Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health

Alfonso Benítez-Páez*, Eva M. Gómez Del Pulgar¹, Louise Kjølbæk², Lena Kirchner Brahe², Arne Astrup², LesliHingstrup Larsen², Yolanda Sanz¹

Affiliations:
² Department of Nutrition, Exercise and Sports (NEXS). Faculty of Science. University of Copenhagen. 1958 Frederiksberg, Denmark.

*Corresponding author: Av. Catedratic Agustin Escardino, 7. 46980 Paterna-Valencia, Spain. Tel: +34 963 900 022 ext 2131. E-mail: abenitez@iata.csic.es.
Abstract

Background. Scientific evidence suggests that diet plays a role in obesity and its comorbidities, partly via its interactions with the individual’s gut microbiota. Likewise, the individual’s microbiota influences the efficacy of dietary interventions to reduce body weight. However, we require a better understanding of the key components of the gut microbiota that are responsive to specific diets and of their effects on energy balance in order to use this information in practice.

Scope and Approach. This review provides an up-to-date description of the influence of dietary fibers and fat on gut microbiota and the mechanisms presumably mediating their effects on metabolic health. We also discuss the main knowledge gaps and the need to gain greater understanding of the role of diet-microbe interactions in obesity and the associated comorbidities.

Key Findings and Conclusions. Dietary fibers are major drivers of gut microbiota composition and function, stimulating the dominance of bacteria able to utilize these substrates as energy source, although effects vary depending on both the type of fiber and the individual’s microbiota. However, the key bacteria and the primary and secondary metabolic pathways mediating specific fiber-induced effects on the metabolic phenotype remain unclear, and this information is necessary to personalize fiber-based interventions. The literature also shows that gut microbiota contributes to the adverse consequences of high-fat diets on the metabolic phenotype; however, little is known about the effects of dietary fat type. Further progress is expected from translational approaches integrating controlled dietary intervention human trials, combining functional omics technologies and physiological/clinical endpoints, and mechanistic studies in experimental models. This will
ultimately help us to progress towards establishing informed microbiome-based dietary recommendations and interventions, which can contribute to tackling the obesity epidemic and its comorbidities.

Key words: Gut microbiota, microbiome, fiber, fat, diet-related diseases, obesity.
Introduction

Obesity has reached pandemic dimensions affecting a vast number of people worldwide. In 2014, approximately 39% of adults (1.9 billion) were overweight and 13% of these (600 million) were obese. Moreover, 42 million children under the age of 5 were reported as overweight or obese in 2013 (World Health Organization, 2015). It is well known that obesity is not only associated with populations in high-income countries, but the prevalence is continuously growing in low- and mid-income countries, particularly in urban settings (World Health Organization, 2015). Obesity is a result of an unbalance between energy intake and expenditure, to which over-nutrition and a sedentary lifestyle are major contributors (Coppinger, Jeanes, Dabinett, Vogele, & Reeves, 2010). Obesity is associated with a state of chronic low-grade inflammation, which partly explains the insulin resistance phenotype observed in many obese individuals. In turn, insulin resistance is a component of the metabolic syndrome that often precedes the development of type 2 diabetes (T2D) and cardiovascular disease (CVD) (Jia, DeMarco, & Sowers, 2016). This metabolic inflammation is characterized by infiltration of macrophages and lymphocytes in peripheral tissues. This is accompanied by an increased production of pro-inflammatory cytokines, adipokines, acute-phase proteins and other immune mediators as a consequence of the activation of several signalling pathways, including the nuclear factor kappa B (NFκB)/Inhibitor of the c kinase (IKK), c-jun N-terminal kinase (JNK), protein kinase R (PKR) and the Toll-Like receptors (TLRs) (Gregor & Hotamisligil, 2011). Adipose tissue from obese individuals is considered to be the main contributor to obesity-related metabolic inflammation, with the highest accumulation of infiltrating macrophages and tissue...
concentrations of cytokines, with similar events occurring in the liver and central nervous system, contributing to systemic insulin resistance (Johnson & Olefsky, 2013).

In the last decade, an increasing number of studies have reported that obesity is associated with alterations in gut microbiota structure, suggesting that specific microbial taxa could be contributing factors to the obesity epidemic, although results are not fully consistent across human observational studies (Sanz, Rastmanesh, & Agostoni, 2013). Animal studies have provided information about the mechanisms by which gut microbiota could play a role in obesity, including contribution to nutrient digestion and absorption and to regulation of immune and neuro-endocrine functions (Moya-Perez, Neef, & Sanz, 2015). Experimental models have also demonstrated that gut microbiota can transmit the obesity-associated metabolic phenotype of its original human host when transferred to a germ-free recipient, providing a first evidence of causality (Turnbaugh, et al., 2006). Furthermore, a unique fecal transplantation study in humans has also demonstrated that the transference of feces from a lean donor into subjects with metabolic syndrome beneficially influence glucose metabolism, confirming the causal role of gut microbiota (Vrieze, et al., 2010).

Nonetheless, the role of gut microbiota in obesity seems largely dependent on diet-microbe interactions due to the fact that diet is a major modifiable factor influencing gut microbiota composition and function (De Filippis, et al., 2015; Flint, Duncan, Scott, & Louis, 2015). Indeed, experimental models revealed that such interactions contribute to obesity, for example, by increasing lipid absorption or aggravating adipose tissue inflammation independently of adiposity in the context of diets rich in saturated lipids (Caesar, Tremaroli, Kovatcheva-Datchary, Cani, & Backhed, 2015; Semova, et al., 2012). Furthermore, dietary reprograming of microbiota ameliorates development of metabolic dysfunction despite susceptible genotypes (Ussar, et al., 2015). Nevertheless, our understanding of how diet-
microbe interactions influence energy balance, eating behavior and obesity in humans is still insufficient to transform this information into practical solutions to tackle obesity-associated disorders.

This review discusses the most recent data regarding the potential role of dietary fiber and fat in remodeling gut microbiota composition and function and, thereby, in programming metabolic health. It also addresses the main limitations that must be overcome to progress our understanding of the microbiome’s role in the chain of events causing obesity. Only on gaining a better understanding of the above, will we be able to speed up the translation of this information into informed microbiome-based dietary interventions and recommendations.

