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Géosciences, Université de Montpellier, CNRS, Montpellier, France

(Dated: October 16, 2017)

Abstract

Diffusion in natural and engineered media is quantified in terms of stochastic models for the

heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as

ergodicity and self-averaging and their dependence on the disorder distribution are often not known.

Here, we investigate these questions for diffusion in quenched disordered media characterized by

spatially varying retardation properties, which account for particle retention due to physical or

chemical interactions with the medium. We link self-averaging and ergodicity to the disorder

sampling efficiency Rn, which quantifies the number of disorder realizations a noise ensemble may

sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite

mean transition time is ergodic and self-averaging for any dimension. The strength of the sample

to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition

time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot

sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not

representative of the single particle time statistics, subdiffusive motion in q ≥ 2 dimensions is

self-averaging, which means that the noise ensemble in a single realization samples a representative

part of the heterogeneity spectrum.
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I. INTRODUCTION

The diffusion of particles in a fluid or gas at rest is described through Brownian motion,

characterized by a linear increase of the mean square displacement and Gaussian displace-

ment statistics. Fick’s laws form the basis for the quantification of tracer motion and chem-

ical interactions between diffusing species. These mechanisms, however, are very different

for diffusion in heterogeneous media, in which particle motion may be hindered due to spa-

tial variability in the medium properties [1, 2]. In fact, anomalous diffusion is a ubiquitous

phenomenon [1, 3–5] observed in natural and engineered media, which are intrinsically het-

erogeneous. Diffusion in heterogeneous media refers to processes as diverse as radionuclide

migration in low permeability geological media [6–10], surface and solid state diffusion [11–

13], natural gas production from tight reservoirs [14–16], contaminant and heat transfer in

the subsurface [17–21], the motion of charge carriers in amorphous semi-conductors [22],

and the transmission of light in optical media [23], as well as the motion of endogenous and

artificial tracers in living cells and cell membranes [24–29]

Stochastic modeling of particle motion in quenched random systems is particularly chal-

lenging because particles sample the disorder only by diffusion, whose efficiency in turn

is affected by the medium properties. The fundamental assumption underlying the use of

stochastic models for the prediction of particle motion is that the ensemble behavior may be

representative for the behavior in a single realization. This may refer to the representation

of the temporal statistics of a single particle trajectory through a noise ensemble, or to the

representation of particle statistics in a single medium realization through the disorder en-

semble statistics. The former relates to the notion of ergodicity [30], the latter to the notion

of self-averaging [1].

Self-averaging can only apply to infinite systems which are characterized by statistically

stationary disorder distributions so that diffusing particles have the possibility to sample

a representative part of the disorder spectrum in a single realization. The lack of self-

averaging for finite size quenched trap models has been recently discussed by Akimoto et al.

[31]. Infinity of space and statistical stationarity, however, are only necessary conditions

for self-averaging. It critically depends on the sampling efficiency and thus on the diffusion

process, which in turn is affected by the heterogeneity [32]. Despite its fundamental nature,

only few studies address the problem of self-averaging in q–dimensional quenched random
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media, specifically the evolution of the variance of the mean square displacement, for diffusive

or subdiffusive systems.

Motivated by experimental results on single particle tracking, the ergodicity of particle

motion in fluctuating environments has received considerable attention [27, 30, 33, 34] with

specific focus on subdiffusive motion [34–38]. Weak ergodicity breaking in disordered media

is related to long waiting times between particle transitions [33], which impedes signifi-

cant disorder sampling in finite time. The latter has put the continous time random walk

(CTRW) [19, 30, 39] in the spotlight as a model for subdiffusive particle motion. The CTRW

renews particle waiting times at each random walk step independently and thus can be seen

as an annealed disorder model. Subdiffusion in the CTRW is weakly ergodicity breaking

as a consequence of aging, this means non-stationarity of particle displacement caused by

diverging particle waiting times [35, 40]. For the same reason, subdiffusion in quenched

random trap models, which show CTRW behavior in q > 2 dimensions, has been found to

be weakly ergodicity breaking [38, 41]. Bertin and Bouchaud [42] analyze weak ergodicity

breaking and localization of subdiffusion in the q = 1 dimensional quenched random trap

model. Massignan et al. [26] study ergodicity breaking of subdiffusion in a q = 1 dimensional

inhomogeneous environment. Only few works address the ergodicity in q ≥ 1–dimensional

quenched disorder under diffusive and subdiffusive conditions despite its central importance

for the understanding of diffusion in heterogeneous media.

In this paper we study self-averaging and ergodicity for diffusion in q–dimensional

quenched random media. Diffusion is hindered due to spatially varying retardation proper-

ties, which account for physical and chemical interactions with the medium. This disorder

model is equivalent to the quenched random trap model [1, 32]. The nature of average parti-

cle motion in the quenched random trap model depends on the dimensionality q of space [1],

which is strongly related to the notion of the average number Sn of distinct sites visited as

a function of step number n of the random walk. The latter determines the efficiency of the

diffusion process for disorder sampling in a single medium realization. For q > 2, average

particle motion describes a CTRW because particles do in average not return to the same

site that has already been visited. For q < 2 this is different. Particle motion describes a

CTRW-like behavior, which however is characterized by dependence of subsequent waiting

times because particles may return to the same site with finite probability. Clearly this

property has an impact on the sampling efficiency and thus self-averaging property.
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This paper extends previous work [32, 38], which focused on the questions of self-averaging

and weak ergodicity breaking for disorder scenarios leading to subdiffusive average behaviors.

Here, we derive a general framework for the analysis and quantification of self-averaging and

ergodicity for arbitrary disorder distributions, characterized by diffusive and subdiffusive

average behaviors. We study particle motion in single disorder realizations to illustrate

the impact of medium heterogeneity on the segregation of particle distributions and their

sample to sample fluctuations. Ergodicity and self-averaging are quantified systematically in

terms of the noise variance of the time-averaged mean square displacement in single medium

realizations (ergodicity), and the disorder variance of the noise mean squared displacement

(self-averaging). We derive analytical expressions for the disorder variance of the mean

square displacement and the noise variance of the time-averaged mean square displacement

under both diffusive and subdiffusive conditions. Note that the concepts of ergodicity and

self-averaging are different. Ergodicity refers to the equivalence between temporal average

and noise average, this means average over all particles in a given disorder realization.

Self-averaging on the other hand denotes the property that the mean square displacement,

defined as a noise average in a single realization, may be represented by its disorder average.

Under self-averaging conditions, the mean square displacement is independent of the specific

disorder realization. Thus, it may be weakly ergodicity breaking, but self-averaging.

The paper is organized as follows. Section II describes the diffusion problem, presents the

coarse-graining procedure, and derives explicit expressions for the noise average, a central

part of the paper. Furthermore, it defines the disorder average in terms of the coarse grained

particle trajectories. Section III discusses the disorder scenarios under consideration and

illustrates the behavior of the mean square displacement and particle distributions in the

average over all disorder realizations as well as in single disorder realizations. Section IV

analyzes self-averaging for different heterogeneity scenarios and derives explicit expressions

for the variance of the mean square displacement. Section V discusses the ergodicity of

single particle trajectories in terms of the noise variance of the time-averaged mean square

displacement.
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II. DIFFUSION IN HETEROGENEOUS MEDIA

Particle transport in a q–dimensional quenched random medium, characterized by a spa-

tially random diffusion coefficient D(x), can be described by the Langevin equation

dx(t)

dt
=
√

2D[x(t)]ξ(t), (1)

which is characterized by a multiplicative noise. We employ here and in the following the

Ito interpretation. The Gaussian white noise has zero mean and covariance 〈ξi(t)ξj(t′)〉 =

δijδ(t − t′). The angular brackets denotes the noise average over all particles. The parti-

cle distribution p(x, t) = 〈δ[x − x(t)]〉 is then transported according to the Fokker-Planck

equation [43]

∂p(x, t)

∂t
−∇2D(x)p(x, t) = 0. (2)

The diffusion coefficient in (2) is given by D(x) = κθ(x)−1, where κ is the constant molecular

diffusion coefficient. The quenched retardation coefficient θ(x) accounts for particle reten-

tion due to physical and chemical interactions with the medium and thus represents the

medium heterogeneity. Equation (2) describes diffusion under spatially variable retardation

properties. The retardation coefficient is modeled here as a stationary spatial random field

which is characterized by the characteristic correlation scale ` and the distribution pθ(θ)

of point values θ(x). Note that we consider here two stochastic processes. The temporal

stochastic process ξ(t), which defines the noise ensemble, and the spatial stochastic process

θ(x) which defines the disorder ensemble. We consider in the following deterministic initial

conditions of instantaneous particle injection at t = 0 at x = 0. As discussed in the Intro-

duction and also below, particles sample the medium heterogeneity, which is represented by

the disorder ensemble, due to diffusion, which is represented by the noise ensemble. Note

that under certain experimental conditions, for example, the inital particle position in a

single disorder relaization may be uncertain and an additional average over the initial par-

ticle locations may be required. In such a case, the noise ensemble samples part of the

heterogeneity from the beginning. On the other hand, there may be situations, for example

leachage of a contaminant in an underground repository, for which the initial positions are

well confined and thus may be denominated determinstic.

