address.  In  such  cases,  this
passthrough plugin driver will be equally useful.

In  some sense,  both modes are  similar  to  passthrough mode of KVM or similar  virtualization
technologies.

With these plugin-based interfaces, there is no limitation on IP address subnet for netdevice of
container and netdevice of host. Any container can have any IP address, same or different subnet as
that of the host or other containers.

In the future, more settings for each such netdevice and network will be added.

In SR-IOV mode, plugin driver takes care to enable/disable sriov, assigning VF based network
device to container during starting a container. This will reduce administrative overheads in dealing
with sriov enablement [MELLANOX].

DEEP-HybridDataCloud – 777435 34



4.2.4.nvidia-docker runtime

Figure 13. nvidia-docker runtime

NVIDIA proposes a solution to preserve portability advantage of Linux Containers, in this case for
Docker Containers, despite the specificities and constraints of using specialized hardware.

This kind of devices requires the use of drivers. Those drivers, within a traditional Docker solution,
would need to be fully installed inside the container and match the underlying device. Thus, the
version of the host driver has to exactly match driver version installed in the container. This makes
the Docker images unsharable and the image must be built locally for each host.

nvidia-docker acts as a runtime that allows the use of Docker images that are independent from
target host  (see Figure 13).  Containerizing GPU applications provides several benefits  [nvidia-
docker], among them:

• Ease of deployment

• Isolation of individual devices

• Run across heterogeneous driver/toolkit environments

• Requires only the NVIDIA driver to be installed on the host

• Facilitate  collaboration:  reproducible  builds,  reproducible  performance,  reproducible
results.

DEEP-HybridDataCloud – 777435 35



4.2.5.Comparison of approaches for supporting accelerators

Approach PCI-passthrough GPU
virtualization

Device
mapping

GPU runtime

Availability Generally available 
on new hardware

Limited availability,
only certain types of
newest Intel, AMD 
and NVIDIA cards; 
support for some 
virtualization 
platforms still not 
sufficiently stable

Generally 
supported by 
most container 
technologies

Available 
implementation with 
different level of 
maturity

Usability

Manual 
configuration 
required, hardware 
dependence, difficult
to generalize

If available can be 
used to share 
GPGPU resources 
across a virtualized 
environment, 
allocate shader units
to nodes

Potential 
compatibility 
issues by 
conflicting 
version between 
software drivers 
on host and 
containers

Easy to use, automatic
detection and 
including software 
drivers from host to 
container, removing 
problems of version 
conflicting of 
software driver in 
device mapping

Limitation

Cannot 
suspend/migrate 
VM, stability and 
security issues

Different GPU 
manufacturers offer 
different 
capabilities, placing
limitations on 
usability of 
heterogeneous 
environments

Matching 
version of 
software drivers 
between 
container and 
host

NVIDIA driver 
installation needs to 
live on the same 
partition as the 
volume directory of 
the Docker plugin

Implementation Hypervisor KVM, VMWare Containers LXD 3.0, nvidia-
docker

Table 5. Comparison of approaches for supporting accelerators

4.3. Support for accelerators at cloud middleware level

4.3.1. OpenStack
OpenStack provides support for GPU accelerators via PCI passthrough. On the computing node,
hardware properties of GPU accelerators must be identified and included in a whitelist of nova
configuration. An alias will be assigned to the accelerator on master (controller) node, then the alias
is  added to the properties of flavors that require accelerators.  The process of configuration for
supporting accelerators is manual.

DEEP-HybridDataCloud – 777435 36



One of  the  largest  limitations  of  supporting  accelerators  via  PCI  passthrough in  OpenStack is
inability to suspend/migrate virtual machines that use accelerators. In the case of a security update
or other maintaining activities that require rebooting computing nodes, site administrators must
stop the running virtual machines and restart them again.

The most recent release of OpenStack (Queens, released on Feb 28, 2018) provide preliminary
experimental support for GPU virtualization. The hypervisor and GPU cards must support the GPU
virtualization.

4.3.2. OpenNebula
OpenNebula can keep track of PCI devices and assign them to virtual machines since Version 5.0
(2016). Still, many issues may arise in other layers (hardware, hypervisor, drivers within the virtual
machine) and OpenNebula can provide only limited assistance in overcoming them.

The issue that is most difficult to tackle relates to device isolation. The GPU accelerator must be
made available  to the hosted virtual machine over  PCI,  while other PCI devices  must remain,
naturally, under the control of the host. This requires hardware support. Not only must the hardware
support VT-d and IOMMU, but the GPU device must also be installed in a dedicated IOMMU
group to achieve proper isolation. Otherwise, overly benevolent rights would have to be granted to
OpenNebula users, allowing them to control all PCI hardware, which, of course, is not possible.
Certainly not in multi-tenant environments.

4.3.3. Kubernetes
Kubernetes  includes  experimental  support  for  managing  NVIDIA GPUs  spread  across  nodes
[KubernetesGPU]. From 1.8 onward, the recommended way to consume GPUs is to use a device
plugin framework. The device plugin framework enables vendors to advertise their resources to the
kubelet without changing Kubernetes core code. This is done by implementing a device plugin and
deploying it manually or as a DaemonSet. There are currently two device plugin implementations
for NVIDIA GPUs:

• Official NVIDIA GPU device plugin

• NVIDIA GPU device plugin used by GKE/GCE

Official NVIDIA GPU device plugin

This device plugin is deployed in Kubernetes as a DaemonSet. It requires each GPU node to have
NVIDIA drivers installed, Docker with installed nvidia-docker utility and default Docker runtime
set as nvidia-runtime. The Docker has to be at least v1.12. Since this version, there is a support for
custom container runtimes,  so there can be the nvidia-runtime used. Node GPU can be shared
among different containers. Multiple GPUs can be isolated between containers. There is support for
NVIDIA Optimus technology as well.

Known issues and limitations:

• CUDA Multi Process Service is not supported at the moment (v1.9);

DEEP-HybridDataCloud – 777435 37



• GPU-accelerated X server inside the container is not supported;

• limiting  GPU  resources  (e.g.,  bandwidth,  memory,  CUDA cores)  per  container  is  not
supported;

• the  device  plugin  does  not  support  macOS,  Microsoft  Windows  and  Tegra  (arm64)
platforms; PowerPC64 (ppc64) is still on the way to be supported;

• exclusive access for a GPU is not supported, but it can be enforced through Kubernetes or
through the driver level by setting the compute mode of the GPU.

• Docker versions must follow driver versions

4.3.4.Apache Mesos
Apache Mesos supports NVIDIA GPUs from the version 1.0.0 and the minimum required NVIDIA
driver version is 340.29. To enable the GPU support in Apache Mesos cluster is straightforward.
First users need to configure agent nodes in order to expose GPUs to the Apache Mesos master
nodes and second enable the framework GPU capability so that the Apache Mesos master includes
the GPUs in the resource offer sent to the framework. Mesos exposes GPUs as a simple SCALAR
resource in  the same way it  always has for CPUs, memory,  and disk.  However,  unlike CPUs,
memory, and disk,  only whole numbers of GPUs can be selected.  At the time of this  writing,
NVIDIA GPU support is only available for tasks launched through the Mesos containerizer (i.e., no
support exists for launching GPU-capable tasks through the Docker containerizer). That said, the
Mesos containerizer now supports running docker images natively, so this limitation should not
affect  most  users.  Moreover,  Apache Mesos  mimics  the  support  provided  by nvidia-docker  to
automatically  mount  the  proper  NVIDIA drivers  and tools  directly  into  docker  container.  This
means that anybody can easily test GPU-enabled docker containers locally and deploy them to
Apache Mesos with the assurance that they will work without modification.

Agent Flags

The following isolation flags are required to enable NVIDIA GPU support on an agent.

--isolation="filesystem/linux,cgroups/devices,gpu/NVIDIA"

The  filesystem/linux  flag  tells  the  agent  to  use  Linux-specific  commands  to  prepare  the  root
filesystem and volumes (e.g., persistent volumes) for containers that require them. Specifically, it
relies on Linux mount namespaces to prevent the mounts of a container from being propagated to
the host mount table. In the case of GPUs, we require this flag to properly mount certain NVIDIA
binaries (e.g., NVIDIA-smi) and libraries (e.g., libNVIDIA-ml.so) into a container when necessary.