1. Impact of dietary fiber on human physiology

1.1. Dietary fiber: role in metabolic health and as main fuel for gut microbiota.

Dietary fiber is generally defined as non-digestible carbohydrates plus lignin, which include structurally different components including non-starch polysaccharides, resistant oligosaccharides (e.g. fructo-oligosaccharides [FOS], galacto-oligosaccharides [GOS]) and resistant starch (EFSA NDA Panel, 2010). Prebiotics are defined as dietary fibers that modify the composition and/or metabolic activity of gut microbiota, thereby conferring a benefit to the host (G. R. Gibson, 2004; G. R. Gibson, Probert, Loo, Rastall, & Robbifroid, 2004). According to this definition, a wide variety of food ingredients can be classified as prebiotics such as GOS, FOS and longer inulin-derived fructans, xylo-oligosaccharides (XOS) and arabinoxylan oligosaccharides (AXOS); however this is based mainly on their impact on gut microbiota rather than on robust evidence of their effects on health-related
endpoints (Hutkins, et al., 2016). Dietary fiber is not digested by human enzymes and thus it reaches proximal colonic regions, where it constitutes the main energy source for obligate anaerobic bacteria, whose fermentative activity leads to the generation of organic acids (lactic, succinic acid) and short-chain fatty acids (SCFA) (acetate, propionate and butyrate). Consequently, the quantity and quality of fiber is considered to be one of the main dietary determinants of gut microbiota composition and function (Scott, Gratz, Sheridan, Flint, & Duncan, 2013). The current recommendations on dietary fiber intake (25 g per day for adults) are based on their well-known role in regulating bowel habits (frequency of defecation), including native chicory inulin considered to be prebiotic (Hutkins, et al., 2016). In addition, there is evidence for a role of dietary fiber and some prebiotics (inulin and oligofructose) in the reduction of dietary glycemic responses and glycemic load, with favorable effects on metabolic risk factors. Furthermore, consumption of fiber-rich diets with fiber intake above recommendations is associated with a reduced risk of coronary heart disease and type 2 diabetes as well as improved weight maintenance (Bes-Rastrollo, Martinez-Gonzalez, Sanchez-Villegas, de la Fuente Arrillaga, & Martinez, 2006; EFSA NDA Panel, 2010; S. Liu, et al., 2000; Ludwig, et al., 1999; Ye, Chacko, Chou, Kugizaki, & Liu, 2012). Dietary fiber is thought to positively influence metabolic health through multiple mechanisms, although effects cannot be generalized as they vary depending on the type of fiber. The mechanisms of action include direct effects related to its physicochemical and structural properties (e.g. indigestibility, viscosity, etc.) and indirect effects mediated by the individual’s gut microbiota. For example, compared to digestible carbohydrates, insoluble and soluble fibers reach distal portion of colon with no major degradation by human enzymes leading to a significant reduction in postprandial glycemic responses due to their slower digestion (EFSA, 2014). Consequently, consumption of fiber improves the
glucose metabolism as a whole, which have direct impact on satiety and tip the balance towards oxidation instead storage metabolism (reviewed in (Koh-Banerjee & Rimm, 2003)). Moreover, dietary fiber is considered to be very useful for weight loss/maintenance aims given its low energetics estimated to be ~1.91 kcal/g (8 kJ/g) in comparison with other macronutrients as digestible carbohydrates, (~4.06 kcal/g), proteins (~4.06 kcal/g), and fat (~8.84 kcal/g) (Menezes, et al., 2016). Soluble viscous fibers may also exert beneficial metabolic effects by their ability to form gels that delay gastric emptying, inhibit nutrient absorption and bile acid (BA) binding; altogether this may contribute to a decreased postprandial glycemic response and a reduction in body cholesterol stores due to increased synthesis of new BAs from cholesterol in the liver (Dikeman & Fahey, 2006). In addition, dietary fiber is thought to mediate other effects (e.g. satiety and anti-inflammatory effects) through activation of the fermentative activity of gut bacteria, and the generation of potentially beneficial metabolites (e.g. SCFAs), as explained in greater detail in section 3.

1.2. Evidence of the influence of dietary fiber on gut microbiota from observational studies.

The role of non-digestible carbohydrates in the gut microbiota is well exemplified by the differences in the infant’s gut microbiota between breast-fed and formula-fed infants and between infant formula supplemented or not with oligosaccharides, which mainly stimulate the growth of bifidobacteria (Closa-Monasterolo, et al., 2013; Hascoet, et al., 2011). These effects have also been well-established by comparing the gut microbiota of individuals from different geographical regions that consume rural diets (Africa and South America) rich in dietary fiber or Western diets (Europe and North America) rich in animal protein and fat (De Filippo, et al., 2010; Yatsunenko, et al., 2012). A comparison of the microbiota between European and African children, consuming a fiber-rich diet, showed that the latter
have reduced abundance of Firmicutes and increased abundance of Bacteroidetes, particularly the *Prevotella* and *Xylanibacter* genera, known to have genes specialized in cellulose and xylan utilization, with parallel increased fecal concentrations of SCFAs. In contrast, Enterobacteriaceae species (Proteobacteria) were reduced in African compared with European children (De Filippo, et al., 2010). Another large study including healthy children and adults also revealed important differences in bacterial communities and functional gene repertoires between US subjects from metropolitan areas and those from countries with a rural lifestyle (Amazonas of Venezuela and Malawi), finding the genus *Prevotella* to be abundant in humans with a diet rich in corn and cassava and in US children not following a full western diet (Yatsunenko, et al., 2012). A more recent study comparing African Americans and rural South Africans, found that animal protein and fat intake was 2-3 times higher in Americans whereas carbohydrate and fiber (mainly resistant starch) intake was higher in Africans. The same authors also reported diet-associated microbiota and metabolite changes that were related to colon cancer risk. While the American microbiota was dominated by *Bacteroides*, the African microbiota was dominated by *Prevotella* and higher levels of starch degraders, carbohydrate fermenters, and butyrate producers. Moreover, the American microbiota had higher levels of potentially pathogenic Proteobacteria (*Escherichia* and *Acinetobacter*) and BA deconjugators (Ou, et al., 2013). A recent Dutch population-based metagenomic study involving 1,135 subjects has associated higher diversity, functional microbiome richness and abundance of Bacteroidetes with higher intake of fruits and vegetables (source of dietary fiber), higher concentrations of high-density lipoprotein (HDL) and lower concentrations of fecal chromogranin A (Zhernakova, et al., 2016). The total amount of carbohydrates in the diet was also positively associated with *Bifidobacterium* but negatively associated with *Lactobacillus* and
microbiome diversity (Zhernakova, et al., 2016). All in all, these observational studies reveal that long-term consumption of fiber-rich diets promotes the dominance of fiber-degraders of the phylum Bacteroidetes and Actinobacteria (*Bifidobacterium* spp.) and, more consistently, of *Prevotella* spp. and reductions in Proteobacteria; nevertheless, *Bacteroides* spp. seem to be adapted to both fiber-rich diets and diets rich in animal protein and fat, probably due to their versatile metabolic capabilities. Notwithstanding, these observational data only provide associations but not causal relationships between specific dietary habits and the predominance of specific bacterial taxa, which limits their value in practice. Furthermore, other relevant environmental factors such as hygiene, geography, and ethnicity that could be involved in the respective gut microbiota profile observed are not well assessed.

A recent experimental study in animal models also suggests that the lack of dietary fiber leads to a substantial loss in gut microbiota diversity, which influences the ability of gut bacteria to be transferred from parents to offspring. It also revealed that simply restoring fiber consumption was not enough to reverse these effects since some bacterial groups failed to return to their previous levels (Sonnenburg, et al., 2016). These results have led to hypothesize that long-term dietary changes in industrialized countries could have altered the host-microbiota partnership and microbiome functionality, with an adverse long-term impact on health that could be transmitted from generation to generation (Sonnenburg, et al., 2016). Notwithstanding, evidence from systematic studies in humans is required to confirm this hypothesis.

1.3. Evidence for the influence of dietary fiber on gut microbiota from intervention studies.
A summary is given in Table 1 of recent representative human dietary interventions investigating how most common types of dietary fibers contribute to remodeling the gut microbiota. The responsiveness and effects of dietary fibers may differ depending on the individual’s gut microbiota profile (Korpela, et al., 2014), suggesting the need to work towards defining more specific and personalized dietary interventions and recommendations.

