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The recent surge in research on organic carbon sequestration by seagrass ecosystems

has begun to reveal the complexity of the carbon cycle within these ecosystems. In this

prospective we discuss two areas of investigation that require further scrutiny: (1) why

organic carbon is stabilized in seagrass sediments, and (2) how long organic carbon

resides within these sediments. By delving into these topics, pointing out current pitfalls,

and highlighting methodological advances, our motive is to focus future efforts and

provide a frame work to manage the complexity found within the diverse seagrass

bioregions. The high rate of seagrass degradation and loss, coupled with increasing

atmospheric CO2 concentrations gives precedence to these lines of research, which

require rigorous reevaluation if we are to substantially advance our understanding of OC

dynamics in seagrass ecosystems.
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INTRODUCTION

Seagrasses provide key ecological functions and services to coastal ecosystems, including sediment
stabilization, coastline protection, nutrient cycling, support of fisheries, and enhancement of
biodiversity (de la Torre-Castro and Rönnbäck, 2004; Duffy, 2006; Orth et al., 2006) due to the
role they play as ecosystem engineers trapping sediment, altering hydrodynamics, and modifying
biogeochemical processes in the water column and sediment (Marbá et al., 2006). From when
seagrass meadows were recognized as potentially important “blue” carbon (organic carbon
sequestered by vegetated coastal ecosystems) sinks, there has been a surge in efforts to determine the
magnitude and variability of organic carbon (OC) storage within their sediments (Nellemann et al.,
2009; Duarte et al., 2010, 2013; Fourqurean et al., 2012; Lavery et al., 2013; Campbell et al., 2014;
Macreadie et al., 2014; Serrano et al., 2014, 2015, 2016b; Miyajima et al., 2015; Phang et al., 2015;
Armitage and Fourqurean, 2016; Dahl et al., 2016; Jankowska et al., 2016; Röhr et al., 2016; Samper-
Villarreal et al., 2016; Schile et al., 2016). Here, we point out two notable knowledge gaps, along with
current methodological pitfalls, that are obscuring our ability to understand seagrass OC dynamics.
First, we explore why OC is stabilized in coastal marine sediments, with emphasis on the need to
look beyond a unifying mechanism governing OC storage across all seagrass ecosystems. Second,

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
https://doi.org/10.3389/fmars.2017.00125
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2017.00125&domain=pdf&date_stamp=2017-05-04
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:fbelshe@gmail.com
https://doi.org/10.3389/fmars.2017.00125
http://journal.frontiersin.org/article/10.3389/fmars.2017.00125/abstract
http://loop.frontiersin.org/people/407455/overview
http://loop.frontiersin.org/people/336211/overview
http://loop.frontiersin.org/people/408933/overview
http://loop.frontiersin.org/people/95403/overview
http://loop.frontiersin.org/people/339719/overview


Belshe et al. Carbon Dynamics Obscured in Seagrasses

we address the question of how long OC is stored in seagrass
sediments, with focus on how current methodologies may give
misleading estimates of OC accumulation rates and residence
times. Both of these topics have a rich a history of exploration and
by pointing out common stumbling blocks our quest is to clarify
the obstacles we face and propose a frame work for a direction
forward. We hope to open dialogue and refocus efforts, so we do
not repeat the past two decades of research, but instead utilize and
build upon it to understand the unique dynamics of OC cycling
in coastal marine sediments. Accelerating seagrass degradation
and loss (Waycott et al., 2009) and rising atmospheric CO2

concentrations (IPCC, 2013) emphasize the relevance and
timeliness of this discussion.

WHY IS OC STABILIZED IN SEAGRASS
SEDIMENTS?

Although it is important to identify where high carbon storage
occurs in coastal marine landscapes, it is equally important to
correctly identify why. In the past 5 years there has been a
concerted effort to determine which environmental or biological
variables predict carbon stock location and size across the
broad range of seagrass bioregions (Lavery et al., 2013; Serrano
et al., 2014, 2015, 2016a; Miyajima et al., 2015; Dahl et al.,
2016; Röhr et al., 2016; Samper-Villarreal et al., 2016). An
unintended consequence of searching for these broad unifying
predictors is the potential to narrow our understanding of
OC dynamics, which creates the risk of misidentifying why
OC is stabilized within seagrass sediments. Within the process
of OC stabilization, there is often a mechanism (crucial step
or physiochemical condition) that disproportionally affects the
stabilization or destabilization of organic matter (Torn et al.,
2009). In the past two decades a paradigm shift in carbon research
has broadened focus to include four primary mechanisms of
OC stabilization (Sollins et al., 1996; Six et al., 2004; Burdige,
2007; Marschner et al., 2008; Torn et al., 2009; Trumbore, 2009;
Schmidt et al., 2011):

• Inherent molecular characteristics of organic matter
(recalcitrance).

