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ABSTRACT
We present time series photometry of Bienor in four observation campaigns from 2013 to
2016 and compare them with previous observations in the literature dating back to 2000.
The results show a remarkable decline in the amplitude of the rotational light curve and
in the absolute magnitude. This suggests that the angle between the rotation axis and the
line of sight has changed noticeably during the last 16 yr as Bienor orbits the Sun. From
the light-curve amplitude data, we are able to determine the orientation of the rotation axis
of Bienor (βp = 50 ± 3◦, λp = 35 ± 8◦). We are also able to constrain the b/a axial
ratio of a triaxial Jacobi ellipsoidal body (with semi-axis a > b > c). The best fit is for b/a =
0.45 ± 0.05, which corresponds to a density value of 594+47

−35 kg m−3 under the usual assumption
of hydrostatic equilibrium and given that Bienor’s rotational period is 9.17 h. However, the
absolute magnitude of Bienor at several epochs is not well reproduced. We tested several
explanations such as relaxing the hydrostatic equilibrium constraint, a large north–south
asymmetry in the surface albedo of Bienor or even a ring system. When a ring system of
similar characteristics to those of Chariklo and Chiron is included, we can fit both the light-
curve amplitude and absolute magnitude. In this case, the derived axial ratio is modified to
b/a = 0.37 ± 0.10. The implied density is 678+209

−100 kg m−3. Also, the existence of a ring is
consistent with the spectroscopic detection of water ice on Bienor. Nevertheless, the other
explanations cannot be discarded.

Key words: techniques: photometric – Kuiper belt objects: individual: Bienor – planets and
satellites: rings – planetary systems.

1 IN T RO D U C T I O N

Centaurs are objects with orbits located between Jupiter’s and
Neptune’s orbits. These bodies originally came from the Trans-
Neptunian Belt and were injected to the inner part of the Solar
system as a result of planetary encounters, mostly with Neptune.
Accordingly, centaurs are dynamically evolved objects with un-
stable orbits; their lifetime is around 2.7 Myr (Horner, Evans &
Bailey 2004a), and most of them may become short-period comets
(Horner, Evans & Bailey 2004b; Jewitt, Morbidelli & Rauer 2008).
The first centaur to be discovered was Chiron, the second largest
known to date. So far, we have evidence of only the existence of
about a hundred of them, compared to the thousands of Trans-
Neptunian Objects (TNOs) catalogued to date, which makes them
even more unique. Centaurs and TNOs are possibly the least evolved
objects of the Solar system, regarding the physical properties of
their materials, due to the vast distances that separate them from the
Sun; they are nevertheless collisionally evolved (Campo Bagatin &
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Benavidez 2012). Hence, centaurs yield important information
about the formation of the Solar system and its outer part.

At present, the interest in centaurs has considerably increased
since the discovery of orbiting material shaped in the form of rings
around two of them, Chariklo (Braga-Ribas et al. 2014) and Chiron
(Ortiz et al. 2015). One of the proposed scenarios for the formation
of rings in centaurs is the collision with other bodies of around
10 km of effective diameter during their dynamic evolution from
the Trans-Neptunian Belt across to the Neptune’s orbit, although
there might be other possible mechanisms (Hyodo et al. 2016;
Pan & Wu 2016).

Bienor is one of the largest centaurs known to date besides
the two aforementioned centaurs, and all 200-km sized TNOs
are thought to be collisionally evolved bodies (Campo Bagatin &
Benavidez 2012); therefore, it is plausible that centaurs in this size
range share similar collisional and dynamical histories. Hence, Bi-
enor may be expected to display similar properties to Chariklo and
Chiron, thus the special interest raised by this object. As a result,
a detailed study on Bienor’s rotational light curves along with its
absolute magnitude has been carried out in this work. Bienor was
initially designated as 2000 QC243, and it was discovered, as its
name indicates, in the year 2000. Since then, observational data
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Table 1. Journal of observations of Bienor from different telescopes. The R and V filters are based on the Bessell
system and the r_SDSS filter is based on the Sloan Digital Sky Survey. Abbreviations are defined as follows:
exposure time (TE); number of images (N) and time on target each night (Tobj).

Date Telescope Filter Binning Seeing TE N Tobj

(arcsec) (s) (h)

2013 Dec 6 OSN 1.5 m V 2×2 1.89 500 3 0.42
2013 Dec 6 OSN 1.5 m R 2×2 2.11 500 2 0.28

2014 Nov 18 CAHA 1.23 m Clear 2×2 1.72 300 21 1.75
2014 Nov 19 CAHA 1.23 m Clear 2×2 1.61 300 22 1.83
2014 Dec 18 CAHA 1.23 m Clear 2×2 1.84 300 26 2.17
2014 Dec 27 NOT R 1×1 1.08 250 63 4.37
2014 Dec 28 NOT R 1×1 0.94 250 56 3.89

2015 Nov 5 CAHA 1.23 m Clear 2×2 1.44 250 41 2.85
2015 Nov 6 CAHA 1.23 m Clear 2×2 1.46 250 75 5.21
2015 Dec 13 NOT r_SDSS 1×1 0.74 400 10 1.11

2016 Aug 4 OSN 1.5 m R 2×2 1.77 300 22 1.83
2016 Aug 5 OSN 1.5 m R 2×2 1.91 400 15 1.67
2016 Aug 6 OSN 1.5 m R 2×2 1.70 400 21 2.33
2016 Aug 7 OSN 1.5 m R 2×2 2.51 400 18 2.00
2016 Aug 8 OSN 1.5 m R 2×2 1.79 400 19 2.11
2016 Aug 5 OSN 1.5 m V 2×2 1.91 400 4 0.45
2016 Aug 7 OSN 1.5 m V 2×2 2.51 400 7 0.78
2016 Aug 8 OSN 1.5 m V 2×2 1.79 400 4 0.45

Table 2. Colours of the Landolt standard stars used for calibrations during campaigns 2013 and 2016.

Campaign Colour PG2213+006A PG2213+006B PG2213+006C

2013 V − R 0.406 ± 0.003 0.4270 ± 0.0008 0.4260 ± 0.0023
R − I 0.403 ± 0.005 0.4020 ± 0.0015 0.4040 ± 0.0068

Colour SA23_433 SA23_435 SA23_438 SA23_440 SA23_443 SA23_444

2016 V − R 0.386 ± 0.003 0.4690 ± 0.0013 0.5110 ± 0.0014 0.4930 ± 0.0029 0.3680 ± 0.0007 0.5500 ± 0.0065
R − I 0.3680 ± 0.0013 0.4760 ± 0.0013 0.5140 ± 0.0049 0.4640 ± 0.0012 0.3690 ± 0.0007 0.5140 ± 0.0105

Table 3. Colours of Bienor from data published in this work and previous literature.