1.3.1. Effects of wholegrain (WG)-rich foods. Wholegrain cereals are composed of starch-rich endosperm, germ, and bran with high plant-fiber content. During harvesting and food processing, these components must preserve their relative proportions as in the intact kernel (HEALTHGRAIN Consortium - http://www.healthgrain.org). Rice, wheat, maize, oats, and barley are the main whole grains consumed worldwide and some of them have been proven to reduce the risk of certain diet-related diseases such as obesity and CVD. A controlled cross-over study showed a bifidogenic effect upon consumption of 48 g/day maize-based WG breakfast cereals during 21 days (Carvalho-Wells, et al., 2010). This effect was observed exclusively for the intervention period and not sustained after completion of the WG diet, strongly indicating that WG fiber is predominantly used by Bifidobacterium spp. (Carvalho-Wells, et al., 2010). Similar results were obtained by Costabile and coworkers who reported increased bifidobacteria and lactobacilli in feces after daily consumption of WG wheat breakfast cereals (48 g/day) in comparison with non-WG cereal (Costabile, et al., 2008). More recent results have shown that a four-week dietary intervention with 60 g/day WG barley flakes in healthy adults induced a significant increase in the genus Blautia and a less pronounced increase in the abundance of the genera Roseburia, Bifidobacterium and Dialister (Martinez, et al., 2013). Additionally, this study showed that WG barley,
brown rice and specially the combination of WG barley and brown rice reduced plasma interleukin-6 (IL-6) and postprandial glucose. Interestingly, *Eubacterium rectale* was significantly more abundant in volunteers showing improvements in postprandial blood glucose and insulin response, whereas abundance of *Dialister* species was associated with the highest improvements in IL-6 levels (Martinez, et al., 2013).

1.3.2. Resistant starch (RS). Starch is the major component of the plant-derived foods and comprises an important part of the human diet. The starch is referred as resistant when it cannot be hydrolyzed by digestive enzymes of the human GIT. The RS can be classified into several types (RS1 to RS5) according to the physical or chemical reasons to be indigestible. The RS1 is contained inside whole grains and is physically inaccessible for digestion; the RS2 is also native starch but remains indigestible by its compact structure; the RS3, also known as retrograde starch, is obtained by slow re-crystallization prior to heat disruption on water; the RS4 is the chemically modified starch by cross-linking or esterification; and the RS5 is a mixture of starch with lipids with high stability (Ma & Boye, 2016). Early studies about the RS impact on gut microbiota indicated that administration of controlled diet including 22 g/day RS induces changes in gut microbiota mainly in the clostridia cluster including members of the *Ruminococcus* genus (Abell, Cooke, Bennett, Conlon, & McOrist, 2008). Interventions with 50-60 g/day RS3 increased the abundance of several *Ruminococcus* spp. and especially *Ruminococcus bromii* and *Eubacterium rectale* (Walker, et al., 2011). Similar results were obtained when 33 g/day RS2 or RS4 were administrated in baked crackers to volunteers during 3 weeks. In this case, increased proportions of *Bifidobacterium adolescentis* and *Parabacteroides distasonis* were found to be induced particularly by RS4 intake, whereas increased proportions of *
Ruminococcus bromii and Eubacterium rectale were induced by RS2 consumption (Martinez, Kim, Duffy, Schlegel, & Walter, 2010). In addition, RS intake of has been found to improve lipid metabolism in individuals with metabolic syndrome and help to control waist circumference and fat mass in non metabolic syndrome individuals (Nichenametla, et al., 2014). These beneficial effects of RS on metabolic aspects are thought to be at least partially mediated by the microbiota induced changes but direct evidence still has to be provided.

1.3.3. Inulin and FOS. Inulin and FOS, also called oligofructose or oligofructans, are types of fructo-polysaccharides that consist of several \(\beta \)-linked D-fructosyl residues with a D-glucose group at end of the extended saccharide chain. These differ in the polymerization degree, which may range from 2 to 60 fructose units. FOS are usually produced by degradation of inulin obtained primarily from artichoke and chicory plants. These are used in the food industry as sweeteners, texture modifiers and fibers. A number of intervention studies have shown that the effects of inulin and FOS on gut microbiota composition can be associated with modifications on health related outcomes or subrogated biomarkers (Table 1). In adults and infants, it is generally reported that inulin and FOS intake increases the number of bifidobacteria, sometimes associated with changes in metabolic products (e.g. lactate) (Closa-Monasterolo, et al., 2013; Garcia-Peris, et al., 2012; Petry, Egli, Chassard, Lacroix, & Hurrell, 2012). In some studies, inulin or FOS-induced microbiota changes have also been correlated with indicators of metabolic health. For example, a three-month double-blind placebo-controlled intervention with a mixture of inulin/oligofructose or maltodextrin (8 g twice daily in powder to be dissolved in warm drinks) in obese women, showed increased abundances of Bifidobacterium spp. and Faecalibacterium prausnitzii,
which correlated to reduced serum LPS (lipopolysaccharide) levels. Additionally, the researchers observed reductions of *Bacteroides intestinalis*, *Bacteroides vulgatus* and *Propionibacterium* spp., which correlated to modest changes in fat mass. Additionally, they found reductions in plasma LPS, fecal acetate and propionate concentrations, and fasting insulinemia (Dewulf, et al., 2013; Salazar, et al., 2015). A recent study has evaluated the role of agave inulin showing a dose-dependent bifidogenic effect. The consumption of 5 or 7.5 g/day agave inulin in chocolate chews, primarily promoted the presence of *B. adolescentis, B. breve, B. longum*, and *B. pseudolongum* (Holscher, et al., 2015). Positive correlations were also detected between fecal butyrate concentrations and the dose of fiber, and between fecal butyrate concentration and *Faecalibacterium* abundance. These effects could be explained by cross-feeding interactions disclosed between bifidobacteria and *Faecalibacterium* (Moens, Weckx, & De Vuyst, 2016). Interestingly, a depletion of *Desulfovibrio* species was also identified as a consequence of agave inulin consumption (Holscher, et al., 2015), which could be of clinical relevance because increased *Desulfovibrio* species have been related to obesity and the associated endotoxemia (Xiao, et al., 2014; Zhang-Sun, Augusto, Zhao, & Caroff, 2015; Zhang, et al., 2009).

1.3.4. GOS

GOS are mainly produced through transgalactosylation reactions mediated by β-galactosidases using lactose or derivatives as substrate. GOS are often used to supplement infant formula due to their chemical and structural resemblance to human milk oligosaccharides. In infant formula, GOS have been shown to exert a bifidogenic effect (Giovannini, et al., 2014). In adults, the six-week administration of 5.5 g/day GOS powder
mixture dissolved in water to subjects with metabolic syndrome has been shown to reduce levels of *Clostridium histolyticum*, *Desulfovibrio* spp. and *Bacteroides* spp. (Vulevic, Juric, Tzortzis, & Gibson, 2013). These changes were accompanied by increases in *Bifidobacterium* spp. and reductions in inflammatory markers, including fecal calprotectin and plasma C-reactive protein (CRP) and in some metabolic parameters (e.g. plasma insulin, total cholesterol and triglycerides in males).

