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Abstract	
	
The	application	of	next	generation	sequencing	technologies	has	opened	the	door	to	
a	whole	new	molecular	epidemiology	of	tuberculosis	in	which	we	can	now	look	at	
transmission	at	a	resolution	not	possible	before.	At	the	same	time,	new	technical	
and	 analytical	 challenges	 have	 appeared,	 and	 we	 are	 still	 exploring	 the	 wider	
potential	 of	 this	 new	 technology.	Whole	 genome	 sequencing	 in	 tuberculosis	 still	
requires	 bacterial	 cultures.	 Thus,	 although	 whole	 genome	 sequencing	 has	
revolutionized	 the	 interpretation	 of	 transmission	 patterns,	 it	 is	 not	 yet	 ready	 to	
make	a	difference	at	 the	point‐of‐care.	 In	 this	 chapter,	we	will	 see	which	are	 the	
promises	and	challenges	ahead	of	genomic	epidemiology	as	well	as	the	new	open	
questions	that	the	application	of	this	new	technology	has	already	been	generating.	
In	addition,	we	will	examine	the	role	of	molecular	epidemiology	within	the	general	
picture	of	global	tuberculosis	control	and	how	genomic	epidemiology	can	change	
this	role	in	a	world	on	its	way	towards	eradication.		
	
	
4.1	Introduction	
	
The	tuberculosis	(TB)	epidemic	is	not	anymore	like	in	1993	when	it	was	declared	a	“global	
health	 emergency”	 by	 the	 World	 Health	 Organization.	 At	 that	 time,	 TB	 control	 was	
insufficient	almost	in	any	country	of	the	world,	and	large	outbreaks	occurred	even	in	high‐
income	countries	(Comas	and	Gagneux	2009).	Since	2015,	eradication	of	TB	is	back	in	the	
public	 health	 agenda	 but	 at	 different	 speeds	 across	 the	 globe	 (Dye	 et	 al.	 2013).	 Some	
countries	like	the	United	States	are	close	to	eradication	among	US‐born	patients,	while	TB	
incidence	remains	significantly	higher	among	recent	immigrants.	On	the	contrary	in	six	of	
the	22	high	burden	countries	such	as	Mozambique	or	Pakistan	TB	is	on	the	rise	and	the	
growing	 incidence	of	 new	TB	 cases	 already	multidrug‐resistant	 (MDR)	 is	 hampering	TB	
control	 programs.	 Human	 immunodeficiency	 virus	 (HIV)	 is	 not	 anymore	 the	 only	 co‐
morbidity	 focusing	attention	of	 the	public	health	 community.	Diabetes,	 alcohol	 abuse	or	
smoking	are	also	drivers	of	the	disease	in	developing	countries.	Globally,	TB	incidence	has	
only	 started	 to	 decline	 but	 at	 a	 pace	 insufficient	 to	 eradicate	 the	 disease	 in	 the	 next	
century.	The	DOTS	program	set	up	by	WHO	 in	1996	barely	can	cope	with	 this	 changing	
epidemic,	and	now	that	eradication	is	back	on	the	agenda,	there	are	concerns	that	we	are	
reaching	the	limits	of	DOTS	(Dye	et	al.	2013).	Efforts	like	DOTS‐plus	has	been	deployed	to	
deal	with	MDR‐TB	forms	of	the	disease	in	resource	limited	countries	but	it	dependence	on	
culture	facilities	and	in	prompt	diagnosis	of	the	cases	limits	the	impact	on	MDR‐TB	control	
(Sterling	et	al.	2003).	Even	though	DOTS	has	saved	six	million	lives,	we	will	need	to	adapt	
global	TB	control	to	the	specific	epidemics	in	each	country	or	geographic	region.	The	“one‐
size‐fits‐all”	approach	cannot	be	applied	anymore	to	a	situation,	in	which	many	countries	
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are	 close	 to	 reaching	 eradication	 while	 in	 others	 the	 epidemic	 has	 still	 ongoing	 (WHO	
2015).	
	
The	good	news	is	 that	 in	the	 last	 five	years,	we	have	witnessed	the	development	of	new	
tools	 against	 TB	 that	 are	 slowly	 being	 integrated	 into	 the	 control	 programs.	 Rapid	
molecular	tests,	in	particular	Xpert	MTB/RIF,	have	dramatically	improved	and	accelerated	
the	 diagnosis	 of	 TB	 and	 is	 being	 used	 for	 drug	 resistance	 surveillance	 (Pai	 and	 Schito	
2015).	However,	despite	of	these	major	achievements,	many	problems	around	the	global	
rollout	of	these	tests	remain.	For	example,	these	tests	are	mainly	used	at	referral	centers	
and	 are	 yet	 to	 be	 further	 developed	 into	 point‐of‐care	 diagnostics.	Moreover,	 increased	
detection	of	TB	cases	does	not	always	lead	to	an	increase	of	cases	starting	or	completing	
treatment.	Two	new	drugs,	bedaquiline	and	delamanid,	have	recently	been	licensed	for	the	
treatment	of	TB	for	the	first	time	in	40	years,	but	so	far,	they	have	primarily	been	used	on	
a	 compassionate	 basis	 in	 multidrug	 resistance	 cases	 (Zumla	 et	 al.	 2014).	 While	 still	
evaluating	 their	 future	 role	 on	 global	 TB	 control,	 we	 are	 still	 far	 from	 being	 able	 to	
substitute	the	current	four	drug	regime	lasting	six	months	by	a	new	and	shorter	regimen.	
Moreover,	 we	 have	 already	 witnessed	 the	 emergence	 of	 resistance	 to	 these	 new	 drugs	
(Bloemberg	et	al.	2015)	and	even	cross‐resistance	to	some	of	them	(Andries	et	al.	2014).	
In	 2013,	 the	 first	 novel	 vaccine	 candidate	 for	 prevention	 of	 TB	 infection	 has	 entered	
clinical	trials	(Tameris	et	al.	2013).	The	vaccine	failed	to	enhanced	protection	compared	to	
the	current,	almost	century	old	BCG	vaccine.	However,	the	work	showed	that	it	is	possible	
to	 carry	 out	 controlled	 TB	 vaccine	 clinical	 trials	 at	 a	 large	 scale.	 Many	 additional	 new	
vaccine	candidates	are	 in	 the	pipeline,	but	none	of	 them	are	expected	 to	be	 licensed	 for	
clinical	use	anytime	soon.		
	
An	 additional	 dimension	 of	 global	 tuberculosis	 control	 is	 how	 to	 tackle	 on‐going	
transmission.	Part	of	the	problem	is	that	DOTS	failed	to	deliver	one	of	its	primary	aims.	By	
treating	patients	early	and	providing	full	 follow‐up,	DOTS	was	expected	to	limit	both	the	
emergence	of	drug	resistance	and	transmission.	But	even	under	the	umbrella	of	the	most	
advanced	public	health	systems	in	 low‐endemic	countries,	direct	transmission	of	TB	still	
accounts	for	up	to	20%	of	cases,	while	in	high‐burden	countries,	it	is	the	main	contributor	
to	disease	incidence	(up	to	75%	of	cases)	(Yates	et	al.	2016).	As	a	result,	even	the	success	
of	DOTS	limiting	the	number	of	new	drug	resistance	cases	is	in	danger	as	lack	of	control	of	
transmission	will	leave	room	to	MDR‐TB	to	spread.	Therefore,	new	epidemiological	tools	
to	 inform	 new	 intervention	 strategies	 including	 advances	 towards	 real‐time	 molecular	
epidemiology	 are	 needed	 to	 limit	 TB	 transmission.	 However	 real‐time	 molecular	
epidemiology	 in	tuberculosis	 is	a	challenge.	This	 is	because	the	nature	of	an	outbreak	 in	
TB	is	very	special.	One	could	even	argue	whether	outbreaks	in	TB	exists	at	all.	First,	most	
individuals	 infected	 do	 not	 develop	 TB	 disease.	 For	 the	 remaining,	 it	 can	 take	 months,	
years	 or	 even	 decades	 for	 active	 TB	 to	 develop.	 Contrary	 to	 most	 acute	 infections,	
outbreaks	 of	 TB	 may	 span	 years	 before	 being	 noticed.	 For	 those	 cases,	 in	 which	
progression	to	active	disease	occurs	within	months	there	is	room	for	infection	control,	but	
because	the	TB	bacteria	take	between	two	to	four	weeks	to	grow,	by	the	time	molecular	
epidemiological	 data	 is	 generated,	 it	 is	 already	 too	 late	 for	 an	 intervention.	 This	 is	 the	
reason	why	molecular	 epidemiology	 has	 been	 usually	 confined	 to	 retrospective	 studies	
rather	than	represent	a	 tool	 for	 infection	control	 in	real‐time.	Yet,	we	badly	need	such	a	
tool	to	cut	transmission.		
	
