Epitaxial superconducting GdBa$_2$Cu$_3$O$_{7-\delta}$/Gd$_2$O$_3$ nanocomposite thin films from advanced Low-Fluorine solutions

Pablo Cayadoa, Bernat Mundeta, Hichem Eloussib, Ferrán Vallésa, Mariona Cola, Susagna Ricarta, Jaume Gázqueza, Anna Palaua, Pere Rourab, Jordi Farjasb, Teresa Puiga and Xavier Obradors$^a, *$

a Institut de Ciència de Materials de Barcelona, ICMAB – CSIC, Campus UA Barcelona, E-08193 Bellaterra, Catalonia, Spain
b University of Girona, Montlivi Campus, Edif. PII, E17071 Girona, Catalonia, Spain

*Corresponding author: obradors@icmab.es

Abstract. We have employed the CSD method to synthesize GdBCO and GdBCO-Gd$_2$O$_3$ nanocomposite 250-300 nm thin films. For this we have designed a new Low-Fluorine (LF) solution never used before in the synthesis of GdBCO thin films that allow to reduce the HF release by 80% and increasing the reproducibility of the pyrolysis process. The growth of these thin films required the design of a new thermal process what we called “Flash-Heating” in which the heating rate is extremely fast (~600 °C/min). The structure and the superconducting properties of the pristine GdBCO films are excellent showing a (00l) epitaxial orientation of the GdBCO grains and T_c values that reach 92.8 K which means and enhancement of more than 1 K with respect to the standard YBCO films. The calculated J_c inside the grains (J_c^G) present also remarkable values: J_c^G(5 K) ~ 40 MA/cm2 and J_c^G(77 K) ~ 3.3 MA/cm2. Finally, the GdBCO-Gd$_2$O$_3$ nanocomposites films, with a 20% mol of Gd$_2$O$_3$, exhibit superior superconducting properties and pinning performances with respect to the GdBCO pristine films.

Keywords. GdBCO, Low-Fluorine solution, nanocomposites, chemical solution deposition, Flash-Heating process.

1. Introduction

Nowadays, there exists a major interest in developing high temperature superconducting (HTS) materials with high performance, owing to their potential to achieve novel devices. Their properties, especially the high values of critical temperature, T_c, and critical current density, J_c, open the possibility to use them in devices working at high temperatures (in the range of liquid nitrogen) and at lower temperatures under very high magnetic fields. Among the HTS materials, REBa$_2$Cu$_3$O$_{7-\delta}$ (REBCO) compounds (RE=Rare Earths), which belong to the family of cuprates, have attracted the attention of scientific community due to their excellent current capabilities at high magnetic fields$^{1-6}$. Probably, the most well-known and studied REBCO compound is YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO). However, in recent years it has been studied the replacement of Y$^{3+}$ in YBa$_2$Cu$_3$O$_y$ by other RE ions (e.g., Nd$^{3+}$, Sm$^{3+}$, Eu$^{3+}$ or Gd$^{3+}$) to form alternative REBCO compounds because some of these compounds can display enhanced superconducting performances$^{7-9}$. The differences in the physical properties are linked mainly to variations in structure related to modified ionic radius of the RE ions$^{10-13}$. The modified RE size influences the distances between different planes in the structure and, therefore, the interaction between the orbitals of different atoms which leads to a change in properties of the different compounds. Additionally, the change of the RE ions modifies the thermodynamic phase diagrams and so specific changes are required in the synthesis and processing conditions of these REBCO materials. An additional difficulty is that large RE ions can display a partial substitution into the Ba$^{2+}$ sites and hence deeply influencing the superconducting properties and reducing the stability of the 123 phase in some of the REBCO compounds7,14,15.
Among the REBCO compounds, the GdBa$_2$Cu$_3$O$_{7-\delta}$ (GdBCO) offers an appealing potential over YBCO\cite{16,17,18}. In particular, the increase of the T_c that is observed in GdBCO bulk\cite{7,18} and thin films\cite{19,20}, reaching up to 94-95 K, causes an upward shift of the irreversibility line which makes GdBCO a very promising material for some applications.