1.3.5. Xylans and arabinoxylans. Arabinoxylans (AX) from cereals are cell wall components that constitute a major part of the dietary fiber fraction of cereal grains and thus, an important fiber source in the diet (McCleary, 2003). Enzymatic hydrolysis of AX either in the production of processed foods or by bacteria in the colon yields arabinoxylanoligosaccharides (AXOS) and xylooligosaccharides (XOS), both of which are proposed to be prebiotic fibers (Broekaert, et al., 2011). Additionally to the well known bifidogenic effect of AX, a fact in which is based its prebiotic potential (reviewed in (Riviere, Selak, Lantin, Leroy, & De Vuyst, 2016)), other AX-degrading bacteria in the human colon belong to the genera *Roseburia* and *Bacteroides* and include the butyrate producing *Roseburia intestinalis* (Chassard, Goumy, Leclerc, Del'homme, & Bernalier-Donadille, 2007). These data are of interest since a higher relative abundance of butyrate-producing bacteria and *Bacteroides* spp. has been reported in healthy individuals compared to patients with T2D or pre-diabetic subjects in some studies (reviewed in (Sanz, Olivares, Moya-Perez, & Agostoni, 2015)). Human intervention trials have also shown increased fecal abundance of *Bifidobacterium* spp. following intake of 4 g/day XOS during three weeks (Chung, Hsu, Ko, & Chan, 2007) and from 2.14 to 10 g/day AXOS (Cloetens, et al., 2010; Francois, et al., 2012; Maki, et al., 2012). Furthermore, a higher abundance of this
2. Microbiome components involved in the utilization of dietary fiber

Dietary intake of fibers may lead to enrichment and altered expression of microbial genes which encode proteins/enzymes of metabolic pathways involved in the utilization of dietary fiber and the production of potentially beneficial metabolites (e.g. SCFAs). It is necessary to identify and characterize these pathways in order to understand the components of the microbiota and the microbiome that may underlie health effects associated with dietary fiber intake. Members of the phyla Bacteroidetes and Firmicutes are specialized in the utilization of complex carbohydrates and are the main producers of SCFAs. Butyrate and propionate are the two most thoroughly investigated SCFAs in terms of their potential role in metabolic health. The production of these SCFAs may require the participation of different bacterial genera and species via cross-feeding mechanisms. For example, *Bacteroides thetaiotaomicron* can directly produce propionate and acetate, which then can be used by *Eubacterium hallii* to produce butyrate (Mahowald, et al., 2009). Similar cross-feeding mechanisms have been described between some *Bifidobacterium* spp. and *Faecalibacterium prausnitzii* leading to increased butyrate production (Rios-Covian, Gueimonde, Duncan, Flint, & de los Reyes-Gavilan, 2015). Figure 1 shows the pathways identified for bacterial production of butyrate by genomic and metagenomic analysis of the human gut microbiota (Mahowald, et al., 2009; Reichardt, et al., 2014; Vital, Howe, & Tiedje, 2014). A conventional genetic signature to explore both the enrichment and variability of butyrate producers is via analyzing the butyryl-CoA:acetate CoA-transferase gene (*BCoAT* gene) encoding the respective enzyme responsible for the last step in butyrate
production. Quantitative approaches indicate \textit{BCoAT} gene enrichment in gut microbiota from individuals with a high intake of plant fiber, which is indicative of increased colonic butyrate production (Hippe, et al., 2011; Louis, Young, Holtrop, & Flint, 2010; Remely, et al., 2014; Vital, Gao, Rizzo, Harrison, & Tiedje, 2015).

Additionally to genes encoding enzymes of pathways responsible for SCFA production, the detection of other genes involved in the uptake and degradation of complex polysaccharides could be useful to define the active bacteria and their mode of action in response to fiber intake. Pioneer studies regarding characterization of proteins involved in the utilization of complex carbohydrates by anaerobe gut bacteria have revealed the essential role of polypeptides encoded by Sus genes, extensively studied in \textit{B. thetaiotaomicron} (Reeves, Wang, & Salyers, 1997). The Sus products were originally described as outer membrane proteins able to bind complex starch. Notwithstanding, the genetic context of their encoding genes has enabled the inclusion of glycoside hydrolases (GH) enzymes in the Sus repertoire of proteins, which collectively work to produce small oligosaccharides that are more easily imported by bacteria. Consequently, Sus genes have become useful to detect different polysaccharide utilization loci (PULs) in other Bacteroides species by comparative genomics approaches, allowing them to be studied in response to a wide variety of complex polysaccharides (reviewed in (White, Lamed, Bayer, & Flint, 2014)). Nowadays, research on carbohydrate utilization by gut bacteria is conceived as a cornerstone to understand their physiology and potential interactions and bidirectional communication with the host in health and disease. In this regard, the Carbohydrate Active Enzymes (CAZy) database (http://www.cazy.org/) is one of the most complete repositories describing the families of structurally-related catalytic and carbohydrate-binding functional domains of enzymes that bind, degrade, modify or create glycosidic bonds (Lombard, Golaconda Ramulu, Drula,
Coutinho, & Henrissat, 2013). Hierarchical classification of CAZy comprises 4 main families such as the Glycoside Hydrolase (GH, with 135 subfamilies reported at Nov 2016), the Glycosyltransferase (GT, with 101 subfamilies), the Polysaccharide Lyase (PL, with 24 subfamilies), and the Carbohydrate Esterase (CE, with 16 subfamilies) family. All GH reported are classified according to the functional modules they contain, with the aim to determine sites of action (exo or endo-acting enzymes) or type of cleavage (α- or β-glycosilases). Members of the phyla Bacteroidetes and Firmicutes are characterized by encoding the largest set of GH in their genomes, thus exhibiting a remarkable versatility for the utilization of different polysaccharides as carbon source (White et al 2014). These features convert species of such bacterial phyla into key players for degradation of complex polysaccharides in the human colon. Proof of this can be found in the studies performed in Flint’s lab with Ruminococcus bromii in which this bacteria was observed to present a specialized extracellular polypeptide complex, known as amylosome (Ze, et al., 2015). It was also found to be an indispensable member of the human gut microbiota, having a direct effect on energy recovery from a central component of diet, i.e., RS (Ze, Duncan, Louis, & Flint, 2012). However, Bifidobacterium (Actinobacteria) species are also well-known fiber fermenters. Although Bifidobacteria have fewer GHs encoded in their genomes than Bacteroidetes, they also exhibit a great versatility for the uptake and catabolism of oligosaccharides. This versatility is well exemplified in genome-wide expression analyses, which have disclosed a wide variety of genes appearing to respond specifically to different carbon sources (Andersen, et al., 2013; O’Connell, et al., 2013). In this context, we have recently described the genome response of B. pseudocatenulatum CECT 7765, a strain isolated from breast-fed babies, during utilization of lactulose-derived oligosaccharides. An
exhaustive inventory of GH enzymes present in the genome of this species have a set of open reading frames (ORFs) that seem to control the uptake and degradation of this digestion-resistant oligosaccharide (Benitez-Paez, Moreno, Sanz, & Sanz, 2016).