Colour 2000 Nov.a 2001 Aug.b 2002c,f 2002 Aug.d 2013 Oct.e 2016 Aug.e

V − R 0.45 ± 0.04 0.44 ± 0.03 0.38 ± 0.06 0.48 ± 0.04 0.42 ± 0.07 0.44 ± 0.07
R − I 0.40 ± 0.07 0.47 ± 0.03 0.41 ± 0.06 0.58 ± 0.06

aDelsanti et al. (2001). bDoressoundiram et al. (2002). cBauer et al. (2003). dDoressoundiram et al. (2007). eThis work.
fBauer et al. (2003) observed Bienor on 2001 October 29 and on 2002 June 13.

were published in numerous studies on colours, absolute magni-
tude and other photometric and spectroscopic data (e.g. Delsanti
et al. 2001; Ortiz et al. 2002; Dotto et al. 2003; Romanishin &
Tegler 2005). However, many aspects remained to be studied.

Here, we present an extensive study of this object from the pho-
tometric point of view. Observations and data reduction are detailed
in Section 2. These results are not satisfactory reproducing the vari-
ation of the absolute magnitude at different epochs. Diverse scenar-
ios that might overcome this issue are studied in Sections 5.3, 5.4
and 5.5. A general discussion is presented in Section 6. Section 7
closes the paper with a brief summary.

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

We carried out four observation campaigns between 2013 and 2016
using different telescopes. A log of the observations is shown in Ta-
ble 1. The first observation run was executed on 2013 December 6

with the 1.5-m telescope at the Sierra Nevada Observatory (OSN)
in Granada, Spain, in order to obtain Bienor’s absolute magnitude.
We used the 2k×2k CCDT150 camera, which has a field of view of
7.1 arcmin×7.1 arcmin and an image scale of 0.232 arcsec pixel−1.
The images were obtained using V and R bands in the Bessell’s
filters system and in 2×2 binning mode. We calibrated the obser-
vations with the Landolt PG2213+006 field, specifically with the
PG2213+006a, PG2213+006b and PG2213+006c Landolt stan-
dard stars, which share similar colours with Bienor (see Tables 2
and 3). We took 12 images of the Landolt field and 3 images of
Bienor altogether in each filter (we rejected one Bienor’s R-band
image due to blending with a star). The Landolt stars were observed
at different air masses with the aim of correcting the measurements
from atmospheric extinction.

The second and third observation campaigns were executed in
order to obtain different rotational light curves within an approxi-
mate interval of a year between each other. The runs of the 2014
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campaign took place on November 18 and 19 and December 18,
27 and 28 with the Centro Astronómico Hispano Alemán (CAHA)
1.23-m telescope of the Calar Alto Observatory in Almerı́a (Spain)
and the 2.5-m Nordic Optical Telescope (NOT) at Roque de los
Muchachos in La Palma (Spain). The instrument used at the CAHA
1.23-m telescope was the 4k×4k CCD DLR-III camera. This device
has a field of view of 21.5 arcmin × 21.5 arcmin and an image scale
of 0.314 arcsec pixel−1. No filter was used in order to obtain the
largest signal-to-noise ratio (SNR). The images were dithered over
the detector to prevent problems in the photometry associated with
bad pixels or CCD defects. The instrument used at NOT was the
2k×2k ALFOSC camera (Andalucia Faint Object Spectrograph and
Camera), with a field of view and an image scale of 6.4 arcmin ×
6.4 arcmin and 0.19 arcsec pixel−1, respectively. The images were
obtained using the R-band filter in the Bessell system. A total of 188
science images were taken during the whole campaign. On the other
hand, the third campaign took place on 2015 November 5 and 6 and
December 13 with the same telescopes and cameras used during
the 2014 campaign. No filter was used in the DLR-III camera, and
r_SDSS (Sloan Digital Sky Survey) filter was used in ALFOSC. A
total of 126 science images were taken during this campaign.

The last observation campaign took place from 2016 August 4
to 8 with the 1.5-m telescope at the OSN in Granada (Spain) in
order to obtain Bienor’s absolute magnitude and rotational light
curve. The CCD camera was the same as in the first campaign. The
images were obtained using V and R bands in the Bessell’s filters
system and in 2 × 2 binning mode. A total of 95 R band and 15
V band science images were taken during the whole campaign. We
calibrated the observations with the Landolt SA23 field, specifically
with the SA23_435, SA23_438, SA23_443, SA23_444, SA23_440
and SA23_433 Landolt standard stars, which share similar colours
with Bienor (see Tables 2 and 3). Three images of the Landolt
field were taken altogether in each filter. Bienor was observed at
different air masses with the aim of correcting the measurements
from atmospheric extinction.

When the time spent between observations made it possible, we
aimed the telescope at the same region of the sky each night in order
to keep fixed the same stellar field. This is convenient as it would
permit to choose the same set of reference stars for all nights in the
observing runs in order to minimize systematic photometric errors.
At the beginning of each observation night, we took bias frames and
twilight sky flat-field frames to calibrate the images. We subtracted a
median bias and divided by a median flat-field corresponding to each
night. Specific routines written in Interactive Data Language (IDL)
were developed for this task. The routines also included the code to
perform the aperture photometry of all reference stars and Bienor.
The procedures we followed were identical to those described in
Fernández-Valenzuela et al. (2016).

We tried different apertures in order to maximize the SNR on
the object for each night and to minimize the dispersion of the
photometry. We also selected a radius for the sky subtraction annulus
and the width of the annulus (see Table 4).

3 R E S U LT S F RO M O B S E RVATI O N S

3.1 Rotational light curves from relative photometry

We chose the same reference stars set within each observation run.
All the stars showed a good photometric behaviour. We picked out
stars that presented a wide range of brightness, and that were either
brighter or fainter than the object, with the aim of studying the
dispersion given by the photometric data of the object with regard

Table 4. Parameters of the photometric analysis. Abbreviations are defined
as follows: aperture radius (aper.); radius of the internal annulus for the
subtraction of the sky background (an.); width of the subtraction annulus
(dan.) and number of reference stars (N�).

Date aper. an. dan. N�

(pixels) (pixels) (pixels)

2013 Dec 6 (V Band) 4 15 4 3†
2013 Dec 6 (R Band) 4 10 4 3†
2014 Nov 18 3 13 5 13
2014 Nov 19 3 13 5 13
2014 Dec 18 3 12 5 12
2014 Dec 27 3 26 5 12
2014 Dec 28 3 26 5 12

2015 Nov 5 2 6 3 11
2015 Nov 6 2 6 3 11
2015 Dec 13 4 10 5 13

2016 Aug 4 (R band) 3 11 5 21
2016 Aug 5 (R band) 3 11 5 21;8‡
2016 Aug 5 (V band) 6 30 5 8 ‡
2016 Aug 6 (R band) 3 11 5 21
2016 Aug 7 (R band) 3 11 5 21
2016 Aug 7 (V band) 7 22 5 8 ‡
2016 Aug 8 (R band) 3 11 5 21
2016 Aug 8 (V band) 5 22 5 8 ‡
†Landolt standard stars: PG2213+006a, PG2213+006b and PG2213+006c.
‡Landolt standard stars: SA23_435, SA23_438, SA23_443, SA23_444,
SA23_440, SA23_433.

