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Quantum Rabi model in the Brillouin zone with ultracold atoms
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The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic
mode. We propose a method to perform a quantum simulation of the quantum Rabi model, introducing an
implementation of the two-level system provided by the occupation of Bloch bands in the first Brillouin zone
by ultracold atoms in tailored optical lattices. The effective qubit interacts with a quantum harmonic oscillator
implemented in an optical dipole trap. Our realistic proposal allows one to experimentally investigate the quantum
Rabi model for extreme parameter regimes, which are not achievable with natural light-matter interactions. When
the simulated wave function exceeds the validity region of the simulation, we identify a generalized version of
the quantum Rabi model in a periodic phase space.
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I. INTRODUCTION

The Rabi model [1] is a semiclassical description of the
dipolar interaction of a nuclear spin with electromagnetic
radiation. Its full quantum version, known as the quantum
Rabi model, has been applied more generally to describe the
interaction between a two-level quantum system and a single
bosonic mode, regardless of their specific physical origin. In
the strong-coupling regime, where the coupling strength is
larger than dissipation rates but small compared to the system
characteristic frequencies, the quantum Rabi model can be
reduced via a rotating-wave approximation to the Jaynes-
Cummings model [2]. The latter has been used for decades to
explain a plethora of experiments [3–5] in quantum optics and
condensed matter, such as cavity quantum electrodynamics
(QED), trapped ions, circuit QED, and quantum dots.

More recently, it was experimentally demonstrated that
the ultrastrong-coupling regime can also be achieved [6–11],
where the coupling strength is large enough to break the
rotating-wave approximation and the full quantum Rabi model
must be considered. The interest in the ultrastrong-coupling
regime is motivated by novel fundamental features [12–17]
and potential computational benefits [18–21]. Despite its
ubiquity, analytical solutions for the quantum Rabi model
spectrum were developed only recently [22], prompting further
theoretical efforts to study generalizations of the quantum
Rabi model, including anisotropic couplings [23], two-photon
interactions [24–26], and the Dicke model [27]. In addition,
significant efforts have been devoted to reproducing these
models using different quantum technologies [28–32].

Ultracold atoms represent one of the most advanced quan-
tum platforms for the implementation of analog quantum simu-
lations [33]. They have mostly been associated with the imple-
mentation of quantum many-body and condensed-matter mod-
els. Spinlike degrees of freedom have been implemented with
ultracold atoms using internal electronic transitions [34–36].
Alternatively, the creation of two-level systems with atomic
quantum dots [37,38] or double-well potentials [39] has been

proposed. Remarkably, relativistic effects [40–42] have also
been simulated using ultracold atoms.

Here, we propose a quantum simulation of the quantum
Rabi model with cold atoms in an optical lattice. The
effective two-level quantum system is simulated by different
Bloch bands in the first Brillouin zone, and the bosonic
mode is represented by the motion of the atomic cloud in
a superimposed harmonic optical-trap potential. The qubit
energy spacing is proportional to the periodic lattice depth,
while the interacting bosonic mode is intrinsic in the qubit
definition. When the edge of the Brillouin zone is reached, we
find that a generalized version of the quantum Rabi model in
periodic phase space is realized.

We show that our method, feasible with current technology,
can access extreme parameter regimes of the quantum Rabi
model. This will allow for the experimental study of the tran-
sition between the deep strong-coupling (DSC) regime [43],
where the coupling strength is larger than bosonic-mode
frequency, and the dispersive deep strong-coupling (dDSC)
regime, where in addition the frequency of the qubit is much
larger than the frequency of the bosonic mode. The complexity
of such a model has been recently highlighted by the prediction
of a phase transition, even in the single-qubit case, when the
ratio between the qubit and the bosonic frequency tends to
infinity [44].

This paper is organized as follows. In Sec. II, we introduce
the model and we discuss the analogy with the quantum Rabi
model (QRM). In Sec. III, we provide details on the proposed
implementation, discussing the parameter regimes that can
be accessed with current technology and the measurement
techniques. In Sec. IV, we report the results of numerical sim-
ulations that show examples of interesting dynamics that could
be reproduced. Finally, in Sec. V we summarize our results.