Although GHs and related proteins appear to be the key traits to infer versatility of gut microbes for utilization of polysaccharides and their contribution to the production of fermentation end-products such as SCFAs, little is known about the effects of fiber fermentation on secondary metabolic pathways and the generation of other nutrients (e.g. amino acids and vitamins) and bioactive compounds. Some *in vitro* studies have reported that oligosaccharide fermentation also increases amino acid synthesis (Benitez-Paez, et al., 2016; Sulek, et al., 2014). In particular, our study revealed that the utilization of GOS by *B. pseudocatenulatum* CECT 7765, using bacteria cultures, increased the production and extracellular accumulation of branched-chain amino acids such as leucine (Benitez-Paez, et al., 2016). Additional studies are, however, needed to understand the effects of the interplay between dietary fiber and amino acid metabolism in the large intestine and fully understand the metabolites resulting from the activity of the gut microbiota and their potential consequences on health beyond the well-known SCFAs.

3. Effects of dietary fiber on metabolic health mediated by gut microbiota

There is a wealth of human intervention studies with dietary fibers, but only a few of them have assessed the relationship between microbiota-induced changes and endpoints related to physiological functions and metabolism. Further studies are also needed that directly assess the effects of fiber-induced microbiota changes on metabolic outcomes, for example via fecal transplantation or via inoculation of specific bacterial consortia from humans into animal models. Consequently, there is still a large degree of uncertainty about to what
extent the effects attributed to dietary fibers on metabolic health are mediated by gut microbiota in humans, and which are the key species involved. Nonetheless, considerable mechanistic data are available from other animal study approaches, as summarized below.

3.1. Gut barrier integrity, metabolic endotoxemia and inflammation

Obesity and particularly the intake of a high-fat diet (HFD) are thought to lead to a leaky gut and metabolic endotoxemia (increased serum LPS levels) in animal models and to some extent in humans. This is assumed contributing to the low-grade chronic inflammation leading to metabolic dysfunction and disease (metabolic syndrome and T2D). In fact, LPS is a potently inflammatory bacterial antigen linked to common metabolic diseases (Conlon & Bird, 2015). LPS is an endotoxin consisting of three parts; lipid A, the oligosaccharide core and the O-antigen, with the lipid A causing endotoxicity. LPS is normally present in the human gut (≥1 g) and under normal conditions it does not cause negative health effects. In healthy humans the normal/low plasma concentration of LPS is 1-200 pg/ml, but increased levels have been found in subjects with obesity and diabetes (Erridge, Attina, Spickett, & Webb, 2007; Moreira, Texeira, Ferreira, Peluzio Mdo, & Alfenas Rde, 2012). LPS binds to TLR4 via CD14 on, for example, the membrane surface of immune cells leading to activation of genes that codify pro-inflammatory cytokines (e.g. TNF-α and IL-6) involved in metabolic inflammation. Experimental models of obesity have shown prebiotic-induced increases in bifidobacteria and Akkermansia spp. associated with reduced endotoxemia and systemic inflammation (Cani, et al., 2007; Schneeberger, et al., 2015). These effects can be partly explained by the ability of those bacteria to ferment glycans leading to SCFA production and promoting local decrease of pH, which may modulate gut microbiota composition and inhibit the growth of enterobacteria, which may be a source of
LPS (Delzenne, Neyrinck, & Cani, 2013; Everard, et al., 2013). This effect could also be related to the role of SCFAs in strengthening the gut barrier function, which also reduces LPS translocation via different mechanisms, including modulation of expression and localization of tight-junction proteins, induction of endocrine peptide production (GLP-2) and modification of the intestinal levels of endocannabinoids (Everard, et al., 2013).

SCFAs also play an anti-inflammatory role by regulating the size and function of the colonic regulatory T cells (Treg), specifically inducing Foxp3+IL-10–producing Tregs (Smith, et al., 2013). SCFAs may also interact with peroxisome proliferator-activated receptor (PPAR) γ, thereby inhibiting pro-inflammatory signal transduction pathways (e.g. nuclear factor-kappa B [NF-κB]) leading to reduction of downstream cytokine/chemokine production (IL-6, IL-8, and MCP-1) in intestinal epithelial cells and metabolic tissues (e.g. adipose tissue) (Mastrofrancesco, et al., 2014). Activation of PPARγ also seems to be crucial in orchestrating Treg accumulation and function in the adipose tissue, which play an important role in preventing inflammation and insulin resistance (Cipolletta, Cohen, Spiegelman, Benoist, & Mathis, 2015). Butyrate as well as other SCFAs, protects against the liver inflammation process associated with steatosis by inhibiting the NF-κB activation and downregulating expression of TLR4 receptor (Mattace Raso, et al., 2013). The molecular mechanisms underlying SCFA modulation of NF-κB activity have recently been disclosed as related to JNK and p38 kinases, which control NF-κB activity (Haghikia, et al., 2015). However, we cannot discard additional mechanisms to control NF-κB function involving acetylation/deacetylation of histones and the RelA (p65) monomer itself (Davie, 2003; Glozak, Sengupta, Zhang, & Seto, 2005).
3.2. Enteroendocrine secretion and appetite

In obese animals fed inulin-type fructans, there is an increase in plasma anorexigenic peptides (peptide YY and glucagon-like peptide - GLP-1) and a decrease in the orexigenic peptide ghrelin, which increases satiety (reviewed in (Delzenne, et al., 2013)). In addition, supplementation with fructans in HFD-fed mice modulates neuronal activation within the arcuate nucleus, which can help to control food intake (Anastasovska, et al., 2012). These effects on anorexigenic peptide secretion could be mediated by interactions of SCFAs with G-protein receptors such as FFAR2 (GPR41) and FFAR3 (GPR43), which could explain induction of satiety and increased insulin sensitivity (Blaut, 2014). Also in humans, prebiotic interventions with fructans have led to increases in anorexigenic peptides and/or decreases in orexigenic (ghrelin) peptides (Cani, Joly, Horsmans, & Delzenne, 2006; Cani, et al., 2009; Parnell & Reimer, 2009; Verhoef, Meyer, & Westerterp, 2011), but effects on satiety have not always been consistent (Peters, Boers, Haddeman, Melnikov, & Qvyjt, 2009).

3.3. Adiposity, lipid and glucose metabolism

Reduced adiposity in rodents due to dietary supplementation with inulin-type fructans or AX has also been attributed to the role of SCFAs in modulating PPARγ expression via interaction with the G-protein coupled receptor protein FFAR3 (Delzenne, Neyrinck, Backhed, & Cani, 2011). Interestingly, den Besten and co-workers found that SCFAs decrease PPARγ expression, thus promoting activity of the uncoupling protein 2 (UCP2) and, thereby, stimulating oxidative metabolism in liver and adipose tissue, insulin sensitivity and weight loss (den Besten, et al., 2015). Studies with inulin-type fructans have also shown they can decrease hepatic accumulation of triglycerides and/or cholesterol in
liver tissue. These effects have been associated with a decrease in sterol-response-element-binding protein-dependent cholesterogenesis, lipogenesis, or changes in PPARα-driven fatty acid oxidation (reviewed in (Delzenne, et al., 2013)). The majority of studies show prebiotic administration also leads to improved fasting or postprandial glycemia due to the very low digestion rates of prebiotics compared with digestible carbohydrates (for review see (Roberfroid, et al., 2010)). In addition, SCFA-stimulation of GLP-1 secretion can also mediate an improvement in glucose metabolism, reducing obesity-related hepatic insulin resistance.