The mean square displacement in a single medium realization is defined bym(t) = 〈x(t)2〉.
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From (1) we obtain

m(t) = 2

t∫
0

dt′
t∫

0

dt′′
〈√

D[x(t′)]D[x(t′′)]ξ(t′) · ξ(t′′)
〉

Using the Ito interpretation of the stochastic integral we obtain the compact expression

m(t) = 2q

t∫
0

dt′〈D[x(t′)]〉 (3)

because 〈D[x(t)]ξ(t)〉 = 0. We set now D(x) = κθ(x)−1 and define

ds = dt θ[x(t)]−1. (4)

Thus, we can write m(t) in the form

m(t) = 2κq〈s(t)〉. (5)

In the following, we use the variable transform t→ s as the basis for the coarse-graining of

the Langevin equation (1).

A. Coarse Graining

The Langevin equation (1) can be written in the Ito interpretation as

dx(t) =
√

2κθ[x(t)]−1dtη(t), (6)

where

η(t) =
1√
dt

t+dt∫
t

dt′ξ(t′) (7)

is a Gaussian random vector with zero mean and unit variance such that 〈ηi(t)ηj(t)〉 = δij.

Using the transformation (4), we can separate (6) into the two equations

dx(s) =
√

2κdsη(s), dt(s) = θ[x(s)]ds. (8)

This means we have separated the non-linearity from the spatial particle movement and

transferred it to the evolution of the particle time with s. The process s(t) = max{s|t(s) ≤ t}

denotes the operational time that passes to reach the clock time t.
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It is natural to choose the correlation scale ` of θ(x) as the spatial coarsening scale. This

gives for the coarse grained equations of motion

xn+1 = xn + `ηn+1, tn+1 = tn + θ(xn)∆sn. (9)

The random vector ηn has unit length, is always aligned with one of the axes of the coordinate

system, and its ensemble mean is zero. Thus, (9) describes a random walk on a q–dimensional

lattice. The operational time increment ∆sn is the first passage time to the boundaries of a

region of size ` by regular diffusion. The distribution of the first passage time ∆sn is cut-off

exponentially for times larger than the the characteristic diffusion time τκ = `2/(2qκ) over

the length scale `. Thus, we approximate the first passage time PDF by the exponential

distribution [44]

ψ0(∆sn) = τ−1
κ exp(−∆sn/τκ). (10)

The transition time over the length ` is given by

τ(xn) = θ(xn)∆sn, (11)

which, through its dependence on θ(xn) is a quenched random variable. Equation (9) de-

scribes a time-domain random walk (TDRW) [9, 45, 46], which can be seen as a spatially

inhomogeneous CTRW[44, 47] because the transition time depends on the particle position.

The choice of the coarse-graining scale as the correlation scale of the heterogeneous retarda-

tion field θ(x) implies that all τ(xn) and τ(xn′) are independent for n 6= n′. This means that

the distribution of τ(xn) can be characterized by the one-point probability density function

(PDF) ψ(τ) of transition times, which is given by

ψ(τ) =

∞∫
0

dθθ−1pθ(θ)ψ0(τ/θ). (12)

It is fully determined in terms of the distribution pθ(θ) of point values of θ(x). This is

an important fact because it allows relating the statistics of the medium heterogeneity

to average particle motion as outlined in Section III. With these definitions, (9) is also

equivalent to the quenched random trap model [1].

The space-time trajectory of a particle diffusing in the heterogeneous medium are ob-

tained from (9):

xn =
n−1∑
k=0

`ηk, tn =
n−1∑
k=0

τ(xk). (13)
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It is worth noticing that here the sequence of τ(xk) is in general not composed of independent

time increments because particles may visit the same site more than once [1] depending on

the dimensionality of space. This differentiates the TDRW (9) from a classical CTRW

characterized by completely independent random time increments. This point is discussed

in more detail in Section II C below. The particle position at time t is given by x(t) = xnt ,

where nt = max(n|tn ≤ t) denotes the number of steps needed to reach time t by the time

random walk (9). Likewise, the operational time s(t) to arrive at time t is given by s(t) = snt .

The particle density in this coarse-grained framework is given by p(x, t) = 〈δ(x−xnt)〉. We

can expand p(x, t) as

p(x, t) =
∞∑
n=0

〈δ(x− xn)I(tn ≤ t < tn+1)〉, (14)

where the indicator function I(tn ≤ t < tn+1) is 1 if the statement in the parenthesis is true

and 0 else. Furthermore, the mean square displacement (5) is now given in terms of the

coarse grained trajectory (9) as

m(t) = `2〈nt〉. (15)

B. Noise Average

The average diffusion behavior and its self-averaging properties depend on the efficiency of

the random walker to sample the disorder, which in turn depends on the sampling efficiency

due to the random noise in single medium realizations. It is intuitive that a random walker

explores a larger number of new sites as a function of random walk steps in q = 3 than in

q = 1 spatial dimensions. In the following, we quantify this notion. First, we consider the

coarse-grained trajectory (13) in a single disorder realization.

As outlined in the previous section, subsequent transition times τ(xk) are in general

not independent because particles may return to the same position after a certain number

of steps. The recurrence of the random walk may be described by the average number

of independent sites visited Sn [1, 48]. The number Sn depends on the dimensionality of

space in accord with Polya’s theorem. For q < 2 spatial dimensions, Sn ∼ nq/2, for q = 2,

Sn = n/ ln(n) and for q > 2, Sn ∼ n. Thus, as outlined in Bouchaud and Georges [1], the

τ(xk) in (13) may be grouped into families of independent τi with n/Sn members each. If
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FIG. 1. Realization of a quenched random medium organized in equally sized pixels. The retarda-

tion coefficient θ(x) is distributed according to a heavy-tailed PDF for β = 1/4. Different colors

denote different values of θ(x) on a logarithmic scale.

all members of a family are approximated by the same value τi, the trajectories for single

disorder realizations can be re-written as

xn =
n∑
i=1

`ηi, tn =
Sn∑
i=1

n

Sn
τi, (16)

where the τi are distributed according to (12). In a single disorder realization, the set of

available τi to form a replica of tn depends on the volume sampled by the random walkers

after n steps. This property and the independence of subsequent transition times are the

basis for the formalisation of the noise average as described below, and of the disorder

ensemble average as outlined in the next section.

In order to determine the noise average, we consider expression (15) for the mean square
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displacement. It can be expanded according to

m(t) = `2

∞∑
n=0

n〈I(tn ≤ t < tn+1)〉, (17)

where we used (14). The noise average can be written as the average over all particles

released in a disorder realization such that

m(t) = `2

∞∑
n=0

n

{
lim
N→∞

1

N

N∑
j=1

I
[
t(j)n ≤ t < t

(j)
n+1

]}
, (18)

where t
(j)
n denotes the time of the jth particle after n steps, which is defined by (16). In

order to simplify the sum over the particles j, we first note that the t
(j)
n are given by the

sum of waiting times τi, which in turn are determined by the disorder explored by the

particles. Furthermore, we note that the average number of different sites sampled by the

ensemble of random walkers after n steps is given by Vn = (2n)q/2, which corresponds to

the characteristic volume explored by the random walkers after n steps. This means that

the t
(j)
n are series of τi which are sampled from the same set of Vn statistically independent

copies. Next we recall from (16) that a replica of tn is formed of Sn independent τi, which

are drawn from a set of Vn independent copies. Thus, the number of copies of tn which can

be formed from Vn members τi is equal to the binomial coefficient Bn =
(
Vn
Sn

)
. The number

of independent replica of tn that can be formed from Vn members on the other hand, is equal

to Rn = Vn/Sn. Consequently, the number of families with members, who are statistically

independent is given by Bn/Rn. Then, since each of the Bn/Rn families explore in average

the same disorder, they are in average the same. This means that the number of independent

replica of tn in a sample of N is Rn. Thus, the sum in the curly brackets of (18) can be

substituted after regrouping as

N∑
j=1

I
[
t(j)n ≤ t < t

(j)
n+1

]
=

Rn∑
k=1

N

Rn

I
[
t(k)
n ≤ t < t

(k)
n+1

]
. (19)

Expression (18) for m(t) then simplifies to [41]

m(t) = `2

∞∑
n=0

n

Rn

Rn∑
k=1

I
[
t(k)
n ≤ t < t

(k)
n+1

]
, (20)

where the t
(k)
n are independent replica of tn. Each replica is formed according to (16),

where the τi are independent identically distributed random variables characterized by the
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FIG. 2. (a) Concentration profile at t = 20τκ and (b) disorder average mean square displacement

for a pulse injection into q = 3 dimensional random media for β = 1/4 and κ = 1. The full symbols

represent the disorder ensemble average, lines the behaviors in single realizations. (Right) Open

symbols denote the behavior of the corresponding annealed disorder model, stars the behavior

of the equivalent CTRW discussed in Section II C. The solid black line denotes the early time

behavior (31), the dashed line denotes the late time behavior (33).