The first GdBCO samples studied were in form of single crystals\cite{21} and in bulk samples\cite{7,22}. These first samples already revealed the great properties of the GdBCO compared with other REBCO compounds. The GdBCO thin films have been prepared during many years by in-situ growth techniques, i.e. simultaneous deposition and growth. The properties of the thin films synthesized by sputtering\cite{23-26}, PLD\cite{27} or MOCVD\cite{28} have confirmed the results obtained in the case of the single crystals and bulk samples. However, in the search for a scalable and low-cost technique for the preparation of Coated Conductors (CCs), some researchers have focused on chemical solution deposition (CSD) as an attractive option for thin film growth\cite{29-31}. This technique can be defined as ex-situ growth because deposition and growth are two separate steps. The case of the GdBCO films is not an exception and different works explored the CSD method to prepare GdBCO films. Most of these works were based in the well-known Trifluoroacetate (TFA) route\cite{32} resulting in J_c of 2-4 MA/cm2 and T_c of 93-94 K\cite{16,19,33,34} being in good agreement with GdBCO thin films prepared by in-situ growth methods\cite{17,20,35,36}.

In order to enhance the in-field performance, we introduced secondary phases in our films forming GdBCO nanocomposites. The insertion of different secondary phases for preparing nanocomposites has been extensively investigated by many groups showing that the in-field properties of REBCO films can be vastly improved by both the “in-situ nanocomposite” and the “ex-situ nanocomposite” approaches\cite{37-42}. In the first case complex metalorganic solutions are prepared which contain all the elements required to form the nanocomposite and the secondary phases are spontaneously segregated. In the second case, preformed nanoparticles are added to form a colloidal solution\cite{40,41}. We have opted here for the “in-situ nanocomposite” approach, in which the NPs are spontaneously segregated in the superconducting matrix during the growth process, to include Gd$_2$O$_3$ nanoparticles (NPs) in the GdBCO films. Despite the TFA route is an extended and well-controlled process, the fact that during the processing of the TFA-derived films HF is released to the environment has raised interest to look for alternative solutions. The so called “Low-Fluorine” solutions (LF) offers the possibility to reduce the F content and, therefore, the HF release, maintaining the same BaF$_2$ route for the REBCO formation than in the case of the TFA route which facilitates the processing\cite{43}. The LF precursors have been recently investigated for the preparation of YBCO thin films, but little work has been done to grow GdBCO\cite{33,44}.

In this work we report the preparation of thin films of GdBCO using a new formulation of LF solution. The advantages of using LF over TFA (apart from the reduction of F content) are the following: the new LF solution is less sensitive to environmental humidity and also leads to films with enhanced viscoelastic properties which then results in improved homogeneities after the pyrolysis process. The film growth process has also been investigated in relationship with the superconducting properties. It will be shown that an improved epitaxy is achieved using a new growth process called “Flash-Heating”, as an alternative to the standard one used in the case of the TFA-derived films. This process minimizes the nucleation of undesired grain orientations in the GdBCO-LF films during the heating ramp and leads to high critical currents, although some granularity effects still limit the superconducting performances. GdBCO+20 mol % Gd$_2$O$_3$ films have been synthesized using the “in-situ nanocomposite” approach and we have shown that a smoothed magnetic field dependence of the critical currents, similar to YBCO nanocomposites, is achieved.