In humans, intervention studies with fructans have reported modest effects on body weight and fat mass in obese adults, but simultaneous changes in microbiota were not considered to have any correlation (Genta, et al., 2009; Parnell & Reimer, 2009). Nevertheless, there are also reports of a lack of effect on body weight in obese children (Liber & Szajewska, 2014). On the other hand, a rapid improvement in glucose tolerance has been observed for individuals consuming WG barley the night prior to analysis. These results were thought to be caused by the high amount of soluble dietary fiber and resistant starch contained in barley kernels, which facilitated bacterial fermentation in the colon overnight and produced significantly higher levels of SCFAs. This was indirectly measured from breath H₂ excretion (Nilsson, Granfeldt, Ostman, Preston, & Bjorck, 2006). Moreover, recent results of this dietary intervention model indicate that the fiber-associated improvement of glucose metabolism is also associated with an increase in Prevotella spp. (Kovatcheva-Datchary, et al., 2015).

4. Impact of dietary fat on gut microbiota and associated metabolic endpoints
Globally, an increase in dietary fat content is usually paralleled with a decrease in carbohydrates, including dietary fiber content, thus making it difficult to attribute the observed changes, at physiology or gut microbiota levels, exclusively to one of the macronutrients whose proportion is being increased. Consequently, a decreased abundance of butyrate-producing bacteria and lower fecal SCFA excretion following a HFD is most likely caused by a decrease in dietary carbohydrate intake. Therefore, major conclusions derived from future animal or human studies including HFD interventions must be addressed carefully in order to consider confounding effects regarding the proportions and energetics or other macronutrients administrated.

4.1. Evidence from animal studies

The role of gut microbiota in HFD-induced obesity was suggested through animal experiments involving germ-free mice fed a HFD, which were protected from obesity compared to conventionally raised mice (Rabot, et al., 2010), thus highlighting the role of microbiota in HFD-induced obesity. Furthermore, a study in mice by Hildebrandt and coworkers showed that changes in the gut microbiota composition were caused by dietary fat content rather than the degree of obesity, suggesting that fat directly impacts on microbiota regardless of the metabolic phenotype (Hildebrandt, et al., 2009). Gut microbiota transferred to germ-free mice from conventionally raised mice resulted in weight gain and a higher relative abundance of Firmicutes and a lower abundance of Bacteroidetes when mice were fed a HFD compared to a low-fat chow diet from 16 weeks of age (Turnbaugh, Backhed, Fulton, & Gordon, 2008). Although differences established at phylum level are of limited value since each phylum comprise many different species which may potentially play many different functions, a common trait for HFD-feeding
seems to be that it increases the Firmicutes:Bacteroidetes ratio (de Wit, et al., 2012; Hildebrandt, et al., 2009; Lam, et al., 2012; Turnbaugh, et al., 2008), although there is not complete consistency across studies (Lecomte, et al., 2015); this would also be due to experimental and environmental differences. A recent 16-week study in mice fed a HFD reports that the abundance of *Akkermansia muciniphila* was progressively and drastically decreased while other groups including *Bifidobacterium* spp. and *Lactobacillus* spp. showed a transient decrease. In contrast the abundance of *Roseburia* spp. and *Bilophila wadsworthia* increased after 12 and 16 weeks upon HFD, respectively (Schneeberger, et al., 2015). Interesting, *B. wadsworthia* have been linked to insulin resistance and inflammation in humans (Brahe, et al., 2015).

Animal studies have revealed different mechanisms by which HFD could exert adverse effects, partly mediated by the microbiota, on the host metabolic phenotype. For example, diets rich in saturated fat may contribute to inflammation, a hallmark of metabolic dysfunction leading to metabolic syndrome and T2D, by promoting the expansion of pathobionts, reducing the proportion of protective bacteria, and promoting a leaky gut that in turn facilitates the translocation of bacterial products (e.g. LPS) causing immune activation (Caesar, et al., 2015; Delzenne, et al., 2011; Devkota, et al., 2012). In a recent study, HFD-induced microbiota changes were correlated with obesity-related inflammatory and metabolic biomarkers (Schneeberger, et al., 2015). *Akkermansia muciniphila* was the species showing the clearest inverse associations with inflammatory markers in the adipose tissue and also with biochemical/hormonal parameters in circulation (i.e., insulin, glucose, triglycerides and leptin).

However, as the majority of the dietary fat is absorbed in the small intestine and does not serve as an energy source for gut microbes, the effect of fat on gut microbiota must be
partly mediated by indirect mechanisms. Increased fat intake also leads to increases in fat quantities and of BAs reaching the colon, and particularly the concentration and composition of BAs modulates the gut microbiota exerting antimicrobial effects (Islam, et al., 2011; Ridlon, Kang, Hylemon, & Bajaj, 2014). Primary BAs (e.g. cholic acid [CA] and chenodeoxycholic acid [CDCA] in humans and beta-muricholic acid [β-MCA] in mice) are sterol compounds synthesized from cholesterol in the liver, conjugated with taurine and glycine, and then secreted into the small intestine to emulsify lipids to facilitate their digestion and absorption. The majority of BAs are reabsorbed (enterohepatic recycling), but as increased fat intake leads to increased BA secretion, theoretically more BAs will escape enterohepatic recycling, and hence reach the large intestine. During the transit to the large intestine, primary BAs undergo deconjugation, oxidation of hydroxyl groups at C-3, C-7, and C-12, and 7α/β-dehydroxylation reactions mediated by intestinal bacterial enzymes, yielding secondary BAs such as deoxycholic acid (DCA), lithocholic acid (LCA), and β-muri-deoxycholic acid. Bacterial bile salt hydrolases (BSH), e.g. produced by Clostridium spp, catalyze the first reaction on secondary BAs and this is a step necessary for the subsequent 7α/β-dehydroxylation (Degirolamo, Rainaldi, Bovenga, Murzilli, & Moschetta, 2014). Overall, the amount and composition of BAs are strongly influenced by gut microbiota and vice versa, and BA biotransformation has important biological consequences due to their role in dietary lipid absorption and as signaling molecules, modulating cholesterol and triglyceride metabolism and glucose and energy homeostasis (Degirolamo, et al., 2014; Staels & Prawitt, 2013). Secondary BAs have strong antimicrobial activity (e.g. damage of the bacterial cell membrane by interaction with phospholipids) due to their amphipathic properties. For example, DCA has 10 times the bactericidal activity of CA (Islam, et al., 2011), therefore an increase in the proportion of
secondary BAs following HFD very likely affects the microbiota composition. A rat study, evaluating the effect of adding CA at different doses compared with controls (no CA added), demonstrated a dose-dependent increase of fecal BA and DCA (Islam, et al., 2011). Furthermore, a dose-dependent decrease in fecal SCFA concentration was observed along with a reduction in total bacterial count and an increase in Firmicutes at the expense of primarily Bacteroidetes.

Dietary saturated fat compared to poly-unsaturated fatty acids (PUFAs) was also reported to favor taurine conjugation of hepatic BAs, which caused an expansion of δ-Proteobacteria-type pathobionts, in particularly *B. wadsworthia* which is a sulfite-reducing bacterium exerting a cytotoxic effect on epithelial cells and activating Th1-type inflammatory response (Devkota, et al., 2012).