II. THE MODEL

The system considered here is composed of a cloud of
ultracold atoms exposed to two laser-induced potentials: a
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periodic lattice and a harmonic trap. When the atom density is
sufficiently low, interactions among the atoms are negligible,
and the system can be described with a single-particle Hamil-
tonian, composed of the periodic term HP and a quadratic term,

Ĥ = ĤP + mω2
0

2
x̂2, ĤP = p̂2

2m
+ V

2
cos (4k0x̂), (1)

where p̂ = −i� ∂
∂x

and x̂ are the momentum and position of
an atom of mass m, respectively. Here, ω0 is the angular
frequency of the atom motion in the harmonic trap, while V and
4k0 are the depth and wave vector of the periodic potential,
respectively. The periodic lattice results from a four-photon
interaction with a driving field [41,45,46] of wave vector k0.

In the following, we will assume that the harmonic trap is
slowly varying on the length scale of the periodic potential.
Under this assumption, the most suitable basis is given by the
Bloch functions 〈x|φnb

(q)〉 = φnb
(q,x) = eiqx/�unb

(x), with q

the quasimomentum and nb the band index, while unb
(x) must

be a periodic function with the same periodicity of the periodic
potential. Without loss of generality, we define unb

(x) =
e−i2k0xei4nbk0x , where we have added the phase e−i2k0x to the
unb

(x) functions definition in order to obtain a convenient
first Brillouin zone, q ∈ (−2�k0,2�k0]. Notice that the Bloch
functions are identified by a discrete quantum number, the
band index nb, and a continuous variable, the quasimomentum
q. Hence, we can define continuous and discrete degrees of
freedom, and rewrite the Bloch basis as |φnb

(q)〉 = |q〉|nb〉.
First, let us consider the periodic part ĤP of the system

Hamiltonian; later we will discuss the effect of the harmonic
trap. It is straightforward to see that the momentum operator
is diagonal in the Bloch basis, while the periodic potential
introduces a coupling between adjacent bands,

ĤP|q〉|nb〉 = 1

2m
[q + (2nb − 1)2�k0]2|q〉|nb〉

+ V

4
(|q〉|nb + 1〉 + |q〉|nb − 1〉). (2)

Let us now include the quadratic term of Eq. (1) in our
treatment. In the Bloch basis, we can write

〈q̃,ñb|x̂2|q,nb〉 =
∫ +∞

−∞
dx x2ei[4(nb−ñb)k0+(q−q̃)/�]x. (3)

Considering diagonal elements in the band index, i.e., set-
ting ñb = nb, we have 〈q̃,nb|x̂2|q,nb〉 = −�

2〈q̃,nb| ∂2

∂q2 |q,nb〉.
Hence, we see that the harmonic potential introduces an
operator, diagonal in the qubit Hilbert space, which can be
expressed as x̂ = −i� ∂

∂q
, in the Bloch basis. This allows us

to define the quasimomentum operator q̂ and the position
operator x̂, which satisfy the commutation relation [x̂,q̂] = i�.

On the other hand, for ñb �= nb, the integral in Eq. (3)
is maximized if the relation 4�k0(nb − ñb) = q̃ − q is sat-
isfied. Hence, the quadratic potential introduces a coupling
between neighboring bands, for states whose momenta satisfy
q̃ − q = 4�k0, of the kind (|2�k0,nb〉〈−2�k0,nb + 1| + H.c.).
This effective coupling is due to the periodicity of the
quasimomentum, which mixes the bands at the boundaries
of the Brillouin zone. Such a coupling can be neglected
as far as the system dynamics involves only values of the

1 0.5 0 0.5 1

2

4

6

8

q k0

E
P

q

FIG. 1. Band structure for an optical lattice potential. Comparison
of the dispersion relation for the first and second bands for a lattice-
potential depth of V = 2Er (solid blue line) and a free particle (dashed
red line). The gap between the first and second bands corresponds to
the effective qubit energy splitting.

quasimomentum q̂ included within the first Brillouin zone.
This condition marks the limits of validity of the identification
of the quasimomentum as a harmonic-oscillator variable.
When the exponent in Eq. (3) is not vanishing, the argument
of the integral is fast oscillating and the corresponding matrix
elements are negligible.

A. Equivalence with the quantum Rabi model

We assume now that the system dynamics is restricted to
the two bands with lowest energy (nb = 0,1), as shown in
Fig. 1. The validity of this assumption is granted by energy
conservation, when the system is initialized in this subspace.
Accordingly, we can truncate Eq. (2) and rewrite in the Bloch
basis the periodic part ĤP of the Hamiltonian as

ĤP(q) = 1

2m

(
q2 + 4�k0 q 0

0 q2 − 4�k0 q

)
+ V

4

(
0 1
1 0

)
.