Whole	 genome	 sequencing	 (WGS)	 shows	 great	 potential	 for	 becoming	 the	 ideal	 tool	 to	
tackle	 TB	 transmission.	 WGS	 has	 been	 shown	 to	 resolve	 with	 greater	 resolution	
transmission	clusters	and	overcome	the	limitations	of	conventional	typing	techniques	by	
avoiding	false	assignments	to	transmission	clusters	(Walker	et	al.	2013).	It	 is	still	not	an	
ideal	marker	 due	 to	 the	 slow	 pace	 of	mutation	 accumulation,	 but	when	 combined	with	
classical	 epidemiological	 analysis,	 it	 becomes	 a	 powerful	 tool.	 Furthermore,	 due	 to	 the	
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comprehensive	 nature	 of	 genomic	 data,	 it	 has	 already	 given	 important	 insights	 into	
different	aspects	of	the	biology	of	TB	bacteria,	including	the	emergence	of	drug	resistance	
(Comas	 et	 al.	 2012;	 Cohen	 et	 al.	 2015),	 within‐host	 bacterial	 variation	 (Eldholm	 et	 al.	
2014),	 and	responses	 to	 immune	pressure	 (Comas	et	 al.	2010).	However,	until	now,	 the	
use	of	WGS	has	largely	been	confined	to	research	environments,	and	in	most	cases,	it	has	
been	 applied	 retrospectively.	 In	 this	 chapter,	 I	 will	 review	 different	 aspects	 on	 the	
application	 of	 WGS	 to	 better	 understand	 the	 epidemiology	 of	 TB.	 In	 particular,	 I	 will	
review	 the	 use	 of	 WGS	 to	 resolve	 large	 TB	 outbreaks,	 define	 transmission	 clusters,	
monitor	 new	 interventions,	 and	 differentiate	 relapse	 from	 re‐infection.	Moreover,	 I	 will	
review	 recent	 insights	 gained	 from	WGS	 into	 the	 biological	 factors	 behind	 the	 diversity	
within	 patients	 and	 between	 transmission	 cases,	 and	 how	 this	 diversity	 may	 impact	
epidemiological	 inference.	 I	 shall	 end	by	discussing	 the	 future	 role	of	WGS	 in	 the	global	
control	of	TB.	
	
4.2	Next‐generation	DNA	sequencing	applied	to	the	tubercle	bacilli	
	
In	 1905,	 a	 strain	 of	 Mycobacterium	 tuberculosis	 known	 as	 H37	 was	 isolated	 from	 an	
outbreak	in	the	United	States.	That	strain	is	today	known	as	H37Rv	and	is	the	reference	
strain	 used	 worldwide	 for	 experimental	 work	 on	M.tuberculosis.	 In	 1998,	 H37Rv	 was	
among	 the	 first	 bacterial	 genome	 sequenced,	 opening	 the	 era	 of	 TB	 genomics	 research	
(Cole	 et	 al.	 1998).	 The	 genome	 of	 H37Rv	 and	 its	 experimental	 manipulation	 has	
represented	 a	 quantum	 leap	 on	 the	 development	 of	 new	 antibiotics,	 vaccines	 and	
diagnostics.	It	has	allowed	to	understand	the	genetic	determinants	of	clinical	resistance	to	
antibiotics,	 define	 regions	 appropriate	 for	 molecular	 typing	 or	 identifying	 virulence	
factors	that	now	are	the	origin	of	many	of	the	vaccine	candidates	under	development.	
	
In	1998,	sequencing	a	bacterial	genome	required	two	years	of	work	and	cost	around	4‐5	
million	US	dollars.	Today,	we	could	sequence	M.	tuberculosis	H37Rv	hundreds	of	times	in	
less	than	a	week	and	at	price	hundreds	of	thousands	of	times	cheaper	than	in	1998.	It	is	
therefore	 not	 surprising	 that	 the	 whole	 genome	 sequence	 of	 bacterial	 pathogens	 is	
becoming	 the	new	gold	 standard	used	as	 an	epidemiological	marker	 (Loman	and	Pallen	
2015).	The	first	next‐generation	sequencing	technology	(also	known	as	deep	sequencing,	
massive	sequencing	and	next	generation	sequencing)	was	introduced	in	2005.	Contrary	to	
the	 previous	 techniques	 used	 for	 whole	 genome	 sequencing,	 known	 as	 shotgun	
sequencing,	 next	 generation	 sequencing	 technologies	 do	 not	 require	 a	 cloning	 step	 in	
Escherichia	 coli.	 The	 other	 main	 feature	 of	 these	 new	 technologies	 was	 the	 high	
throughput	in	terms	of	sequencing	yield	in	a	single	run.	For	example,	 Illumina	platforms	
are	the	most	widely	used	for	bacterial	genome	sequencing	today.	The	mean	genome	size	of	
M.	tuberculosis	is	around	4.4	million	base	pairs	(bp).	If	one	were	to	run	a	single	strain	of	M.	
tuberculosis	on	an	Illumina	MiSeq	platform	with	v3	kits,	one	would	read	each	nucleotide	of	
the	genome	3,400	times,	i.e.	the	coverage	of	the	strain	would	be	3,400x.		With	the	NextSeq	
“rapid	 run”	 platform,	 the	 coverage	would	 be	 around	27,200x,	 and	 on	 an	 Illumina	HiSeq	
platform	at	full	capacity	136,300x.	On	an	Ion	Torrent	platform,	one	can	read	each	base	up	
to	455	times.	Reading	the	same	position	of	the	genome	hundreds	of	times	is	typically	not	
necessary	 as	 for	many	 studies	we	 are	 interested	 in	 a	 coverage	 around	 80x.	 Thus,	 all	 of	
these	platforms	generate	much	more	data	 than	what	we	 really	need	 to	 analyze	 a	 single	
genome.	 To	 take	 advantage	 of	 the	 high	 throughput	 of	 these	 new	 sequencing	machines,	
several	 strains	 are	 usually	 multiplexed	 in	 a	 single	 run.	 The	 amount	 of	 multiplexing	
depends	 on	 the	 targeted	 coverage,	 but	 in	 theory	 one	 can	 sequence	 at	 80x	 up	 to	 1,700	
strain	 in	 a	 single	 run	 of	 HiSeq	 1500/2500.	 To	 allow	 multiplexing	 for	 each	 strain,	 the	
genomic	DNA	 is	sheared	 into	 fragments	of	500‐1000	bp	and	specific	nucleotide	 tags	are	
added	 that	 can	be	 retrieved	during	 the	bioinformatics	 analyses	and	used	 to	 assign	 each	
sequenced	read	to	 its	corresponding	strain.	By	multiplexing,	one	not	only	maximizes	the	
number	 samples	 analyzed	 in	 one	 run,	 but	 one	 also	 reduces	 the	 time	 and	 the	 cost	 per	
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sample.	Multiplexing	allows	sequencing	one	strain	for	80‐100	euros	if	it	is	done	in‐house	
with	recommended	reagents.	If	customized	reagents	are	used,	the	price	can	drop	to	below	
50	 euros,	 which	 is	 not	 more	 expensive	 than	 other	 methods	 for	 the	 molecular	
characterization	 of	 pathogens	 used	 in	 clinical	 microbiology	 units	 of	 hospitals	 in	 high‐
income	countries.		
	
The	other	main	 feature	of	next	 generation	 sequencing	 technologies	 that	has	 to	be	 taken	
into	account	is	the	length	of	the	sequencing	reads.	Depending	on	the	organism,	one	usually	
needs	 to	 choose	 a	 platform	 based	 on	 a	 trade‐off	 between	 read	 length	 and	 overall	
throughput.	In	tuberculosis	epidemiology,	short	read	length	technologies	are	mostly	used	
that	 generate	 reads	 between	 100‐300	 bp.	 There	 are	 several	 reasons	 for	 that.	 The	
throughput	 is	 much	 higher,	 and	 as	 we	 have	 seen	 above,	 this	 is	 essential	 for	 high	
multiplexing	 and	 lower	 price.	 In	 addition,	 for	M.	tuberculosis,	 the	 bioinformatic	 analysis	
does	usually	not	reconstruct	the	strain	genome	(approach	known	as	“de	novo	assembly”)	
but	maps	the	sequencing	reads	to	a	reference	genome.	This	is	because	it	is	known	that	in	
terms	 of	 gene	 content	 and	 genome	 structure,	 all	 strains	 are	 very	 similar.	 Indeed,	 the	
average	 nucleotide	 identity	 is	 above	 99%	 and	 thus	 many	 stretches	 of	 the	 genome	 are	
almost	identical	across	strains.		This	reference	mapping	is	known	as	re‐sequencing	and	it	
is	 very	 useful	 to	 identify	 single	 nucleotide	 polymorphism	 (SNPs)	 among	 strains.	 The	
drawback	 is	 that	short	reads	are	difficult	 to	map	to	repetitive	regions	and	those	regions	
must	therefore	be	excluded	from	the	analysis.		
	