Studies in rodent models of HFD-induced obesity have also shown that saturated fat reduces the mucus layer, which acts as the first barrier separating the immune system from microbial and antigen interactions that may activate an inflammatory response. This effect was parallel to a reduction in the abundance of *Akkermansia* spp., while administration of this bacterium reversed it, increasing mucus layer thickness, and thus suggesting a microbiota-mediated effect (Everard, et al., 2013). Other animal studies have reported correlations between HFD-induced changes in the microbiota and alterations in the expression of tight junction-related proteins, and in gut permeability. In mice a HFD has been shown to reduce the expression of the tight-junction-related protein zonula occludens (ZO)-1 mRNA (Cani, Delzenne, Amar, & Burcelin, 2008) associated leading to increased gut permeability measured by transepithelial resistance (Lam, et al., 2012). Additionally, decreased transepithelial resistance (i.e. increased gut permeability) was associated a drop
in the abundance of *Lactobacillus* spp. and augmented abundance of *Oscillibacter* spp. (Lam, et al., 2012).

Animal studies also show that when a HFD is supplemented with either prebiotics (Cani, et al., 2007; Everard, et al., 2013; Serino, et al., 2012) or antibiotics (Cani, Bibiloni, et al., 2008) the HFD-induced alterations in gut microbiota and metabolism are partially reversed, indicating that gut microbiota partly mediate the consequences of HF feeding.

A few studies have investigated the effects of different dietary fatty acids (Lam, et al., 2012; Lappi, et al., 2013; Simoes, et al., 2013). In mice, it has been shown that n-6 high fat diets do not increase insulin resistance, intestinal permeability and fat accumulation to the same degree as saturated fatty acid diets, which is possibly due to a lower increase in H2S-producing bacteria (Lam, et al., 2012). Likewise, lower decreases in Bacteroidetes have been found under diets rich in n-3 or n-6, compared to diets rich in saturated fatty acids(T. Liu, Hougen, Vollmer, & Hiebert, 2012).

4.2. Evidence from human studies

Only a few human intervention studies have investigated the effects of HFD compared to low-fat diets (LFD) or the type of fat (saturated fat versus PUFAs) in relation to changes in gut microbiota and the metabolic consequences. As found in animal studies, total bacterial counts decrease in humans who consume a HFD (35-38 E%), compared to a LFD (23-27 E%) over 24 weeks (Fava, et al., 2013). Moreover, low/moderate-fat intake appears to induce a higher abundance of *Bacteroides* spp. and/or *Bifidobacterium* spp., compared to high-fat intake in human intervention trials (Brinkworth, Noakes, Clifton, & Bird, 2009; Fava, et al., 2013). An energy-restricted HFD (58 E%), compared with an isocaloric moderate-fat diet (28 E %) was shown to increase the total number of anaerobes in the
moderate-fat group, but not in the high-fat group, but the ratio between anaerobe:aerobe remained unchanged in each group (Brinkworth, et al., 2009). Additionally, a study comparing high-fat and moderate-fat ad libitum diets (66 E% vs. 35 E%) over 4 weeks did not report any effect on the gut microbiota in terms of total bacterial count; however, the methodology used to study microbiota abundance was based on a limited number of species (Duncan, et al., 2007).

As stated above, an increase in the intake of dietary fat is usually at expenses of a decrease in that of simple or complex carbohydrates, making it difficult to attribute the observed effect exclusively to one of the macronutrients. O'Keefe and coworkers (O'Keefe, et al., 2015) compared the effects on gut microbiota in a cross-over study with a 2-week diet period administering either African- or American-food. The switch from a rural African to an American-diet (52% fat, 21% carbohydrate, 27% protein, and 12% fiber) decreased the abundance of butyrate-producing bacteria and the production of acetate, propionate and butyrate (O'Keefe, et al., 2015). Similarly, Duncan and coworkers observed a higher abundance of Roseburia and Eubacterium and higher fecal excretion of butyrate in humans following a moderate fat diet compared to high-fat intake, with these changes in the gut microbiota and derived metabolites being positively correlated with carbohydrate intake (Duncan, et al., 2007).

O'Keefe and coworkers also measured BA excretion and observed that the high-fat diet of Americans was associated with increased expression of microbial genes coding for the enzyme related to converting primary BAs to secondary BAs, whereas a dietary switch to a lower-fat diet reduced the abundance of these bacteria. Furthermore, excretion of the secondary BAs LCA and DCA was increased by the HFD. Also short-term consumption of diets composed entirely of animal (rich in fat and protein) or plant products (rich in fiber)
can rapidly alter gut microbial composition (David, et al., 2014). An animal-based diet increased the abundance of bile-tolerant microorganisms, including Alistipes, Bilophila, and Bacteroides species. By contrast this diet decreased the abundance of Firmicutes, including genus and species specialized in the utilization of polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Furthermore, the animal-based diet increased the abundance of B. wadsworthia and secondary BAs. These findings support the observations in rodent models comparing diets rich in PUFA or saturated fat (D. L. Gibson, et al., 2015; Schneeberger, et al., 2015), suggesting similar mechanisms of action and similar metabolic effects.

The relationship between PUFAs and the microbiota are even less well understood. A recent study in women with obesity and metabolic syndrome who consumed inulin-type fructans for 3 months reported that PUFA-derived metabolites were associated with Bifidobacterium spp., Eubacterium ventriosum, and Lactobacillus spp., and negatively correlated with serum cholesterol (Druart, et al., 2014). However, another human intervention study found that supplementation with n-3 fatty acids (180 mg EPA and 120 mg DHA) for 6 weeks did not induce changes in the gut microbiota although it decreased insulin resistance and CRP (Rajkumar, et al., 2014). Unfortunately, amelioration of these metabolic parameters could not be directly associated with one specific fatty acid since only a mixture was tested. Therefore, further studies are needed to gain greater understanding of how the quality of dietary fat influences gut microbiota composition and function, and potential mediated effects on metabolism in humans.

Concluding remarks
Fiber is an instrumental dietary component that can be used to remodel gut microbiota composition and function to potentiate the beneficial effects of healthy diets on body weight management and metabolism. However, efforts are still needed to identify the optimal functional partnership between key bacterial species and types of fibers, considering the specificities of the individual’s microbiota. Fermentation of dietary fiber generates SCFAs, which presumably articulate beneficial effects in the context of obesity; yet many other secondary metabolic products resulting from diet-microbe interactions have yet to be discovered. Gut microbiota appears to contribute to the adverse consequences of high-fat diets on the metabolic phenotype, aggravating the associated low-grade inflammation and increasing energy absorption; however, further studies are needed to understand the potential effects of the quality of dietary fat on the gut microbiota and secondary metabolic process, such as those involving bile acids and their signaling roles.

Additional efforts must be conducted to identify the specific components of the gut microbiota, at species and strain level, influenced by different types of dietary fibers and fats and to understand their roles and mechanisms of action in humans to facilitate the use of this information in nutritional practice. This ambitious goal is expected to be accomplished by developing translational research approaches that integrate controlled dietary interventions in humans, combining functional omics technologies and physiological/clinical endpoints, and mechanistic studies in experimental models colonized with specific dietary-driven human microbiotas.