(4)
Similarly, we can rewrite Eq. (3), keeping only the nonvanish-
ing terms of the quadratic trapping potential that involve the
two lowest bands as

x̂2 = −�
2 ∂2

∂q2

(
1 0
0 1

)
+ �(|2�k0,0〉〈−2�k0,1| + H.c.),

(5)
where � = 〈−2�k0,1|x̂2|2�k0,0〉. We define the annihilation

operator â =
√

mω0
2�

(−i� ∂
∂q

+ i
mω0

q̂) and creation operator â†,

respectively. In the following, we assume that the system
state is fully contained in the first Brillouin zone, i.e., that its
overlap with the quasimomentum states q = ±2�k0 vanishes.
Accordingly, the umklapp term proportional to � in Eq. (5)
can be neglected. We will discuss the implication of this
assumption at the end of this section. Finally, the total system
Hamiltonian, up to the umklapp term, can be rewritten as

Ĥ = �ω0â
†â + �ωq

2
σz + i�gσx

(
a† − a

)
, (6)

which corresponds to the quantum Rabi Hamiltonian where
we have defined the effective qubit energy spacing ωq = V

2�

and the interaction strength g = 2k0

√
�ω0
2m

. In order to obtain
the standard form of the quantum Rabi model, we have rotated
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the qubit basis with the unitary operator U = 1√
2
(1 −1
1 1). The

Pauli matrices are defined in the rotated basis and, using the
notation for the Bloch bands, they can be written as

σx = |nb = 0〉〈nb = 0| − |nb = 1〉〈nb = 1|,
σz = |nb = 1〉〈nb = 0| + |nb = 0〉〈nb = 1|. (7)

Notice that in the standard form of the quantum Rabi model, the
qubit-field coupling is usually written in terms of the position
operator, while in Eq. (6) it appears in terms of the momentum
operator. The two definitions are equivalent up to a global
phase factor.

The full system Hamiltonian of Eq. (1) resembles the
quantum Rabi model only when the effective coupling between
different bands induced by the harmonic potential can be
neglected. Such an approximation holds as long as the system
wave function 〈q|ψ(t)〉 is completely included in the first
Brillouin zone. Clearly, this constraint limits the proposed
implementation to values of the momentum q̂ smaller in
modulus than 2�k0. In the following, we will show that this
constraint does not impede to observe the highly nontrivial
behavior of the quantum Rabi model in the DSC and dDSC
regimes. The DSC regime was introduced theoretically in [43]
and it is generically characterized by g > ω0. However, in the
dDSC regime, we have the condition ωq � ω0. Interestingly,
some key features of the DSC regime are reproduced even
when the periodicity of the quasimomentum becomes relevant
for the system dynamics.

B. Parameters regimes of the quantum Rabi model

The spectrum and the dynamical evolution of the quantum
Rabi model have very different features depending on the ratio
between the interaction strength g and the qubit and bosonic
mode energies ωq and ω0. Three different parameter regimes
can be identified, in which the model behaves in a qualitatively
different way.

In the strong-coupling (SC) regime, the interaction strength
g is large with respect to decay channels but small compared to
the system characteristic frequencies g/ω0 	 1 and g/ωq 	
1. In this case, a rotating-wave approximation (RWA) can be
applied, and the interaction term in Eq. (6) can be rewritten
as i�gσx(a† − a) → i�g(σ−a† − σ+a). We defined the qubit
raising and lowering qubit operators σ± = (σx ± iσy)/2.
Under RWA, the total number of excitation N̂ = a†a + σz

is conserved. The resulting Hamiltonian, dubbed the Jaynes-
Cummings model [2], is analytically solvable and it has proven
useful to describe a plethora of experiments in the quantum
regime.

As the coupling strength becomes larger, the rotating-wave
approximation is not applicable and the system enters the
ultrastrong-coupling (USC) regime, defined by the condition
0.1 � g/ω0 � 1, in the resonant or near-resonant case ω ≈ ωq .
The continuous symmetry N̂ breaks down into a discrete
N2 symmetry, �̂ = −σze

iπa†a , representing the parity of the
total excitation number. In this regime, the quantum Rabi
Hamiltonian is not analytically solvable, even if approximated
solutions can be found for limiting cases [47]. An analytical
solution for the eigenspectrum has also been derived [22], but

it is not in a closed form and it does not entail computational
benefits.