In	 more	 genetically	 diverse	 bacteria,	 the	 strategy	 of	 mapping	 to	 a	 reference	 can	 be	
misleading	 unless	 there	 is	 a	 priori	 knowledge	 that	 they	 have	 a	 very	 recent	 common	
ancestor	(for	example	if	they	belong	to	the	same	outbreak	than	the	reference	genome).	In	
the	case	of	E.coli,	up	to	60%	of	the	gene	content	may	not	be	shared	across	strains,	and	a	
mapping	 to	 reference	will	 therefore	 likely	miss	 important	 information	on	 the	origin	and	
other	 genomic	 characteristics	 of	 the	 strain	 of	 interest	 (Gordienko	 et	 al.	 2013).	 In	 these	
cases,	it	is	better	to	build	a	new	genome	from	the	sequencing	reads	based	on	those	reads	
that	are	overlapping.	In	general,	technologies	that	produce	longer	reads	are	more	likely	to	
generate	a	better	assembly	of	the	genome.	These	so‐called	third	generation	technologies	
like	PacBio	(Pacific	Biosciences)	not	only	generate	reads	between	10‐15	kb,	but	also	work	
with	 the	DNA	molecule	 directly,	 thus	 avoiding	 the	 PCR	 steps	 necessary	when	 using	 the		
Illumina	or	Ion	Torrent	platforms.	This	is	why	PacBio	and	other	technologies	like	Oxford	
Nanopore	 are	 considered	 single	 molecule	 technologies	 (Loman	 and	 Pallen	 2015).	 In	
addition,	single	molecule	sequencing	can	identify	simultaneously	the	methylation	pattern	
of	 the	 DNA	molecule.	 The	 drawback	 is	 that	 because	 the	 throughput	 of	 third‐generation	
technologies	based	on	 long	reads	 is	comparably	 low,	one	cannot	multiplex	many	strains	
and	thus	the	price	per	strain	becomes	too	high	for	routine	public	health	and	diagnostics	
purposes.	One	common	strategy	is	to	combine	both	technologies	so	short‐read	sequenced	
strains	 can	 be	mapped	 to	 accurate	 assemblies	 of	 representative	 strains	 generated	with	
long‐read	 technologies.	 In	 summary,	 short‐read,	 highly	 multiplexed	 technologies	 are	
currently	 preferred	 for	 molecular	 epidemiological	 studies	 or	 diagnostics	 of	 bacterial	
diseases	including	tuberculosis.	In	the	future,	technologies	that	offer	simultaneously	high	
multiplexing,	long	reads	and	cheap	sequencing	will	likely	replace	the	current	combination	
of	different	technologies.	
	
4.3	The	genome	as	an	epidemiological	marker	
	
In	tuberculosis,	the	first	evidence	that	the	whole	genome	sequencing	can	lead	to	a	higher	
epidemiological	 resolution	was	 the	analysis	of	 two	strains	 from	Uzbekistan	(Niemann	et	
al.	2009).	Those	strains	had	almost	exactly	the	same	MIRU	profile	and	RFLP	pattern,	the	
two	 most	 commonly	 used	 epidemiological	 markers	 (reviewed	 in	 Chapter	 1).	 The	 only	
known	difference	between	these	two	strains	was	the	drug	sensitivity	profile,	as	one	was	
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pan‐susceptible	and	the	other	multidrug‐resistant.	Whole	genome	sequence	data	revealed	
a	more	complex	picture	with	dozens	of	SNP	differences	between	the	strains.	For	the	first	
time,	it	was	shown	that	the	genome	can	provide	a	greater	resolution	than	other	molecular	
markers.	Moreover,	this	study	provided	first	evidence	that	the	M.	tuberculosis	complex	is	
more	diverse	than	previously	anticipated,	even	at	an	epidemiological	scale.	This	analysis	
was	 performed	 using	 one	 of	 the	 first	 next‐generation	 sequencing	 platforms,	 the	 Solexa	
Genome	 Analyzer	 (known	 as	 Illumina	 today).	 Shortly	 thereafter,	 another	 technology,	
Roche	 454,	 was	 used	 to	 analyze	 genomes	 from	 the	 first	 and	 last	 case	 of	 a	 suspected	
transmission	cluster	(Schurch	et	al.	2010).	Again	the	genome	showed	a	higher	resolution	
compared	to	conventional	methods.	
	
In	2011,	 the	 first	 large‐scale	 genome	analysis	of	 a	 tuberculosis	outbreak	was	published,	
starting	 the	 era	 of	 genomic	 epidemiology	 for	 tuberculosis	 (Gardy	 et	 al.	 2011).	 In	 this	
landmark	publication,	Gardy	et	al.	analysed	36	cases	belonging	to	an	outbreak	previously	
identified	by	MIRU	and/or	RFLP	typing,	and	spanning	several	years	 in	British	Columbia.	
WGS	was	able	to	trace	a	clear	picture	about	how	the	outbreak	started.	In	particular,	 this	
analysis	pointed	to	the	importance	of	a	superspreader	in	the	outbreak.	Superspeaders	are	
patients	 that	 generate	 a	 disproportionally	 high	 number	 of	 secondary	 cases.	
Superspreaders	 rather	 than	 chains	 of	 transmission	 seem	 to	 be	 a	 common	 transmission	
topology	 in	 tuberculosis.	 Following	 this	 initial	 publication,	 other	 large	 outbreaks	 have	
been	described,	all	of	them	have	in	common	the	complexity	of	the	transmission	network.	
In	Hamburg,	a	large	outbreak	identified	by	MIRU‐VNTR	included	86	cases	between	1996	
and	 2011	 (Roetzer	 et	 al.	 2013).	 However,	 not	 all	 cases	were	 linked	 by	 epidemiological	
investigations	 and	 before	 whole	 genome	 sequencing,	 the	 true	 source	 of	 the	 outbreak	
remained	unknown.	WGS	analyses	closed	the	gap	between	molecular	and	epidemiological	
data.	Two	different	outbreaks	with	two	closely	related	but	distinct	strains	were	involved.	
One	was	linked	to	many	of	the	cases	of	the	first	years	and	the	other	was	still	on‐going	in	
2010.	 This	 explained	 the	 lack	 of	 epidemiological	 links	 between	 the	 patients	 involved	 in	
this	 outbreak,	 and	 why	 the	 index	 case	 was	 so	 difficult	 to	 trace.	 Thus,	 with	 the	 high	
resolution	 obtained	 from	 whole	 genome	 sequences	 now	 we	 can	 apply	 different	
evolutionary	 tools,	 including	 phylodynamics	 and	 phylogeography,	 to	 dissect	 the	 tempo	
and	 mode	 of	 transmission	 and	 drug	 resistance	 acquisition	 of	 successful	 tuberculosis	
clones	(Eldholm	et	al.	2015).	
	