2. Solution synthesis and film preparation and characterization

2.1 GdBCO Low-Fluorine solution synthesis. The solution is prepared using three different precursor salts: gadolinium trifluoroacetate (Gd-TFA), barium acetate (Ba-OAc) and
coper acetate (Cu-OAc). First, the Ba-OAc (Sigma-Aldrich ≥99.5%) is dissolved in a mixture of methanol and propionic acid (Sigma-Aldrich ≥99.5%). The amount of propionic acid added to the mixture is 26% of the final volume of the solution that is being prepared. Once the Ba-OAc is dissolved, triethanolamine (TEA, Sigma-Aldrich 98%) in an amount of 5% of the total volume of the final solution is added and homogenized during 10 minutes. After the homogenization is done, the Cu-OAc (Alfa-Aesar ≥98%) is added. After 15-20 minutes, the Cu-OAc is completely dissolved and, finally, the Gd-TFA is added to complete the solution. The solution is adjusted to the desired concentration with methanol and then placed in sealed vials under Ar atmosphere. Similar procedures were used in previous works43–45.

In this work we have used 0.25 M GdBCO-LF solutions (with respect to Gd content of the solution) leading to films with a thickness ∼250-300 nm after the conversion step. The rheological features of the 0.25 M GdBCO-LF solutions are also very similar to those recently reported for YBCO in similar solutions (Solution 4 in ref 43). This solution is also used to prepare the GdBCO-Gd₂O₃ nanocomposite. In this case, an excess of Gd-TFA is added to promote the spontaneous segregation of Gd₂O₃.

2.2 Thin film preparation. GdBCO and GdBCO+20 mol % Gd₂O₃ films were studied in this work. The films were prepared by depositing the precursor solutions on 5 x 5 mm LaAlO₃ (LAO) single crystal substrates via spin coating (6000 rpm, 2 min). The subsequent standard pyrolysis and growth processes are also described elsewhere40,46. Flash heating process (described in detail in section 3) is also used to obtain improved texture and superconducting properties.

2.3 Thin film characterization. The microstructure and phase analysis of the grown GdBCO and 20%M Gd₂O₃ films were performed by two-dimensional (2D) X-ray diffraction (XRD) using a Bruker AXS GADDS diffractometer (geometry, radiation source, etc). The microstructure of the films at the atomic scale was analyzed with a FEI-TITAN low-base operated at 300 kV equipped with a CEOS aberration corrector. The morphology of the films after the pyrolysis and after the growth was analyzed by a Leica DM 1750 M optical microscope and a SEM Quanta 200 ESEM FEG, respectively. The granularity measurements and the superconducting properties (Tc and Jc) of the films were obtained with a Quantum design PPMS and XL-7T SQUID.

3. Results & discussion

3.1 Pyrolysis process: TFA vs LF solutions. The pyrolysis process used to remove the organic content of the as-deposited metalorganic solution is a critical step in CSD47. As demonstrated in the case of the YBCO films, the inhomogeneities that appear during the pyrolysis process due to the strong film shrinkage because of the solvent evaporation and the decomposition of the precursors degrade the final film properties46,48,49. To achieve smooth and defect-free films after pyrolysis is not straightforward. In the YBCO-TFA films this shrinkage can be as high as 50% of the initial thickness46. An additional limitation of the TFA solutions is their high hygroscopicity50. Even the as-deposited films are very sensitive to the humidity16. It is suggested that this effect is due to the fact that the fluorine-water bonds are formed and are stronger than the fluorine-methanol bonds thus causing water absorption. This fact, together with a big difference between the values at room temperature of vapor pressure (PV) and surface tension of methanol and H₂O (PV = 3173 and 16265 Pa, and γ = 72.9 and 22.5 mN/m for H₂O and methanol, respectively), cause aggregation of the precursor species creating inhomogeneous stress in the films. This stress is likely to cause mechanical instabilities that result in film buckling or cracking, thus reducing film homogeneity after pyrolysis46,47,51.

This problem can be partially overcome with the use of LF solutions. The LF solutions present important advantages from different standpoints: (i) the use of non-fluorinated compounds is environmentally friendly, (ii) the reduction of the TFA-salts content in the solution, the use of triethanolamine (TEA) as a ligand, which coordinates with metal ions stabilizing them and also helps to achieve a smooth release of the stress in the films during the
pyrolysis due to its viscoelastic behavior. This is probably the reason why different ligands (TEA, DEA, PEG, etc.) are sometimes used to improve the quality of the CSD films and the use of propionic acid as solvent. Finally, the use of propionic acid instead of TFA also helps to reduce the water absorption of the solution. This will lead to a higher yield of homogenous films after pyrolysis.