The system enters the deep strong-coupling regime [43]
when both the ratio g/ω0 and g/ωq are significant higher than
1. Under this condition, the system time evolution is well
described by the slow-qubit approximation, which consists in
neglecting the energy splitting of the qubit, setting ωq = 0.
In our case, the Hamiltonian of Eq. (6) will be reshaped
into ĤDSC = ω0a

†a − igσx(a† − a). This approximation is
intuitively motivated by the rapid growth of the number of
photons, which makes the higher states of the Fock basis the
most relevant in the system dynamics. Given that the norms
of the creation and annihilation operators are proportional to
the Fock number, while the Hamiltonian term ωq

2 σz remains
constant, the latter becomes negligible for high photon number
states. Under this approximation, the Hamiltonian can be
diagonalized using the transformation

D†(α)HDSCD(α) = ω0a
†a + g2

ω2
0

− 2g2

ω0
, (8)

where we defined α = −i
g

ω0
σx and the operator D(α) =

exp {αa† − α∗a}, which corresponds to a conditional displace-
ment dependent on the qubit state.

On the other hand, when the qubit energy splitting is
comparable to the coupling strength ωq ∼ g, the slow-qubit
approximation cannot be applied and the diagonalization of
Eq. (8) cannot be applied. We will call dispersive DSC
(dDSC) the regime where the coupling strength g is large
with respect to the bosonic-mode frequency ω0, and it is
comparable or smaller than the qubit energy splitting ωq .
A low-energy effective Hamiltonian has been found in the
limit ωq/ω0 → ∞, where the system exhibits a quantum
phase transition [44]. The present proposal allows reaching
unprecedented values of the ratio ωq/ω0, so it can in principle
approach the limit in which the phase transition takes place.
Notice that there are no available analytical or approximated
solutions to describe a large interval of parameters at the
crossover between the DSC and the dDSC regime.

III. IMPLEMENTATION

Before going into the details of the phenomena that can be
observed, let us discuss the feasibility of the present proposal.
In this section, we report which parameter regimes can be
accessed with current technology, and we briefly describe
state preparation and measurement techniques. In particular,
we consider previous experiments of ultracold rubidium
atoms in optical lattices, where Fourier-synthesized lattice
potentials are used in order to tailor the atomic dispersion
relation [42,48].

A. Accessibility of parameter regimes

The parameter regimes that can be accessed are established
by the relative weights of the parameters ω0, ωq = V

2�
and

g = 2k0

√
�ω0
2m

, defined in Eq. (6). We will consider as fixed
parameters the wavelength of the lattice laser λ = 783.5 ×
10−9 m for technical reasons and, obviously, the rubidium
atomic mass m = 1.44 × 10−25 kg. The wave vector is given
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by k0 = 2π
λ

. On the other hand, the periodic lattice can be tuned
over a wide intensity range, from V = 0 (absence of lattice)
to about V/� = 2π × 18 kHz, corresponding to V = 4.8Er ,

where we defined the recoil energy Er = �
2k2

0
2m

. The frequency
of the harmonic trap can also be tuned from ω0 = 2π × 0.5 to
ω0 = 2π kHz.

First, notice that the value of the effective coupling strength
is intrinsically linked to the trap frequency, g ∼ √

ω0, and
hence the ratio g/ω0 is tunable only over a narrow range
of extremely high values, from g/ω0 ≈ 7ω0 to g/ω0 ≈ 11.
However, the tunability of the ratio between the coupling
strength and the effective qubit energy spacing allows us to
explore a large region of parameters at the transition between
the DSC and the dDSC regimes. Indeed, the value of ωq can
be made large enough to make the qubit-free Hamiltonian
dominant, ωq/ω0 ≈ 30, or small enough to make its energy
contribution negligible.

B. State preparation and measurement

A trapping potential for atoms can be realized by super-
imposing a dipole potential generated by a focused far-red-
detuned laser beam. To minimize the interatomic interactions,
it will be desirable to operate with a moderate number of atoms,
typically a few thousand. After initializing, the momentum of
the atoms must be manipulated in order to produce relevant
states of the simulated qubit and bosonic mode, according to
the encoding defined in Sec. II A.