Genomic	analysis	applied	to	specific	strains	of	interest	has	also	allowed	to	identify	the	true	
extend	 of	 an	 outbreak.	 This	 information	 can	 be	 of	 vital	 importance	 for	 public	 health	
authorities.	Recent	examples	of	that	include	TB	outbreaks	in	Bern,	Switzerland	(Stucki	et	
al.	2015)	and		in	Almeria,	Spain	(Perez‐Lago	et	al.	2015).	In	the	Bernese	outbreak,	Stucki	et	
al.	 (Stucki	 et	 al.	 2015)	applied	WGS	 to	 three	 strains	of	 an	outbreak	 that	 started	 in	Bern	
among	homeless	people,	 a	 typical	 high	 risk	population	 for	TB	 in	high‐income	 countries.	
These	 strains	were	 thought	 to	be	 representative	of	 the	diversity	within	 the	outbreak	as	
they	were	 chosen	 from	 different	 periods	 during	 the	 outbreak.	 By	 comparing	 to	 control	
strains,	 Stucki	 et	 al.	 (Stucki	 et	 al.	 2015)	 were	 able	 to	 identify	 single	 nucleotide	
polymorphism	(SNPs)	that	could	be	used	to	assign	patients	to	the	outbreak.	Real‐time	PCR	
analyses	 designed	 based	 on	 these	 SNPs	 was	 then	 developed	 and	 applied	 to	 the	
retrospective	collection	of	1,642	TB	cases	in	the	canton	of	Bern	between	1991	and	2011.	
The	analyses	allowed	assigning	68	new	cases	to	the	Bernese	outbreak.	The	RFLP	pattern	
between	all	these	strains	was	almost	identical.	In	contrast,	WGS	comparison	revealed	the	
true	complexity	of	 the	outbreak.	Transmission	network	reconstruction	based	on	genetic	
data	 detected	 three	 central	 nodes	 in	 the	 topology	 of	 transmission	 that	 combined	 with	
epidemiological	data	allowed	to	detect	two	index	cases	that	had	infected	many	others,	i.e.	
two	superspreaders.	The	Bernese	outbreak	is	an	example	of	how	WGS	data	can	illuminate	
epidemiological	 investigations	 in	 TB.	 A	 similar	 approach	was	 used	 by	 Pérez‐Lago	 et	al.	
(Perez‐Lago	et	al.	2015)	to	identify	retrospectively	and	prospectively	new	cases	due	to	an	
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M.	tuberculosis	strain	that	had	already	led	to	many	secondary	cases	in	Almeria,	Spain.	The	
authors	developed	a	SNP‐typing	approach	similar	 to	Stucki	et	al.	 (Stucki	et	al.	2015)	but	
based	on	a	low‐cost,	low‐tech,	decentralized	protocol	with	the	aim	to	use	it	at	the	point‐of‐
care	or	the	closest	referral	center.	The	typing	assay	is	called	TRAP	and	can	be	run	on	a	gel	
to	quickly	scan	a	large	number	of	strain	both	from	cultures	and	sputum	samples.	
	
These	different	works	are	examples	of	how	genomic	 information	can	be	used	to	 identify	
transmission	patterns,	and	how	a	technology	that	is	not	universally	accessible	can	help	to	
design	other	rapid	and	low‐cost	molecular	assays.	In	summary,	the	application	of	WGS	to	
specific	 outbreaks	have	 shown	 its	 superiority	when	 compared	with	 conventional	 typing	
tools	and	have	led	to	important	new	epidemiological	insights	(Walker	et	al.	2013).		
	
4.4	Population	scale	analysis	of	TB	transmission	using	WGS	
	
Public	 Health	 England	 has	 led	 the	 way	 to	 implement	 WGS	 as	 both	 an	 epidemiological	
marker	and	as	a	diagnostic	for	public	health	systems.	In	a	series	of	publications	from	2012	
to	2015,	 they	have	demonstrated	 the	potential	 impact	of	WGS	on	 the	control	of	TB.	 In	a	
landmark	paper,	Walker	and	collaborators	(Walker	et	al.	2012)	published	the	first	large‐
scale,	 population‐based	 study	 of	 TB	 transmission	 based	 on	 WGS.	 In	 that	 study,	 the	
superiority	 WGS	 over	 previous	 strain	 typing	 methods	 was	 corroborated	 by	 identifying	
more	 accurately	 those	 cases	 belonging	 to	 an	 outbreak.	 At	 the	 same	 time,	 the	 authors	
sequenced	serial	isolates	from	the	same	patient	and	isolates	from	different	body	parts	of	
the	 same	 patient.	 Based	 on	 these	 data,	 the	 authors	 proposed	 a	 threshold	 to	 identify	 a	
transmission	link	between	two	TB	cases.	Specifically,	a	genetic	distance	separating	patient	
isolates	of	five	or	fewer	SNPs	was	used	to	define	high‐confident	transmission	clusters,	as	
most	of	 the	 time,	 these	clusters	were	also	supported	by	epidemiological	 links.	A	genetic	
distance	of	between	5	and	12	SNPs	was	considered	a	cluster	in	which	recent	transmission	
was	 very	 likely	 but	 often	 not	 supported	 by	 epidemiological	 data.	 A	 genetic	 distance	 of	
more	than	12	SNPs	was	defined	to	classify	epidemiologically	unrelated	cases.	Using	those	
thresholds,	 a	 study	 in	 Switzerland	 has	 shown	 that	 standard	 genotyping	 (MIRU)	
overestimates	the	rate	of	transmission	among	immigrant	(Stucki	et	al.	2016).	This	is	likely	
due	 to	 the	 high	 genetic	 similarity	 of	 strains	 circulating	 in	 high‐burden	 countries.	 In	
addition,	it	is	important	to	remember	that	identification	of	transmission	clusters	based	on	
WGS	data	does	not	necessarily	imply	that	transmission	has	occurred	at	the	place	of	study.	
For	 example,	 transmission	 between	 immigrants	 may	 have	 occurred	 at	 their	 country	 of	
origin,	 followed	by	progression	to	active	disease	at	the	country	of	residence.	This	is	best	
exemplified	by	the	detection	of	transcontinental	spread	of	M.	tuberculosis	clones	like	in	the	
published	case	of	Thai	refugees	in	California	(Coscolla	et	al.	2015).		
	
The	SNP	thresholds	described	above	have	been	corroborated	by	other	studies,	but	most	
examples	are	from	low‐burden	countries	(Bryant	et	al.	2013b;	Hatherell	et	al.	2016).	The	
complexity	of	the	global	TB	epidemic	suggests	that	the	same	threshold	may	not	apply	to	all	
epidemiological	 scenarios.	 For	 example,	 in	 high‐burden	 countries	where	 there	 is	 a	 high	
rate	of	on‐going	transmission,	several	genetically	similar	clones	may	act	as	index	cases	of	
different	 transmission	 clusters,	 and	 thus	 differentiating	 between	 those	 clusters	 maybe	
difficult	(Yates	et	al.	2016).	The	only	example	from	a	high‐burden	country	we	have	until	
now	 is	 the	analysis	of	1,687	TB	patient	 isolates	collected	 in	 rural	Malawi	between	1995	
and	2010	(Guerra‐Assunção	et	al.	2015a).	Genetic	distances	and	genetic	network	analyses	
showed	consistency	with	 the	 thresholds	described	by	Walker	et	al.	 (Walker	et	al.	2012).	
However,	 this	 is	 just	 one	 case,	 and	 it	 is	 likely	 that	 the	 situation	 may	 change	 in	 large	
urbanized	 African	 settings.	 Similarly,	 areas	 with	 a	 high	 burden	 of	 multidrug	 (MDR)	
resistant	 TB	might	 also	 show	different	 patterns.	Due	 to	 the	 selection	 of	 drug	 resistance	
mutations,	we	can	expect	a	higher	number	of	mutations	between	epidemiologically	linked	
strains	as	a	result	of	genetic	hitchhiking	effects	(further	discussed	in	the	following	section)	
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(Sun	et	 al.	 2012;	Eldholm	et	al.	 2014;	Liu	et	 al.	 2015).	 For	example,	 by	 looking	at	 serial	
isolates	 of	 a	 single	 patient	 _Eldholm	 et	 al.	 (2015)	 identifies	 more	 SNPs	 separating	 the	
isolates	 than	 the	 number	 expected	 between	 two	 transmission	 cases.	 To	 date,	 only	 one	
large	population‐based	study	has	been	published	from	a	high‐	MDR‐TB	burden	setting	in	
Russia	 (Casali	et	al.	2014).	The	study	 included	more	 than	one	 thousand	patient	 isolates,	
50%	of	which	were	MDR.	Most	of	 these	MDR	isolates	carried	 the	mutation	S450L	 in	 the	
rpoB	gene.	This	mutation	is	generally	the	most	common	mutation	conferring	resistance	to	
rifampicin.	 In	 addition,	 large	 transmission	 clusters	 also	 carried	 additional	 fitness	
compensatory	 mutations,	 mainly	 in	 the	 rpoC	 gene	 (Comas	 2012),	 explaining	 the	 high	
transmissibility	 of	 these	 strains	 in	 the	 region.	 Unfortunately,	 because	 the	 associated	
epidemiological	data	was	not	published,	it	is	difficult	to	evaluate	SNP	thresholds	levels	to	
delineate	transmission	clusters	in	this	Russian	dataset.		
	