We have compared how the TFA and LF solutions (GdBCO-TFA and GdBCO-LF, respectively) absorb water from the ambient. The GdBCO solutions were spread over glass disks and then the mass change due to water absorption from the surrounding air was measured for each of them using a microbalance. The results are plotted in figure 1. Notice the very high water absorption of TFA films (10 wt %), that diminishes to one half for LF films. These results can be explained by the coordination of the metal ions to TEA or propionic acid that prevent their coordination with water molecules.

The reduction of the water absorption in the GdBCO-LF solutions causes an increase of film homogeneity after the pyrolysis (more than 95% of the films without inhomogeneities) even when solutions prepared several weeks before are used. Figure 2 shows optical microscope images of the surface of two pyrolyzed films deposited on LAO substrates from solutions prepared one week before. The film made from the TFA solution presents a large amount of cracks while the film deposited from LF solution exhibits a homogeneous surface with no defects. This difference is attributed to the fact that, usually after one week, the water content in the TFA solution was well above 2 wt% (2.9 wt % in this particular case) while, in the case of the LF solution, it remained below 2 wt%.

Figure 1. Mass change at room temperature in air due to water absorption of films deposited from GdBCO-TFA and GdBCO-LF solutions.
The above features of the GdBCO-LF solution allow us to obtain reproducible films. So, from now on, we will focus in this LF solution. However, its use requires to modify the standard thermal process for the pyrolysis of the TFA- solutions. We have used a thermal process already reported for YBCO-LF\(^{33}\). It is similar to the one used for the TFA solutions but with a higher dwell temperature (500 °C) and a higher gas flow rate (0.12 l/min) to favor the complete decomposition of the TEA.

3.2 Growth process: Flash-Heating process

The phase diagram of the GdBCO reported by Iguchi et al. and Lee et al. shows that the stability line of GdBCO is shifted towards higher temperatures, as compared to YBCO\(^{33,54,55}\). This suggests that the crystallization of GdBCO films should be optimum at higher temperatures than in the YBCO films. It is also noticeable that in most of the works devoted to the GdBCO films synthesis lower values of \(P_{O_2}\) are used\(^{16,33,35}\). So we concentrated in exploring growth conditions shifted to higher crystallization temperatures and lower oxygen partial pressures \(P_{O_2}\), as compared to standard growth process for the YBCO-TFA films\(^{31,56,57}\). However, increasing the crystallization temperature to 820 °C (dwell time: 180 min) and reducing \(P_{O_2}\) to 1.10\(^{-4}\) atm (100 ppm) did not lead to fully satisfactory results. While the obtained \(T_c\) values were improved when \(P_{O_2}\) was reduced, the 2D XRD pattern shown in figure 3a) demonstrates that the film is not completely epitaxial, some fraction of polycrystalline grains still remains and the film texture of the c-axis oriented grains is not of high quality. The ring that appears with the spots in the (00l) Bragg’s positions indicates that the c-axis oriented grains tend to grow with a certain degree of misorientation. Also, the presence of a ring corresponding to the (103)GdBCO Bragg peak confirms that randomly oriented grains have been also formed. Finally, we also notice the spot associated with (200)GdBCO Bragg’s peak which means that there are also some grains that

![Figure 2. Optical microscope images of the surface of a pyrolyzed film deposited from 1 week old solution of: a) GdBCO-TFA and b) GdBCO-LF. The water content was much higher in the TFA solution (2.9 wt%) what explains the appearance of cracks that are absent in the LF film.](image-url)
nucleate epitaxially with the a-b plane perpendicular to the substrate. The Bragg’s peaks associated to (102) reflection, identified with an arrow in figure 3a) can be better identified in the integrated pattern shown in figure 3 b).