PDF (12). Expression (20) captures the impact of noise on the disorder sampling in a single

medium realization. In general, we obtain for the noise average of the kth power nkt of the

number of steps needed to arrive at time t

〈nkt 〉 ≈
∞∑
n=0

nk

Rn

Rn∑
k=1

I
[
t(k)
n ≤ t < t

(k)
n+1

]
. (21)

Similarly, the particle density (14) in a single realization may be approximated in terms of

independent replica of tn as

p(x, t) =
∞∑
n=0

〈δ(x− xn)〉 1

Rn

Rn∑
i=1

I(t(i)n ≤ t < t
(i)
n+1). (22)

These expressions form the basis for the quantification of the disorder average mean squared

displacements, its self-averaging properties and ergodicity in the following sections.

The key quantity for the determination of the impact of diffusion on disorder sampling

in single disorder realizations and thus the average diffusion behavior is the number of

independent replica of tn that can be formed in a single realization,

Rn =
(2n)q/2

Sn
. (23)
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The sampling efficiency Rn may be seen as the number of disorder realizations which can be

sampled by the noise ensemble in a single disorder realization. For q < 2 spatial dimension

Rn ∼ 1 which implies that all particles in a single disorder realization see in average the same

disorder. There is no diversification and disorder sampling is minimum. Differences between

disorder realizations decrease as the ensemble of particles in single realizations experiences

a disorder spectrum that is representative for the ensemble of media. For q = 2 we find that

Rn ∼ ln(n). This means that the number of disorder configuration that may be sampled

within a single realization increases logarithmically with the number of steps; there is a

weak sampling. For q > 2, we find that Rn ∼ nq/2−1. As expected, the efficiency of disorder

sampling increases with the dimensionality of space. These behaviors have an impact on the

self-averaging properties of the mean square displacement as discussed in the following.

C. Disorder Average

The average diffusion behavior can be described by the disorder average over the particle

distribution (22),

p(x, t) =
∞∑
n=0

〈δ(x− xn)〉 1

Rn

Rn∑
i=1

I(t(i)n ≤ t < t
(i)
n+1). (24)

Here and in the following the overbar indicates the average over the ensemble of disorder

realizations. The disorder ensemble average removes here the dependence of the t
(i)
n on the

single disorder realizations such that we can write

p(x, t) =
∞∑
n=0

〈δ(x− xn)〉pn(t), (25)

where pn(t) is the distribution of numbers of steps needed to reach time t,

pn(t) = I(tn ≤ t < tn+1). (26)

The particle time tn after n steps is given by (16).

In q > 2 spatial dimensions the number Sn of distinct sites visited increases linearly with

step number, Sn = bn, where b depends on the type of lattice on which the medium is dis-

cretized, and thus on the geometry of the medium. Here, we consider a simple cubic lattice,

for which b ≈ 0.66 [48]. Accordingly, for q > 2, the renormalised particle trajectory (16) can
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FIG. 3. (a, c) Concentration profiles at t = 20τκ for a pulse injection into (a) q = 2 and (c)

q = 1 dimensional random media for β = 1/4 and κ = 1. The full symbols represent the disorder

ensemble average, lines the behaviors in single realizations. (b, d) Disorder average mean square

displacement for a pulse injection into (b) q = 2 and (d) q = 1 (b) dimensional random media for

β = 1/4 and κ = 1. The full symbols represent the disorder average, lines the behaviors in single

realizations. Open symbols denote the behavior of the corresponding annealed disorder model.

The solid black line denotes the early time behavior (31), the dashed lines denotes the late time

behaviors (35).

then be written as

xN =
N∑
i=1

`√
b
ηi, tN =

N∑
i=1

τi
b
, (27)

see Appendix A. These implies that the average particle motion describes a CTRW [1]. For

q ≤ 2 it is not possible to formulate the renormalised space-time particle motion (16) in

the form of a CTRW because of the step number dependence of the ratio Sn/n, which is

Sn/n ∝ nq/2−1 in q < 2 and Sn/n = 1/ ln(n) in q = 1 spatial dimension.
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III. DIFFUSION BEHAVIOR

In this Section we investigate the diffusion behavior in q = 1, 2 and 3 spatial dimensions

both numerically and analytically. We study the disorder ensemble average diffusion be-

havior as well as diffusion in single disorder realizations. The media are characterized by a

spatially random distribution of retardation coefficients θ(x) and organized in equisized hy-

percubes of length ` as illustrated in Figure 1. The retardation coefficients θ(x) are assigned

to the hypercubes randomly. This type of medium has a linear tent-shaped correlation func-

tion. As discussed in Section II A, such media can be considered caricatures of more general

random media characterized by a constant correlation distance `. The spatial random fields

θ(x) generated in this way are stationary and isotropic. The distribution of point values of

θ(x) is denoted by pθ(θ). We consider in the following disorder scenarios characterized by

pθ(θ) ∝ θ−1−β (28)

with β > 0 and θ ≥ 1. According to (12), this implies a transition time PDF that behaves

as

ψ(t) ∝
(
t

τκ

)−1−β

. (29)

Moments of order higher than bβc are not defined, where b·c denotes the floor function.

The setup of the numerical random walk simulations and the specific choice for pθ(θ) are

described in Appendix F. In the following, we first discuss the disorder average behavior,

which we then contrast with the diffusion behavior in single medium realizations.

We study the diffusion behavior in terms of the particle distributions and mean square

displacements. For illustration, we consider the integrated particle distributions p(x1, t) =

〈δ[x1 − x1(t)]〉 for q = 2 and 3As initial condition we consider an instantaneous particle

injection at x = 0. We first consider the disorder average diffusion behavior and briefly

summarize the well known long time scaling of the disorder average mean square displace-

ment m(t). We then study the diffusion behavior in single realizations and the sample to

sample fluctuations as a function of the spatial dimensions and the disorder distribution.
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A. Disorder average behavior

The disorder averaged mean square displacement m(t) = 〈x(t)2〉 is obtained by averag-

ing (20) as

m(t) = `2nt, (30)

where the overbar indicates the average over the ensemble of realizations. During the first

step, nt can be approximated by a Poisson variable whose mean is given by nt = t/τκθ(0)−1.

Thus, the early time behavior of m(t) is

m(t) =
2qκ

θH
t, (31)

where θH = 1/θ−1 is the harmonic average of θ. This behavior is valid for times shorter

than the characteristic diffusion time τc across the injection region of size `,

τc = θHτκ, (32)

In the following, we briefly discuss the diffusion behavior for disorder scenarios characterized

by infinite and finite mean transition times.

1. Infinite mean transition time (0 < β < 1)

For infinite mean transition time the disorder average long time diffusion behavior is sub-

diffusive. The scalings of the mean squared displacements for diffusion in quenched disorder

depend on the dimensionality of space and are reported in Ref. [1] and derived in the current

framework in Appendix D 1.

As discussed in Section II C, for q > 2 dimensions, for q > 2 dimensions, the disorder

average diffusion behavior describes a CTRW and m(t) scales as

m(t) ∝ tβ. (33)

Figure 2a shows the areally integrated profile, which behaves as the stretched exponen-

tial [39]

p(x1, t) ∼ exp
[
−a|x1/m(t)|2/(2−β)

]
(34)
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FIG. 4. (a) Concentration profile at t = 20τc for a pulse injection into a q = 1 dimensional random

media for β = 3/2 and κ = 1. The full symbols represent the disorder average, the line the behavior

in a single medium realization. (b) Disorder average mean square displacement for a point injection

into (triangles) q = 3, (squares) q = 2 and (circles) q = 1 dimensional random media. The full

symbols represent the ensemble average, the lines the behavior in single q = 1 dimensional medium

realizations. The solid black line denotes the early time behavior (31), the dashed line the late

time behavior (37).

with a a positive constant and m(t) given by (33). Figure 2b shows the numerically obtained

m(t), the exact early time behavior (31) and the long time scaling (33). The behavior of

the equivalent renormalised CTRW discussed in Section II C and the diffusion behavior in

an annealed disorder scenario characterized by ψ(t) are also displayed in Figure 2b. Note

that the annealed scenario does not account for the renormalisation of the space and time

increments. The mean square displacement in the annealed scenario is equal to the quenched

case at short times. It underestimates m(t) at times t > τc because it does not account for

the renormalised time and space increments. Conversely, the equivalent CTRW coincides

with the quenched behavior for t � τc. The disorder average behavior behaves as in an

equivalent annealed disorder. The quenched nature of the spatial disorder is only revealed

in the sample to sample fluctuations as discussed in the next section.

In q = 2 and q < 2 dimensions, m(t) behaves as

m(t) ∝ tβ ln(t)1−β, m(t) ∝ t
2β

2β−qβ+q , (35)

respectively. The mean square behavior is sub-diffusive, but increases faster than in q > 2.