Table 5. Photometry results for the observations from the Calar Alto, Roque
de los Muchachos and Sierra Nevada observatories. We list the Julian Date
(JD, corrected from light time); the relative magnitude (Rel. mag., in mag);
the error associated (Err. in mag); the topocentric (rH) and heliocentric (�)
distances (both distances expressed in au) and the solar phase angle (α, in
deg). The full table is available online.

JD Rel. Mag. Err. rH � α

(mag) (mag) (au) (au) (◦)

2456980.16349 − 0.0065 0.0243 16.042 15.169 1.699
2456980.16866 − 0.0175 0.0301 16.042 15.169 1.699
2456980.17227 − 0.0312 0.0230 16.042 15.169 1.699
2456980.17587 − 0.0099 0.0176 16.042 15.169 1.699
2456980.17948 − 0.0705 0.0277 16.042 15.169 1.699
2456980.18309 − 0.0432 0.0265 16.042 15.169 1.700
2456980.18669 0.0023 0.0217 16.042 15.169 1.700

to similar magnitude stars. This step enabled us to assess the quality
of the photometric measurement. The number of reference stars can
be seen in Table 4. From the campaigns three different light curves
were obtained. Photometry results are given in Table 5.

From the data, we determined our own rotational period of
9.1713 ± 0.0011 h that is consistent within the error bars with
that determined by Rabinowitz, Schaefer & Tourtellotte (2007) and
Ortiz et al. (2002). We folded the photometric data taken in 2014,
2015 and 2016 using this rotational period. In order to calculate the
light-curve amplitude, we fitted the data points to a second-order
Fourier function as follows:

m(φ) = a0 + a1 cos(2πφ) + b1 sin(2πφ)

+ a2 cos(4πφ) + b2 cos(4πφ), (1)

where m(φ) is the relative magnitude given by the fit to this equa-
tion, φ is the rotational phase and a0, a1, a2, b1 and b2 are the
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Table 6. Parameters for the second-order Fourier function fits for 2014, 2015 and 2016 light curves. Columns are as follows:
arbitrary initial Julian date (JD0 ), second-order Fourier function coefficients (a0, a1, a2, b1 and b2) and Pearson’s χ2 per degree of
freedoms test (χ2

pdf ).

Run JD0 a0 a1 a2 b1 b2 χ2
pdf

2014 2456980.0 − 0.007 610 12 − 0.009 935 54 − 0.032 113 67 −0.016 948 34 0.015 6932 1.55
2015 2456980.0 − 0.015 637 93 − 0.001 617 43 − 0.020 891 69 −0.023 635 07 0.014 272 25 1.24
2016 2456980.0 0.003 642 51 0.023 303 65 0.012 344 25 −0.026 998 05 0.013 381 58 1.77

Fourier coefficients (see Table 6). Rotational phase is given by the
following equation: φ = (JD − JD0 )/P , where JD0 = 2456980 is
an arbitrary initial Julian date corrected for light travel time, P is the
target’s rotational period in days and JD is the Julian date corrected
from light travel time. We obtained three light-curve amplitude val-
ues: �m = 0.088 ± 0.008 mag, �m = 0.082 ± 0.007 and �m =
0.10 ± 0.02 mag for the 2014, 2015 and 2016 light curves, re-
spectively. These three light curves can be seen in Figs 1a, 1b and
1c.

Finally, in order to check the quality of the photometric analysis
of the object, the dispersion of the residual of the fit to equation (1)
was compared with the dispersion of the measurements of a star of
similar flux or slightly lower than Bienor’s flux (see Table 7). In
order to minimize the dispersion caused by external factors, such
as different CCDs or large temporal distances between observation
campaigns, only those days sharing the same reference stars and
also the same telescope were used for the purpose of comparing
the fluxes. Therefore, only data obtained at NOT were used in the
2014 run; similarly, data obtained in November at CAHA 1.23 m
were used in the 2015 run. In order to obtain the dispersion of
the star, the relative magnitude was calculated with respect to the
remaining reference stars. The dispersion value of the residual fit
to the Fourier function is bigger in both rotational light curves in
years 2014 and 2015 than the dispersion of the control star for each
run. The slightly larger dispersion of Bienor’s residuals compared
to the dispersion of control stars may indicate a slight deficiency
of the light-curve modelling or intrinsic variability of Bienor at the
level of ∼0.004 mag. Note that the dispersion of the data in 2016
was significantly higher than in 2014 and 2015; therefore, no clear
conclusion in this regard can be obtained from the 2016 data.

3.2 Absolute magnitude

The absolute magnitude of a Solar system body is defined as the
apparent magnitude that the object would have if located at 1 au
from the Sun, 1 au from the Earth and with 0◦ phase angle. This
magnitude is obtained from the well-known equation:

H = mBienor − 5 log(rH�) − φ(α), (2)

where H is the absolute magnitude of Bienor, mBienor is the appar-
ent magnitude of Bienor, rH is the heliocentric distance, � is the
topocentric distance and φ(α) is a function that depends on the
phase angle. This function can be approximated by αβ, where α is
the phase angle and β = 0.1 ± 0.02 mag deg−1 is the phase correc-
tion coefficient, which is the average value from βV and β I given by
Rabinowitz et al. (2007). This value agrees with the value obtained
in the phase angle study of Alvarez-Candal et al. (2016). On the
other hand, the apparent magnitude of Bienor is given as follows:

mBienor = m�i − 5

2
log

(
<FBienor>

<F�i
>

)
− k�ζ, (3)

where m�i
is the apparent magnitude of Landolt standard stars (the

subscript i indicates different Landolt standard stars); <FBienor > is
the average flux of Bienor; <F�i

> is the average flux of different
Landolt standard stars; k is the extinction coefficient and �ζ is the
difference between the Landolt standard stars’ air mass and Bienor’s
air mass.

We carried out a linear fit in order to obtain the extinction coef-
ficient following the equation:

m�,i = m0
�,i + kζ, (4)

where m�, i is the apparent magnitude of the star and m0
�,i is

the apparent magnitude corrected for atmospheric extinction (see
Table 8).

Finally, the values obtained for the absolute magnitudes of Bienor,
during the 2013 campaign, in V and R band are 7.42 ± 0.05 mag
and 7.00 ± 0.05 mag, respectively. On the other hand, the absolute
magnitudes, during the 2016 campaign, in V and R band are 7.47 ±
0.04 mag and 7.03 ± 0.02 mag. From those, we could also obtain
the (V − R) colour, which is 0.42 ± 0.07 mag and 0.44 ± 0.07 mag
in 2013 and 2016, respectively.