![Figure 3. 2D XRD θ-2θ frame a) and integrated pattern b) of a GdBCO-LF film grown using the modified standard process (crystallization temperature= 820 °C and $P_{O_2}=100$ ppm).](image)

The existence of undesired nucleation under these conditions is also clearly evidenced in the SEM image shown in Figure 4. In this image we can see that the nucleation of a-axis is promoted. This is something not observed in the case of YBCO-LF films which show a perfectly c-axis oriented films using similar processing conditions43.

![Figure 4. SEM image of a GdBCO-LF film prepared following the standard process used for the growth of YBCO-TFA films. At the used processing conditions the a-axis nucleation is clearly enhanced.](image)

In order to investigate the reason why the films do not crystallize only with the c-axis epitaxial orientation, a film quenching study at different temperatures was performed. The results shown in figure 5 provide the clues to discern the origin of the problem. Under the presently used nucleation and growth conditions25-27, the GdBCO phase nucleates at temperatures in the range of 710-725 °C but at these temperatures the heterogeneous nucleation of GdBCO leads to multiple nuclei orientations oriented perpendicular to the substrate interface (c-axis, a-b plane and may be even <103> axes) because we are in the region of high supersaturation conditions31,58. We observe that the (103) peak is the first observed when temperature is increased (between 710 and 725 °C), thus suggesting that homogeneous nucleation, leading to randomly oriented grains, occurs before the c-axis oriented epitaxial grains ((00l) peaks appear between 750 and 790 °C). It cannot be discarded, however, that some heteroepitaxial nucleation...
of grain with <103> axes perpendicular to the substrate first appear and later leading to randomly oriented grains which contribute to the observed (103)GdBCO Bragg peak. In any case, this suggests that under these particular conditions the GdBCO crystalline phase forms under an excessive supersaturation where the nucleation barriers for the different crystalline orientations are too close to that of the c-axis oriented nucleation.

Figure 5. 2D XRD θ-2θ integrated patterns of GdBCO-LF films quenched after annealing at different temperatures showing that nucleation of randomly oriented grains (presence of (103) Bragg’s reflection) occurs before that the epitaxial grains ((00l) Bragg’s reflections).

It is well known that c-axis oriented grain nucleation is more favorable at high temperatures for REBCO structures. This is because at high temperatures the difference in the nucleation barriers, and so the nucleation rates, between the a-b axis oriented grains, the randomly oriented grains and the c-axis oriented grains is larger, even if all the nucleation rates are lower. Therefore, it is interesting to accelerate, as much as possible, the transition through intermediate temperatures where non-desirable nucleation events may occur. This will not allow enough time to induce multiple nucleation events at low temperatures and so reaching the crystallization temperature as fast as possible to favor the nucleation of c-axis grains. With this aim, a “Flash-Heating” process was designed. This process is similar to the one reported by Erbe et al. The furnace is first pre-heated at the dwell temperature (820 °C in this case) and then the film is introduced directly at this temperature. With this procedure it is possible to reach average heating ramps of ~600 °C/min, more than 20 times faster than the 25 °C/min of the original process. The XRD patterns of the films grown using this type of process are presented in figure 6. A perfectly epitaxial (00l) GdBCO films with no presence of other orientations or other phases are achieved with our “Flash-Heating” process.
Figure 6. a) 2D XRD θ-2θ frame and b) integrated pattern of GdBCO-LF films grown using the Flash-Heating process at 820 °C.

Despite that the XRD patterns do not show the presence of other crystal orientations, in the SEM images (figure 7) it is still possible to observe a small amount of a-b grains (white arrows) and some pores (black spots). This means that the thermal process is still not fully optimized and there is still some room for improving the processing conditions. Introducimos aquí como se puede tartar de arreglar o solo en carta al referee??

Figure 7. SEM image of a GdBCO film prepared by Flash-Heating process showing a small amount of a-b grains (indicated with white arrows) and some pores (black spots).