• Physical stabilization of OC on mineral surfaces.
• Inaccessibility of OC to microbes due to barriers of interaction

among microbes and substrates, such as occlusion of OC
within aggregates.

• Biotic suppression of microbial abundance and/or activity due
to factors such as freezing temperatures, extreme pH, or low
O2 content.

However, there is still a tendency within seagrass OC research
to focus on correlative attributes of the seagrass, landscape, or
sediment without direct investigation into the mechanism(s)
of stabilization. Many propose carbon source mechanisms
(recalcitrance) when explaining OC stabilization based largely
on correlative isotopic (13C) evidence and seagrass tissue
stoichiometry (C:N ratios, (Kennedy et al., 2010; Duarte et al.,
2013; Serrano et al., 2015; Röhr et al., 2016). To definitively
determine when, where, and to what extent recalcitrance

controls OC stability in seagrass sediments there needs to be
further research into the molecular composition of the OC
(Vichkovitten and Holmer, 2005; Kaal et al., 2016), in tandem
with rigorous investigation into its decomposability under the
physical conditions experienced within the sediment. Several
studies have shown sediment characteristics, such as grain size
and type, to be important predictors for seagrass OC stocks (Dahl
et al., 2016; Röhr et al., 2016; Serrano et al., 2016a), implying
that biotic suppression (due to low O2 content within fine grain
sediment) or physical stabilization on certain sediment types are
potentially important mechanisms. The next steps must be taken
to investigate molecular composition and decomposability, along
with sediment mineralogy and geochemistry, and microbial
diversity and activity (Mikutta et al., 2006; Chabbi et al., 2009;
Schmidt et al., 2011; Simpson and Simpson, 2012; Macreadie
et al., 2015; Bracho et al., 2016), if we are to draw definitive
conclusions about why OC is stabilized in seagrass sediments.

Here, we outline some of the existing methodologies that can
aid in our understanding of OC stabilization (Table 1). We have
grouped methods under four broad lines of investigation: (1)
determining the molecular composition of OC; (2) mapping the
physical and chemical structure of the sediment environment;
(3) tracing pathways and timelines of OC; and (4) revealing the
identity, function, and activities of the sediment community.
To substantially advance our understanding of OC dynamics
in coastal marine ecosystems it will require a collaborative
effort across disciplines, utilizing this broad spectrum of
methodologies. However, this does not negate the importance of
the continued efforts and expert knowledge of seagrass ecologists,
who provide valuable insights and data required to understand
the complex spatial and temporal variation of OC stabilization
across seagrass ecosystems.

HOW LONG IS OC STABILIZED IN
SEAGRASS SEDIMENTS?

The secondmajor knowledge gap we face is in our understanding
of the timelines of OC stabilization within coastal marine
sediments. This information, in addition to pool size, is critical
for understanding the influence of seagrass carbon reservoirs on
atmospheric CO2 concentrations. The ability of a reservoir to
act as a net sink depends on both the fluxes of carbon into the
reservoir and the timescale it is stabilized within it (Trumbore,
2000). Only systems with long carbon residence times (decades
or longer) act as important mitigators for climate change.

The need to quantify timelines of carbon storage within
seagrass sediments was pointed out two decade ago (Mateo
et al., 1997, 2006); however, carbon accumulation rates and
residence times have been reported based on estimates from age-
depth relationships acquired by dating material within sediment
layers (Mateo et al., 1997, 2010; Serrano et al., 2012, 2014,
2015, 2016b,c; Miyajima et al., 2015; Jankowska et al., 2016;
Rozaimi et al., 2016) or by simply assuming sedimentation rates
equal OC accumulation rates (Duarte et al., 2004; Kennedy
et al., 2010; McLeod et al., 2011; Lavery et al., 2013; Macreadie
et al., 2014; Röhr et al., 2016). These methodologies lead to
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TABLE 1 | Some of the existing methodologies utilized to aid in the understanding of organic carbon stabilization in soils and sediments.

Use Methodology Citations

Investigating the molecular structure of organic matter in

soils and sediments.