4 SI MPLE ELLI PSOI D D ESCRI PTI ON

4.1 Pole determination (modelling of the light-curve
amplitude)

As can be seen in Table 9, the light-curve amplitude has changed
within the last 16 yr from 0.609 mag (Ortiz et al. 2002)1 in 2000
to 0.082 mag in 2015 and actually it seems that it is starting to
increase slightly (this work, Section 3.1). This implies that Bienor’s
aspect angle is evolving in time. We can take advantage of this to
determine the orientation of the pole of the centaur as first done in
Tegler et al. (2005) for centaur Pholus. We consider that Bienor is a
Jacobi ellipsoid as in previous works (Ortiz et al. 2002; Rabinowitz
et al. 2007). Furthermore, as shown in the three rotational light
curves (Figs 1a, 1b and 1c) and in rotational light curves published
in the aforementioned works, the maxima and minima of the Fourier
function have different depths, which is another indication that the
light curve is indeed mainly due to the body shape. The light-
curve amplitude produced by a triaxial body shape is given by the
following equation:

�m = −2.5 log

(
Amin

Amax

)
, (5)

1 We took the data published in that work to fit to a Fourier function as in
Section 3.1 to determine our own �m value, which is slightly lower than
that reported by Ortiz et al. (2002). This is because those authors took just
the maximum and minimum of their data and subtracted them.
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Figure 1. Rotational light curves from 2014 (upper panel), 2015 (middle
panel) and 2016 (bottom panel). The points represent the observational
data, each colour and symbol corresponding to a different day. The blue line
shows the fit of the observational data to the second-order Fourier function
(equation 1). At the bottom of each panel, it can be seen the residual values
of the second-order Fourier function fit to the observational data.

Table 7. Comparison between the dispersion
of the fit residual to the Fourier function and
the dispersion of the star data with similar
or lower flux than Bienor flux. Abbreviations
are defined as follows: dispersion of the fit
residual to the Fourier function (σBienor) and
dispersion of the star residual (σ�).

Campaign σBienor σ�

2014 0.020 0.016
2015 0.022 0.010
2016 0.050 0.040

where Amin and Amax are the minimum and maximum area of the
object given by

Amin = π b
[
a2 cos2(δ) + c2 sin2(δ)

]1/2
(6)

and

Amax = π a
[
b2 cos2(δ) + c2 sin2(δ)

]1/2
, (7)

where a, b and c are the semi-axes of the triaxial body (with
a > b > c). Semi-axes ratios can be estimated under the assumption
of hydrostatic equilibrium (Chandrasekhar 1987) and should com-
ply with the fact that the effective diameter (in area) is 198+6

−7 km
as determined by Herschel measurements (Duffard et al. 2014a).
Finally, δ is the aspect angle, which is given by the ecliptic coor-
dinates of the angular velocity vector (the pole direction) and the
ecliptic coordinates of the object as follows:

δ = π

2
− arcsin

[
sin(βe) sin(βp) + cos(βe) cos(βp) cos(λe − λp)

]
,

(8)

where βe and λe are the ecliptic latitude and longitude of the sub-
Earth point in the Bienor-centred reference frame and βp and λp are
the ecliptic latitude and longitude of Bienor’s pole (Schroll, Haupt
& Maitzen 1976).

We fitted the observational data from the literature and this work
(see Table 9) to the equation (5). We carried out a grid search for the
quantities βp, λp and b/a axis ratio, which gave theoretical values
for �m with the smallest χ2 fit to the observed points. βp and λp

were explored on the entire sky at intervals of 5◦, and b/a ratio
was explored from 0.33 to 0.57 at steps of 0.04. The limiting values
defining this interval, 0.33 and 0.57, are chosen taking into account
that relation between the b/a and the light-curve amplitude of the
object. On the one hand, the upper limit b/a = 0.57 is determined by
the maximum light-curve amplitude observed for Bienor up to date
(Ortiz et al. 2003), namely the first point in Fig. 2 from year 2001.
The measured amplitude implies that b/a cannot be below 0.57,
as lower ratios would fail to provide such a rotational variability,
independently of the value of the aspect angle. On the other hand, the
lower limit gives b/a = 0.33 from the condition that the light-curve
amplitude is always below �m = 1.2 mag. Light-curve amplitudes
that go above this value at some point in the evolution of the object
are most likely caused by contact binary systems (Leone et al. 1984).

In order to evaluate the goodness of the fit, we used a χ2 test as
follows:

χ2
�m =

∑ (
(�mtheo − �mobs)

2 /e2
�m

)
N�m

, (9)

where �mtheo represents theoretical values, �mobs represents ob-
servational data, e�m represents errors for light-curve amplitude
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Table 8. Absolute photometry results for the observations from the OSN. We list the Julian Date (JD); the filter in the Bessell
system; the absolute magnitude (H, in mag); the error associated with the absolute magnitude (eH, in mag); the extinction coefficient
(k); the error associated with the extinction coefficient (ek); the air mass (ζ ); the topocentric (rH) and heliocentric (�) distances (both
distances expressed in au) and the solar phase angle (α, in deg).

JD Filter H eH k ek ζ rH � α

(mag) (mag) (au) (au) (◦)

2456572.43011 V 7.42 0.05 0.30 0.02 1.15 16.395 15.4756 1.4108
2456572.45304 R 7.00 0.02 0.37 0.02 1.09 16.395 15.4756 1.4108
2457606.60204 V 7.46 0.09 0.09 0.05 1.68–1.14 15.496 15.558 3.7375
2457606.60204 R 7.03 0.02 0.06 0.04 1.65–1.16 15.496 15.558 3.7375
2457608.58729 V 7.49 0.08 0.12 0.05 2.03–1.12 15.494 15.545 3.7322
2457609.60545 V 7.46 0.03 0.08 0.04 1.53–1.12 15.494 15.508 3.7489

Table 9. Bienor’s light-curve amplitudes from different epochs.

Date (yr) 2001.626 2004.781 2014.930 2015.951 2016.597

�m (mag) 0.609 ± 0.048a 0.34 ± 0.08b 0.088 ± 0.007c 0.082 ± 0.009c 0.10 ± 0.02c

aOrtiz et al. (2003). bRabinowitz et al. (2007). cThis work.

observational data and N�m is the number of the light-curve ampli-
tude observational data.

The result was a pole solution of βp = 50 ± 3◦ and λp = 35
± 8◦ and axes ratio of b/a = 0.45 ± 0.05 (see Table 10). These
values gave a χ2

�m of 0.27 (the direction λp = 215◦ and βp = −50◦

is also possible for the same χ2
�m value). In Fig. 2, the blue line

represents the light-curve amplitude model; also the observational
data are shown. To estimate the uncertainties, we searched for all
parameters within χ2

�m,min and χ2
�m,min + 1.

4.2 Modelling of the absolute magnitude

Right from the first observing runs that we carried out, we realized
that the amplitude of the rotational variability of Bienor had changed
dramatically with respect to the first measurements in 2001, in which
the amplitude was around 0.7 mag (Ortiz et al. 2003). The usual
explanation to that kind of changes in Solar system bodies is related
to a change in orientation of an elongated body. As explained in
the previous section, using that approach for Bienor we came up
with reasonable results. However, as discussed in the following, this
kind of model does not offer a satisfactory explanation of the large
change in the absolute magnitude of Bienor in the last 16 yr, which
is considerably larger than what would be expected. In Table 11, we
show absolute magnitudes from the literature and from this work.