In the following, we focus on q = 1 and q = 2 as well as q > 2 spatial dimensions.
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Figures 3a and c show the disorder average particle distributions in q = 2 and q = 1

dimensions and illustrates that m(t) increases faster as dimension decreases. The profile for

q = 2 dimensions adjusts to the same stretched exponential (34) as in q = 3 with m(t) given

by (35). For q = 1 the profile is well described by the stretched exponential [42]

p(x1, t) ∼ exp(−b|x/m(t)|1+β) (36)

with b a positive constant and m(t) the disorder average mean square displacement (35) for

q = 1.

Figures 3b and d display the disorder average mean square displacement for q = 2 and

q = 1 dimensions. For comparison, we plot the diffusion behavior for an annealed disorder

scenario characterized by the same ψ(t). The short time behavior is given exactly by (31);

the long time behavior for t � τc is given by (35). At short times t < τc the annealed

and quenched scenarios behave in the same way because the behavior is given by the har-

monic average of the residence times in the injection region. At larger time, when particles

start sampling the disorder, the space dependency of transition times implies correlation

of successive time increments. Thus, in quenched disorder particles visit in average a lower

number of different sites than in annealed disorder. Consequently particles encounter a lower

number of high retardation sites that determines long time behaviour. As a consequence,

mean square displacement increases slower in annealed than in quenched disorder.

2. Finite mean transition time (β > 1)

Here, we consider media characterized by a power law distribution of retardation coeffi-

cients with β > 1. In this case, the mean transition time τ exists. The long time diffusion

behavior is normal. The disorder average mean square displacement behaves in leading order

as (see Appendix D 2)

m(t) =
2qκ

θA
t, (37)

where θA = θ(x) is the arithmetic average of θ(x). This behavior holds in any dimension.

The quenched nature of the disorder manifests in the self-averaging behavior of the mean

square displacement as discussed below.

Figure 4a illustrates the particle distribution for q = 1 and β = 3/2. It is well described

by a Gaussian distribution. Figure 4b shows the disorder average mean square displacement
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obtained for q = 1, 2 and q = 3 dimensional disorder distribution with β = 3/2 and the

particle distribution for q = 1. We observe that m(t) scale linearly with time for any

dimension. For t < τc it behaves as predicted by (31) and for t > τc as (37).

B. Single medium realizations

In this Section we study diffusion in single disorder realizations. We discuss the sample to

sample fluctuations of the mean square displacement and the particle distribution between

realizations. The early time mean square displacement in a single realization is given by

m(t) =
2qκ

θ(0)
t. (38)

FIG. 5. Particle distribution for a pulse injection into a q = 2 dimensional heterogeneous medium

for β = 1/4 and κ = 1. Different colors denote different values of concentration with a logarithmic

color scheme.
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FIG. 6. Particle distribution across a section for a pulse injection into a q = 3 dimensional hetero-

geneous medium for β = 1/4 and κ = 1. Different colors denote different values of concentration

with a logarithmic color scheme.

This behavior persists as long as the particle displacement is smaller than the characteristic

length scale `, this means for times t < θ(0)τκ. This time scale is determined by the disorder

at the injection point, which varies from realization to realization.

1. Infinite mean transition time (0 < β < 1)

Figure 3c compares the particle distributions at t = 20τκ after a pulse injection in a single

q = 1–dimensional disorder realizations with the disorder ensemble average. The spatial

particle distribution is characterized by multiple peaks which are due to the retention of

particles in regions of high θ. Figure 3d shows the mean square displacement for different

q = 1 dimensional disorder realizations. As predicted, at short times the mean square

displacement increases in each realization linearly in time until θ(0)τκ with θ(0) the retention

19



of the first pixel. At times larger than θ(0)τκ the injected particles start sampling the medium

heterogeneity of high and low θ values. Thus, diffusion at long times is slowed down due to

particle retention in regions of high θ and the mean square displacement fluctuates around

the ensemble mean behavior given by (35).

Figure 5 shows the particle distribution in a single realization of a q = 2 dimensional

random medium. We observe similar localization features as in q = 1. The corresponding

integrated particle distributions are compared in Figure 3a to the average distribution.

The integrated profiles are naturally much smoother than for q = 1. The mean square

displacement displayed in Figure 3b shows the exact behavior (38) for t < θ(0)τκ. As in

q = 1, m(t) slows down and fluctuates around the ensemble mean (35). The fluctuations

are smaller than in q = 1 due to the more efficient disorder sampling. This feature is even

more pronounced in q = 3.

Figure 6 shows the particle distribution in a section of a q = 3 dimensional medium.Again,

we observe certain localization features, but the particle distribution is smoother than in

q = 2 due to more efficient disorder sampling. The more efficient disorder sampling is also

manifest in the behavior of the mean square displacement shown in 2. While the short

time behavior depends strongly on the single medium properties, the long time behavior

fluctuates much less about the mean behavior (33) than in q < 3.

In summary, fluctuations of the particle distribution and the mean square displacement

are decreasing with increasing for spatial dimension. This is due to the increase in the

sampling efficiency with q. As discussed in Section II B, the number Rn of possibles sites

that may be explored evolves with step number as Rn ∝ nq/2−1 and the ability Sn of sampling

new sites increases with as a function of q.

2. Finite mean transition time (β > 1)

Here we consider media characterized by the disorder distribution (28) with β > 1, which

implies that the ensemble mean transition time τ is finite. Figure 4b illustrates the mean

square displacements in single q = 1 dimensional disorder realizations with β = 3/2. For

compactness, we omit the behaviors for q = 2 and q = 3. At short times, for t < θ(0)τκ,

m(t) increases linearly with time as (38). At long times, the behaviors are approximately

linear in all realizations and fluctuate around the disorder average (37). For q = 2 and
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q = 3, the behaviors are similar, but the fluctuations around the mean behavior decrease

with increasing spatial dimension (not shown).

IV. SELF-AVERAGING

The differences in the diffusion behaviors between disorder realizations depend on the

efficiency by which the diffusing particles sample the heterogeneity in single disorder real-

izations. This efficiency is expressed by Sn, the average number of distinct sites visited after

n random walk steps, and by the number of different disorder configurations particles are

able to see in a single realization, which is measured by Rn defined by (23). As discussed in

Section II B, in q = 1 dimension the number of different disorder configurations accessible to

the diffusing particles within a single realization is of the order of 1. Thus, we expect that

sample to sample fluctuations persist, while in q ≥ 2, Rn increases with step number. In

the following, we discuss how these attributes impact on the sample-to-sample fluctuations

of the mean square displacement for anomalous as well as normal average transport.

The fluctuations of the mean square displacement m(t) are quantified by its disorder

variance

σ2
m(t) = m(t)2 −m(t)2 (39)

where m(t) for a single realization is given by (20). Again, we obtain an exact result for

early times t < τκ/θH . Using expression (38) for m(t) and (31) for its disorder average

in (39), we obtain

σ2
m(t) = 4qκ2t2

(
θ−1 − θ−1

H

)2
. (40)

For times t� τc, we derive in Appendix B the following compact expression:

σ2
m(t) = `4nt(nt − nt)/Rnt . (41)

The mean square displacement is quantified in terms of the disorder averages of the renewal

process nt = max(n|tn ≤ t), which describes the number of steps needed to reach time t

in the process tn defined in (16). The self-averaging property is quantified by the relative

variance [1, 49, 50]

Σ(t) =
σ2
m(t)

m(t)2
. (42)
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FIG. 7. Evolution of the variance σ2
m(t) for a pulse injection of 105 particles into 103 realizations

of (triangles) q = 3, (squares) q = 2 and (circles) q = 1 dimensional random media with κ = 1 and

(a) β = 1/4, (b) β = 3/2 and (c) β = 5/2. The solid black line shows the analytical early time

behavior (40), the dashed black lines the late time behaviors (top) (43)–(45), (middle) (46)–(47)

and (bottom) (49).

If limt→∞Σ(t) = 0, diffusion is referred to as self-averaging, if limt→∞Σ(t) > 0 as non self-

averaging. Note that the fact that Σ(t) goes to 0 with increasing time does not imply that the

variance disappears. It may in fact be large. However, the ratio of fluctuation to mean value

goes to 0, which means that the relative error of the disorder ensemble averaged quantity
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disappears in the limit of infinite times. This property is defined here as self-averaging

in agreement with Aslangul et al. [49] and Bouchaud and Georges [1], who consider the

evolution of the relative variance over time, and Wiseman and Domani [50], who consider

the evolution of the relative variance as a function of the spatial size of a disorder sample.

In the following, we discuss the variance of the mean square displacement m(t) and its

self-averaging behavior for disorder scenarios that are characterized by infinite and finite

mean transition times. The detailed calculations leading to the results discussed in the

following can be found in Appendix E and, for the case of infinite mean transition time in

Ref. [41], which we summarize here for completeness.

A. Infinite mean transition time (0 < β < 1)

The disorder average mean square displacement for 0 < β < 1 is sub-diffusive in any

spatial dimension. The variance of m(t) in q = 1 spatial dimensions behaves for t� τc as

σ2
m(t) ∝ t

4β
2β−qβ+q . (43)

Thus, using (43) and (35) for the relative variance we have Σ(t) ∼ 1. This implies that

the mean square displacement is not self-averaging for q = 1 as expected from the con-

stant number of possible realities (Rn ∼ 1) that may be sampled in a single realization.