The cgroups/devices flag tells the agent to restrict access to a specific set of devices for each task
that it launches (i.e., a subset of all devices listed in /dev). When used in conjunction with the
gpu/NVIDIA flag, the cgroups/devices flag allows us to grant / revoke access to specific GPUs on a
per-task basis.

By default, all GPUs on an agent are automatically discovered and sent to the Mesos master as part
of its resource offer. However, it may sometimes be necessary to restrict access to only a subset of

DEEP-HybridDataCloud – 777435 38



the GPUs available on an agent. This is useful, for example, if a specific GPU device should be
excluded because an unwanted NVIDIA graphics card is listed alongside a more powerful set of
GPUs. When this is required, the following additional agent flags can be used to accomplish this:

--NVIDIA_gpu_devices="<list_of_gpu_ids>" --resources="gpus:<num_gpus>"

For the --NVIDIA_gpu_devices flag, a comma separated list of GPUs is needed, as determined by
running NVIDIA-smi on the host where the agent is to be launched.

Framework Capabilities

Once the agent is launched with the flags above, GPU resources will be advertised to the Mesos
master alongside all of the traditional resources such as CPUs, memory, and disk. However, the
master will only forward offers that contain GPUs to frameworks that have explicitly enabled the
GPU_RESOURCES framework capability. The choice to make frameworks explicitly opt-in to this
GPU_RESOURCES capability was to keep legacy frameworks from accidentally consuming non-
GPU resources on GPU-capable machines (and thus preventing your GPU jobs from running). It is
not that big a deal if  all  nodes have GPUs, but in a mixed-node environment,  it  can be a big
problem.

External Dependencies

Any host running a Mesos agent with NVIDIA GPU support MUST have a valid NVIDIA kernel
driver installed. It is also highly recommended to install the corresponding user-level libraries and
tools available as part of the NVIDIA CUDA toolkit. Many jobs that use NVIDIA GPUs rely on
CUDA and not including it will severely limit the type of GPU-aware jobs you can run on Mesos.
The minimum supported version of CUDA is 6.5.

5. Interaction with HPC resources using PaaS 
approach

5.1. Specifics of HPC systems
HPC architecture

Typical HPC systems consist of at least one head node and a set of working nodes connected to
each other via a very fast network (e.g. Infiniband, Ethernet, OmniPath). Worker nodes (WN) have
their own IP address pool and are not available from outside of the cluster. Depending on site
policies,  the  outbound communication  can  be  allowed or  not.  The typical  way is  to  allow all
outbound  communication  because  many  modern  applications  require  it.  Some  new  HPC
configurations allow to provide higher isolation level by defining more strict communication rules,
e.g.,  limit  communication  only  to  WNs  assigned  to  a  job,  or  to  specific  ports  or  to  specific
protocols or IPs. This can be defined by site administrators, or by job description.

DEEP-HybridDataCloud – 777435 39



Access to HPC

A typical access to HPC resources is to login to the head node, prepare and submit jobs from there.
A short compilation of the program code and pre- or post-processing of submitted jobs might be
permitted. Ssh or gsissh is used for accessing head nodes. In some cases, also graphical access to a
head node is allowed via, e.g., X2Go, NX client, or VNC client. Access to worker nodes depends
on the site policy and configurations. Usually it is possible to access WNs via local job scheduler
only, but on some sites access via ssh is allowed to WNs on which users jobs are currently run.

It is possible to set up additional head nodes dedicated to a project or to a group of users. E.g.,
scientific portals allow users to define jobs visually in the portal and submit to HPC resources.
Users do not need to care about the submission process, since the portal server that submits jobs
directly to the job management systems, possibly by using API, does it.

Grid middleware allows to access HPC resources without using HPC head nodes. Grid middleware
running  on  HPC  sites  accepts  jobs  from  grid  brokers  and  submits  directly  to  the  local  job
management system. Users can use grid job submission clients to run their jobs on different sites
with different management systems. Usually grid middleware is used from grid user interface (grid
head node) or from GUIs (graphical user interfaces). Examples of middleware include gLite WMS
with glite-wms-client or QCG Broker with qcg-client.

Access to storage

There are different kinds of storage systems on HPC systems and various ways of accessing this
storage: 

• The typical way is to have a storage system shared on head nodes and worker nodes. Users
can upload and download data by accessing the head node with sftp, scp or gsisftp. Two
kinds of storage can be provided: low performance long-term storage, e.g., home directory
filesystem, and high performance short-term storage, e.g., scratch directory filesystem. All
data in long-term storage are regularly backed up while short-term storage is typically not
backed up or archived.  All data intensively used by computations should be copied from
home  directory  filesystem  to  scratch  directory  filesystem  at  the  beginning  of  the
computation and moved back to home at the end. Some sites do not share home file system
therefore users must stage in and stage out their input and output data.

• There  are  some  specialized  storage  systems  used  by  specific  projects.  E.g.,  WLCG
(Worldwide  LHC Computing  Grid)  experiments  ATLAS and ALICE keep their  data  in
DPM system [LCGDM]. Users access the storage system directly to upload/download data.
Worker nodes also can access this storage and get necessary data.

• Another way of providing storage for HPC is to use logical storage, e.g., LFC (Logical File
Catalog) or OneData. Users do not need to use head node to prepare their data, but interact
with the storage itself. Logical storage hides the complexity of underlying storage and can
provide replication to efficiently serve data. This is a user-friendly way of accessing data
but may degrade performance of job processing in some conditions.

DEEP-HybridDataCloud – 777435 40



Registration

Users must be authorized to run jobs on HPC resources. Usually users need to apply for an HPC
account individually on each HPC system or group of systems. This relies strongly on sites policies
and procedures can be different in each site (way of application, necessary documents, assigning
name id, expiration time of an account, etc.), e.g., registration may depend on the amount of asked
resources (for example CPU hours). Usually permission to use HPC is granted for a specific time
and with given limit  of  available  resources.  Users must  periodically  report  the results  of their
computations. In the case of scientific research this is usually done by providing sites with a list of
publications in which the usage of HPC infrastructure was referenced. It can be required by the end
of usage period to provide a written status report.

It  is  possible  to  register  to  many  HPC at  the  same time,  what  is  common on  site  levels,  or
infrastructure levels. E.g., central PRACE portal is used to apply for computation project on HPC
machines from PRACE infrastructure or PLGrid portal is used to apply for account on polish HPC
machines. In both cases, information about users is added to local LDAP systems, replicated to
specific machines and used in authorization process.

Another approach is used in EGI gLite middleware. Because of large number of users and sites, it
was not practical to create a physical unix account for each user. Instead, pool accounts are used.
They have generic names (e.g., atlas001 to atlas299) and are assigned to users when needed and
cleaned when no more needed. Users register to VOs (Virtual Organizations), which authorize them
to use resources dedicated to the respective VO. Certificates are used for authentication. A site
authorizes a VO as a whole, while maintaining control on individual users via white and black lists.

Another possible way is to use shared accounts, e.g., to run jobs submitted by a generic project user
via portal. One HPC account is used to submit jobs on behalf of users registered in the portal. This
approach causes problems with job separation,  job monitoring and accounting,  which must be
solved by the portal’s server-side software. A project representative negotiates with HPC owner for
available resources and a way of settling accounts (money, publications, etc.)

Queue names

In order to submit jobs to local resource management systems (LRMS) users need to specify the
queue  name  and  job  parameters.  Different  queues  can  have  different  limits,  permissions  and
priorities.  The  names  are  local  to  HPC  systems  and  usually  are  different  on  different  sites;
therefore, users must know the queue name before submitting jobs. In addition, queue names and
parameters can change in time. Configuration of queues can be found by running command line
programs or can be read from site documentations. 

gLite middleware provides an information system, which provides information about the resources
and  services  sites  provide.  LDAP with  GLUE  schema  is  used  to  provide  information  about
available  resources  and  their  status.  Site  administrators  configure  queue  names  for  each  VO
statically. 

DEEP-HybridDataCloud – 777435 41



QCQ  middleware  hides  queue  names  from  users,  which  just  submit  jobs  to  sites.  Queues
configuration  in  kept  in  a  Broker  configurations  file  and  needs  to  be  updated  when  site
configurations change.

Some job management systems support scheduling queues. This is a queue that takes a user’s job
and schedules it  to destination a  queue depending on job parameters,  e.g.,  time, memory size,
number of cores, tags, etc. This way users do not need to care about the queues configuration, but
just need to properly describe their jobs. This solution is available in the NQE management system
and SLURM Workload Manager.