The absolute magnitude of Bienor can be obtained using the
previous values of the three parameters (βp, λp and b/a) by means
of the following equation:

HV = −V� + 2.5 log

(
C2π

pV AB(δ)

)
, (10)

where HV is the absolute magnitude of the object,
V� = −26.74 mag is the absolute magnitude of the Sun in V band,
pV = 0.043+0.016

−0.012 is the geometric albedo of the object in V band
(Duffard et al. 2014a), C = 1.496 × 108 km is a constant and AB(δ)
is the rotational average area of the body in km2, as determined
from Amin and Amax given by equations (6) and (7), respectively,
with the constraint that the mean area matches the area for Bienor’s
effective diameter of 198+6

−7 km determined by Herschel (Duffard
et al. 2014a).

This can be compared with the observational data shown in
Table 11, as illustrated in the blue line in Fig. 3. It is apparent

that the absolute magnitude observational data do not follow the
curve obtained from equation (10). Indeed, we obtained a value of
195 for the χ2 test, which now is defined as follows:

χ2
HV

=
∑ ((

HV,theo − HV,obs

)2
/e2

HV

)
NHV

, (11)

where HV, theo represents theoretical absolute magnitudes, HV, obs

represents observational data, eHV represents errors for absolute
magnitude observational data and NHV is the number of the absolute
magnitude observational data.

5 MO R E C O M P L E X M O D E L S

5.1 Simultaneous modelling of absolute magnitude
and light-curve amplitude (HE model)

Given this situation, one might wonder whether it would be possible
to find a set of values for the parameters βp, λp and b/a axis ratio,
leading to a satisfactory fit for both equations (5) and (10) simulta-
neously. To check the viability of this possibility, we defined a χ2

T

value so as to evaluate both fits at the same time as follows:

χ2
T =

(
χ2

�m + χ2
HV

)
2

. (12)

Here, χ2
�m is the χ2 value from equation (9) and χ2

H is the χ2 value
from equation (11). The χ2

T value obtained using the original values
of the parameters (βp, λp and b/a) as in the previous section was
∼98. We searched for other sets of values that could fit satisfactorily
both equations; nevertheless, all possible parameters gave poor fits
with χ2

T > 45.
Hence, we did not find any solution that can fit satisfactorily the

observational data of the absolute magnitude. As shown in Fig. 3,
there is an increase of brightness with time that is not explained
by the hydrostatic model. This leads us to think that there must be
some physical process that produces such a large slope in the obser-
vational data, which we are not taking into account. This physical
process might have to do with the existence of material orbiting
around Bienor with a ring shape. The reflected flux contribution
due to a ring plus the reflected flux contribution due to the body,
as in the cases of Chariklo and Chiron (Braga-Ribas et al. 2014;
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Figure 2. Bienor’s light-curve amplitude fit. At the top panel: the blue dashed line represents the hydrostatic equilibrium model (HE model, see Section 4.1).
The pink line represents the ring system model (ring model, see Section 5.5). The yellow dotted line represents the hydrostatic equilibrium model relaxing
Herschel constraints (Herschel model, see Section 5.2). The orange dotted line represents the no hydrostatic equilibrium model relaxing Herschel constraints
(NHE–Herschel model, see Section 5.3). Dark blue circle points show data taken from literature. Green star points show data from this work. Bottom panel:
residuals of the observational data with respect to the different models. Blue circle points correspond to the hydrostatic equilibrium model. Pink square points
correspond to the ring system model. Yellow star points correspond to the hydrostatic equilibrium model relaxing Herschel constrains. Orange diamond points
correspond to the no hydrostatic equilibrium model relaxing Herschel constraints. Albedo model is not shown because it completely overlaps the HE model
curve.

Table 10. Results from the simplest modelling of the light-curve ampli-
tude (see Section 4.1). Columns are as follows: elongation (b/a); flattening
(c/b), ecliptic latitude and longitude of Bienor’s pole (βp, λp), χ2 test from
equation (9) (χ2

�m).

b/a c/b βp λp ρ χ2
�m n N

(◦) (◦) (kg m3)

0.45 ± 0.05 0.79 ± 0.02 50 ± 3 35 ± 5 594+47
−35 0.27 3 5

Note that the βp = −50◦ and λp = 215◦ solution is also valid.

Ortiz et al. 2015), could produce the strong drop that is shown in
the observational data of the absolute magnitude (see Section 5.5).
However, other scenarios might be also possible. In the following,
we discuss the different scenarios that we have considered.

5.2 Modelling of the data relaxing both the albedo and the
effective diameter constraints from Herschel (Herschel model)

If one takes a look at the absolute magnitude plot, it seems like
the model in blue in Fig. 3 is displaced up with respect to the data
points. This means that the albedo or the effective diameter could

be higher than we used for the model, or even a combination of both
of them. Therefore, we search around the values given by Duffard
et al. (2014a) taking into account their error bars. As a result, the
fit was improved using an albedo of 5.7 per cent and an effective
diameter of 204 km (see yellow line in Fig. 3). This last fit modifies
slightly the pole direction obtained in Section 4.1 (see Table 12, this
model is referred to as Herschel). However, the model is still poor
and does not represent the drop of the observational points.

5.3 Modelling of the data relaxing the assumption
of hydrostatic equilibrium (NHE model)

We thought about the possibility that Bienor might not be in perfect
hydrostatic equilibrium; this is possible because Bienor’s size is
small enough to allow for departures of hydrostatic equilibrium.
Therefore, we also searched the aforementioned grid adding the c/b
axis ratio from 0.5 to 1.0 at intervals of 0.1. The smallest χ2

T, which
was equal to 13.63, provides us the following parameters: 60◦, 25◦,
0.33 and 0.5 for βp, λp, b/a and c/b, respectively. However, these
ratios imply an extremely elongated body with an a-axis around six
times bigger than the c-axis. There is no known body in the Solar
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Table 11. Bienor’s absolute magnitude in different epochs. Abbreviations are as follows:
absolute magnitude in V band (HV), its associated error reported by the authors (eHV ) and
modified errors that we estimate as described in the Section 6 (e′

HV
). The renormalization of

the uncertainties bias the fit towards most recent values, as light-curve amplitudes are smaller
in recent epochs.

Observation date HV eHV e′
HV

Bibliography
(mag) (mag) (mag)

2000 Nov. 8.08 0.06 0.31 Delsanti et al. (2001)
2001 May 7.75 0.02 0.26 Tegler, Romanishin & Consolmagno (2003)
2002b 7.85a 0.05 0.26 Bauer et al. (2003)
2002 Aug. 8.04 0.02 0.22 Doressoundiram et al. (2007)
2004c 7.588 0.035 0.035 Rabinowitz et al. (2007)
2007 Sep. 7.46 0.03 0.13 DeMeo et al. (2009)
2013 Oct. 7.42 0.02 0.04 This work
2016 Aug. 7.47 0.04 0.04 This work

Notes. Doressoundiram et al. (2002) published another value of Bienor’s magnitude that is in
disagreement with the value for the same epoch published by Tegler et al. (2003). In order to
check the correct value, we searched for other values in the Minor Planet Center data base for
the same epoch. We found reliable data from surveys in Johnson’s R and V band that were in
agreement with Tegler et al. (2003) but not with Doressoundiram et al. (2002). For this reason,
we have not included the Doressoundiram et al. (2002) data point.
aValue obtained from absolute magnitude in the R band using the colour correction published
by the authors.
bBauer et al. (2003) observed Bienor on 2001 October 29 and on 2002 June 13.
cRabinowitz et al. (2007) observed Bienor between 2003 July and 2005 December.

system with this extremely elongated shape for such a large body
as Bienor. Hence, we do not think that this is plausible. This model
is referred to as NHE in Table 12.