Nevertheless, (43) implies that m(t) ∝ m(t) ∝ t
2β

2β−qβ+q , as discussed in the previous section.

For q = 2, one finds the following long time behavior scaling:

σ2
m(t) ∝ t2β ln(t)1−2β. (44)

Here the relative variance Σ(t) ∝ 1/ ln(t), see (35). The process is self-averaging, but the

relative variance decays very slowly. This behavior is in line with the slow increase of

Sn ∼ ln(n) of new sites that may be sampled.

For q > 2, the disorder variance of m(t) scale as

σ2
m(t) ∝ tβ(3−q/2). (45)

This implies, together with (33), that the relative variance scales as Σ(t) ∝ tβ(1−q/2). The

diffusion behavior is self-averaging and the decay of the relative variance decreases with the

spatial dimension. Again, this behavior is reflected by the increasing sampling efficiency
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expressed both by the ability of sampling new sites, which scales as Sn ∼ n and the number

of different realities that may be sampled by the random walk, which scales as Rn ∼ nq/2−1.

Figure 7a shows the temporal evolution of σ2
m(t) sampled from numerical Monte-Carlo

simulations using 104 realizations of the random medium for β = 1/4 and q = 1, 2 and 3.

The analytical results (40) for early times and the late time scalings (43)–(44) are consistent

with the numerical simulation data. At short times t � τc there is a quadratic increase of

uncertainty of the mean square displacement, which is due to the poor disorder sampling;

particles have not yet diffused over lengths larger than the characteristics disorder scale `.

For times t > τc, particles start seeing the disorder and the variance increase slows down.

B. Finite mean transition time (β > 1)

For finite mean transition time, the disorder average mean square displacement evolves

linearly with time. This means that average particle motion is diffusive, i.e. m(t) ∝ t for

any dimension q. The behavior of the variance of m(t), however, depends on the spatial

dimension and on the value of β. We distinguish the cases 1 < β < 2 for which the mean

transition time is finite while τ 2 is infinite, and the case β > 2 for which both the mean

and the mean square transition time are finite. The results presented in the following are

derived in Appendix E.

1. Self-averaging property for 1 < β < 2

For 1 < β < 2 the variance of the transition time is infinite. The scaling of σ2
m(t) for

q = 1 is:

σ2
m(t) ∝ (t/τ)

4−q(β−1)
2 . (46)

This indicates that the variance increases with time faster than in the case 0 < β < 1.

The relative variance, however, decays algebraically with time as Σ(t) ∝ (t/τ)−
q(β−1)

2 . The

mean square displacement is self-averaging despite the poor disorder sampling in q = 1 for

which the number of possible disorder realizations that may be sampled is Rn ∼ 1. Disorder

sampling is still poor as expressed by the slow decay of the relative variance. For q = 2, we
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find:

σ2
m(t) ∝ (t/τ)3−β ln(t/τ)β−2. (47)

The relative variance here decreases as Σ(t) ∝ (t/τ)1−β ln(t/τ)β−2, i.e. slower than in the

case 0 < β < 1.

For q > 2 we obtain for σ2(t) the long time behavior

σ2
m(t) ∝ (t/τ)4−β−q/2. (48)

Similarly to the case q ≤ 2 dimensions, the disorder variance increases faster than in the

case of an infinite mean transition time. The relative variance, however, scales as Σ(t) ∝

(t/τ)2−β−q/2, which indicates that diffusion is self-averaging. These behaviors are illustrated

in Figure 7 for β = 3/2 for q = 1, 2 and 3. At early times, we observe the characteristic

quadratic increase, which slows down when the particles start experiencing the disorder.

2. Self averaging property for β > 2

For β > 2 both the mean and mean squared transition times are finite. In this case, one

obtains for the disorder variance σ2
m(t):

σ2
m(t) ∝ (t/τ)2−q/2. (49)

This implies that the relative variance behaves as Σ(t) ∝ (t/τ)−q/2. As expected the behavior

is always self-averaging, but the relative variance decreases slower with decreasing spatial

dimension. Figure 7c illustrates the behavior of σ2
m(t) for β = 5/2 and q = 1, 2 and 3 spatial

dimensions.

V. ERGODICITY

In this section we study the issue of ergodicity. While self-averaging refers to the sample

to sample fluctuations of the mean square displacement m(t) with respect to its disorder

average m(t), the ergodicity property considers the fluctuations of the time averaged mean

square displacement with respect to its noise average. In other words, self-averaging refers

to the variability of noise averages between disorder realizations, while ergodicity refers to
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variability of time averages between noise realizations (particles) in single disorder realiza-

tions.

The mean square displacement of x(s) in (8) is ergodic in operational time s because it

describes an ordinary random walk characterized by a stationary increment. This is different

for the process x(t) ≡ x[s(t)] that in clock time samples the heterogeneity slower. Ergodicity

is related to the ability of a single particle to sample the available fluctuation spectrum in a

finite time. The time process here is directly related to the disorder process as given in (8).

Thus, disorder sampling in time is limited by the disorder itself. In order to probe the

ergodicity of the random walk, we consider the time average particle increments [35]

m∆(t) =
1

t−∆

t−∆∫
0

dt′ [x(t′ + ∆)− x(t′)]
2
. (50)

It is interesting to note that this quantity is related to the empirical variogram [51], which

is used in geostatistics to characterize the variability of a spatial random field. Eq. (50) is

typically referred to as time average mean square displacement in the literature. Here, we

refer to it as the time average of the increment process x∆(t) ≡ x(t+ ∆)− x(t). Using (8),

we can write

x∆(t) =
√

2κw∆(t), w∆(t) =

s(t+∆)∫
s(t)

ds′η(s′) (51)

with 〈w∆(t)〉 = 0 and 〈w∆(t)2〉 = q[s(t + ∆) − s(t)]. Thus, we may write (50) in a weak

sense as

m∆(t) =
2qκ

t−∆

t−∆∫
0

dt′ [s(t′ + ∆)− s(t′)] . (52)

We furthermore expand this expression for t� ∆ in order to obtain

m∆(t) =
2q∆κ

t
s(t) + . . . , (53)

where the dots denote contributions of order ∆2. We define now the quantity

ma(t) ≡
m∆(t)

∆
t = 2qκs(t), (54)

which can be seen as the time averaged mean square displacement while m∆(t)/2∆ denotes

an apparent diffusion coefficient. Note that Lubelski et al. [36] suggest to consider m∆(t)/2t
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as an effective diffusion coefficient. These authors focus on the displacement increment as a

function of the time increment ∆, while here, we study the long time behavior of the time-

averaged mean square displacement. According to (5), the noise mean of ma(t) is equal to

the mean square displacement 〈ma(t)〉 = m(t). The process s(t) is identified in the coarse

grained random walk (9) by s(t) ≡ τκnt such that

ma(t) = `2nt. (55)

The disorder average of ma(t) is equal to m(t). Note that Miyaguchi and Akimoto [38]

defined a diffusion coefficient as Dt = nt/t, which is related to ma(t) as Dt = ma(t)/`
2t.

These authors study the full distribution of Dt over the disorder ensemble as well as its

disorder mean and variance. The disorder mean of Dt is related to the disorder mean square

displacement m(t) as Dt = m(t)/`2t.

Ergodicity of the mean square displacement is measured in terms of the variance of ma(t)

with respect to its noise average m(t),

σ2
a(t) =

〈
[ma(t)−m(t)〉]2

〉
= `4

(〈
n2
t

〉
− 〈nt〉2

)
. (56)

Let us first consider the short time behavior of σ2
a(t). The variance of ma(t) in a single

realization is given by

σ2
a(t) =

`4t

τκθ(0)
= `2m(t), (57)

because at the first step in a single medium realization, the transition time is exponentially

distributed with mean θ(0)τκ. This renders nt approximately a Poisson variable as long

as 〈nt〉 ≤ 1. Thus, in the diffusive short time regime, σ2
a(t) behaves as the mean square

displacement. Its disorder average is given at short times t < τκ by

σ2
a(t) = `2 2qκt

θH
. (58)

In order to quantify this variance in a systematic way at long times t � τc, we consider

the disorder average of (56), which can be tautologically rewritten as

σ2
a(t) = `4

(
〈n2

t 〉 − 〈nt〉
2
)
− `4

(
〈nt〉2 − 〈nt〉

2
)
. (59)
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FIG. 8. Evolution of the time-averaged mean square displacement ma(t) defined by (55) (dashed)

for 4 particle trajectories, and the noise average m(t) for (solid) 105 particles injected at the origin

of a q = 3 heterogeneous medium for β = 1/4. The solid black line shows the analytical early time

behavior (38), the dashed black lines the late time behavior (33).