Queue limits

Each queue can have limits for job resources, especially time, number of cores and memory size. In
addition, there are limits for the total number of jobs or total number of given jobs in the queue.
Different sites have different policies for setting queue limits. The most typical limitation is the
running time of jobs. Some sites have strict limits to 24 hours while most sites limit duration to no
more than 7 days. Extra-long queues of more than 7 days may be available as well but have other
strict limits, for instance, only one job can run at a time. Time limit can be connected with queue
priority;  e.g.,  shorter  jobs  can  have higher  priority.  Depending on site  policies,  the  priority  or
fairshare can be set up to promote shorter jobs, bigger jobs, or less memory bound jobs.

When users submit jobs with parameters that exceed queue limits then the submission fails.

Queue waiting time

The time jobs spend in a queue depends on many factors including: user priority, number of user
jobs, total number of jobs, fairshare configuration, resources available for the queue. 

It is very difficult to predict the job waiting time. Some job managers can show expected job start
time,  but it  is  very inaccurate and can be useless if  a  site  supports  urgent  computing (highest
priority jobs that can even preempt normal jobs).

Preemption is a form of a guarantee that the job will start (almost) immediately. In normal HPC
operation, preemptive jobs are rather exceptional and are not used. Better form of providing time
guarantees for jobs is to use reservations.

Reservations can be created for a user or a group of users, for a specific time or periodically. Any
other users cannot use reserved resources. 

Access to software

Most user jobs use applications available on HPC systems and installed by site administrators.
Access to the software can be different on each HPC site, especially the path to executable and
available versions. One solution to this problem is the use of modules. But even then the way of
starting applications can be different,  e.g.,  module paths can be different or can have different
names. E.g., intel compiler can be available after “module add icc” or “module add tools/intel”.
Some heterogeneous sites require that users are aware of architecture (“module load gaussian/amd”

DEEP-HybridDataCloud – 777435 42



vs “module load gaussian/intel”) while other sites hide this from users and prepare software in the
same paths but optimized for the given node.

Some projects or middleware try to unify application namespaces. E.g., PLGrid requires that all
Polish HPC sites must have the same application in the same mode path, e.g. /plgrid/apps/gaussian/

EGI  infrastructure  used  VO tags  and VO software  directory  where  VO-manager  could  install
required software. This unifies software across sites, but requires significant effort. 

QCG tries to unify access to applications by providing application templates. A user fills in a form
specific for an application and QCG Broker knows how to run the application on destination node.
This is configured in QCG-Computing service on each site.

The potential solution for the software problems is to use containerized jobs and software provided
by user. While it solves some problems, it introduces others, especially connected to computation
performance. Applications installed by administrators are optimized for the given site, especially
for interconnection or CPU architecture.  Using a generic version of applications instead of the
onsite compiled or tuned is usually wasting of resources. This concerns also libraries, especially
GPGPU, MPI and computational libraries. 

Running parallel jobs

Sites can have different ways to start parallel MPI jobs. At least two different approaches were
found. One approach is to use “mpirun -np N” from job script. The number of requested MPI
processes must be given twice – in job parameters and in the mpirun commandline. The second
approach is  to use srun from job script and srun takes  the number of mpi processes from job
contexts. Therefore, job scripts should be prepared for each site individually.

Conclusions

Access  to  HPC is  non-standardized  and  each  site  can  have  different  configuration,  rules  and
policies. It is not easy to automate the access to HPC resources from higher levels (e.g.,  PaaS
environments).

5.2. Using containers in HPC
As described in 5.1 users have rather limited rights in HPC environment and typically use software
pre-installed by site administrators. This can however be extended to almost any application if HPC
system allows submitting containerized jobs.

Container technology, also referred to as ‚operating system virtualization‘, provides a way to pack
an application with all necessary libraries or system dependencies such that it runs isolated from
other applications, the underlying Linux Operating System and environment (Sec 2.2). Obvious
advantages for users are the ability to run in HPC environment any custom application and mobility
of application, i.e.,  deployment of an application homogeneously across different HPC clusters.
The former also means that users can easily update the software to the latest available version,
which may generally  improve output value of their  application.  Pre-built  containers of various
popular software frameworks are available publicly via, e.g., Docker Hub [DockerHub], therefore

DEEP-HybridDataCloud – 777435 43



allowing to fastly assess these frameworks and their features. Possible downsides of containerized
applications on HPC include: a) not always an obvious way for a container to access specialized
hardware and libraries, e.g. GPU, Infiniband, MPI; b) mobility supposes generalization for various
HPC systems,  i.e.  less optimization,  which may result  in  a  partially  degraded performance;  c)
possible security issues.

Section 2.2 reviewed major container tools available and being developed at the time of writing.
The most popular one, Docker [Docker], cannot be actually used in a satisfactory way in HPC
systems because of security concerns [Gomes 2017]. When Docker starts a container; processes
running within the container are executed with the root id, potentially making it possible to gain
privileged  access  in  the  host  machine.  Docker  also  requires  Linux  kernel  version  3.10+
[DockerFAQ] that is not the case for RHEL6 or CentOS6 still largely used in HPC systems.

Among the tools allowing running containerized applications in HPC environment the two which
get attention in recent years are  Singularity [Singularity] and udocker [uDocker] (see Sec. 2.2).
The main difference between them for an HPC user is that Singularity has to be installed by a
system administrator while udocker is entirely a user tool. The latter allows to profit from most
recent developments once a new version is available. As an example, at the time of this writing,
Singularity version available in EPEL repository for RHEL7 [SingularityInEPEL] is 2.2.1, while
most recent Singularity version from sources is 2.4.5 [Singularity]. Often due to HPC policies,
system administrators prefer installation of software from official repositories rather than building
from  sources.  An  HPC  user  therefore  depends  on  HPC  administrator  and  on  the  repository
maintainer to get the most recent version. As in the case of Singularity, most recent versions (2.3+)
allow pulling of Docker images from the Docker Hub and significantly simplify access to GPUs.
Both features do not exist in 2.2.1 and as such they are not available to many HPC users. Udocker
instead does not suffer from this since a regular user can install the most recent version under
his/her account. Apart from this, both Singularity (2.3+) and udocker can pull images from Docker
Hub and provide access to GPUs. In tests performed on our local GPU cluster, we did not notice
any statistically significant difference in terms of computational speed between tasks running on
GPU by means of either Singularity or udocker.

5.3. Local schedulers
Job  schedulers  were  designed  to  schedule  large-scale  scientific  modeling  and  simulations  on
supercomputers and became a key component of the today's scalable computing infrastructures.
The role of job schedulers is to orchestrate all of the work executed on the computing infrastructure
that affect the effectiveness of the system. In the recent years, job workloads have diversified from
long-running, synchronously parallel simulations to include short-duration; independently parallel
high  performance  jobs,  data  analysis  jobs  and  consequently  different  schedulers  have  been
developed to address both job workload and computing system heterogeneity.

A list, and related features, of the most common job schedulers adopted in the scientific public-
funded computing infrastructures is here presented in Table 6:

DEEP-HybridDataCloud – 777435 44



• The Portable Batch System (PBS) Scheduler [PBS] is directly descended from NQS [NQS],
the  first  batch  scheduler  developed  under  NASA funding.  PBS is  a  fully  featured  job
scheduler that includes a separate queue manager, resource manager, and scheduler, and the
Maui scheduler is often used in place of the native PBS scheduler. PBS continues to be
developed  by  Altair  Engineering  (PBSPro)  and  Adaptive  Computing
(TORQUE/Maui/Moab  Cluster  Suite),  which  both  offer  open-source  and  commercial
versions.  Recently,  scalability challenges have been addressed,  the support to individual
GPU scheduling has been added, and with the adoption of the Moab HPC Suite (the open
source  job  scheduler  that  succeed  the  Maui  Cluster  scheduler),  full  support  of  array
scheduling policies,  dynamic priorities,  extensive reservations,  and fairshare capabilities
has been introduced.

• Grid Engine is a full-featured, very flexible scheduler originally developed and released
under the name CODINE in 1993 by Genias Software [Gentzsch 1994], later acquired and
matured by Sun Microsystems and Oracle, and currently offered commercially by Univa.
There are also several open-source versions, including Son of Grid Engine and Open Grid
Scheduler, though further development of these offerings seems to be waning.