However, we tried to find a good fit simultaneously relaxing the
Herschel constraints as in the last subsection. This search provides a
possible solution for an albedo of 5.1 per cent and using the effective
diameter given by Herschel with a pole direction of 50◦, 30◦ for βp,
λp, respectively, and axis ratio of 0.33 and 0.7 for b/a and c/b,
respectively. This model is plotted in Figs 2 and 3 (see orange line)
and referred as NHE–Herschel model in Table 12.

5.4 Modelling of the data with the inclusion of variable
geometric albedo (albedo model)

Another possibility to increase the brightness of Bienor beyond the
values of the modelling in Section 4.2 is to increase the geometric
albedo of the body as a function of time or as a function of aspect
angle. If the polar regions of Bienor have very high albedo, then
it might be possible that Bienor becomes brighter as seen from
Earth simply because we observe higher latitudes of Bienor as the
aspect angle changes (because the current aspect angle in 2015
is ∼150◦, see Fig. 4). The needed change of Bienor’s geometric
albedo is from 3.9 per cent in 2000 to 7.6 per cent in 2008, when
the aspect angle is 100◦ and 130◦, respectively. This is shown in
Fig. 3 (green line). Following this situation, one can extrapolate the
albedo that the object would have if its aspect angle is 180◦. Under
this assumption, the albedo should be around 10 per cent. Such a
dramatic change in Bienor’s geometric albedo is hard to explain
because the polar caps would have to have an even higher albedo
than 10 per cent (which is the hemispheric average). For instance, a
polar cap covering around 42 per cent of the total area (viewed from
the top) with an albedo of 16 per cent would fit the data. A more
confined polar cap would have to have an even higher albedo than
16 per cent. It is difficult to find a mechanism that would cause such
a large north–south asymmetry on the surface. For reference, the
maximum longitudinal albedo variability on Bienor is only around

a few percentage because the two maxima of the rotational light
curve differ by only 0.05 mag. We refer to this model as albedo
model in Table 12.

5.5 Modelling of the data with the inclusion of a ring system
(ring model)

In order to explain the observational data of the absolute magnitude,
we included a ring contribution in the aforementioned equations:
(5) and (10), see Section 8. On the one hand, the light-curve ampli-
tude produced by the system Bienor + ring, �mS, is now given as
follows:

�mS = −2.5 log

(
Amin pB + AR pR

Amax pB + AR pR

)
. (13)

The additional parameters are the ring’s area (AR), the ring’s
albedo (pR) and Bienor’s albedo (pB). AR is given by

AR = πμ
(
(RR + dR)2 − R2

R

)
, (14)

where μ = |cos (δ)| (δ is the aspect angle, see Section 8); RR is
the ring’s radius and dR is the ring’s width. On the other hand, the
absolute magnitude of the system, HS, is now given as follows:

HS = −V� + 2.5 log

(
C2π

AB pB + AR pR

)
. (15)

The same exercise as in Section 4.1 was carried out. We explored
the quantities λp, βp, a/b, pB, pR, AR and Reff (Bienor’s effective
radius) in equations (13) and (15) that gave theoretical values for
both fits, light-curve amplitude and absolute magnitude, which min-
imize the difference between observational and theoretical data. AR

was explored from 4000 to 10 000 km2 at intervals of 500 km2,
the effective radius from 90 to 99 km at intervals of 3 km. We also
explored ring’s albedo from 8 to 16 per cent at steps of 2 per cent
and Bienor’s albedo from 3 to 6 per cent at steps of 1 per cent.
We should take into account that the solution of this problem is
degenerated as different ring sizes combined with different nucleus
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Figure 3. Bienor’s absolute magnitude fit. The blue dashed line represents the hydrostatic equilibrium model (HE model, see Section 4.1). The pink line
represents the ring system model (ring model, see Section 5.5). The yellow dotted line represents the hydrostatic equilibrium model relaxing Herschel constraints
(Herschel model, see Section 5.2). The orange dotted line represents the no hydrostatic equilibrium model relaxing Herschel constraints (NHE–Herschel model,
see Section 5.3). The green line represents the albedo variability model (Albedo model, see Section 5.4). The dark blue circle points show data taken from
literature with errors reported by the authors. Green star points show data from this work. At the bottom panel: residual of the observational data. Blue star
points correspond to the hydrostatic equilibrium model. Pink square points correspond to the ring system model. Yellow circle points correspond to hydrostatic
equilibrium model relaxing Herschel constraints. Orange diamond points correspond to no hydrostatic equilibrium model relaxing Herschel constraints. Green
diamond points represent albedo variability model.

Table 12. Bienor’s parameters for each model to simultaneously fit light-curve amplitudes and absolute magnitudes using errors reported by the authors.
The columns contain the following information: model designation (see foot note); elongation (b/a); flattening (c/b); ecliptic latitude and longitude of
Bienor’s pole (λp, βp); Bienor’s albedo in V band (pB); Bienor’s effective diameter (Deff); ring’s area (AR); ring’s albedo in V band (pR); goodness of the fit
given by the equation (9) (χ�m); goodness of the fit given by the equation (11) (χH); goodness of the simultaneous fit to the equations (9) and (11) (χ2

T);
number of parameters of the fit (n); number of light-curve amplitude and absolute magnitude data (N�m, NH).

Model b/a c/b βp λp pB Deff AR pR ρ χ2
T χ2

�m χ2
H n N�m NH

(◦) (◦) (per cent) (km) (km2) (per cent) (kg m−3)

HE 0.33±0.02 0.85±0.01 25±7 15±6 4.3+1.2
−1.6 198+6

−7 742+41
−35 45.3 18.8 71.8 3 5 7

Herschel 0.45±0.08 0.79±0.04 50±4 40±7 5.7 ±0.2 204±4 594+84
−52 14.08 0.66 27.5 5 5 7

NHE 0.33±0.03 0.5±0.04 60 ±5 25±5 4.3 +1.2
−1.6 198+6

−7 13.63 1.52 25.7 4 5 7

NHE-Herschel 0.33±0.05 0.7±0.05 50±3 30±6 5.1±0.2 198±3 12.69 0.23 25.2 6 5 7

Albedo 0.45±0.09 0.79±0.04 50±3 35±3 3.9 - 7.6 198+6
−7 594+98

−57 17.07 0.27 33.9 4 5 7

Ring 0.37±0.10 0.83±0.06 55±3 30±5 5.0±0.3 180±5 6000±700 12.0±1.5 678+209
−100 12.40 0.40 24.4 7 5 7