The second term on the right is identified with the variance σ2
m(t) defined by (39). The first

term on the right is the disorder variance of the step number process nt, which is independent

of the noise in a single disorder realization,

σ2
n(t) = n2

t − nt2. (60)

Thus, σ2
a(t) is given by

σ2
a(t) = `4σ2

n(t)− σ2
m(t). (61)

This implies that σ2
n(t) ≥ σ2

m(t)/`4 due to the positiveness of the variance. Thus, the long

time behavior of σ2
a(t) is dominated by σ2

n(t). The ratio of σ2
n(t) and n2

t has been termed

ergodicity breaking parameter EB in the literature [52],

EB =
σ2
n(t)

n2
t

. (62)

If the value of EB is nonzero in the limit of infinite times, one speaks of weak ergodicity

breaking. Note that σ2
n(t) = [ma(t)2−m(t)2]/`4 is proportional to the disorder variance of the
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time average mean square displacement. Note also, that EB is equal to the relative disorder

variance of the diffusion coefficient Dt studied by Miyaguchi and Akimoto [38]. Specifically,

the variance σ2
n(t) is related to the disorder variance of Dt as σ2

n(t) = (D2
t −D

2

t )t
2.

Appendix C derives the asymptotic long time behaviors for the moments and the PDF

of nt with respect to the disorder average for q dimensions and for disorder scenarios that

are characterized by infinite and finite mean transition times. In the following, we discuss

ma(t) and its disorder variance in terms of σ2
n(t) for different values of q and β.

A. Infinite mean transition time (0 < β < 1)

As outlined above, for infinite mean transition time, m(t) evolves subdiffusively with

time in any spatial dimension. The time average mean square displacement ma(t) show

subdiffusive scaling as illustrated in Figure 8 with significant fluctuations around the noise

mean m(t). As outlined above, these fluctuations can be quantified in terms of the disorder

variance σ2
n(t). Miyaguchi and Akimoto [38] report results for the variance of Dt, which is

equivalent to σ2
n(t). Also, these authors report explicit expressions for EB. In the following,
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FIG. 9. Evolution of the variance σ2
n(t) for a pulse injection into 103 realizations of a (circles) q = 1,

(squares) q = 2 and (triangles) q = 3 random medium for β = 1/4. The solid black line shows the

analytical early time behavior (58), the dashed black lines the late time behaviors (63)–(65).
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FIG. 10. Evolution of the time-averaged mean square displacement ma(t) defined by (55) (dashed)

for 4 particle trajectories, and the noise average m(t) for (solid) 105 particles injected at the origin

of a q = 3 heterogeneous medium for β = 3/2. The solid black line shows the analytical early time

behavior (38), the dashed black lines the late time behavior (37).

we summarize these results for completeness before we discuss the behavior of σ2
n(t) and

thus σ2
a(t) for disorder distributions characterized by finite mean transition times.

For q = 1, the scaling of the disorder variance σ2
n(t) is given by

σ2
n(t) ∝ t

4β
2β−qβ+q , (63)

see also (D6). It scales in the same way as the disorder variance of m(t) given in (43). As

nt ∝ t
2β

2β−qβ+q , the ergodicity breaking parameter is EB ∼ 1. This means that diffusion is

here weakly ergodicity breaking.

For q = 2 dimensions, σ2
n(t) behaves as

σ2
n(t) ∝ t2β ln(t)2−2β, (64)

see also (D9). This implies that the disorder variance of σ2
a(t) increases faster than σ2

m(t)

given by (44). In fact, σ2
n(t) scales as n2

t . Thus the ergodicity breaking parameter EB ∼ 1

and again, diffusion is weakly ergodicity breaking.

30



For q > 2, the scaling for the disorder variance of nt is

σ2
n(t) ∝ t2β, (65)

see also (D11). The variance σ2
n(t) scales in the same way as n2

t and thus, again EB ∼ 1.

Also in q = 3, diffusion is weakly ergodicity breaking. These behaviors are illustrated in

Figure (9) and compared with data from numerical random particle tracking simulations.

Explicit expressions for EB can be found in Miyaguchi and Akimoto [38].

B. Finite mean transition time (β > 1)

For disorder scenarios that are characterized by finite mean transition times τ <∞, the

average diffusion behavior is normal and the diffusion is asymptotically self-averaging. The

time average mean square displacement ma(t) evolves approximately linear but fluctuates

about the noise mean m(t) as illustrated in Figure 10.

For q = 1, we obtain from (D14) for σ2
n(t) the following scaling behavior:

σ2
n(t) ∝ (t/〈τ〉)2+

q(1−β)
2 . (66)
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FIG. 11. Evolution of the variance σ2
n(t) for a pulse injection into 103 realizations of a (circles)

q = 1, (squares) q = 2 and (triangles) q = 3 random medium for β = 3/2. The solid black line shows

the analytical early time behavior (58), the dashed black lines the late time behaviors (66)–(68).
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The behavior for β > 2 is obtained by setting β = 2. Since the disorder mean nt scales as t,

the ergodicity breaking parameter behaves as EB ∝ (t/〈τ〉)
q(1−β)

2 . This means it decreases

relatively slowly with time as t−γ, where 0 < γ ≤ q/2.

For q = 2, expression (D17) gives:

σ2
n(t) ∝ (t/τ)3−β ln(t/τ)β−1 (67)

Again, the behavior for β > 2 is obtained by setting β = 2. The ergodicity breaking

parameter here scales as EB ∝ [(t/τ)/ ln(t/τ)]1−β. Thus, it decays as [t/ ln(t)]−γ with

0 < γ ≤ 1.

For q > 2, we obtain from (D20)

σ2
n(t) ∝ (t/〈τ〉)3−β. (68)

The ergodicity breaking parameter scales as EB ∝ (t/τ)1−β. It decays as t−γ with 0 <

γ ≤ 1. Thus, while the time average mean square displacement is asymptotically ergodic,

its variance decays algebraically with time. Figure 11 shows the evolution of the disorder

variance of nt in q = 1, 2 and 3 dimensions from numerical random walk simulations.

For disorder scenarios characterized by a finite mean transition time, diffusion is asymp-

totically ergodic and self-averaging, as discussed in Section IV. Thus, the ensemble of

particles is representative of individual particle trajectories (ergodicity), and the disorder

ensemble is representative of the diffusion behavior in single realization (self-averaging).

VI. SUMMARY AND CONCLUSIONS

We study self-averaging and ergodicity of diffusion in heterogeneous media. Ergodicity

refers to the question whether the particle ensemble statistics in a single realization are

representative of the temporal statistics sampled along a single particle trajectory. It is

a fundamental property for the inference of stochastic particle rules from single particle

tracking observations. The notion of ergodicity is different from the the notion of self-

averaging. The latter refers to the representation of the particle statistics in a single medium

realization though the disorder ensemble statistics. It is a fundamental condition for the use

of stochastic modeling for the prediction of diffusion behavior in heterogeneous media. If

these properties apply, they are approached asymptotically.
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We analyze these behaviors for diffusion in heterogeneous media that are characterized

by a spatially variable retardation coefficients, which quantifies particle retention due to

physical and chemical interactions with the host medium. The retardation coefficient is

modeled as a stationary spatial random field. The diffusion problem is coarse-grained on

the characteristic heterogeneity length scale and numerically implemented using a time-

domain random walk (TDRW). We derive an explicit expression for the noise average in a

single realization which depends on the number Rn of different disorder realizations that

the noise ensemble may sample after n diffusion steps in a single disorder realization. As is

well known, for q > 2, the average particle motion in this model describes a continous time

random walk (CTRW). We derive the renormalised space and time increments to match the

long time diffusion behavior obtained from the TDRW simulations for q = 3.

We then focus on the mean-square particle displacement and particle distributions aver-

aged over the disorder ensemble and in single disorder realizations. We derive explicit expres-

sions for the early time behavior of the mean square displacement and confirm through the

numerical simulations the known analytical results for the asymptotic scaling of the mean-

square displacement and disorder average particle distribution for q ≥ 1 spatial dimensions.

The disorder ensemble average behavior is contrasted to the evolution of the mean-square

displacement and particle distributions in single realizations. We observe significant sample

to sample fluctuations and segregation of the particle distribution due to localized strong

retention, which are more significant for decreasing spatial dimension. These observations

are discussed in the light of the sampling efficiency Rn, which depends on the spatial dimen-

sion q; Rn increases faster with n for increasing q. For q = 1, Rn ∼ 1, this means, particles

sample in a average only one reality per realization. For q = 2, Rn increase logarithmically

with step number and in q = 3 as
√
n.

The sample to sample fluctuations are quantified in terms of the disorder variance of

the mean-square displacement between disorder realizations. The self-averaging behavior

is probed by the relative variance Σ(t). If Σ(t) goes asymptotically to zero, m(t) is self-

averaging. This does not mean, however, that the fluctuations of m(t) are necessarily small

at finite times. We derive explicit expressions for the variance in q dimensions at early and

late times, which are compared to TDRW simulations of the full heterogeneous diffusion

problem for subdiffusive and diffusive disorder configurations. Under subdiffusive conditions,

the mean square displacement is non self-averaging for q = 1 and self-averaging for q ≥ 2.
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Under diffusive conditions, i.e., when m(t) ∝ t, we distinguish scenarios for which the

variance of the transition time is infinite and finite. Under both conditions, m(t) is self-

averaging in q dimension. The rate of convergence of Σ(t) depends on the dimension of

space and the heterogeneity distribution.