The	epidemiological	significance	of	SNP	thresholds	remains	a	matter	of	ongoing	research.	
On	 one	 hand,	 we	 lack	 data	 from	 different	 epidemiological	 settings.	 On	 the	 other	 hand,	
calling	SNPs	 from	next	generation	sequencing	data	 is	not	 straightforward	 (O’Rawe	et	al.	
2013).	 There	 are	multiple	 steps	 in	 the	 bioinformatics	 analyses	 that	 can	 introduce	 false	
positive	or	false	negative	SNPs.	It	is	thus	very	important	to	implement	and	follow	multiple	
quality	control	checkpoints.	In	particular,	mobile	elements	and	repetitive	regions	of	the	M.	
tuberculosis	genome	are	difficult	to	interrogate	with	short	read	length	technologies	such	as	
Illumina.	 In	a	typical	analysis,	most	of	 these	 loci	are	excluded.	 In	addition,	other	 loci	can	
also	be	problematic.	For	example,	 insertion	elements	scars	that	led	to	incorrect	mapping	
of	 reads	 and	 unknown	 deletions	 and/or	 insertions	 can	 complicate	 the	 analysis.	
Importantly,	the	parameters	used	for	mapping	and	SNP	calling	are	critical.	Finally,	initial	
quality	of	 the	sequencing	data	 is	key.	Given	that	epidemiological	 inferences	are	based	 in	
small	 number	 of	 SNPs,	 it	 is	 recommended	 to	 corroborate	 results	 independently	 with	 a	
different	 analysis	 pipeline	 and/or	 by	 laboratory	 confirmation	 of	 a	 subset	 of	 SNPs.	 In	
addition,	 Illumina	 technology	 is	 currently	 the	 main	 platform	 used	 in	 genomic	
epidemiology	of	TB,	but	we	do	not	yet	know	the	potential	epidemiological	impact	of	using	
long‐read	sequencing	platforms	(Quail	et	al.	2012).	These	platforms,	although	expensive,	
should	allow	identifying	SNPs	 in	regions	of	 the	genome	that	are	not	accessible	by	short‐
read	 sequencing	 technologies.	While	 some	 of	 these	 regions,	 like	 the	 PE/PPE	 genes,	 are	
clearly	the	most	variable	of	 the	M.	tuberculosis	genome	(Copin	et	al.	2014),	 they	are	also	
likely	 involved	 in	 gene	 conversion	 events	 and/or	 recombination	 with	 external	 sources	
(Phelan	et	al.	2016).	Thus,	even	if	 interrogated	with	the	appropriate	technology,	we	first	
will	 need	 to	 understand	 if	 and	 how	 these	 loci	 can	 be	 exploited	 for	 epidemiological	
purposes.	
	
4.5	Role	of	within‐host	diversity	in	transmission	inference	
	
As	 in	 any	 other	 pathogen,	 the	 bacteria	 belonging	 to	 the	M.	 tuberculosis	 complex	 are	 in	
constant	evolution,	and	it	is	therefore	not	surprising	that	the	bacterial	population	infecting	
a	 patient	 is	 not	 genetically	 homogeneous	 (Pérez‐Lago	 et	 al.	 2013).	 Understanding	 this	
within‐host	diversity	is	crucial,	as	it	can	have	important	consequences	for	drug	resistance	
diagnostics,	 epidemiology	 and	 disease	 outcomes	 (Didelot	 et	 al.	 2016).	 	 One	 important	
open	question	is	what	is	the	magnitude	of	within‐host	diversity	during	TB	infection?	This	
question	has	been	mainly	studied	in	the	context	of	drug	resistance	because	of	its	clinical	
importance.	 Historically,	 clinical	 microbiologists	 have	 recognized	 the	 phenomenon	 of	
heteroresistance,	which	manifests	 in	discordant	results	of	drug	susceptible	 testing	using	
repeat	 testing	 or	 different	 isolates	 from	 the	 same	 patient	 (Van	 Rie	 et	 al.	 2005).	
Heteroresistance	 suggests	 that	 there	 are	 two	 co‐existing	populations	 in	 the	patient,	 one	
drug‐resistant	 and	 the	 other	 susceptible	 to	 a	 particular	 drug.	WGS	 has	 the	 potential	 to	
identify	the	genotypes	of	these	co‐existing	populations.	Moreover,	we	can	follow	how	the	
relative	frequency	of	these	genotypes	changes	over	time,	based	on	serial	samples	from	the	
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same	patient	(Sun	et	al.	2012,	Eldholm	et	al.	2015).	The	precision	of	this	technique	is	such	
that	 we	 can	 detect	 drug	 resistance	 minority	 variants	 in	 an	 otherwise	 homogenous	
population	 at	 the	10%	or	 even	5%	 level	when	 the	 sequencing	 coverage	 is	 high	 enough.	
The	drawback	is	that	many	of	these	minority	variants	associated	with	drug	resistance	are	
identified	based	on	cultured	specimens,	and	thus	we	cannot	easily	trace	back	their	origin	
in	 the	 lung.	 However,	 PET‐CT	 scans	 have	 been	 able	 to	 correlate	 different	 lesions	 in	 the	
lung	with	different	M.	tuberculosis	genotypes	obtained	 from	cultured	 isolates,	suggesting	
that	micro‐geography	of	the	lungs	and	the	lung	lesions	are	important	for	the	selection	of	
genetically	distinct	sub‐populations	(Liu	et	al.	2015).		
	
The	 co‐existence	 of	 several	 bacterial	 clones	 within	 an	 individual	 patient	 has	 been	
demonstrated	beyond	 the	 case	of	heteroresistance	 (Pérez‐Lago	et	 al.	2013).	But	what	 is	
the	 origin	 of	 such	 genetic	 variation?	 Recent	 efforts	 using	 whole	 genome	 data	 have	
explored	this	variation	both	in	vivo	and	in	vitro	(see	Chapter	13).	The	mean	whole	genome	
mutation	 rate	 as	 derived	 from	 experiments	 with	 cynomolgus	 macaques	 is	 around	 0.39	
(0.16‐0.80	95%	CI)	SNPs	per	genome	per	year	(Ford	et	al.	2011).	This	rate	was	found	to	be	
similar	between	macaques	 that	developed	active	disease	and	 those	 that	remained	 latent	
although	 the	 number	 of	 SNPs	 analyzed	 were	 too	 low	 to	 allow	 for	 strong	 statistical	
conclusions.	In	fact,	given	that	the	generation	time	of	the	bacteria	is	thought	to	be	longer	
during	 latency,	 the	 authors	 concluded	 that	 the	mutation	 rate	was	 higher	 during	 latency	
than	during	active	disease	(Ford	et	al.	2011).	The	same	research	group	was	later	able	to	
define	 the	 in	vitro	 rate	of	mutation	of	different	 strains	belonging	 to	different	 lineages	 in	
the	presence	and	absence	of	different	antibiotics	(Ford	et	al.	2013).	This	in	vitro	rate	was	
fairly	 similar	 to	 the	 rate	 seen	 in	 vivo	 in	 macaques,	 and	 slightly	 higher	 for	 Lineage	 2	
compared	to	Lineage	4.		
	