Pyrolysis-Gas Chromatography/Mass Spectrometry

(Py-GC/MS)

Grandy and Neff, 2008; de la Rosa Arranz et al.,

2009; Tolu et al., 2015

Nuclear magnetic resonance spectroscopy (NMR) Hedges et al., 2000; Kogel-Knabner, 2002, 2003;

Chabbi et al., 2009; Simpson and Simpson, 2012

Near-edge X-ray Absorption Fine Structure

(NEXAFS) spectroscopy

Solomon et al., 2004; Lehmann et al., 2005

Near-Infrared Spectroscopy (NIRS) /

Fourier-Transform Infrared Spectroscopy (FTIR)

Moros et al., 2008, 2010; Verchot et al., 2011;

Fuentes et al., 2012; Vinduskova et al., 2015

Measuring and mapping of the physical and chemical

structure of soils and sediments.

X-ray fluorescence spectrometry / X-ray computed

tomography

Feeney et al., 2006; Nunan et al., 2006; van Oort

et al., 2006; West et al., 2007; Sleutel et al., 2008;

Boyer-Villemaire et al., 2013

Scanning Transmission X-ray or Electron

Microscopy (STXM & STEM)

Brodowski et al., 2005; Maurice and Hochella, 2008;

Remusat et al., 2012

Nano-scale secondary ion mass spectrometry

(NanoSIMS)

Herrmann et al., 2007; Amstalden van Hove et al.,

2010; Remusat et al., 2012

Microsensors Werner et al., 2006; Dadi et al., 2015; Burdorf et al.,

2016

Reconstructing sources, pathways and timescales organic

matter in soils, including tracing microbial utilization.

Compound-specific isotopic analysis Rethemeyer et al., 2004; Ingalls et al., 2010; McIntosh

et al., 2015

Biomarkers w/ stable- and natural-abundance

radio-isotopes

Rethemeyer et al., 2004; Bouillon and Boschker,

2006; Amelung et al., 2008; Kramer et al., 2010;

McIntosh et al., 2015

Low-level 14C pulse-chase labeling Carbone et al., 2007; Schuur et al., 2016

Stable isotope probing (SIP) Webster et al., 2006; Neufeld et al., 2007; Ruamps

et al., 2011

Assessing biodiversity and functional diversity, and

elucidating potential activities and interactions among

sediment communities and their environment.

Metagenomics von Mering et al., 2007; Maron et al., 2011; Paula

et al., 2014; Bracho et al., 2016; Nesme et al., 2016;

Pajares et al., 2016

Metatranscriptomics Carvalhais et al., 2012; Jones et al., 2015; Thureborn

et al., 2017

Metabolomics Bundy et al., 2008; Wallenstein and Weintraub, 2008;

Kivlin and Hawkes, 2016

Not all methods fit cleanly into a specific category of usage and most can be used to investigate a variety of research questions.

an overestimation of OC ages and accumulation rates because
they do not take into account decomposition losses (however
small) from deeper sediment layers (Clymo, 1984; Korhola et al.,
1995; Mateo et al., 1997). Furthermore, they ignore the addition
of younger carbon (via root turnover and exudates) deeper in
the sediment profile (Duarte et al., 1998, 2005). Even though
many marine sediments vertically accrete, we must consider that
OC does not accumulate in a static fashion, after deposition it
continues to be cycled by microbes where it can be transformed
and/or lost from the reservoir at rates that depend on the efficacy
of the stabilization mechanisms (Torn et al., 2009). Additionally,
seagrasses are vascular plants that transfer OC throughout the
plant and exudate an estimated 6–17% of production via roots
(Moriarty et al., 1986), which equates to various ages of carbon
continuously entering the sediment pool.

Models can improve estimates of OC accumulation rates and
residence times but have limitations. In an effort to account
for OC decomposition, Clymo (1984) adapted a simple one-
pool “box” model fit to cumulative carbon vs. age to achieve

a more reasonable accumulation estimate that decreases as the
stock grows. In this model decomposition is represented as a
first-order process: dC/dt = − kCt , where C is the amount of
carbon at a given time and k is the decomposition rate, and the
residence time (also known as transit time) of the carbon within
the pool is 1/k. To better represent sediment OC dynamics, which
have continual OC inputs, this model was adapted as a multi-
input system (vs. the decay of a single input; Trumbore and
Harden, 1997;Manzoni et al., 2009, 2012; Hicks Pries et al., 2012),
where both the decay constant and inputs can be estimated.
Although these types of models have a rich history of usage for
modeling OC dynamics, they are typically fit to data of mass
loss through time (i.e., litter decomposition) or fluxes of CO2