We study ergodicity in terms of the noise variance of the time-averaged mean square dis-

placement ma(t), which is based on the definition of the time-averaged particle displacement

during a time increment ∆. In a single realization ma(t) ∝ nt, the number of steps a particle

performs to reach time t. Due to the sample to sample fluctuations of the diffusion behavior

between disorder realization, also the noise variance of ma(t) is a fluctuating quantity. Thus,

we probe the ergodicity of ma(t) in terms of the disorder average of its variance, which is

dominated by the disorder variance of the step number nt. The ergodicity breaking parame-

ter EB is defined as the ratio between the disorder variance of nt and n2
t consistent with the

definition by Bel and Barkai [35] in the framework of CTRW. Ergodicity is studied both for

diffusive and subdiffusive disorder configurations. We derive explicit analytical expressions

for EB. Under subdiffusive conditions, the mean square displacement is weakly ergodicity

breaking in all dimensions. Under diffusive conditions, for which the mean transition time

is finite, diffusion is ergodic. The convergence toward ergodicity depends also here on the

spatial dimension and disorder distribution.

In conclusion, under diffusive conditions, this means when the mean transition time is

finite, the mean square displacement is both ergodic and self-averaging. Under subdiffusive

conditions, on the other hand, the mean square displacement is weakly ergodicity breaking

in all dimensions, while at the same time it is self-averaging for d > 2. This means, the

noise ensemble is not representative of the single trajectory time statistics, but the disorder

ensemble is representative for the noise ensemble in a single disorder realization.
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Appendix A: Equivalent CTRW for q > 2 spatial dimensions

One difference between the TDRW and the CTRW arises from the correlation of successive

time increments. Here we re-sample the trajectories in (13) such that the trajectories are

constituted by series of Sn independent rescaled space and time increments as

xSn =
Sn∑
i=1

ˆ̀
nηi, tSn =

Sn∑
i=1

n

Sn
τi. (A1)

We require that the variance of xSn be equal to the variance of xn, which implies

ˆ̀2
nSn ≡ `2. (A2)

Thus, we obtain directly ˆ̀
n =

√
n/Sn`. This gives for (A1)

xSn =
Sn∑
i=1

√
n

Sn
`ηi, tSn =

Sn∑
i=1

n

Sn
τi. (A3)

In order to obtain (27) for q > 2, we substitute Sn = bn in (A3) and set N = bbnc, where

b·c is the floor function.

Appendix B: Disorder variance of mean square displacement

The disorder variance of the mean square displacement is defined by (39). In the following,

we derive expression (41). To this end, we consider the second disorder moment of m(t).

We obtain by using (20)

m(t)2 =
∞∑

n,k=0

nk`4 1

Rn

1

Rk

Rn∑
i=1

Rk∑
j=1

I
[
t
(i)
n ≤ t < t

(i)
n+1

]
I
[
t
(j)
k ≤ t < t

(j)
k+1

]
. (B1)

By definition, the t
(i)
n and t

(j)
k are independent for i 6= j. For i = j we have by virtue of the

impulse functions that n = k. Thus, we can write m(t)2 as

m(t)2 = `4

∞∑
n=0

n2

Rn

pn(t) + Λ(t), (B2)

where we defined

Λ(t) =
∞∑

n,k=0

nk`4 1

Rn

1

Rk

Rn∑
i=1

Rk∑
j=1,j 6=i

pn(t)pk(t). (B3)

35



We used here definition (26) of the number of steps needed to arrive at time t. Λ(t) can be

written as

Λ(t) =
∞∑
n≥k

nk`4

(
1− 1

Rn

)
pn(t)pk(t)

+
∞∑
n<k

nk`4

(
1− 1

Rk

)
pn(t)pk(t) (B4)

and due to symmetry, we obtain more compactly

Λ(t) =
∞∑

n,k=1

nk`4

(
1− 1

Rn

)
pn(t)pk(t). (B5)

By comparison with (30), we identify

Λ(t) = m(t)2 −m(t)`2

∞∑
n=1

n

Rn

pn(t) ≡ m(t)2 −m(t)`2nt/Rnt . (B6)

Inserting the latter into (B2) gives

m(t)2 = m(t)
2

+ `4
(
n2
t/Rnt − ntnt/Rnt

)
, (B7)

where we note that

n2
t/Rnt =

∞∑
n=0

n2

Rn

pn(t). (B8)

and that m(t) = `2nt, see (30). Using (B7) in (39) for the variance of the mean square

displacement gives (41).

Appendix C: Distribution of number nt of random walk steps

In order to determine the long-time behaviors of the disorder average mean square dis-

placement, its variance and the variance of the time-average mean square displacement,

we need to determine averages of function of the number nt of random walk steps. Its

distribution is given by

pn(t) = δn,nt = I(tn ≤ t < tn+1). (C1)

Its Laplace transform is given by

p∗n(λ) = λ−1[exp(−λtn)− exp(−λtn+1)], (C2)
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where the times tn and tn+1 here are

tn =
Sn∑
i=1

γnτi, tn+1 =

Sn+1∑
i=1

γn+1τi. (C3)

We defined for convenience γn ≡ n/Sn. Using these expressions in (C2) and performing the

disorder average we obtain

p∗n(λ) = λ−1
[
f ∗n(λ)− f ∗n+1(λ)

]
≈ −λ−1 d

dn
f ∗n(λ), (C4)

where we defined

f ∗n(λ) ≡ ψ(λγn)Sn . (C5)

We consider here transition time PDFs ψ(t) characterized by the power-law behavior (29)

as well as distributions for which all moments exist. We distinguish the cases 0 < β < 1,

1 < β < 2 and β > 2 in (29). The latter covers the leading behavior expected if all moments

of τ exist.

1. Infinite mean transition time: 0 < β < 1

The Laplace transform of ψ(t) can be expanded for small λ as

ψ∗(λ) = 1− aβλβ + . . . . (C6)

where aβ a constant that depends on the specific form of ψ(t). Inserting (C6) into (C4)

gives for λτκ � 1

f ∗n(λ) ≈ exp
(
−aβαnλβ

)
, (C7)

where we defined for convenience αn = γβnSn.

2. Finite mean transition time: β > 1

For 1 < β < 2, this means, if the mean transition time is finite 〈τ〉 < ∞ and 〈τ 2〉 = ∞,

the Laplace transform of ψ(t) can be expanded as

ψ∗(λ) = 1− 〈τ〉λ+ bβλ
β + . . . . (C8)
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where bβ depends on the specific shape of ψ(t). Inserting (C8) into (C4) gives

f ∗n(λ) = ψ∗(λγn)Sn ≈ exp (−nλ〈τ〉)
(
1 + bβαnλ

β + . . .
)
, (C9)

where the dots denote sub-leading contributions.

For β > 2, this mean, if both the mean and mean squared transition time are finite, the

expansion of ψ∗(λ) is

ψ∗(λ) = 1− 〈τ〉λ+
〈τ 2〉

2
λ2 + . . . , (C10)

where the dots denote sub-leading contributions. Inserting (C10) into (C4) gives

fn(λ) ≡ ψ(λγn)Sn ≈ exp (−nλ〈τ〉)
(

1 +
n2

Sn
〈τ 2〉λ2 + . . .

)
, (C11)

where the dots denote sub-leading contributions. This expansion is valid for all transition

time PDFs, for which the first and second moments exist.