However,	 the	 mutation	 rate	 of	 a	 bacteria	 measured	 in	 short‐term	 experiments	 is	 not	
necessarily	 the	 same	 than	 the	 substitution	 rate	we	 observe	 in	 a	 clinical	 setting.	 This	 is	
because	in	addition	to	the	rate	of	mutation	generation,	we	have	to	consider	the	action	of	
evolutionary	 forces.	 Most	 of	 the	 mutations	 arising	 de	 novo	 are	 either	 neutral	 or	
deleterious.	Neutral	mutations	can	 increase	 in	 frequency	unnoticed,	whereas	deleterious	
mutations	will	be	removed,	more	or	 less	efficiently,	by	natural	purifying	selection.	Thus,	
the	action	of	evolutionary	forces	uncouples	the	intrinsic	bacterial	mutation	rate	from	the	
substitution	 rate.	 Importantly,	 the	 substitution	 rate	 is	 time‐dependent	 because	 natural	
selection	 needs	 time	 to	 act.	 Hence,	 the	 shorter	 natural	 selection	 can	 act,	 the	 closer	 the	
substitution	rate	will	be	to	the	intrinsic	mutation	rate	(Rocha	et	al.	2006;	Biek	et	al.	2015).	
This	explains	why	the	long‐term	substitution	rate	of	many	pathogens	is	much	lower	than	
the	mutation	rate	or	the	rate	measured	over	short	periods	of	time.	At	the	epidemiological	
level,	 the	 substitution	 rate	 can	 be	 derived	 by	 comparing	 the	 number	 of	 differences	
between	 two	 transmission	 cases	 and	 the	 difference	 in	 time	 of	 diagnosis	 between	 both	
cases.	This	approach	has	been	used	to	estimate	the	substitution	rate	of	M.	tuberculosis	 in	
clinical	settings.	Findings	from	several	studies	converged	in	a	substitution	rate	of	0.3‐0.5	
SNPs	 per	 genome	 per	 year,	 thus	 very	 close	 to	 the	 in	 vivo	 and	 in	 vitro	 mutation	 rate	
discussed	above.	However,	 the	variance	around	that	estimate	 is	so	high	that	 it	has	 to	be	
interpreted	cautiously	(Bryant	et	al.	2013b).	One	of	the	main	“known	unknowns”	likely	to	
impact	 our	 inferences	 of	 mutation‐	 and	 substitution	 rates	 is	 latency.	 To	 date,	 only	 one	
study	has	used	time	of	infection	rather	than	time	of	diagnosis	to	measure	the	substitution	
rate	 in	M.	tuberculosis.	 The	 study	 showed	 that	 the	 substitution	 rate	 during	 latency	was	
much	 lower	 than	during	active	TB	 (Colangeli	 et	 al.	2014).	Much	more	data	 is	needed	 to	
draw	conclusions	about	the	substitution	rate	throughout	the	life	cycle	of	M.	tuberculosis.	In	
the	meantime,	we	 are	 limited	 to	model	 the	 substitution	 rate	 based	 on	 estimates	 during	
infection	and	transmission.	
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How	 is	 the	 mutation	 rate	 modulated	 by	 different	 evolutionary	 forces	 within	 the	 host?	
Again,	 this	 is	best	exemplified	 in	 the	context	of	antibiotic	 treatment.	As	antibiotics	are	a	
strong	 selective	 force,	 the	 mutations	 causing	 drug	 resistance	 are	 positively	 selected.	
Because	 M.	 tuberculosis	 is	 clonal,	 other	 mutations	 present	 in	 a	 particular	 genetic	
background	experiencing	such	positive	selection	are	also	selected,	even	when	 they	have	
nothing	 to	 do	with	 antibiotic	 resistance.	 This	 phenomenon	 is	 called	 genetic	 hitchhiking	
and	have	been	elegantly	described	in	several	publications	(Sun	et	al.	2012;	Eldholm	et	al.	
2014).	In	this	context,	the	drug	resistance	conferring	mutation	can	also	be	referred	to	as	
“driver”	mutations,	and	the	hitchhiking	mutations	as	“passenger”	mutations.	However,	it	is	
also	 important	 to	understand	 the	bacterial	 variation	expected	 in	a	patient	 that	does	not	
develop	drug	resistance.	In	these	cases,	purifying	selection	is	mainly	acting	in	the	form	of	
antibiotic	 purification	 (Black	 et	 al.	 2015).	However,	 variation	maybe	present	because	 of	
neutral	 processes	 (e.g.	 genetic	 drift)	 or	 because	 of	 selection	 due	 to	 an	 unidentified	
evolutionary	 force.	 Thus,	 as	 a	 consequence	 of	 the	 equilibrium	 between	 different	
evolutionary	forces,	the	amount	of	bacterial	variation	seen	in	different	patients	may	vary	
substantially.	 For	 example,	 a	 recent	 study	 has	 shown	 that	 bacterial	 variation	 can	 be	
observed	in	most	consecutive	sputum	samples	obtained	from	a	given	patient	(Pérez‐Lago	
et	 al.	 2013).	 By	 contrast,	 other	 studies	 have	 reported	 no	 genetic	 differences	 between	
bacterial	samples	from	the	same	patient,	even	when	the	cultures	were	separated	by	more	
than	 one	 year	 (Pérez‐Lago	 et	 al.	 2015).	 The	 causes	 of	 these	 discrepancies	 are	 not	 well	
understood,	but	they	might	be	linked	to	differences	in	treatment	efficacy,	variation	in	the	
site	 of	 infection,	 or	 the	 differential	 control	 of	 the	 bacterial	 load	 by	 the	 immune	 system.	
However,	what	is	clear	is	that	within‐host	bacterial	diversity	exists	both	inside	and	outside	
the	context	of	drug	resistanceFrom	a	practical	standpoint,	the	potential	overlap	between	
within‐patient	 diversity	 and	 the	 diversity	 seen	 between	 transmission	 cases	 will	
complicate	the	epidemiological	interpretation	(Pérez‐Lago	et	al.	2013).	From	a	biological	
standpoint	it	is	important	to	identify	the	small	fraction	of	SNPs	detected	that	are	linked	to	
natural	selection	pressures	apart	from	antibiotics.		
	
4.6	Special	cases	of	within‐host	diversity:	relapse,	re‐infection	and	co‐infection	
	
One	 major	 outcome	 measured	 by	 clinical	 trials	 of	 new	 drugs	 and	 drug	 regimens	 the	
number	of	relapses	occurring	after	successful	completion	of	the	treatment	(Johnston	et	al.	
2015).	 In	 high‐burden	 countries,	 it	 is	 difficult	 to	 differentiate	 between	 a	 true	 case	 of	
relapse,	indicating	failure	of	the	drug/regimen,	or	reinfection	after	treatment	completion.	
Thus,	molecular	tools	that	can	easily	identify	these	two	situations	are	key	to	evaluate	new	
interventions.	 Several	 recent	 examples	 have	 highlighted	 the	 potential	 of	 WGS	 data	 to	
distinguish	 between	 relapses	 and	 secondary	 infections	 (Bryant	 et	 al.	 2013a;	 Guerra‐
Assunção	et	al.	2015b).	However,	these	studies	also	highlight	the	complexity	associated	to	
the	interpretation	of	the	data		
	
As	 discussed	 before,	 a	 difference	 of	 10‐12	 SNPs	 is	 often	 used	 as	 the	 cutoff	 to	 define	 a	
transmission	 link.	 This	 same	 cutoff	 can	 be	 used	 to	 determine	 if	 two	 TB	 episodes	 in	 the	
same	patient	are	due	to	the	same	strain	or	not.	Applying	this	logic,	Bryant	et	al.	(Bryant	et	
al.	2013a)	identified	the	number	of	true	relapses	versus	the	number	of	re‐infections	in	the	
context	of	a	clinical	trial	of	a	new	treatment	regimen	(ReMOX‐TB)	(Gillespie	et	al.	2014).	
Forty‐seven	 patients	 had	 a	 second	 episode	 of	 TB	 after	 completing	 treatment.	 Using	 the	
SNP‐threshold	 approach,	 the	 authors	 found	 that	 33	 of	 the	 47	 patients	 had	 less	 than	 12	
SNPs	between	the	first	and	the	second	isolate,	indicating	cases	of	true	relapse.	Only	three	
cases	 harboured	 very	 different	 strains,	 indicated	 by	 a	 pairwise	 difference	 ofmore	 than	
1,000	 SNPs;	 accordingly,	 these	 cases	 were	 classified	 as	 re‐infections.	 In	 addition,	 the	
authors	also	reported	a	mix	of	two	strains	during	the	second	episode	of	one	patient.	One	of	
the	 isolate	 was	 almost	 identical	 to	 the	 isolate	 of	 the	 first	 episode	 while	 the	 other	 was	
clearly	different.	This	single	patient	therefore	likely	represents	case	of	relapse	due	to	the	
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presence	 of	 the	 original	 strain,	 plus	 a	 re‐infection	 as	 a	 new	 strain	 was	 detected	 in	 the	
second	episode.	Similar	results	were	obtained	after	analysis	of	relapse	cases	in	a	long‐term	
epidemiological	 study	 carried	 out	 in	 Malawi	 (Guerra‐Assunção	 et	 al.	 2015b).	 However,	
there	are	 limitations	detecting	such	mixed	infections.	 Identifying	a	re‐infection	when	the	
second	 strain	 belongs	 to	 a	 different	 lineage	 is	 straightforward,	 as	 the	 strains	 will	 be	
separated	by	hundreds	or	thousands	of	SNPs.	However,	 in	high‐burden	countries,	where	
many	 of	 the	 strains	 circulating	 are	 closely	 related,	 classifying	 strains	 as	 “the	 same”	 or	
“different”	is	much	more	challenging	(Guerra‐Assunção	et	al.	2015b).		
	