• IBM Platform Load Sharing Facility (LSF) is a full-featured and high performing scheduler
that is very intuitive to configure and use. It was based on research and development of the
Utopia job scheduler at the University of Toronto [Zhou 1993]. OpenLAVA [OpenLAVA] is
an open-source derivative of LSF that has reasonable feature parity.

• HT Condor (High Throughput Condor) continues to be developed by Prof. Myron Livny’s
team at  the  University  of  Wisconsin [Thain  2005].  HT Condor was designed to cycle-
scavenge  from  distributed  heterogeneous  desktop  computers  to  managed  clusters.  It
implements a single queue with many resource- and job-distinguishing options, including
prioritization and fair execution. It works especially well for many smaller, single-process
jobs with execution on a diverse set of computers, clusters, and supercomputers.

• The Simple Linux Utility for Resource Management (Slurm) [Yoo 2003] is an extremely
scalable, full-featured scheduler with a modern multi-threaded core scheduler and a very
high performing plug-in module  architecture.  The plug-in module  architecture  makes  it
highly  configurable  for  a  wide  variety  of  workloads,  network  architectures,  queuing
policies,  scheduling  policies,  etc.  The  Quadrics  RMS  scheduler  inspired  it.  To  ease
transition  from  other  schedulers,  translation  interfaces  are  provided.  Slurm  began
development in the early 2000s at  Lawrence Livermore National  Laboratory to address
scalability issues in job schedulers. It is entirely open source, SchedMD provides consulting
services and community development leadership.

DEEP-HybridDataCloud – 777435 45



Feature PBS Grid
Engine

LSF HT Condor SLURM

Parallel/array 
jobs both both both both both

Cost/licensing Commercial,
Open source

Commercial
,
Open 
source

Commercial,
Open source Open source Open 

source

OS support Linux Linux Linux Linux Linux

Scheduler type Centralized Centralized Centralized Centralized Centralized

Scalability up to 80K 10K+ 10K+ (1K+ 
OpenLava)

up to 40K per 
scheduler 100K+

GPU support Yes (limited in the 
Open Source) Yes Yes Yes Yes

Table 6. List of the most common job scheduler adopted in scalable computing infrastructures and
their related features

5.4. PaaS Interaction and interfaces
Exposing HPC resources to the end-users through the Platform-as-a-Service layer aims to lower
barriers in accessing HPC environments.

In  the  last  years  great  efforts  focused  on  the  adoption  of  cloud  computing  for  running  HPC
workloads:  nowadays almost  all  the cloud providers  are  able  to  provide virtual  instances with
accelerators  and  low  latency  interconnection  network.  Several  benefits  can  come  from  this
integration, which facilitates both workload management and interaction with remote resources.

Compared to traditional HPC environments, in cloud environments users can 1) quickly adjust their
resource pools via a mechanism known as elasticity, 2) optimize resource utilization, for example
using spot instances. These features help adding more flexibility to HPC applications.

Cloud technology can simplify the use of HPC resources, in particular for non-IT specialized users
with no expertise in system administration and configuration of complex computing environments.

In fact, an emerging approach both in public and private clouds is to create “HPC as a service”
platforms where HPC applications are executed in the cloud without requiring users to have any
understanding of the underlying cloud infrastructure: the provisioning of the resources and their
configuration  is  completely  automated.  An example is  AWS CfnCluster  that  allows to  quickly
deploy an HPC cluster on AWS with pre-installed open source batch schedulers and MPI libraries.
The user can interact with the HPC environment through the web-based EnginFrame portal that
gives the user access to his applications (both batch and interactive), data, and jobs.

Another important factor is contributing to change the way HPC systems are used: the development
of new applications, like deep learning, and the increasingly wide adoption of containers to support
a DevOps approach for developing and running applications. These new trends are leading HPC

DEEP-HybridDataCloud – 777435 46



system admins and architects  to  embrace new approaches:  1) run both containerized and non-
containerized  workloads  on  existing  HPC clusters;  2)  run  HPC workloads  on  local  or  cloud-
resident Kubernetes/Mesos clusters. Concerning the first approach, the support for containerized
jobs and applications is being added in the main Workload Managers; moreover, the use of udocker
greatly simplifies the execution of docker containers in any HPC cluster since this tool allows to
run the containers in user space without requiring root privileges.

The second approach is more innovative and it is likely to become more common as the availability
of new application frameworks (Artificial intelligence, Big Data, Deep-Learning, etc.) designed
and implemented to run natively on these platforms (Kubernetes, Mesos) increases. Anyway, the
two  approaches  are  not  exclusive  and  can  co-exist.  Indeed,  the  co-existence  of  the  two
environments, the traditional on-premise HPC cluster and the Kubernetes/Mesos cluster, allows to
run mixed workloads and to select the most suited environment depending on the characteristics of
the workload itself.

For example, tightly coupled applications can benefit from better performance running on HPC
clusters (with high-performance network); on the other hand, embarrassingly parallel applications
can  be  deployed  on  cloud  or  on  container  orchestration  platforms  like  Kubernetes  or  Mesos,
exploiting built-in features like elasticity and resilience.

As a final remark, it is worth highlighting that, from a business point of view, the hybrid cloud
model  is  currently  gaining  increasing  importance  since  it  ensures  sustainability  for  several
companies with HPC workloads. With this model, it is possible to leverage the existing computing
infrastructure  and,  depending  on  the  peak  demands,  parts  of  the  workload  can  be  moved
temporarily to the cloud.

From  the  analysis  of  the  presented  approaches,  it  is  evident  that  exploiting  hybrid/mixed
environments can be a successful approach and in this case the role of a smart orchestrator/broker
is crucial to select the best environment for running the users’ workload.

6. Initial implementation plan
The motivation of DEEP Hybrid DataCloud project is the need to support intensive computing
techniques  that  require  specialized  HPC hardware,  like  GPUs or  low-latency  interconnects,  to
explore very large datasets. A Hybrid Cloud approach enables the access to such resources that are
not  easily reachable by researchers  at  the scale  needed in the current EU e-infrastructure.  The
project  is  structured  into  six  different  work  packages,  covering  Networking  Activities  (NA)
devoted  to  the  coordination,  communication  and  community  liaison;  Service  Activities  (SA)
focused  on  the  provisioning  of  services  and  resources  for  the  execution  of  the  data  analysis
challenges; and Joint Research Activities (JRAs), dealing with the development of new components
and technologies to support data analysis. The interaction between the different work packages is
present in Figure 14.

DEEP-HybridDataCloud – 777435 47



Figure 14. DEEP-HybridDataCloud Work Packages and their relations

WP4 "Accelerated and High Performance Computing in the Cloud" is lying in the lowest layer
among JRA workpackages. The research and development activities done in this workpackage are
close to the hardware and infrastructure, addressing the gaps that currently exist in the support of
accelerators, specialized hardware and HPC systems in general in order to exploit the full potential
of computing performance provided by the hardware.  On upper level, WP5 "High Level Hybrid
Cloud solutions" will take care of the provisioning of the platform exploiting the outcomes from
WP4 in a hybrid approach, delivering an execution platform, ensuring that applications can be
spawned across several cloud infrastructures. The highest level among JRA workpackages is WP6
"DEEP as a Service" that will provide solutions to ensure that scientists have an easy way to deploy
and execute their intensive compute applications based on containers (from NA2/WP2) that will be
executed in an hybrid cloud platform (JRA2/WP5), exploiting the specialized hardware that their
application requires (JRA1/WP4).

6.1. Task structure and coordination activities
The main research activity in WP4 is to work close to the hardware and infrastructure, addressing
the gaps that currently exist in the support of accelerators, specialized hardware and HPC systems
in  general.  It  will  ensure  that  bare-metal  like  performance  is  delivered  through  the  adopted
solution, and that the resources can be shared in multi-tenancy environments. Proper interfaces will
be exposed to the upper layers, from the visualization to the cloud management framework to the
platform one. On top of that, high-level access to HPC resources will be investigated, providing
seamless access and data sharing from Cloud infrastructures.

DEEP-HybridDataCloud – 777435 48



This WP can be logically divided into three tasks:

• Task 4.1 – Bare-metal like performance: The aim of this task is to develop on existing
middleware to interact as closely as possible with bare metal resources. That will include
minimizing  the  overhead  of  software  virtualization  layer  using  para-virtualization  or
container  technologies,  providing  seamless  access  to  performance  critical  hardware
resources (accelerators, Infiniband) from virtual machines/containers (in cooperation with
Task 4.2) and ensure support from cloud middleware and PaaS level.