Appendix D: Disorder moments of number nt of random walk steps

The kth disorder moment of the step number nt is defined by by

hk(t) =
∞∑
n=0

nkpn(t). (D1)

The Laplace transform of hk(t) can with the above definitions be approximated as

h∗k(λ) ≈ −λ−1

∞∫
0

dnnk
d

dn
f ∗n(λ) (D2)

Integration by parts gives

h∗k(λ) ≈ kλ−1

∞∫
0

dnnk−1f ∗n(λ). (D3)

1. Infinite mean transition time: 0 < β < 1

We write (D3) by using (C7) as

h∗k(λ) ≈ kλ−1

∞∫
0

dnnk−1 exp
(
−aβαnλβ

)
. (D4)
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a. Spatial dimension q = 1

In q = 1, Sn ∼ nq/2 and γn = n1−q/2, therefore αn = n
2β−dβ+d

2 . We obtain by rescaling n

h∗k(λ) ≈ λ−1− 2kβ
2β−dβ+dk

∞∫
0

dnnk−1 exp
(
−aβn

2β−dβ+d
2

)
. (D5)

Inverse Laplace transform gives

hk(t) ∝ t
2kβ

2β−dβ+d . (D6)

b. Spatial dimension q = 2

In q = 2, Sn ∼ n/ ln(n) and γn = ln(n), therefore αn = n ln(n)β−1 such that

h∗k(λ) ≈ λ−1k

∞∫
0

dnnk−1 exp
[
−aβλβn ln(n)β−1

]
. (D7)

We rescale now n→ nλβ ln(1/λ)β−1. Thus, we obtain in leading order in the limit λ→ 0

h∗k(λ) ≈ λ−1−kβ ln(1/λ)k−kβk

∞∫
0

dnnk−1 exp
(
−aβββn

)
. (D8)

Inverse Laplace transform gives

hk(t) ∝ tkβ ln(t)k−kβ. (D9)

c. Spatial dimension q > 2

In q > 2, Sn ∼ n and γn = 1, therefore αn = n such that

h∗k(λ) ≈ λ−1−βk

∞∫
0

dnnk−1 exp (−aβn) . (D10)

Inverse Laplace transform gives

hk(t) ∝ tkβ. (D11)
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2. Finite mean transition time β > 1

For 1 < β < 1, we use (C9) in (C4) in the Laplace transform of (30) in order to obtain

h∗k(λ) ≈ λ−1k

∞∫
0

dnnk−1 exp(−λnτ)

+ λ−1k

∞∫
0

dnnk−1 exp(−λnτ)bβαnλ
β + . . . , (D12)

The case β > 2 is obtained according to (C11) by setting β = 2 and bβ = b2 = 〈τ 2〉/2.

a. q = 1

Using αn = n
2β−dβ+d

2 and rescaling of n, we obtain

h∗k(λ) ≈ λ−1−kk

∞∫
0

dnnk−1 exp(−nτ)

+ λ−1−k− d(1−β)
2 k

∞∫
0

dnnk−1+ 2β−dβ+d
2 exp(−nτ)bβ. (D13)

Inverse Laplace transform gives

hk(t) = (t/τ)k + A1(t/〈τ〉)k+
d(1−β)

2 , (D14)

where we defined

A1 =
bβ
τβ

Γ(k + 2β−dβ+d
2

)

Γ(k + 1 + d(1−β)
2

)
(D15)

b. q = 2

Using αn = n ln(n)β−1 and rescaling of n, we obtain in leading order

h∗k(λ) ≈ λ−1−kk

∞∫
0

dnnk−1 exp(−nτ)

+ λ−2−k+β ln(1/λ)β−1k

∞∫
0

dnnk exp(−nτ)bβ. (D16)

40



Inverse Laplace transform gives

hk(t) = (t/τ)k + A2(t/τ)1+k−β ln(t/τ)β−1. (D17)

where we defined

A2 =
bβ
τβ

kΓ(k + 1)

Γ(k + 2− β)
. (D18)

c. q > 2

Using αn = n and rescaling of n, we obtain

h∗k(λ) ≈ λ−1−kk

∞∫
0

dnnk−1 exp(−nτ)

+ λ−2−k+βk

∞∫
0

dnnk exp(−nτ)bβ. (D19)

Inverse Laplace transform gives

hk(t) = (t/τ)k + A2(t/〈τ〉)1+k−β. (D20)

Appendix E: Variance of the mean square displacement

In order to determine the behavior of the variance σ2
m(t) of the mean square displacement

m(t), we need to evaluate (41), which involves the disorder moments n2
t/Rnt and nt/Rnt of

the random step number nt.

1. Spatial dimension q = 1

For q = 1, Rn = 2q/2. Thus, we obtain for σ2
m(t)

σ2
m(t) =

`4

2q/2

(
n2
t − nt2

)
=

`4

2q/2
[
h2(t)− h1(t)2

]
. (E1)

a. Mean transition time infinite: 0 < β < 1

We obtain from the previous section that

σ2
m(t) ∝ t

4β
2β−dβ+d (E2)
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b. Mean transition time finite: β > 1

For 1 < β < 2, we obtain from the previous section

σ2
m(t) ∝ (t/τ)2+

q(1−β)
2 (E3)

This means, for β > 2 that

σ2
m(t) ∝ (t/τ)2− q

2 . (E4)

2. Spatial dimension q = 2

For q = 2, Rn = 2 ln(n). Thus, we obtain for σ2
m(t)

σ2
m(t) = `4

(
n2
t/ ln(nt)− nt/ ln(nt)nt

)
. (E5)

This means, we need to determine

Jk(t) =
∞∑
n=0

nk

ln(n)
pn(t) (E6)

for k = 1, 2. We obtain from (C4) for its Laplace transform

J∗k (λ) ≈ −λ−1

∞∫
0

dn
nk

ln(n)

d

dn
f ∗n(λ). (E7)

Integration by parts gives

J∗k (λ) ≈ λ−1

∞∫
0

dnnk−1

[
k

ln(n)
− 1

ln(n)2

]
f ∗n(λ). (E8)

a. Infinite mean transition time: 0 < β < 1

We obtain by using (C7) for αn = n ln(n)β−1

J∗k (λ) ≈ λ−1

∞∫
0

dn
knk−1

ln(n)

[
1− 1

k ln(n)

]
exp

[
−aβλβn ln(n)β−1

]
. (E9)

Rescaling n→ nλβ ln(1/λ)β−1, we obtain in leading order in the limit λ→ 0

J∗k (λ) ≈ λ−1−kβ ln(1/λ)k−1−kβ

∞∫
0

dnknk−1 exp
(
−aβββn

)
. (E10)

42



Inverse Laplace transform gives

Jk(t) ∝ tkβ ln(t)k−1−kβ. (E11)

Thus, we obtain for σ2
m(t) the scaling

σ2
m(t) ∝ t2β ln(t)1−2β. (E12)

b. Finite mean transition time: β > 1

We obtain by using (C9) for αn = n ln(n)β−1

J∗k (λ) ≈ λ−1

∞∫
0

dn
knk−1

ln(n)

[
1− 1

k ln(n)

]
exp(−nλτ)

+ λ−1+β

∞∫
0

dnknk ln(n)β−2

[
1− 1

k ln(n)

]
exp(−nλτ)bβ. (E13)

Rescaling of n→ nλ gives in leading order

J∗k (λ) ≈ λ−1−k

ln(1/λ)

∞∫
0

dnknk−1 exp(−nτ)

+ λ−2−k+β ln(1/λ)β−2

∞∫
0

dnknk exp(−nτ)bβ. (E14)

Inverse Laplace transform gives

Jk(t) ≈
(t/τ)k

ln(t/〈τ〉)
+ A2(t/τ)1+k−β ln(t/τ)β−2. (E15)

Thus, we obtain for σ2
m(t) the behavior

σ2
m(t) ∝ (t/τ)3−β ln(t/τ)β−2 (E16)

For β > 2, we obtain

Jk(t) ≈
(t/τ)k

ln(t/〈τ〉)
+ A2(t/τ)k−1 (E17)

and

σ2
m(t) ∝ t/τ . (E18)
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3. Spatial dimension q > 2

For q > 2, Rn ∼ 2q/2nq/2−1. Thus, we obtain for σ2
m(t) from (41)

σ2
m(t) =

`4

2q/2

(
n

3−q/2
t − n2−q/2

t nt

)
= `4

[
h3−q/2(t)− h2−q/2(t)h1(t)

]
. (E19)

a. Infinite mean transition time: 0 < β < 1

Using the results for the hk(t) from the previous section, we obtain

σ2
m(t) ∝ tβ(3−q/2). (E20)

b. Finite mean transition time: β > 1

Along the same lines, we obtain for 1 < β < 2

σ2
m(t) ∝ t4−β−q/2. (E21)

For β > 2, we obtain accordingly

σ2
m(t) ∝ t2−q/2. (E22)

Appendix F: Numerical simulations

The numerical simulations use a time-domain random walk (TDRW) algorithm [44]. The

TDRW approach is based on constant length displacement of particles described by the

recursive relations:

xi(n+ 1) = xj(n) + ξij, t(n+ 1) = t(n) + τj. (F1)

The transition probability wij to move from voxel j to voxel i for a transition of length |ξij|

is given by wij = 1/(2q) and transition time associated to voxel j is τj = θj`
2/(2qκ). In the

case of the annealed disorder model, the random variable θj is not linked to the voxel j, but

on the n-th step, thus θj = θn and consequently τj = τn.

For the numerical simulations, we consider the Pareto distribution

pθ(θ) = βθ−1−βH(θ − 1), (F2)
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with H(·) the Heaviside step function. We obtain according to (12) the following distribution

of transition times

ψ(τ) =
β

τκ

(
τ

τκ

)−1−β

γ(1 + β, τ/τκ), (F3)

where γ(a, z) is the lower incomplete Gamma function [53]. The numerical calculations of

the disorder average particle distribution use 103 − 104 particles in each of the 103 − 104

disorder realizations. The calculations of the particle distribution in single realizations use

105 − 107 particles. The calculations for average mean square displacement use 103 − 104

particles in each of the 104 disorder realizations. The calculation for the disorder variance

of the mean square displacement use 105 particles in each of the 103 realizations. The

calculations for variance of the time average mean square displacement use 104 particles in

each of the 103 disorder realizations.
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