(incubations; Eriksson, 1971; Bosatta and Agren, 1985; Ågren
and Bosatta, 1996; Manzoni et al., 2009, 2012; Cornwell and
Weedon, 2014). To fit them to data of cumulative OC vs. time
(dated depths) from a sediment core the following assumptions
must be made: (a) the system is in steady state; (b) initial OC
in the sediment is zero; (c) carbon is accreted vertically (no
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inputs of new OC below dated depths); (d) the dated material
is equal to the age of the bulk OC at the same depth in the
sediment profile (see below); (e) there are no changes in OC
dynamics through time, so recent OC dynamics (top of core) are
representative of initial OC dynamics of the system. According
to the above critique, none of these assumption holds true for
the actual situation and OC dynamics in marine sediments. On
top of this, it is assumed the entire core is one pool of OC,
all residing for the same time period, and although multi-pool
box models exist, the data from sediment cores often do not
support the increased model complexity. Furthermore, the use of
cumulative data, which are not independent, leads to unrealistic
confidence in model estimates (due to underestimation of model
uncertainty; King et al., 2015). In spite of these limitations,
these models have proven to be useful for providing more
realistic estimates of OC accumulation and residence time of OC
within non-vascular dominated, vertically-accreting ecosystems
(Clymo, 1984; Trumbore and Harden, 1997; Hicks Pries et al.,
2012). However, extreme caution must be used when applying
them to sediment-core data from vascular plant dominated
ecosystems such as seagrass meadows.

Another factor that influences estimates of OC ages and
residence times is the type of material used for dating.
Previous works in seagrass ecosystems have utilized closed-
system materials (assumed to be no longer exchanging carbon
with the environment), such as shells or sheaths, for radiocarbon
(14C) dating (Mateo et al., 1997, 2010; Serrano et al., 2012,
2014, 2015, 2016b,c; Rozaimi et al., 2016). Because sediment OC
consist of a spectrum of pools cycling on different time scales,
choosing the oldest, most stable carbon within the sediment
and ignoring all other OC (of a variety of ages) residing at the
same depth in the sediment profile, leads to an overestimation
of OC ages and residence times (Trumbore and Zheng, 1996;
Torn et al., 2009; Trumbore, 2009; Trumbore et al., 2016).
To illustrate the potential for overestimation, OC ages have
been shown to vary by three orders of magnitude, from 3
years (114C = +170‰) to ∼3,000 (114C = −310‰) years,
within a 5-cm sediment layer in tropical forest soils (Trumbore
and Zheng, 1996; Trumbore, 2009). Therefore, when the goal
is to understand OC dynamics, and estimates of residence
times of the various carbon pools are needed (as opposed to
exact calendar ages), a different methodological approach is
required.

Because of the limitations outlined above we suggest an
alternative methodology utilized in terrestrial systems over the
past two decades (Trumbore, 1993, 2000, 2009; Schuur et al.,
2016). Organic matter is more appropriately thought of as a
heterogeneous open-system (continuously exchanging carbon
with its environment), so directly measuring 14C of the bulk
sediment OC pool along with manually separating and dating
pools (that are relatively homogenous in terms of decomposition
rates) provide more realistic estimates of the suite OC ages
occurring within the sediment (Trumbore, 2009; Schuur et al.,
2016; Trumbore et al., 2016). Since OC is a complex mixture of
compounds that cycle along a continuum of time scales from
minutes to millennia, no separation method will be perfect.
However, methods exist to partitionOC into various pools, which

allows for the determination of both pool size and residence time
(Trumbore and Zheng, 1996; von Lützow et al., 2007; Trumbore,
2009; Trumbore et al., 2016). The same linear-system box models
can be adapted to estimate the residence time of 14C of each pool:

d14C(t)/dt = I∗14C(t)− k∗14C(t)− λ∗14C(t)

where λ is the radioactive decay constant (1.21 × 10−4 yr−1),
I∗14C(t) are the inputs of 14C based off a time series of 14C from
of the reservoir the plant uptakes CO2 from, and k∗14C(t) are the
estimated outputs. These models can also be extended to multi-
pool models and only requires a measurement from your desired
pool of either the F (fractionmodern prior to 1950) or F’ (fraction
modern that includes bomb 14C) and a bomb carbon time series
of F’ of the reservoir (Manzoni et al., 2009, 2012; Trumbore et al.,
2016). For terrestrial systems, the time series of the reservoir
(atmosphere) F’ is well known (Hua et al., 2013), but becomes
more complicated in marine systems because of the reservoir
effect (Mangerud, 1972; Stuiver et al., 1986). However, in many
coastal systems, post-bomb 14C time series exist (Weidman and
Jones, 1993; Kalish et al., 2001; Mahadevan, 2001; Kilada et al.,
2007; Scourse et al., 2012; Tisnérat-Laborde et al., 2013). Another
potential hurdle in marine systems is the presence of terrestrial
carbon (fixed from the atmospheric pool), so care must be taken
to disentangle these signals (Marshall et al., 2007; Yu et al.,
2007). Although there are some hurdles, this methodology avoids
complications created by simplistic assumptions of carbon ages
and depths, and provides direct measurements of residence times
directly linked to pools of known sizes and locations. These
techniques could be used in tandem with attributes of the OC
pool and sediment (such as mineralogy, redox, and molecular
composition), to advance our understanding of the timescales
over which different stabilization mechanisms operate (Mikutta
et al., 2006; Chabbi et al., 2009).