Nonetheless, at this stage, the films present $T_{c, \text{onset}}$ of 92.6 K with a $\Delta T_c=10.1$ K (see Figure 8 (a)) which is similar to the best results previously reported for GdBCO-TFA and GdBCO-LF films. However, moderate values of self-field critical current densities, J_{csf} at 5 K ~12.5 MA/cm2 and J_{csf} at 77 K ~1.5 MA/cm2, were registered (see Figure 8 (b)).
The values of J_c reported in figure 8 are very likely affected by the presence of a small amount of a-b grains which behave as barriers for percolative current. The presence of these a-b grains and also the porosity that is observed in figure 7 produce inhomogeneities in the film that could induce a granular behavior for the current flow. Granularity in superconductors is characterized by the existence of two different critical current densities: one inside the grains (J^G_c) and another one associated with the grain boundary network (J^{GB}_c). It is possible to determine the J^G_c by applying the method reported by Palau et al. We investigated, therefore, if granularity could be at the origin of the reduced J_{csf} values in our films. It has been widely investigated by several authors how percolative current blocking can be observed in thin films and how this influences J^s_{csf} values. The existence of granularity can be experimentally identified by performing hysteresis loops at different maximum applied fields. Figure 9 displays a set of such hysteresis loop measurements with a maximum magnetic field of 8 T measured at 5 K. It is observed that the maximum value of the magnetization at the reverse branch appears approximately at an applied field of 0.4 T. For a single crystalline superconducting film this would be expected at zero field. The displacement of the maximum value of the magnetization to higher fields is attributed to granularity effects. The obtained grain size is 0.5 µm and the J^G_c values for the GdBCO film measured in figure 9 by applying this method are: J^G_c (5 K)~40 MA/cm2 and J^G_c (77 K)~3.3 MA/cm2 (determined with the same kind of measurements at 77 K). These results show that, if the granularity could be avoided by optimizing the processing conditions, the performances of the GdBCO-LF films might be largely enhanced.
3.3 GdBCO-Gd$_2$O$_3$ nanocomposites. The preparation of GdBCO+20 mol % Gd$_2$O$_3$ nanocomposite films has been carried out following the solution methodology described in 2.1 and the flash heating process described in 2.1 and the flash heating process described in 3.2.

The XRD patterns of the nanocomposite films after the conversion process are shown in figure 10. They show epitaxial c-axis orientation of the GdBCO grains but the broadening of the (00l) spots suggests some degree of misorientation, figure 10 a). The peaks corresponding to Gd$_2$O$_3$ can be also observed, both in figures 10 b) and c). This confirms the formation of the Gd$_2$O$_3$ phase during the growth process. The presence of Gd$_2$O$_3$ nanoparticles (NPs) within the GdBCO matrix leads to an increased nanostrain reaching values of 0.24±0.01%, higher than pristine GdBCO-LF films (0.13±0.01%). Also the nanostrain obtained in these nanocomposites is comparable with the values obtained for CSD YBCO nanocomposites38,65. Nevertheless, it has to be taken into account that, very likely, this value of the strain has, in addition to a contribution from the nanostrain arising from defects, some contribution associated to mesostrain (strain at grain boundaries) owing to the observation of some granularity effects38.

Figure 9. Hysteresis loops at different fields in a GdBCO-LF film grown with the Flash-Heating process showing a displacement of the maximum of the magnetization.
Figure 10. a) 2D XRD θ-2θ frame, b) integrated pattern from a) and c) high resolution pattern of a GdBCO-LF+20 mol % Gd$_2$O$_3$ film grown using the Flash-Heating process at 820 °C.