HE: hydrostatic equilibrium model.
Herschel: hydrostatic equilibrium model relaxing Herschel constraints (Section 5.2).
NHE: no hydrostatic equilibrium mode (Section 5.3).
NHE-Herschel: no hydrostatic equilibrium model relaxing Herschel constraints (Section 5.3).
Albedo: albedo variability model (Section 5.4).
Ring: ring system model (Section 5.5).
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Figure 4. Bienor’s aspect angle versus time. The black line shows the result
of the equation (8) with λp = 35◦ and βp = 50◦. The edge-on position (when
the angle between the spin axis orientation and the line of sight is 90◦) is
achieved around 1988 and around 2030.

sizes could fit to the data points. We just want to note that the ring
solution is plausible. A hypothetical ring of around 10 000 km2

is around two times smaller than Chiron’s ring as shown in Ortiz
et al. (2015) and 1.2 times larger than that of Chariklo. A dense and
narrow ring of 315-km inner radius and 318-km outer radius would
do the job with no modification of the pole direction obtained in
Section 4.1. The best fit for observational data provides the follow-
ing values: a/b = 0.37 ± 0.10, pB = 5.0 ± 0.3 per cent, pR =
12.0 ± 1.5 per cent, AR = 6000 ± 700 and Deff = 180 ± 5 km (see
the pink lines in Figs 2 and 3). This is the best model in terms of
χ2

T. We refer to this model as ring model in Table 12.

6 D ISCUSSION

We have considered several scenarios to simultaneously explain
Bienor’s change of light-curve amplitude and absolute magnitude
in the last 16 yr. As can be seen in Fig. 3, at least two of the models

seem to fit the data qualitatively, but the too high values of the
goodness-of-fit test (Table 12) indicate that either the models are
not fully satisfactory or that the errors have been underestimated.
Indeed, we have reasons to suspect that the absolute magnitudes
determined by several authors could have been affected by the large
rotational variability of Bienor in those years. Hence, we revised
the errors with the very conservative strategy of assigning an extra
uncertainty of half the full amplitude of the rotational light curve at
each epoch.

When the revised errors in Table 11 are used for the compu-
tation of new values of the goodness of fit, slightly different fits
with respect to Table 12 are obtained. They are summarized in
Table 13. Now the goodness-of-fit test provides too low values for
some models, possibly indicating that the errors have been overes-
timated in this case. Given that an accurate determination of errors
in the absolute magnitudes was not possible, we suspect that the
reality probably falls in between the two different error estimates,
and therefore the best model fits should be something in between
the results of Tables 12 and 13.

As can be seen in aforementioned tables, HE model gives far
poorer fits than the other models; therefore, we can conclude that a
simple hydrostatic equilibrium model cannot fit the data. By relax-
ing the albedo and effective diameter constraints given by Herschel
(Duffard et al. 2014a), we improved the fit. A better solution is
found by relaxing both the assumption of hydrostatic equilibrium
and Herschel constraints. But concerning this model, the main diffi-
culty is that it requires a very extreme body with too large a/c ratio
to be realistic for bodies of Bienor’s size. Nevertheless, there are
models of dumb-bell–shaped contact binaries that can give rise to
a/c axial ratios of up to 4.14 (Descamps 2015). Such a contact bi-
nary would not perfectly fit the data but together with a north–south
asymmetry in the albedo might be close to offer a good solution.
Using the formalism in Descamps (2015), the a/c = 4.14 axial
ratio (approximately the axial ratio obtained in Section 5.3 when
the Herschel constraints are relaxed) would require a density of
970 kg m−3 for Bienor, given its known 9.1713-h period. Such a
density in TNOs is expected for objects with an effective diam-
eter around 500 km (see supplementary material in Carry 2012;

Table 13. Bienor’s parameters for each model to simultaneously fit light-curve amplitudes and absolute magnitudes using errors taking into account the
light-curve amplitude. The columns contain the following information: model designation (see foot note); elongation (b/a); flattening (c/b); ecliptic latitude
and longitude of Bienor’s pole (λp, βp); Bienor’s albedo in V band (pB); Bienor’s effective diameter (Deff); ring’s area (AR); ring’s albedo in V band (pR);
goodness of the fit given by the equation (9) (χ�m); goodness of the fit given by the equation (11) (χH); goodness of the simultaneous fit to the equations
(9) and (11) (χ2

T); number of parameters of the fit (n); number of light-curve amplitude and absolute magnitude data (N�m, NH).

Model b/a c/b βp λp pB Deff AR pR ρ χ2
T χ2

�m χ2
H n N�m NH

(◦) (◦) (per cent) (km) (km2) (per cent) (kg m−3)

HE 0.33±0.03 0.85±0.02 40±5 20±9 4.3+1.2
−1.6 198+6

−7 742+64
−51 16.4 4.18 28.7 3 5 7

Herschel 0.45±0.07 0.79±0.03 50±3 35±11 5.9 ±0.6 204±10 594+71
−47 0.89 0.27 1.52 5 5 7

NHE 0.33±0.05 0.5±0.04 60 ±3 25±8 4.3 +1.2
−1.6 198+6

−7 2.53 1.52 3.54 4 5 7

NHE-Herschel 0.33±0.08 0.85±0.07 45±3 30±7 5.9±0.5 200±8 0.58 0.28 0.89 6 5 7

Albedo 0.45±0.07 0.79±0.03 50±3 35±3 3.9-7.6 198+6
−7 594+71

−47 0.34 0.27 0.51 4 5 7

Ring 0.33±0.12 0.85±0.06 50±5 25±10 5.0±0.5 192±10 4000±1300 12.0±0.4 742+401
−149 0.63 1.00 0.81 7 5 7

HE: hydrostatic equilibrium model.
Herschel: hydrostatic equilibrium model relaxing Herschel constraints (Section 5.2).
NHE: no hydrostatic equilibrium mode (Section 5.3).
NHE-Herschel: no hydrostatic equilibrium model relaxing Herschel constraints (Section 5.3).
Albedo: albedo variability model (Section 5.4).
Ring: ring system model (Section 5.5).
The χ2

T values were obtained with the revised errors e′
HV

of Table 11.
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Ortiz et al. 2012); such a diameter is 2.5 times bigger than Bienor’s
effective diameter. Nevertheless, 970 kg m−3 cannot be completely
discarded.

Concerning the albedo variability model, this would require a
very bright polar cap on Bienor whereas the equatorial parts would
have a geometric albedo of only a few percentage. No centaur or
small TNO has ever been found to exhibit such a remarkable albedo
variability in its terrain. Polar caps of ices may be expected in
objects with evaporation and condensation cycles, which does not
seem to be viable for centaurs, because CO2 would be too volatile
and H2O is not sufficiently volatile with the temperatures involved
at the distances to the Sun in which Bienor moves. Hence, even
though this is a possibility, it does not seem very promising.