• Task 4.2 – Extended support for accelerated computing: This task is dedicated to provide
extended support for accelerators through all software layers, to hide implementation details
and provide uniform access to accelerators from PaaS and application levels. It will work
closely with T4.1 for supporting accelerators in container and cloud middleware, and T4.3
for supporting accelerators on HPC platforms.

• Task 4.3 – Interaction with HPC resources with PaaS approach: The task will investigate
how to integrate the HPC-like environments with High Level services, propose a way to
execute  hybrid,  containerized  applications  within  batch-oriented  environment  accessing
GPU and specialized low-latency networks.

6.2. Coordination with other WPs

6.2.1. Coordination with WP 5
Activities in WP4 will aim to improve virtualization techniques in order to minimize the overhead
and  achieve  bare-metal  performances;  moreover,  efforts  will  focus  on  making  hardware
accelerators  and  low-latency  networks  first-class  citizens  in  the  cloud  computing  landscape.
Complementarily the main goal of WP5 is to provide a uniform and transparent access to the IaaS-
level resources, including HPC resources, with a hybrid approach. Therefore, WP5 and WP4 will
work in close synergy in order to maximize the benefits from leveraging WP4 developments at the
PaaS level:  WP4 will  implement  the  full  support  of  containers  and specialized  devices  in  the
virtualization layer and will expose to the PaaS the needed interfaces to provision the requested
resources  (VMs or  containers).  WP5 will  build  an abstraction layer  on top of  WP4 interfaces
ensuring federated access to the underlying IaaS environments.

6.2.2. Coordination with WP3 
The activities taking place in all tasks of WP4 have a direct connection with the two tasks of WP3.
The development work occurring in WP4 is supported by services provided or organized by WP3
such as the repository for artifacts, the continuous integration system (CI), source code repositories,
issue trackers and user support, etc.

The SQA, the Software release and maintenance management has been defined by WP3 after input
and discussions with the other JRAs.

DEEP-HybridDataCloud – 777435 49



The organization of the testbed in WP3 is accomplished with the collaboration of WP4, specifically
regarding  the  type  of  resources  and  how  they  should  be  integrated  such  as:  IaaS  Cloud
Management Frameworks (OpenStack and OpenNebula), of GPUs, HPC clusters, docker container
management frameworks (Mesos, Kubernetes).

6.3. Initial implementation plan
According to the task structure, the implementation plan can be divided into three main parts:

• Improving support for containers in cloud middleware: to use container technologies as
replacement of hypervisors in traditional cloud middleware and also as the main application
delivery for HPC platforms.

• Improving support for accelerators in cloud middleware: that will include improving the
support  for  accessing  accelerators  at  container  layers,  also  improving  the  support  of
accelerators in configurations/drivers of cloud middleware layers.

• Interaction  with  HPC  resources:  either  accessing  HPC  platforms  via  traditional  batch
systems or managing HPC platforms via cloud middleware.

The schedule of the tasks is in the following Table 7:

Tasks
2017 2018 2019 2020

11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4

Task 4.1

Bare-metal like 
performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Improving udocker

Improving support for 
nova-lxd in OpenStack

Task 4.2

Extended support for
accelerated 
computing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Improving support 
GPU in udocker

Improving support 
Low Latency 
Interconnects in 
udocker 

Adding support for 
GPU in nova-lxd 

Improving support 
GPU in 
Mesos/Kubernetes

Task 6.2 Interaction with 
HPC resources

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

DEEP-HybridDataCloud – 777435 50



Support for accessing 
HPC from WP5 

Switching cloud 
management 
system 

Milestones and deliverables

D4.1

Assessment of 
available technologies 
for supporting 
accelerators and HPC, 
initial design and 
implementation plan.

D4.2

First implementation 
of software platform 
for accessing
accelerators and HPC.

D4.3

Final implementation 
of software platform 
for accessing
accelerators and HPC

MS4.1
Assessment of 
available technologies 
carried out

MS4.2

Initial design and 
implementation plan 
for software platform 
created

MS4.3
First implementation 
of the software 
platform.

MS4.4
First implementation 
of the software 
platform.

Table 7. Implementation timeplan

6.3.1. Improving support for containers in cloud middleware
nova-lxd

December 2017 LXD 2.21 was released announcing as one of its new features "a new Infiniband
device type which supports physical passthrough of Infiniband devices as well as SR-IOV allocated
cards" [LXD 2.21 Release]. Since release 2.5 LXD also has support for GPU hotplug [LXD 2.5
Release]. So far, there is no evidence that this feature can be explored from OpenStack's nova-lxd
perspective. Therefore, we will work towards developing further nova-lxd OpenStack component
to better explore these underlying capabilities.

udocker

Aiming  to  maximize  application's  performance  and  portability  throughout  (software-  and
hardware-wise)  heterogeneous systems,  specially having in mind advanced computing systems,

DEEP-HybridDataCloud – 777435 51



udocker will be further developed to improve support for GPU and other specialized devices like
Infiniband. This task will mostly be centered in software development; however, it will also require
testing and benchmarking on High Performance, Grid and Cloud computing resources. 

6.3.2. Improving support for accelerators in cloud middleware
Improving support for accessing accelerators at hypervisor/container level

This task is focused on improving support for accelerators at hypervisor/container level. That will
include  automatic  detection  of  accelerators,  their  software  drivers  and  configuration  of
hypervisors/containers performed accordingly, simplifying the access to accelerators and enabling
generalization at higher software layer (cloud) without dependency on hardware details. The work
will see cooperation with 6.3.1 for supporting GPU in udocker and LXD.

Improving support for accessing accelerators at higher layers of cloud stack

This task is focused on improving support for accelerators at higher software layers like Mesos,
Kubernetes and OpenStack. That will include extending software drivers of cloud middleware for
supporting  accelerators  (nova-lxd),  or  to  improve  deployment  strategy  (nova-scheduler,  Mesos
Chronos). In addition, it will cooperate with WP5 for configuration and deployment of a GPU-
enabled PaaS layer.

6.3.3. Interaction with HPC resources
As indicated in section 5, HPC model is different from Cloud model and it is necessary to work out
a solution that allows efficient use of HPC resources by high level services. There are two possible
approaches to making HPCS resources available to PaaS services:

• access HPC management system and submit batch jobs,

• allow HPC nodes to be managed by Cloud management system.

These approaches are not exclusive and none of them can be chosen as the best solution, they
strongly depend on local HPC conditions and politics. In the short run, it is not possible to force
HPC centers to change their resources management system and switch to more cloud based model,
therefore all services should adapt to the specifics of HPC and to implement necessary intermediate
layer for interaction with HPC management system. However for some HPC centers in the longer
term it  can be a suitable solution to switch to cloud based resource provisioning and follow a
cluster-on-demand approach. Therefore, implementation plan for WP4.3 covers both approaches.

Support WP5 in accessing HPC resources

During the first  phase,  the  activities  will  focus  will  be on supporting WP5 in  accessing  HPC
resources. An interface will be prepared to access HPC resources together with its implementation
for  various  HPC  systems.  This  task  will  be  done  in  strong  cooperation  with  WP5  and
implementation will follow requirements coming from WP5.

DEEP-HybridDataCloud – 777435 52



Switching to cloud management system.

As part of the project integration testbed, in WP3, PSNC will dedicate some resources to prepare a
small cluster managed by a cloud middleware to test the cluster on demand approach. The tests can
take  into  account  both  open  source  (e.g.,  Kubernetes)  or  commercial  software  (e.g.,  Huawei
Fusion), depending on the local conditions in HPC centers.

Specific points of interest, which will be dealt with during the implementation of the project:

• separation of work environments in HPC cluster (each job/workload should have strictly
separated environment to not interfere with other work);

• sharing of resources between HPC and cloud environment (especially file and object stores,
integration of sync&share systems with HPC);

• management of templates of working environments (e.g.,  containers based templates for
various  classes  of  execution  environment  with  support  for  creation,  update  and
optimization);

• management  of  authentication  of  authorization  information.  Specific  implementation
depends on requirement from WP5 and local HPC conditions. The focus will be on using
IAM as an intermediate module between HPC and PaaS services.

6.4. Risk assessments
The potential risks, their impacts and mitigation strategies are provided in Table 8.

Risk Impact Mitigation

Dealing with requirements 
from specific use cases may 
require certain specific skills 
and/or domain knowledge

Mediu
m

Keep continuous interactions with other responsible WP 
representatives. Testing/validation phases could start 
from their requirements. If there is no sufficient technical
detail, the additional communications will be established
immediately. 