A WAY FORWARD

Here, we propose a conceptual framework to focus research
efforts across the diverse environments where seagrasses occur.
This framework is adapted from the Jenny (1941) state-factor
system utilized in terrestrial ecosystems, to incorporate factors
identified for subaqueous soils (Demas and Rabenhorst, 2001;
Torn et al., 2009; Trumbore, 2009). In this model a soil property
such as OC storage is described by the function:

Soil property = f(C, O, B, F, P, T),

where C= climate, O= organism (vegetation), B= bathymetry,
F = flow regime, P = parent material, T = time). These factors
set the boundary conditions and modulate the mechanisms that
determine the magnitude and timescales of carbon stabilization
(Figure 1). By selecting study sites where one state-factor varies,
while the other factors are held relatively constant, we can begin
to identify the role each factor plays and what mechanism(s)
operate within the unique combination of state-factors that
occur throughout the seagrass bioregions (Short et al., 2007).
For example, within Posidonia spp. meadows OC storage varies
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FIGURE 1 | Conceptual diagram of (A) the four OC stabilization mechanisms operating over time (x-axis) that lead to an increase of OC storage, represented by the

increasing brown shaded area behind the arrows. Each mechanism can work alone or in tandem, and the strength of each can potentially change over time, which is

illustrated by the changes in slope and direction of the arrow heads. The relative importance and strength of the four mechanisms are modulated by the six

state-factors (Jenny, 1941; Demas and Rabenhorst, 2001). To illustrate (B) is a hypothetical seagrass meadow with OC cycling over a spectrum of timescales

(illustrated by different sized circles) with the four stabilization mechanisms (represented by the various blue shades) dominating in different locations. The exact

location and prevalence of each mechanism(s), with their inherent effects on OC residence times, will ultimately depend on the unique combination of state factors,

which set the boundary conditions for the process of OC stabilization.

predictably with bathymetry in sheltered bays (flow regime) in
both the Mediterranean and Western Australia (Serrano et al.,
2014), with the difference in magnitude of OC storage between
the locations potentially explained by variations between seagrass
species (organism-vegetation). The usefulness of this framework
can be further illustrated by the finding that across the European
geographic distribution (climate) of Zostera marina (organism-
vegetation), OC can be predicted by sediment grain size (parent
material and/or flow regime; (Dahl et al., 2016). Furthermore,
in two sites with contrasting sediment characteristics they found
that OC did not decrease with sediment depth (indicating
minimal decomposition over time), which lead to the hypothesis
that different stabilization mechanisms were at play: a) biotic
suppression due to low oxygen availability in the fine-grain
site, and b) recalcitrance of allochthonous carbon inputs in the
course-grain site. This framework can also potentially explain
why sediment grain size does not correlate to OC storage
when looking across a mixture of different parent materials,
climates, seagrass species, flow regimens, and bathymetry
(Serrano et al., 2016a). We believe that embracing the complexity
found within seagrass ecosystems and utilizing the state-
factor system to systematically identify which mechanism(s)
control the spatial and temporal variations of OC is a way
forward to understand carbon dynamics in coastal marine
systems.

CONCLUSION

As policy makers and managers identify pathways to conserve
seagrass systems embedded under a blue carbon framework
(Herr et al., 2012), the potential for OC sequestration opens
the door for both positive and negative consequences. On
the positive side, this creates an avenue for conservation of

these valuable ecosystems, along with their well-established
ecosystem services. On the negative side, CO2 will be emitted
in exchange for carbon credits, resulting in an increase in
atmospheric CO2 unless we are able to correctly estimate the
magnitude and timelines of OC sequestration. The future of
blue carbon research is not trivial. There are both spatial
and temporal scales on which OC stabilization/destabilization
mechanisms operate, with complex processes and controls
working in combination. As we come to terms with this
complexity, and embrace technological advances in genetic,
molecular, spectrometric, and isotope-tracing techniques in
tandem with gathering more data from a diversity of seagrass
ecosystems, we can move forward with this important line of
research.
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