The TEM analysis shows perfectly c-axis oriented GdBCO grains, together with a random distribution of 30-50 nm Gd$_2$O$_3$ NPs (red arrows) in figure 11 a). Also, it is possible to distinguish the presence of Stacking Faults (SFs) in figures 11 b) – d) (white arrows) which have been recently shown to have a peculiar defect structure and display ferromagnetic properties. Figure 11 d) shows the presence of superposed Gd$_2$O$_3$ NPs within the GdBCO matrix causing the formation of SFs at the interfaces.
The superconducting properties of the GdBCO-LF+20 mol % Gd$_2$O$_3$ nanocomposites are improved with respect to the pristine GdBCO-LF films. The $\rho(T)$ curve shown in figure 12 a) display a T_c (value of T at 50% of the transition) of ~ 91.7 K with a ΔT_c ~ 3.5 K ($\Delta T_c = T_{c,90} - T_{c,10}$). Figure 12 b) displays the $J_c(T)$ curve in which we can observe that the J_c^{SF} at 77 K reaches 3.2 MA/cm2 while the J_c^{SF} at 5 K arrives at 24.7 MA/cm2.

Figure 11. (a) LAADF and (b-d) HAADF STEM images of a GdBCO-LF+20 mol % Gd$_2$O$_3$ film grown with the flash-heating process at 820 °C a) A random distribution of 30-50 nm Gd$_2$O$_3$ NPs is observed with the matrix of the film causing the presence of SFs marked white arrows in b), c) and d). Picture d) shows two superimposed Gd$_2$O$_3$ NPs.
Figure 12. Superconducting properties of a GdBCO-LF+20 mol % Gd$_2$O$_3$ film grown with the flash-heating process at 820 °C extracted from a) the temperature dependence of the electrical resistivity $\rho(T)$ and b) the temperature dependence of the inductively measured self-field $J_{c}(T)$.

On the other hand, the strength of vortex pinning of the GdBCO-LF+20 mol % Gd$_2$O$_3$ nanocomposite films shown in the J_{c}/J_{c}^{sf} dependence at 77 K with the magnetic field (figure 13 a)) turned out to be enhanced, as compared to those of the reference pristine YBCO-TFA films, and similar to the reported values on GdBCO-TFA+BHO nanocomposite films. The GdBCO+20 mol % Gd$_2$O$_3$ curve shows the typical smoothed field dependence that is commonly observed in the YBCO nanocomposites. Note that the curve for the GdBCO+20 mol % Gd$_2$O$_3$ film is very similar to the YBCO+10 mol % BZO nanocomposite films and much smoother than in the case of the pristine YBCO-TFA film. This demonstrates that the GdBCO+20 mol % Gd$_2$O$_3$ films have enhanced vortex pinning, at least at the same level as the YBCO+10 mol % BZO nanocomposites in films with similar thicknesses. The calculated B^* ($J_{c}(B^*)=0.9 J_{c}^{sf}$) reach a value ~ 0.1 T which is in the range of the values reported for the YBCO nanocomposites. Finally, the analysis of the angular dependence of $J_{c}(\theta)$ and the isotropic collapse of the Irreversibility Line $H_{irr}(\theta)$ (figures 13 b) and 13 c)) has provided evidence of isotropic behavior in GdBCO-LF+20 mol % Gd$_2$O$_3$ nanocomposite films, similarly to the YBCO nanocomposites. It is also remarkable the broadening of the peak at 90° ($H//ab$), associated to defects that are effective pinning centers close to the a-b plane and the vanishing of the peak at 0° ($H//c$), associated to a loss of effectiveness of correlated defects parallel to the c-axis. We attributed both peak evolutions to the presence of a large density of SFs, as we have seen in figure 11 that favor the accommodation of vortices at a broader angle range around the ab-planes and also cause strain-driven break of the c-oriented twin boundary coherence.