Partners do not deliver their 
contributions on-time Low

Regular meetings will be carried out among the partners,
coordinated by the WP leader, with sufficient technical 
content to track the development progress and introduce 
corrective countermeasures when needed.

Limited resources of 
specialized hardware during 
development

Mediu
m

The consortium has adequate technical capacity for 
increasing resources allocated to the project in case of 
need. The usage of specialized resources will be 
monitored globally within the project to identify the 
need.

Table 8. Risk assessments

DEEP-HybridDataCloud – 777435 53



7. Conclusion
In this document the state of the art of technologies for supporting bare-metal, accelerators and
HPC  in  cloud  has  been  analyzed.  Based  on  the  analysis,  an  initial  implementation  plan  for
improving the support of accelerators and HPC in DEEP-HybridDataCloud has been proposed.

The  container  technologies  have  been  rapidly  improving  in  recent  years  and  have  proved
themselves  as  viable  alternative  to  application  delivery  and  even  full  virtualization  for  cloud
computing.  The  technologies  have  gained  wide  supports,  from traditional  Cloud  management
frameworks to container-centric management environment and also have strong positions on HPC
systems. For what concerns support for accelerators, recent developments in GPU runtime support
like  nvidia-docker  have  greatly  improved  the  usability,  portability  and  stability  of  container
technologies. 

Therefore  the  use  of  container  technologies  will  be  the  approach  chosen  in  DEEP-
HybridDataCloud project. The DEEP-HybridDataCloud has selected two implementations to be
further improved: nova-lxd, as a replacement of full Cloud hypervisors, and udocker, as container
technology to be used in the case of HPC platforms. The first release of the implementations is
planed at Month 12 of DEEP-HybridDataCloud project (Milestone MS4.3) and will be reported in
Deliverable D4.2 “First implementation of software platform for accessing accelerators and HPC”.

HPC computing model is different from Cloud computing model in many aspects: architecture,
software installation, queuing system, user access and so on. Therefore it is necessary to work out a
solution  that  allows  to  efficiently  use  HPC  resources  by  high  level  services.  The  work  on
integration with an HPC platform will be tightly coordinated with WP5 addressing the PaaS layer
and the first implementation will be released at Month 12 and reported in D4.2 together with other
tasks.

DEEP-HybridDataCloud – 777435 54



8. List of Figures
Figure 1. The illustration of SR-IOV relationships between a physical PCI device, its PF and VFs
and the host and guests in a virtualization environment

Figure 2. Overview of OpenStack resources

Figure 3. OpenStack Heat Architecture

Figure 4. Magnum API resources

Figure 5. Magnum architecture

Figure 6. OpenStack nova-lxd architecture diagram

Figure 7. Kubernetes architecture

Figure 8. Mesos architecture diagram, showing two running frameworks (Hadoop and MPI)

Figure 9. Resource offer example

Figure 10. Marathon architecture

Figure 11. Chronos architecture

Figure 12. Deep Learning frameworks and libraries with accelerated support

Figure 13. nvidia-docker wrapper

Figure 14. DEEP-HybridDataCloud Work Packages and their relations

9. List of tables
Table 1. Virtualization technology comparison

Table 2. Growing list of accelerator vendors

Table 3. Deep Learning frameworks and libraries

Table 4. Current support for GPU virtualization technologies in the main hypervisor platforms

Table 5. Comparison of approaches for supporting accelerators

Table 6. List of the most common job scheduler adopted in scalable computing infrastructures and
their related features

Table 7. Implementation timeplan

Table 8. Risk assessments

10. Acronyms
API Application Programming Interface

DEEP-HybridDataCloud – 777435 55



ASIC Application-Specific Integrated Circuit

AWS Amazon Web Services

CNCF Cloud Native Computing Foundation 

CNTK (Microsoft) Cognitive Toolkit

CRI Container Runtime Interface

cuDNN CUDA Deep Neural Network

DAS Direct Attached Storage

DL Deep Learning

DNN Deep Neural Networks

FGPA Field-Programmable Gate Array

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

GVT (Intel) Intel Graphics Device

HPV High-Performance Virtualization

IC Integrated Circuit

IOMMU Input–Output Memory Management Unit

IP Semiconductor Intellectual Property Core e.g. IP vendor

LFC Logical File Catalog

LSF Load Sharing Facility

LXC Linux Containers

LXD open source container management extension for LXC

MKL (Intel) Math Kernel Library

ML Machine Learning

MPI Message Passing Interface

NIC Network Interface Cards

NN Neural Network

PaaS Platform as a Service

PBS Portable Batch System

PCI Peripheral Component Interconnect

DEEP-HybridDataCloud – 777435 56



PF Physical Function

REST REpresentational State Transfer

SAN Storage Area Networks

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SLURM Simple Linux Utility for Resource Management

SQA Software Quality Assurance

SR-IOV Single Root I/O Virtualization

TPU (Google) Tensor Processing Unit

VF Virtual Function

VNC Virtual Network Computing

VT-d Intel Virtualization Technology for Directed I/O

WLCG Worldwide LHC Computing Grid

DEEP-HybridDataCloud – 777435 57



11. References and links

11.1.References
[Boxall  2017]  Boxall,  A.:  Huawei  Kirin  970:  Everything  you  need  to  know,
https://www.digitaltrends.com/mobile/huawei-kirin-970-ai-news/, accessed Sep 2017

[Cacciatore 2015] Cacciatore, K., Czarkowski, P., Dake, S., Garbutt, J., Hemphill, B., Jainschigg,
J., Moruga, A., Otto, A., Peters, C. and Whitaker, B.E., 2015. Exploring Opportunities: Containers
and OpenStack. OpenStack White Paper, 19

[Cano 2017] Cano, A.: 2017, A survey on graphic processing unit computing for large‐scale data
mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery

[Dilger 2017] Dilger, D.E.: Inside iPhone 8: Apple's A11 Bionic introduces 5 new custom silicon
engines,  http://appleinsider.com/articles/17/09/23/inside-iphone-8-apples-a11-bionic-introduces-5-
new-custom-silicon-engines, accessed Sep 2017

[Feldman  2016]  Feldman,  M.:  IBM  Finds  Killer  App  for  TrueNorth  Neuromorphic
Chip,https://www.top500.org/news/ibm-finds-killer-app-for-truenorth-neuromorphic-chip/,
accessed Sep 2016

[Gentzsch 1994] Gentzsch, W.: 1994. Codine, Computing in Distributed Networked Environments,
User’s  Guide  and  Reference  Manual.  Genias  Software  GmbH,  Erzgebirgstr.  2B,  D-93073
Neutraubling, Germany

[Gomes 2017] Gomes, J.,  Campos,  I.:  Researchers Advance User-Level Container Solution for
HPC,  https://www.hpcwire.com/2017/12/18/researchers-advance-user-level-container-solution-
hpc/, accessed Mar 2018

[Graber 2016] Graber, S.: On the way to safe containers, Linux Security Summit 2016 Toronto,
Canada,  https://events.static.linuxfound.org/sites/events/files/slides/Linux%20Security%20Summit
%202016-%20On%20the%20way%20to%20safe%20containers_0.pdf

[Hindman  2011]  Hindman,  B.,  Konwinski,  A.,  Zaharia,  M.,  Ghodsi,  A.,  Joseph,  A.,  Katz,  R.,
Shenker, S., Stoica, I.: 2011, NSDI 2011, Mesos, A Platform for Fine-Grained Resource Sharing in
the Data Center

[Kloss  2017]  Kloss,  C.:  Intel®  Nervana™  Neural  Network  Processor:  Architecture  Update,
https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/,  accessed  Dec
2017

[Otto  2015]  Adrian  Otto:  Magnum  making  containers  a  first  class  resource  in  OpenStack,
https://www.OpenStack.org/assets/vancouver-summit/slidedecks/Adrian-Otto-Magnum-Making-
Containers-a-First-Class-Resource-in-OpenStack.pdf#page=1&zoom=auto,-54,540,  accessed  Feb
2018

DEEP-HybridDataCloud – 777435 58



[Parthasarathy  2017]  Parthasarathy,  A.,  June  2017,  Kubernetes  vs  Docker  Swarm,
https://platform9.com/blog/kubernetes-docker-swarm-compared/