Notice that the qubit state is encoded in the occupation of the
Bloch bands |±2�k0〉 = |nb · 4�k0 − 2�k0〉 ≡ |nb〉, while the
bosonic-mode quadratures are encoded in the position x̂ and
quasimomentum q̂ of the atoms. The qubit can be initialized in
an arbitrary state by preparing the atoms in the corresponding
position of the Bloch spectrum. This can be done by applying
a Doppler-sensitive Bragg pulse [49]. Due to momentum
conservation, the process entails a discrete momentum kick
of ±2�k0. By controlling the share of atoms that gain positive
or negative momentum, as well as the relative phase between
the Bragg pulses, the effective qubit can be initialized in any
superposition of σx eigenstates [as defined in Eq. (7)].

Both the momentum (and correspondingly the state of σx)
and, in principle, the position can be measured with absorption
imaging techniques [33]. For the former, standard time-of-
flight imaging can be used, as performed by simultaneously
deactivating both the lattice beams and the dipole trapping
potential and then detecting the atoms in the far field after a
given free expansion time. While the reconstruction in this
way is possible with a high precision [42], achieving the
required spatial resolution for an in situ position detection
of the oscillation is experimentally challenging.

For completeness, we mention that the qubit operator σz

can also be directly measured via adiabatic mapping [33,50],
but only when the system state is close to the avoided crossing
in the Bloch spectrum. By accelerating adiabatically the lattice
from q ∼ 0 to q ∼ 0.5�k0, Bloch waves are mapped onto the
free-particle momentum states. Such a process corresponds to
a rotation in the effective qubit Hilbert space. The required
adiabatic acceleration of the mapping can be performed by
means of a continuous frequency chirp applied to one of the
lattice laser beams.

Dispersive DSC Regime DSC Regime
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FIG. 2. Comparison between the full cold-atom Hamiltonian (red
continuous line) and the quantum Rabi model (blue dashed line). The
momentum is shown in units of �k0, while the position is shown in
units of 1/k0 and the coupling strength g/ω0 = 5.18. For the dDSC,
the ratio of frequencies is given by ωq/ω0 = 28.7, while for the DSC
regime, ωq/ω0 = 0.

IV. RESULTS

Let us now consider the dynamics of the quantum Rabi
model in the specific parameter regimes of interest for the
proposed quantum simulation. Given that only very high
values of the ratio between the coupling strength g and the
bosonic mode frequency ω0 are accessible, the rotating-wave
approximation can never be applied and the model cannot
be implemented in the Jaynes-Cummings limit. However, we
will show that interesting dynamics at the crossover between
the dDSC and the DSC regime can be observed for values of
parameters that are unattainable with so far available natural
implementations of the quantum Rabi model.

By means of numerical simulations, we have compared
the dynamics of the full cold-atoms model in Eq. (1) with
the corresponding effective quantum Rabi model in Eq. (6).
Numerical simulations of the full model have been performed
in the position basis, applying a discretization of the real space
over more than 103 lattice sites. The quantum Rabi model has
been numerically simulated introducing a cutoff (N > 500)
on the maximum number of bosonic excitations.

A. DSC to dispersive-DSC regime transition

In Fig. 2, we show the results of such numerical simulations,
in different parameter regimes. The initial state |ψ0〉 =
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FIG. 3. Numerically evaluated real-momentum distribution of the
cold-atom cloud during the dynamics shown in Fig. 2, at different
evolution times. For the dDSC regime (upper panel), the Rabi
parameters are given by g/ω0 = 7.7 and g/ωq = 0.43. In this case,
the initial wave function is transformed back and forth between two
distributions centered on the states |p = ±2�k0〉. For the DSC regime
(lower panel), g/ω0 = 10 and ω0 = ωq . In this case, the system is
continuously displaced in momentum space until the maximum value
of the momentum is reached.

|q = 0〉|nb = 1〉 is given by the vacuum of the bosonic mode
and eigenvectors of σx . Such a state can be obtained preparing
the atomic cloud at the center of the harmonic trap and at
the q = 0 of the nb = 1 band of the Bloch spectrum, which
corresponds to atoms prepared at p = +2�k. In all plots, the
red continuous line shows the dynamics of the full model [cf.
Eq. (1)], while the dashed blue line corresponds to the quantum
Rabi model [cf. Eq. (6)]. The good agreement between the
two simulations breaks down when the system state hits
the border of the validity region of the quantum simulation.
Different behaviors between the two regimes are more visible
in the expected value of σx which, in the DSC regime, is
approximately a conserved quantity, as shown below.