For all of the above, we thought about the possibility that Bienor
could have a ring system or a partial ring system because we know
at least two other similar sized centaurs that have ring material
around them (Braga-Ribas et al. 2014; Ortiz et al. 2015). When
this possibility was considered, we got a slightly better solution
than for the no hydrostatic equilibrium model relaxing the Herschel
constraints, with no modification of the pole direction that was
obtained from the light-curve amplitude fit in the case in which no
ring is included (see Section 4.1).

On the other hand, we know that there is water ice detection
in Bienor’s spectra already reported in the literature (e.g. Dotto
et al. 2003; Barkume, Brown & Schaller 2008; Guilbert et al. 2009),
which would also be consistent with the idea that Bienor could
have an icy ring or icy ring material around its nucleus. This has
been the case for centaurs Chariklo and Chiron, which also have
spectroscopic detection of water ice, and the variation of the depth
of the ice features in their spectra is well explained due to a change
in the aspect angle of the rings. This was a clear indication that the
water ice is in the rings of these centaurs (Duffard et al. 2014b; Ortiz
et al. 2015). Hence, the presence of water ice in the spectrum of
centaur Bienor is also a possible indication of a ring around Bienor’s
nucleus. In fact, all centaurs that exhibit a water ice feature in their
spectrum may be suspect of having a ring system.

Besides, the density we derive for Bienor with the model that
includes a ring system (742 kg m−3 in Table 13, 678 kg m−3 in
Table 12) is slightly higher than what we derive without the inclu-
sion of a ring system (594 kg m−3, see Table 12). The higher value
looks somewhat more realistic because we already know (with high
accuracy) the density of comet 67P from the Rosetta visit (533 ±
0.006 kg m−3 according to Pätzold et al. 2016). It would be some-
what surprising that the density of Bienor, which is much larger than
comet 67P would be nearly identical, as we expect less porosity for
larger bodies (e.g. Carry 2012).

Therefore, the model with a ring not only explains the photometry
but also results in a density value that seems more realistic. Hence,
a putative ring offers a more consistent physical picture than a
huge albedo north–south asymmetry in the surface of Bienor or the
other models, although combinations of the three different scenarios
discussed may also give a satisfactory fit to the data. Hence, even
though we favour the possibility that Bienor could have ring system,
it is not firmly proven.

Future stellar occultations by Bienor may ultimately confirm or
reject the existence of a dense ring system. In this regard, there
will be two potentially good stellar occultation by Bienor on 2017
February 13 and December 29. These are occultations of bright
enough stars so that detection of ring features is feasible and oc-
cur in highly populated areas of the world. Observations of these
events and other future stellar occultations by Bienor, as well as
spectroscopic observations, will indeed be valuable.

It must be noted that the derivation of the spin axis direction is
not highly dependent on the different models, so we have derived a
relatively well-constrained spin axis direction of λp = 25◦–40◦ and
βp = 45◦–55◦. Note that the symmetric solution λp = 25◦ + 180◦

to 40◦ + 180◦ and βp = −45◦ to −55◦ is also possible. Besides,
despite the different models, we have derived a well-constrained
density between 550 and 1150 kg m−3 in the most extreme cases.

7 C O N C L U S I O N S

Thanks to several photometry runs in which we observed a remark-
able change in the amplitude of the rotational variability of Bienor
since 2000, and together with data available in the literature, we
have been able to determine the orientation of the pole of Bienor
(βp = 50◦, λp = 30◦), and we have derived its shape (b/a = 0.45).
These results, together with the known rotation period, allowed us
to determine a density for Bienor of 594 kg m−3 under the usual
assumption of hydrostatic equilibrium. However, we find that the
absolute magnitude of Bienor observed in different epochs is not
compatible with a simple triaxial ellipsoid shape. We have investi-
gated several possible scenarios to explain the anomalous absolute
magnitude decline. We find that the inclusion of a thin ring sys-
tem can explain the observed variation although other scenarios
cannot be discarded. The required ring system’s albedo and width
are similar to those found in Chariklo and Chiron. When the ring
system is included, the shape of Bienor’s nucleus has to be some-
what more elongated and the resulting density is in between 688
and 742 kg m−3, slightly higher than in the case in which no ring is
considered. Future stellar occultation may shed light on the possible
existence of a ring. To put the results in context, density, shape and
pole orientation are important physical parameters that have been
determined for only three other centaurs.
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Barucci M. A., Veillet C., 2002, AJ, 124, 2279
Doressoundiram A., Peixinho N., Moullet A., Fornasier S., Barucci M. A.,

Beuzit J.-L., Veillet C., 2007, AJ, 134, 2186
Dotto E., Barucci M. A., Boehnhardt H., Romon J., Doressoundiram A.,

Peixinho N., de Bergh C., Lazzarin M., 2003, Icarus, 162, 408
Duffard R. et al., 2014a, A&A, 564, A92
Duffard R. et al., 2014b, A&A, 568, A79
Fernández-Valenzuela E., Ortiz J. L., Duffard R., Santos-Sanz P., Morales

N., 2016, MNRAS, 456, 2354
Guilbert A., Alvarez-Candal A., Merlin F., Barucci M. A., Dumas C., de

Bergh C., Delsanti A., 2009, Icarus, 201, 272
Horner J., Evans N. W., Bailey M. E., 2004a, MNRAS, 354, 798
Horner J., Evans N. W., Bailey M. E., 2004b, MNRAS, 355, 321
Hyodo R., Charnoz S., Ohtsuki K., Genda H., 2016, Icarus, 282, 195
Jewitt D., Morbidelli A., Rauer H., 2008, Trans-Neptunian Objects and

Comets. Springer, Berlin
Leone G., Paolicchi P., Farinella P., Zappala V., 1984, A&A, 140, 265
Ortiz J. L., Baumont S., Gutiérrez P. J., Roos-Serote M., 2002, A&A, 388,

661

Ortiz J. L., Gutiérrez P. J., Casanova V., Sota A., 2003, A&A, 407, 1149
Ortiz J. L. et al., 2012, Nature, 491, 566
Ortiz J. L. et al., 2015, A&A, 576, A18
Pan M., Wu Y., 2016, AJ, 821, 18
Pätzold M. et al., 2016, Nature, 530, 63
Rabinowitz D. L., Schaefer B. E., Tourtellotte S. W., 2007, AJ, 133, 26
Romanishin W., Tegler S. C., 2005, Icarus, 179, 523
Schroll A., Haupt H. F., Maitzen H. M., 1976, Icarus, 27, 147
Tegler S. C., Romanishin W., Consolmagno G. J., 2003, AJ, 599, L49
Tegler S. C., Romanishin W., Consolmagno G. J., Rall J., Worhatch R.,

Nelson M., Weidenschilling S., 2005, Icarus, 175, 390

S U P P O RT I N G IN F O R M AT I O N

Supplementary data are available at MNRAS online.

Table 5. Photometry results for the observations from the Calar
Alto, Roque de los Muchachos and Sierra Nevada Observatories.

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for this article.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 466, 4147–4158 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/466/4/4147/2712514
by Inst. Astrofisica Andalucia CSIC user
on 15 February 2018

https://academic.oup.com/mnras