[Perez  2015]  Perez  C.E.:  Why  are  GPUs  well-suited  to  deep  learning?
https://www.quora.com/Why-are-GPUs-well-suited-to-deep-learning, accessed Apr 2018

[Sato 2017] Sato, K.: An in-depth look at Google’s first Tensor Processing Unit (TPU), May 2017,
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu

[Shan 2018] Shan, T.: A list of ICs and IPs for AI, Machine Learning and Deep Learning, Jan 2018,
https://github.com/basicmi/Deep-Learning-Processor-List

[Sze 2017] Sze, V., Chen, Y.H., Yang, T.J. and Emer, J.: 2017. Efficient processing of deep neural
networks: A tutorial and survey. arXiv preprint arXiv:1703.09039

[Schroder  2017]  Schroder  C:  What  Makes  Up  a  Kubernetes  Cluster?  Apr.  2017,
https://www.linux.com/news/learn/chapter/intro-to-kubernetes/2017/4/what-makes-kubernetes-
cluster

[Thain  2005]  Thain,  D.,  Tannenbaum,  T.,  Livny,  M.:  "Distributed  Computing  in  Practice:  The
Condor Experience" Concurrency and Computation: Practice and Experience, Vol.  17, No. 2-4,
pages 323-356, February-April, 2005

[Wong 2016] Wong, T.: WhitePaper - AMD MULTIUSER GPU: HARDWARE-ENABLED GPU
VIRTUALIZATION  FOR  A  TRUE  WORKSTATION  EXPERIENCE
https://www.amd.com/Documents/Multiuser-GPU-White-Paper.pdf, accessed Apr 2018

[Yoo 2003] Yoo, A. B., Jette, M. A., Grondona, M., 2003. Slurm: Simple Linux utility for resource
management. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer, pp. 44-
60

[Zhou 1993] Zhou, S., Zheng, X., Wang, J., Delisle, P., 1993. Utopia: a load sharing facility for
large,  heterogeneous distributed computer  systems.  Software:  Practice and Experience 23 (12),
1305–1336

11.2.Links
[Accelerator]  What  is  an  accelerator:  https://www.techopedia.com/definition/31677/accelerator,
accessed Feb 2018

[AI Accelerator] AI accelerator: https://en.wikipedia.org/wiki/AI_accelerator, accessed Feb 2018

[AMDDRIV] https://pro.radeon.com/en/solutions/vdi/, accessed Apr 2018

[Brainware]  Microsoft  unveils  Project  Brainwave  for  real-time  AI,  Aug  2017:
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/,  accessed
Apr 2018

DEEP-HybridDataCloud – 777435 59



[Caffe]  Deep  learning  framework  by  Berkeley  Artificial  Intelligence  Research  (BAIR):
http://caffe.berkeleyvision.org/, accessed Feb 2018

[Caffe2] A New Lightweight, Modular, and Scalable Deep Learning Framework: https://caffe2.ai/,
accessed Feb 2018

[Chainer]  A  Powerful,  Flexible,  and  Intuitive  Framework  for  Neural  Networks:
https://chainer.org/index.html, accessed Feb 2018

[CharlieCloud]  Unprivileged  Containers  for  User-Defined  Software  Stacks  in  HPC:
https://hpc.github.io/charliecloud, accessed Feb 2018

[CNCF] Cloud Native Computing Foundation: https://www.cncf.io/, accessed Feb 2018

[CNTK]  Microsoft  Cognitive  Toolkit  (CNTK),  an  open  source  deep-learning  toolkit:
https://docs.microsoft.com/en-us/cognitive-toolkit/, accessed Feb 2018

[Cuda] CUDA Zone - NVIDIA Development: https://developer.NVIDIA.com/cuda-zone, accessed
Feb 2018

[cuDNN]  NVIDIA  cuDNN  -  GPU  Accelerated  Deep  Learning:
https://developer.NVIDIA.com/cudnn, accessed Feb 2018

[CudaToolkit] NVIDIA CUDA Toolkit: https://developer.NVIDIA.com/cuda-toolkit, accessed Feb
2018 

[DIGITS]  The  NVIDIA  Deep  Learning  GPU  Training  System:
https://developer.NVIDIA.com/digits, accessed Feb 2018 

[DLAccList] Deep Learning Processor List: https://github.com/basicmi/Deep-Learning-Processor-
List, accessed Feb 2018 

[Docker] Virtualization technology: https://www.docker.com/, accessed Feb 2018

[DockerFAQ]  Docker  FAQ  -  What  platforms  does  Docker  run  on?:
https://docs.docker.com/engine/faq/#what-platforms-does-docker-run-on, accessed Apr 2018

[DockerHub] Docker Hub - Dev-test pipeline automation: https://hub.docker.com/, accessed Apr
2018

[DockerSwarm]  Swarm  a  Docker-native  clustering  system:  https://github.com/docker/swarm,
accessed Apr 2018

[DL4J] Deeplearning4j - The first commercial-grade, open-source, distributed deep-learning library
written for Java and Scala, integrated with Hadoop and Spark: https://deeplearning4j.org/, accessed
Feb 2018

[GIM]  https://github.com/GPUOpen-LibrariesAndSDKs/MxGPU-Virtualization,  accessed  Apr
2018

[Godlove] Containers for HPC, analytics, machine learning, reproducible and trusted computing:
http://users.ugent.be/~kehoste/eum18/Singularity_Dave_Godlove.pdf, accessed Apr 2018

DEEP-HybridDataCloud – 777435 60



[GVT] Intel® Graphics Virtualization Technology (Intel® GVT):  https://01.org/igvt-g,  accessed
Apr 2018

[GVTLINUX] https://github.com/intel/gvt-linux/wiki/GVTg_Setup_Guide, accessed Apr 2018

[H2O] H2O.ai Fast Scalable Machine Learning: http://h2o.ai/, accessed Feb 2018

[HPV  SRV-IO]  High-Performance  Virtualization  -  SR-IOV  and  Amazon's  C3  Instances:
https://glennklockwood.blogspot.pt/2013/12/high-performance-virtualization-sr-iov.html,  accessed
Mar 2018 

[Keras] High-level neural networks API: https://keras.io/, accessed Feb 2018 

[Kubernetes] Production-Grade Container Orchestration: https://kubernetes.io/, accessed Feb 2018

[KubernetesGPU] Schedule GPUs: https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/,
accessed Feb 2018

[KVMSRIOV]  How  to  assign  devices  with  VT-d  in  KVM:  https://www.linux-
kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM, accessed Apr 2018

[LCGDM] LcgDM - Data Management Servers: http://lcgdm.web.cern.ch/, accessed Apr 2018

[LGUEST] Lguest - The Simple x86 Hypervisor: http://lguest.ozlabs.org/, accessed Apr 2018

[LGUEST64] https://github.com/IxLabs/lguest64, accessed Apr 2018

[LinuxFoundation]  LinuxFoundation.org  |  Enable  Open  Source  Ecosystems:
http://www.linuxfoundation.org/, accessed Feb 2018 

[LXD  2.21  Release]  LXD  2.21  Release:  https://discuss.linuxcontainers.org/t/lxd-2-21-has-been-
released/953, accessed Mar 2018 

[LXD 2.5 Release] LXD 2.5 release announcement: https://linuxcontainers.org/lxd/news/#lxd-25-
release-announcement, accessed Mar 2018

[LXDoNe] https://github.com/OpenNebula/addon-lxdone, accessed Apr 2018

[MediaTek] MediaTek Powers the Future of Mobile with New Helio P60 Chipset, Bringing Big
Core  Power  &  AI  Experiences  to  Consumers:  https://www.mediatek.com/news-events/press-
releases/mediatek-powers-the-future-of-mobile-with-new-helio-p60-chipset-bringing-big-core-
power-ai-experiences-to-consumers, accessed Mar 2018

[MELLANOX]  docker-passthrough-plugin:  https://github.com/Mellanox/docker-passthrough-
plugin, accessed Mar 2018 

[nova-lxd]  Linux  Containers  -  nova-lxd  webpage:  https://linuxcontainers.org/lxd/getting-started-
OpenStack/, accessed Feb 2018

[nova-lxd_GitHub]  OpenStack  -  nova-lxd  on  GitHub:  https://github.com/OpenStack/nova-lxd,
accessed Feb 2018

DEEP-HybridDataCloud – 777435 61



[NQS]  The  Network  Queueing  System:
http://gnqs.sourceforge.net/docs/papers/mnqs_papers/original_cosmic_nqs_paper.htm,  accessed
Feb 2018 