The anisotropic behaviour of the nanocomposite films can be characterized by a field-independent anisotropy parameter γ_{eff} when the anisotropic Ginzburg-Landau (AGL) scaling behaviour of $J_{c}(\theta,H)$ at fixed temperatures is studied. As proposed by Blatter et al. and applied to REBCO films, the isotropic and anisotropic contributions to $J_{c}(\theta,H)$ and the Irreversibility Line $\mu_{c}H_{irr}(T)$ can be extracted from a plot of the effective field $H_{eff}=H_{in}+\gamma_{eff}\theta H$, where $\theta=[\cos^2(\theta)+\gamma_{eff}^2\sin^2(\theta)]^{1/2}$ and γ_{eff} is the mass anisotropy ratio. In our case, the GdBCO-LF+20 mol % Gd$_2$O$_3$ nanocomposite studied shows an effective γ_{eff} value of ~ 2.3.
instead of the $\gamma_{\text{eff}} \sim 5-7$ value obtained for pristine YBCO-TFA films. The γ_{eff} value found for our GdBCO-LF+20 mol % Gd$_2$O$_3$ nanocomposites is in the same range as YBCO nanocomposites suggesting that GdBCO nanocomposites display a similar vortex pinning landscape than YBCO nanocomposite films. The origin of this reduction in γ_{eff} by the addition of nanoparticles has been associated to isotropic nanostrain and a novel depairing mechanism related to tensile strain fields in defects formed around the nanoparticles (especially in CSD-grown films). Other authors have also considered the contribution of geometrical effects for sufficiently small, dirty-limit scattering and a change in coherence length anisotropy (discussed especially for PLD-grown films).
4. Conclusions

We have shown that the preparation of high critical current density GdBCO thin films by CSD is challenging requiring thorough optimization of the precursor solution formulation and designing a new high temperature thermal process. The sensitivity of the GdBCO-TFA solutions to the ambient humidity has led us to the development of a new Low-Fluorine solution to prepare GdBCO thin films by the CSD method. The developed GdBCO-LF solution solves the problem of reaching highly homogeneous films after the pyrolysis process. This novel solution avoids using high concentration of TFA salts (which are highly hygroscopic), and the presence of propionic acid while the use of TEA (coordination agents) help to prevent the water absorption that can derive in film buckling formation and degradation of the texture quality. Also, the presence of TEA gives to the system viscoelastic properties that help to release the stress generated due to the shrinkage during the pyrolysis without causing inhomogeneity. The use of this new solution allows to increase the rate of homogeneous films after the pyrolysis up to a 95% of success rate. The growth of epitaxial GdBCO-LF films required to design a new thermal profile, named “Flash-Heating” process with heating ramps ~600 °C/min, to obtain full c-axis oriented GdBCO films. The superconducting properties of the resulting GdBCO-LF films are close to the best reported values so far. The T_c reaches 92.6 K while the $J_c^{s,ff}$ at 77 K reaches ~1.5 MA/cm². However, this J_c value is still limited by granularity effects and, therefore, the Flash-Heating growth process should be still further optimized. The value of the $J_c^{s,ff}$ at 77 K inside the grains has been estimated to be ~5 MA/cm² which suggests that there is still a lot of room for improvement. The Flash-Heating process was also shown to be a useful approach to grow epitaxial GdBCO+Gd$_2$O$_3$ nanocomposite films. These nanocomposite films show the typical features already observed for the CSD YBCO nanocomposite films (enhanced nanostrain and a large concentration of SFs) and also improved superconducting properties as compared to pristine GdBCO-LF films reaching $T_{c,50}$ ~ 91.7 K and the $J_c^{s,ff}$ at 77 K ~3.2 MA/cm². The critical currents of the nanocomposites are, however, still limited by granularity effects and so further effort should be carried out to reach the highest performances.

Acknowledgements

This work was financially supported by Eurotapes, a collaborative project funded by the European Community’s Seven Framework Program (EU-FP7 NMP-LA-2012-280432). We also acknowledge MINECO and FEDER funds for COACHSUPENERGY project (MAT2014-51778-C2-1-R) and the Center of Excellence award Severo Ochoa SEV-2015-0496, and SGR753 from the Generalitat of Catalunya. B.M. acknowledges a FI fellowship from MINECO. M.C and J.G acknowledge the Ramon y Cajal programs (RYC-2013-12448 and RYC-2012-11709, respectively).

References

67. G. Deutscher, The role of Cu-O bond length fluctuations in the high temperature superconductivity.