WGS	data	also	gives	us	the	opportunity	to	detect	co‐infection	in	a	single	sample,	i.e.	cases	
in	which	 two	genetically	distinct	M.	tuberculosis	 strains	 (more	 than	12	SNPs)	 co‐exist	 in	
the	same	patient.	These	cases	where	difficult	to	identify	until	now	as	one	had	to	rely	on	e.g.	
identifying	 evidence	 of	 mixed	 number	 of	 alleles	 in	 MIRU	 loci.	 However,	 this	 approach	
tends	 to	miss	many	 instances	of	co‐infection,	as	single	 locus	data	has	 low	resolution.	By	
contrast,	because	WGS	achieves	high	coverage,	the	presence	of	two	different	isolates	in	the	
same	culture	becomes	evident	when	 looking	at	SNP	positions	where	the	reference	allele	
and	the	variant	allele	coexist	as	low	frequency	variants	(i.e.	none	of	these	alleles	are	fixed	
in	 the	 population).	 SNP	 positions	 showing	 this	 mix	 of	 reference	 and	 variant	 allele	 are	
known	as	“heterozygous	calls”,	and	are	indicative	of	two	different	sub‐populations	present	
in	 the	 culture.	 Heterozygous	 calls	 maybe	 related	 to	 clonal	 diversification	 from	 a	 single	
infecting	strain	within	the	lung	of	a	patient.	In	this	case,	the	number	of	heterozygous	calls	
is	expected	to	be	low	given	the	low	mutation	rate	of	M.	tuberculosis.	On	the	other	hand,	if	
two	different	strains	infected	the	same	patient,	 the	number	of	heterozygous	calls	will	be	
higher.	Thus,	as	in	the	case	of	relapse	and	re‐infection,	the	number	of	heterozygous	calls	
detected	can	be	used	to	differentiate	between	these	two	scenarios.	To	be	compatible	with	
clonal	 diversification,	 the	 number	 of	 heterozygous	 calls	 must	 be	 below	 the	 12	 SNP	
threshold	used	to	 identify	transmission	clusters.	 If	more	than	12	SNPs	are	seen,	one	can	
safely	 assume	 that	 two	 different	 strains	 are	 co‐infecting	 the	 same	 patient.	 However,	
although	 in	 theory	 differentiating	 between	 clonal	 diversification	 and	 co‐infection	 is	
straight	 forward,	 interpreting	 heterozygous	 calls	 is	 very	 challenging	 (Hatherell	 et	 al.	
2016).	Due	to	errors	in	mapping	and	SNP	calling,	much	noise	can	be	introduced	during	the	
bioinformatics	analyses.	As	a	result,	 it	 is	often	difficult	 to	differentiate	between	true	and	
false	heterozygous	calls.	This	is	particularly	relevant	when	the	sequencing	is	done	directly	
from	 the	 diagnostic	 sample,	 in	which	DNA	 from	unrelated	 organisms	 (i.e.	 contaminants	
and/or	 commensals)	 might	 be	 present.	 This	 contaminating	 DNA	 maybe	 sequenced	
together	 with	 the	 DNA	 of	 interest,	 which	 can	 contribute	 to	 a	 percentage	 of	 the	
heterozygous	 calls.	 In	 practice,	 bioinformatics	 analyses	 can	 easily	 detect	 a	 co‐infection	
when	the	number	of	heterozygous	calls	is	larger	than	100,	and	clonal	diversification	when	
the	number	 is	below	12;	however,	anything	 in	between,	 is	difficult	 to	 interpret	 (Guerra‐
Assunção	et	al.	2015b).	In	summary,	high‐throughput	WGS	is	an	ideal	tool	to	identify	co‐
existing	variants,	but	more	work	is	needed	to	develop	analytical	tools	than	can	reveal	co‐
infection	when	 the	 two	 infecting	 strains	 are	 evolutionary	 close	 (between	20‐100	SNPs).	
This	 is	 especially	 relevant	 in	 high‐burden	 countries	where	 transmission	 is	 often	 due	 to	
highly	similar	strains	(Kay	et	al.	2015).	
	
4.7	Reconstructing	transmission	
	
The	high	 variance	 in	 terms	of	 genetic	 changes	 accumulated	 over	 time	 seen	during	 both	
between	host	 transmission	 and	within	 a	 single	patient	 leads	 to	 a	 very	weak	 correlation	
between	time	and	accumulated	sequence	diversity	in	M.	tuberculosis	(Bryant	et	al.	2013b).	
This	 weak	 correlation	 between	 time	 and	 accumulated	 number	 of	 SNPs	 is	 known	 as	
overdisperssion	of	the	molecular	clock.	A	practical	consequence	is	that	the	low	correlation	
limits	our	ability	determine	the	exact	time	of	infection	using	genetic	data	(Hatherell	et	al.	
2016).	Only	when	large	transmission	clusters	spanning	several	years	or	even	decades	are	
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analyzed,	 researchers	 have	 been	 able	 to	 correlate	 the	 dating	 based	 on	 genomic	
substitution	 data	 with	 the	 epidemiological	 records	 (Roetzer	 et	 al.	 2013).	 Thus,	 new	
analytical	approaches	are	needed	to	model	the	genetic	diversity	seen	during	infection	and	
transmission,	and	can	use	the	information	to	build	accurate	genealogies	on	how	and	when	
transmission	 has	 occurred.	 Several	 such	 approaches	 have	 recently	 been	 developed,	
although	not	all	of	 them	have	been	 tested	 in	 large‐scale,	population‐based	studies.	Most	
approaches,	 like	Outbreaker	(Jombart	et	al.	2014),	use	the	genetic	data	to	 infer	the	most	
likely	 network	 of	 transmission	 between	 isolates	 of	 a	 cluster,	minimizing	 the	 number	 of	
genetic	 changes	 between	 isolates.	 However,	 as	 usually	 happens	 for	 this	 kind	 of	
approximations,	 clusters	must	be	defined	a	priori,	meaning	 that	 the	 researcher	needs	 to	
select	 those	strains	suspected	to	be	 involved	 in	a	transmission	group.	As	a	consequence,	
transmission	can	only	be	defined	among	suspected	cases,	limiting	the	de	novo	discovery	of	
cases	linked	to	transmission	in	population‐based	samples.	In	addition,	the	“carriage”	state	
represented	 by	 the	 latency	 period	 is	 usually	 not	 explicitly	 modeled.	 Hence,	 these	
approximations	 are	 better	 suited	 for	 acute	 diseases	 where	 infection,	 disease	 and	
transmission	are	directly	 linked	(Jombart	et	al.	2014).	Didelot	et	al.	 (Didelot	et	al.	2013)	
have	developed	a	new	way	of	 interpreting	 transmission	 in	bacterial	 infections	 including	
TB.	 Their	 approximation	 is	 based	 on	 using	 a	 dated	 phylogenetic	 topology,	 i.e.	 one	 that	
incorporates	epidemiological	data	like	date	of	diagnosis,	and	convert	it	into	transmission	
events	in	a	Bayesian	framework.	Furthermore,	other	epidemiological	data	like	geography	
can	be	 incorporated	to	delineate	 the	most	 likely	epidemiological	scenario.	The	approach	
takes	into	account	the	amount	of	genetic	diversity	that	may	have	accumulated	within	the	
patient	during	 latency.	 It	may	be	 the	 case	 that	within‐host	diversity	 can	be	neglected	 in	
most	 of	 the	 cases,	 particularly	 if	 the	 first	 isolate	 of	 each	 patient	 is	 analyzed.	 However	
overall,	 there	 remains	 a	 general	 lack	 of	 data	 to	 evaluate	 the	 true	 role	 of	within‐patient	
diversity.	Certainly	in	the	context	of	drug	resistance,	one	expects	a	potentially	misleading	
effect	of	this	diversity	on	epidemiological	inference	(Eldholm	et	al.	2015).		
	
In	parallel,	tools	to	understand	the	epidemic	dynamics	from	WGS	data	are	being	applied	to	
M.	 tuberculosis	 (see	 Chapter	 15	 for	 a	 review).	 Based	 on	 the	 principles	 of	 Bayesian	
phylodynamics,	 those	 approximations	 allow	 to	 infer	 important	 epidemiological	
parameters	like	incidence,	prevalence,	and	changes	in	the	basic	reproductive	number	(R0)	
over	time	(Grenfell	et	al.	2004;	Stadler	et	al.	2012).	The	integration	of	the	phylodynamic	
and	 epidemiological	 frameworks	 is	 a	 research	 field	 in	 constant	 development,	 and	 thus	
different	 approaches	 are	 available,	 ranging	 from	 classical	 coalescence	 to	 birth‐death	
models	(Stadler	et	al.	2012).	Compartmental	epidemiological	models	like	SIR	(susceptible–
infected–removed)	(Rasmussen	et	al.	2011;	Kühnert	et	al.	2014)	can	be	also	incorporated	
as	well	as	geographical	data	(du	Plessis	and	Stadler	2015).	These	different	approaches	are	
based	on	different	assumptions,	and	it	remains	to	be	seen	which	one	will	perform	best	in	
the	case	of	TB	(Stadler	et	al.	2012).	Again,	the	effect	of	 latency	and	how	best	to	model	 it	
remains	a	“black	box”	that	needs	to	be	addressed	in	the	future.	Nevertheless,	these	efforts	
will	play	an	important	role	in	the	future,	as	we	will	be	able	to	evaluate	the	impact	of	new	
interventions	using	genetic	data	as	well	as	predict	epidemic	trends	based	on	the	evolution	
of	R0	over	time.	
	