[NVGDOCS]  http://docs.NVIDIA.com/grid/4.5/grid-vgpu-release-notes-red-hat-el-
kvm/index.html, accessed Apr 2018

[NVGFORUM]  https://gridforums.NVIDIA.com/default/topic/501/NVIDIA-virtual-gpu-
technology/NVIDIA-grid-vgpu-on-kvm-hypervisors/, accessed Apr 2018

[NVIDIA-PATCHES] https://patchwork.kernel.org/patch/9230579/, accessed Apr 2018

[NVIDIAAC]  NVIDIA  Accelerated  Computing:  https://developer.NVIDIA.com/computeworks,
accessed Feb 2018

[nvidia-docker]  Docker  Engine  Utility  for  NVIDIA GPUs:  https://github.com/NVIDIA/nvidia-
docker, accessed Mar 2018 

[NVIDIAPascal]  NVIDIA  PASCAL  ARCHITECTURE  -  Infinite  Compute  for  Infinite
Opportunities: https://www.NVIDIA.com/en-us/data-center/pascal-gpu-architecture/, accessed Apr
2018 

[NVIDIAVolta] NVIDIA VOLTA - The New GPU Architecture Designed to Bring AI to Every
Industry: https://www.NVIDIA.com/en-us/data-center/volta-gpu-architecture/, accessed Apr 2018

[NVPASS]  Dedicated  GPU  Technology  for  Virtual  Desktops:
http://www.NVIDIA.com/object/dedicated-gpus.html, accessed Apr 2018

[Magnum] https://docs.OpenStack.org/magnum/, accessed Feb 2018

[Mesos]  Apache  Mesos  -  open-source  project  to  manage  computer  clusters:
http://mesos.apache.org/, accessed Feb 2018

[MKL] Intel Math Kernel Library: https://software.intel.com/en-us/intel-mkl/, accessed Feb 2018

[MXNet]  Apache  MXNet  -  A  flexible  and  efficient  library  for  deep  learning:
https://mxnet.apache.org/, accessed Feb 2018

[ONEDock] Docker support for OpenNebula https://github.com/indigo-dc/onedock, accessed Apr
2018

[OpenCL]  Open  Computing  Language  -  The  Khronos  Group  Inc.:
https://www.khronos.org/opencl/; https://developer.NVIDIA.com/opencl, accessed Feb 2018

[OpenLAVA] OpenLava: http://www.openlava.org/, accessed Feb 2018

[OpenMP]  OpenMP  -  API  specification  for  parallel  programming:  http://www.openmp.org,
accessed Feb 2018

[Open MPI] Open MPI - Open Source High Performance Computing: https://www.open-mpi.org/,
accessed Feb 2018

DEEP-HybridDataCloud – 777435 62



[OpenNebula]  OpenNebula  –  Flexible  Enterprise  Cloud  Made  Simple:  https://opennebula.org/,
accessed Feb 2018

[PBS] Portable Batch System Scheduler: http://www.pbspro.org/, accessed Feb 2018

[PCIPASS]  Linux  virtualization  and  PCI  passthrough:
https://www.ibm.com/developerworks/library/l-pci-passthrough/l-pci-passthrough-pdf.pdf,
accessed Apr 2018

[PCISIGa]  PCI-SIG  SR-IOV  Primer:  https://www.intel.sg/content/dam/doc/application-note/pci-
sig-sr-iov-primer-sr-iov-technology-paper.pdf, accessed Apr 2018

[SR-IOV  LXC]  Single-Root  Input/Output  Virtualization  (SR-IOV)  with  Linux*  Containers:
https://software.intel.com/en-us/articles/single-root-inputoutput-virtualization-sr-iov-with-linux-
containers, accessed Mar 2018

[PyTorch] Deep learning framework that puts Python first: http://pytorch.org/, accessed Feb 2018

[SamsungExynos]  Samsung  Exynos  -  Exynos  9  Series  9810  Processor:
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-
series-9810/, accessed Mar 2018

[Singularity] Singularity Official Webpage: http://singularity.lbl.gov/, accessed Mar 2018

[SingularityInEPEL]  Singularity  RPM  in  Fedora  Packages,
https://apps.fedoraproject.org/packages/singularity/,accessed Apr 2018

[Shifter] Shifter - Containers for HPC: https://github.com/NERSC/shifter, accessed Feb 2018

[TensorFlow]  TensorFlow  -  An  open-source  software  library  for  Machine  Intelligence:
https://www.tensorflow.org/, accessed Feb 2018

[TensorflowLite] TensorFlow Lite: https://www.tensorflow.org/mobile/, accessed Feb 2018

[Theano] Theano: http://deeplearning.net/software/theano/, accessed Apr 2018

[Torch] Torch - scientific computing framework for LUAJIT http://torch.ch/, accessed Apr 2018

[uDocker]  udocker  -  abasic  user  tool  to  execute  simple  docker  containers  in  user  space:
https://github.com/indigo-dc/udocker, accessed Apr 2018

[VGPU]  NVIDIA  GRID  Virtual  GPU  User  Guide:
http://images.NVIDIA.com/content/grid/pdf/GRID-vGPU-User-Guide.pdf, accessed Apr 2018

[VIRTIO] https://wiki.osdev.org/Virtio, accessed Apr 2018

[VTD]  Understanding  VT-d:  Intel  Virtualization  Technology  for  Directed  I/O:
https://software.intel.com/en-us/blogs/2009/06/25/understanding-vt-d-intel-virtualization-
technology-for-directed-io, accessed Apr 2018

[Younge]  A  Tale  of  Two  Systems:  Using  Containers  to  Deploy  HPC  Applications  on
Supercomputers and Clouds: http://ieeexplore.ieee.org/document/8241093/, accessed Mar 2018

DEEP-HybridDataCloud – 777435 63



[XENAPP] http://www.NVIDIA.com/object/xenapp.html, accessed Apr 2018

[XENSRIOV]  Xen  PCI  Passthrough:  https://wiki.xen.org/wiki/Xen_PCI_Passthrough,  accessed
Apr 2018

DEEP-HybridDataCloud – 777435 64


	Executive Summary
	1. Introduction
	2. Available technologies for obtaining bare-metal like performance
	2.1. Paravirtualization technologies
	2.1.1. SR-IOV and PCI Passthough
	2.1.2. virtio

	2.2. Container technologies
	2.2.1. Docker
	2.2.2. udocker
	2.2.3. Linux containers (LXC/LXD)
	2.2.4. Singularity
	2.2.5. Other available technologies

	2.3. Comparison of technologies

	3. Supports for paravirtualization and containers in cloud middleware
	3.1. OpenStack
	3.1.1. OpenStack Heat
	3.1.2. OpenStack Magnum
	3.1.3. OpenStack nova-lxd

	3.2. OpenNebula
	3.2.1. OpenNebula LXDoNe
	3.2.2. ONEDock

	3.3. Kubernetes
	3.4. Apache Mesos + Marathon + Chronos

	4. Support for Accelerated computing
	4.1. Accelerators and Deep Learning
	4.1.1. Types of accelerators
	4.1.2. Using accelerators in Deep Learning

	4.2. Support for accelerators at hypervisor/container level
	4.2.1. PCI passthrough and SR-IOV
	4.2.2. GPU-specific virtualization methods
	4.2.3. Device mapping (passthrough) for LXD/Docker
	4.2.4. nvidia-docker runtime
	4.2.5. Comparison of approaches for supporting accelerators

	4.3. Support for accelerators at cloud middleware level
	4.3.1. OpenStack
	4.3.2. OpenNebula
	4.3.3. Kubernetes
	4.3.4. Apache Mesos


	5. Interaction with HPC resources using PaaS approach
	5.1. Specifics of HPC systems
	5.2. Using containers in HPC
	5.3. Local schedulers
	5.4. PaaS Interaction and interfaces

	6. Initial implementation plan
	6.1. Task structure and coordination activities
	6.2. Coordination with other WPs
	6.2.1. Coordination with WP 5
	6.2.2. Coordination with WP3

	6.3. Initial implementation plan
	6.3.1. Improving support for containers in cloud middleware
	6.3.2. Improving support for accelerators in cloud middleware
	6.3.3. Interaction with HPC resources

	6.4. Risk assessments

	7. Conclusion
	8. List of Figures
	9. List of tables
	10. Acronyms
	11. References and links
	11.1. References
	11.2. Links