Figure 3 shows the distribution P(p) = |〈p|ψ(t)〉|2 of the
atomic physical momentum p̂, for different evolution times.
The momentum distribution can be experimentally obtained
via time-of-flight measurements, and gives a clear picture of
the system dynamics during the quantum simulation of the
quantum Rabi model. The cloud is initialized in the momen-
tum eigenstate, |p = −2�k0〉 = |q = 0〉|nb = 0〉. When the
periodic lattice strength V is large enough, the dynamics is
dominated by the coupling between the |p = ±2�k0〉 states.
This case corresponds to the dDSC regime in Fig. 2. Otherwise,
the dynamics is dominated by the harmonic potential, and
the evolution resembles the quantum Rabi model in the DSC
regime.

B. Collapses and revivals

We have first shown that our proposal is able to reproduce
the dynamics of the quantum Rabi model at the crossover
between the dDSC and DSC regimes. The analogy is broken
when the value of the simulated momentum exceeds the
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FIG. 4. Comparison between the full cold-atom Hamiltonian (red
continuous line) and the QRM (blue dashed line). (a) The plot
shows collapses and revivals of the initial-state population Pin =
|〈ψin|ψ(t)〉|2. The initial state is given by |ψin〉 = |q = 0〉|nb = 1〉.
The coupling strength is given by g/ω0 = 5.18, while the qubit
energy spacing vanishes, ωq = 0. In this limit, collapses and revivals
correspond to harmonic oscillations of the atoms in the trap potential.
(b) Temporal evolution of the quasimomentum in units of 2�k0, as in
the right column of Fig. 2, for the long-time dynamics. Notice that
the value of the quasimomentum is bound at |q| � 2�k0 and that the
different behavior between the Rabi and the periodic quantum Rabi
model appears at the boundary of the Brillouin zone.

borders of the first Brillouin zone. When this is the case,
the model represents a generalization of the quantum Rabi
model in a periodic phase space. In the following, we show
that collapses and revivals of the initial state, which represent
the signature of the DSC regime of the quantum Rabi model,
are matched by the full atomic model. Let us first review the
quantum Rabi model dynamics, considering the initial state
|ψin〉 = |q = 0〉|nb = 0,1〉. In the DSC regime, the system
evolution is described by the approximated solution [43],

|ψ(t)〉 = e−iĤDSCt |ψin〉 = −1e−iφ(t)D[(−1)nbβ(t)]|0〉|nb〉,
(9)

where φ(t) is a global phase independent of the qubit
state, while D[β(t)] is a displacement operator and β(t) =
i

g

ω0
(e−iω0t − 1). Accordingly, during the system time evolu-

tion, σz is conserved, while the vacuum state is displaced into
a coherent state that rotates in phase space and returns into the
initial state with period T = 2π/ω0. This pattern of collapses
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and revivals is shown (blue dashed line) in Fig. 4(a) for the case
in which the solution of Eq. (9) is exact (ωq = 0). The width of
the peaks is given by the width of the momentum distribution
of the initial state. As shown in Fig. 4(b), the periodicity of the
momentum results in shifted values of q̂ for the half period of
the system dynamics. Notice that when the system is initialized
in the state ψin = (|q = 0〉|nb = 1〉 + |q = 0〉|nb = 0〉)/√2,
the dynamics of Eq. (9) leads to Schrödinger cat generation,
ψ(t) = (|β(t)〉|nb = 1〉 + |−β(t)〉|nb = 0〉)/√2. The size of
the cat state is given by the maximum value of the displace-
ment, βmax = 2 g

ω0
, and so it is proportional to the coupling

strength.

V. CONCLUSIONS AND OUTLOOK

We have developed a method to implement a quantum
simulation of the quantum Rabi model for unprecedented
values of the coupling strength, using a system of cold
atoms in a periodic lattice. An effective two-level quantum
system is simulated by the Bloch-bands occupation, while a
single bosonic mode is implemented by the oscillations of
the atoms in a harmonic optical trap. By means of numerical
simulations, we have shown that highly nontrivial dynamics
can be feasibly implemented within the validity region of the
quantum simulation. In particular, we have shown that the
crossover between the dispersive-DSC and the DSC regime

could be experimentally analyzed. Furthermore, the proposed
system represents a generalization of the QRM in a periodic
phase space, which presents interesting patterns of collapses
and revivals of the initial state in the DSC regime.

Notice that in the proposed quantum simulation, an en-
semble of noninteracting systems evolves simultaneously. A
natural extension of the present work is the inclusion of
interatomic interactions, in order to implement a many-body
system composed of interacting quantum Rabi models.
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