4.8	Challenges	of	genomic	epidemiology	
	
WGS	 is	becoming	 the	new	gold	 standard	 for	molecular	 epidemiology	of	TB.	 	 It	 provides	
higher	 resolution	 than	 previous	 molecular	 markers,	 which	 allows	 for	 both	 a	 better	
delineation	 of	 transmission	 clusters	 and	 the	 potential	 to	 establish	 the	 direction	 of	
transmission.	 However,	 we	 still	 have	 many	 knowledge	 gaps	 to	 resolve	 (van	 Soolingen	
2014).	
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Understanding	the	biology.	To	properly	model	what	happens	within	a	patient,	we	need	to	
understand	how	bacterial	genetic	diversity	is	generated	within	a	patient	and	how	much	of	
it	 is	 transmitted.	Linked	to	that,	we	need	to	determine	the	contribution	of	 latency	to	the	
diversity	 seen,	 and	 how	 to	 account	 for	 it	 in	 transmission	 models.	 Interpretation	 of	
transmission	 network	 is	 also	 not	 straightforward,	 and	 while	 algorithms	 have	 been	
developed,	 they	 are	 not	 always	 easy	 to	 implement.	 Moreover,	 they	 still	 have	 to	 be	
evaluated	at	a	 larger	scale.	This	 is	particularly	 true	 if	we	want	 to	move	 towards	routine	
WGS	in	the	clinical	environment.	
	
Beyond	 distance	 thresholds.	 Since	 the	 publication	 of	 Walker	 et	 al.	 2012,	 using	 SNP	
threshold	has	become	the	gold	standard	to	define	 transmission	clusters.	However,	 these	
thresholds	 are	 likely	 not	 universal,	 and	 have	 to	 be	 tested	 in	 a	 wider	 range	 of	
epidemiological	 settings.	 For	 example,	 due	 to	 the	 action	 of	 natural	 selection,	 it	 is	 very	
likely	 that	 in	 high	MDR‐TB	 burden	 settings,	we	will	 find	 epidemiologically	 linked	 cases	
with	more	than	five	or	twelve	SNPs.	Furthermore,	distance	thresholds	are	useful	but	can	
be	 misleading.	 The	 absence	 of	 an	 intermediate	 transmission	 link,	 an	 un‐sampled	 index	
case	 for	example,	may	separate	 two	strains	 that	are	 in	 fact	epidemiologically	related.	As	
we	have	seen,	algorithms	that	capture	the	diversity	and	complexity	of	transmission	trees	
are	being	developed.	These	methods	should	be	tested	at	a	larger	scale	to	understand	how	
to	interpret	transmission	at	the	population	level.	
	
Towards	routine	genomic	epidemiology.	Interpretation	of	WGS	data	is	not	straightforward,	
and	 remains	mostly	 confined	 to	 the	 research	 settings.	Efforts	have	been	done	 in	 certain	
places,	most	notably	Public	Health	England/NHS	and	the	US	CDC,	but	we	are	still	far	from	
democratizing	 WGS	 among	 medical	 institutions.	 Implementation	 of	 WGS	 must	 be	 also	
integrated	in	local,	regional,	and	national	health	systems,	and	the	results	shared	across	the	
globe	 to	 accelerate	 diagnostic	 and	 epidemiological	 research	 (Yozwiak	 et	 al.	 2015).	
However,	the	reality	in	high‐burden	countries	is	very	different.	This	is	best	illustrated	by	
the	 low	number	of	genomic	epidemiological	studies	published	 to	date	 from	high‐burden	
regions.	 In	 most	 of	 these	 countries,	 the	 only	 routine	 diagnostic	 remains	 sputum	
microscopy,	 and	 there	 is	 usually	 no	 access	 to	 bacterial	 cultures.	 Thus,	 the	 genomic	
revolution	will	 likely	 take	 time	 to	 get	 to	 these	 high‐burden,	 low‐income	 countries	 given	
that	the	benefits	remain	limited.	
	
Genomic	sequencing	 from	diagnostic	samples.	 The	 real	 genomic	 revolution	 in	 TB	 clinical	
practice	will	be	 the	direct	sequencing	 from	complex	sputum	samples.	The	advantages	of	
such	an	approach	are	multiple.	 It	will	eliminate	 the	need	 for	culture,	generate	a	positive	
diagnostic	 result	 in	 less	 than	 a	 week	 or	 perhaps	 even	 hours,	 and	 will	 be	 used	
simultaneously	 for	 infection	 control.	 However,	 the	 challenges	 of	 obtaining	 an	 M.	
tuberculosis	 genome	 from	 a	 sputum	 samples	 are	 enormous.	 Some	 advances	 have	 been	
achieved	recently,	 for	example	by	doing	diagnostic	metagenomics	 (Doughty	et	al.	2014).	
This	 approach	 consists	 in	 isolating	 total	 DNA	 from	 sputum	 and	 subject	 it	 to	 direct	
sequencing.	 However,	 for	 samples	 with	 low	 bacterial	 load,M.	 tuberculosis	 enrichment	
strategies	must	be	applied	 (Brown	et	al.	2015).	An	alternative	 is	 targeted	sequencing	of	
certain	 regions	 of	 the	 genome,	 including	 known	 drug	 resistance	 loci,	 an	 approach	 also	
referred	 to	 as	 high‐throughput	 amplicon	 sequencing	 (Colman	 et	 al.	 2015).	While	 still	 in	
early	days,	there	is	no	doubt	that	new	approaches	will	be	developed,	some	probably	linked	
to	real‐time,	portable	genomic	technologies	like	those	based	on	nanopores	(Bradley	et	al.	
2015)	that	have	been	successfully	applied	during	the	recent	Ebola	epidemic	(Quick	et	al.	
2016).	
	
4.9	Practical	implications	of	genomic	epidemiology	
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WGS	 has	 the	 potential	 to,	 and	 to	 some	 extent	 already	 is,	 revolutionizing	 molecular	
epidemiology	of	TB.	Once	more	powerful	analytical	tools	are	developed,	we	will	be	able	to	
establish	 a	 high	 resolution	 picture	 of	 TB	 transmission	 in	 different	 epidemiological	
scenarios,	 which	will	 help	 developed	 tailored	 control	 strategies.	 Such	 a	 high	 resolution	
picture	 will	 allow	 determining	 the	 role	 of	 different	 host,	 bacterial	 and	 environmental	
factors	in	the	transmission	of	TB.	In	addition,	together	with	geopositioning	data,	we	will	be	
able	to	develop	new	tools	for	spatial	epidemiology	of	TB.	Thus,	genomic	epidemiology	will	
improve	 our	 view	 not	 only	 of	 the	 various	 drivers	 of	 TB	 transmission,	 but	 also	 of	 the	
specific	 foci	 of	 transmission.	 If	 factors	 driving	 TB	 transmission	 can	 be	 established,	
particularly	those	involving	human	and	bacterial	variation,	new	avenues	of	research	will	
be	open	that	will	contribute	to	a	better	understanding	of	the	complex	interplay	between	
the	host	and	the	pathogen.	In	addition,	WGS	offers	the	opportunity	to	identify	the	genetic	
changes	 and	 the	 evolutionary	 forces	behind	 infection,	disease	and	 transmission.	 Indeed,	
the	study	of	mutations	associated	with	drug	resistance	 is	currently	 leading	 the	way,	but	
we	 need	 to	 identify	 the	 genetic	 loci	 of	 both	 the	 host	 and	 the	 pathogen	 that	 are	 under	
different	selective	pressures.	If	we	are	able	to	identify	such	loci,	a	whole	new	opportunity	
for	research	will	be	created	for	the	development	of	new	drugs,	vaccines	and	host	directed	
therapies.	Finally,	if	we	are	able	to	position	WGS	analysis	close	to	point‐of‐care	and	to	the	
diagnostic	 sample,	we	will	 transition	 from	a	 tool	 used	 in	 retrospective	 studies	 to	 a	 tool	
used	 for	 infection	control	 and	monitoring	 treatment	efficacy	 in	 real‐time.	While	 there	 is	
still	 a	 lot	 of	 work	 to	 do	 in	 terms	 of	 standardization	 and	 interpretation,	 genomic	
epidemiology	can	have	a	central	role	on	the	new	strategies	for	global	TB	control	and	help	
pave	the	way	towards	TB	elimination.	
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