Acknowledgements
This work was supported by the European Union’s Seventh Framework Program under the
grant agreement no 613979 (MyNewGut) and by FUNDACION MAPFRE under grant "Hernando de Larramendi" call 2014.
References

Figure Legends

Figure 1. The bacterial butyrate synthesis pathways (adapted from Vital et al., 2014). Vital and coworkers have reconstructed four different pathways for butyrate synthesis through an extensive metagenomic approach. Protein names and major substrates are shown across the different biosynthetic pathways. Genes/proteins responsible of the last step of butyrate production, and frequently used as biomarkers for gut microbiota studies, are highlighted in red. They are known as: 4Hbt, butyryl-CoA:4-hydroxybutyrate CoA transferase; But, butyryl-CoA:acetate CoA transferase; Ato, butyryl-CoA:acetooacetate CoA transferase (α, β subunits); and Buk, butyrate kinase.
Table 1. Summary of dietary fiber interventional studies with gut microbiota assessments in humans.

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Study Design</th>
<th>Subjects</th>
<th>Time</th>
<th>Gender</th>
<th>Population</th>
<th>Effects on gut microbiota</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize-derived</td>
<td>DB, R, PC, CO</td>
<td>32</td>
<td>3 weeks</td>
<td>Females (21)</td>
<td>European UK</td>
<td>↑Bifidobacterium</td>
<td>(Carvalho-Wells, et al., 2010)</td>
</tr>
<tr>
<td>WG cereal</td>
<td></td>
<td></td>
<td></td>
<td>Males (11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG wheat cereal</td>
<td>DB, R, PC, CO</td>
<td>31</td>
<td>3 weeks</td>
<td>Females (16)</td>
<td>European UK</td>
<td>↑Bifidobacterium, Lactobacillus</td>
<td>(Costabile, et al., 2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG barley</td>
<td>R, CO</td>
<td>28</td>
<td>4 weeks</td>
<td>Females (17)</td>
<td>USA</td>
<td>↑Blautia, Bifidobacterium, Roseburia, Dialister</td>
<td>(Martinez, et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (11)</td>
<td></td>
<td>↔Dialister- plasma IL-6 levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↔Eubacterium- plasmaglucose/insulin</td>
<td></td>
</tr>
<tr>
<td>Inulin</td>
<td>DB, R, PC, CO</td>
<td>32</td>
<td>4 weeks</td>
<td>Females</td>
<td>European Switzerland</td>
<td>↑Bifidobacterium</td>
<td>(Petry, et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inulin (Agave)</td>
<td>DB, R, PC, CO</td>
<td>29</td>
<td>3 weeks</td>
<td>NA</td>
<td>USA</td>
<td>↑Bifidobacterium, Desulfovibrio</td>
<td>(Holscher, et al., 2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↔Faecalibacterium - fecal butyrate</td>
<td></td>
</tr>
<tr>
<td>Inulin / FOS</td>
<td>DB, R, PC</td>
<td>31</td>
<td>8 weeks</td>
<td>Females</td>
<td>European Spain</td>
<td>↑Bifidobacterium, Lactobacillus</td>
<td>(Garcia-Peris, et al., 2012)</td>
</tr>
<tr>
<td>Inulin-type fructans</td>
<td>DB, R, PC</td>
<td>30</td>
<td>12 weeks</td>
<td>Females</td>
<td>European Belgium</td>
<td>↑Bifidobacterium, Faecalibacterium prausnitzii</td>
<td>(Salazar, et al., 2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑Bacteroides, Propionibacterium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↔Bifidobacterium - plasma LPS levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↔Faecalibacterium - plasma LPS levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↔Bacteroides - Fat mass</td>
<td></td>
</tr>
<tr>
<td>Inulin / Oligofructose</td>
<td>DB, R, PC</td>
<td>22</td>
<td>12 days (mean)</td>
<td>Females (9)</td>
<td>European UK</td>
<td>↑Faecalibacterium, Bacteroides, Prevotella</td>
<td>(Majid, et al., 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inulin / Oligofructose</td>
<td>DB, PC</td>
<td>30</td>
<td>12 weeks</td>
<td>Females (44)</td>
<td>European Belgium</td>
<td>↑Bifidobacterium, Faecalibacterium prausnitzii</td>
<td>(Dewulf, et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inulin / Oligofructose</td>
<td>DB, R, PC</td>
<td>252</td>
<td>16 weeks</td>
<td>Females (123)</td>
<td>European Spain</td>
<td>↑Bifidobacterium</td>
<td>(Closa-Monasterolo, et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (129)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-GOS</td>
<td>DB, R, PC, CO</td>
<td>45</td>
<td>6 weeks</td>
<td>Females (29)</td>
<td>European UK</td>
<td>↑Bifidobacterium, Clostridium histolyticum, Desulfovibrio, Bacteroides</td>
<td>(Vulevic, et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOS</td>
<td>DB, R, PC, CO</td>
<td>31</td>
<td>3 weeks</td>
<td>Females</td>
<td>The Netherlands</td>
<td>↑Bifidobacterium</td>
<td>(Whisner, et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOS</td>
<td>DB, R, PC</td>
<td>163</td>
<td>>16 weeks</td>
<td>NA</td>
<td>European Italy</td>
<td>↑Bifidobacterium</td>
<td>(Giovannini, et al., 2014)</td>
</tr>
<tr>
<td>XOS</td>
<td>R, PC</td>
<td>22</td>
<td>3 weeks</td>
<td>Females (7)</td>
<td>Taiwan</td>
<td>↑Bifidobacterium</td>
<td>(Chung, et al., 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXOS</td>
<td>R, PC, CO</td>
<td>20</td>
<td>3 weeks</td>
<td>Females (14)</td>
<td>European Belgium</td>
<td>↑Bifidobacterium</td>
<td>(Cloetens, et al., 2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXOS</td>
<td>DB, R, PC, CO</td>
<td>63</td>
<td>3 weeks</td>
<td>Females (30)</td>
<td>European Belgium</td>
<td>↑Bifidobacterium</td>
<td>(Francois, et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXOS</td>
<td>DB, R, PC, CO</td>
<td>65</td>
<td>3 weeks</td>
<td>Females (35)</td>
<td>USA</td>
<td>↑Bifidobacterium</td>
<td>(Maki, et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Males (30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS3</td>
<td>R, CO</td>
<td>14</td>
<td>3 weeks</td>
<td>NA</td>
<td>European Scotland</td>
<td>↑Ruminococcos bromii, Eubacterium rectale</td>
<td>(Walker, et al., 2011)</td>
</tr>
<tr>
<td>RS2, RS4</td>
<td>DB, CO</td>
<td>10</td>
<td>3 weeks</td>
<td>Females (5) Males (5)</td>
<td>USA</td>
<td>↑ Bifidobacterium adolescentis, Eubacterium rectale, Ruminococcus bromii, Parabacteroides distasonis (Martinez, et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----</td>
<td>---------</td>
<td>---------------------</td>
<td>-----</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

| RS | R, CO | 46 | 4 weeks | Females (30) Males (16) | Australia | ↑ Ruminococcus bromii (Abell, et al., 2008) |

1 Gut microbiota changes expressed in terms of abundance. ↑ indicates higher proportions of a determined bacterial genus after intervention, and ↓ indicates the inverse effect. ↔ indicates direct correlations among bacterial abundance and metabolic parameters studied, being negative or positive, respectively. DB = Double-blind; Single-Blind = SB; R = randomized; PC = Placebo-controlled; CO = Cross-over; NA = No information was explicitly available for gender distribution into the intervention groups.