Structures of electromagnetic type on vector bundles

E. Reyes, V. Cruceanu & P.M. Gadea

Abstract

Structures of electromagnetic type on a vector bundle are introduced and studied. The metric case is also defined and studied. The sets of compatible connections are determined and a canonical connection is defined.

1 Introduction

Structures of electromagnetic type (em-structures) and structures of metric electromagnetic type (mem-structures) on a manifold were progressively introduced in [9, 11, 7] (see also [6]) and studied in detail in [5, 7, 8, 13, 14]. In the present paper we define similar structures for the case of a vector bundle $\xi = (E, \pi, M)$, and relate them to product, complex, para-Hermitian, Hermitian, para-Kähler or indefinite Kähler, structures. (In the sequel, by a pseudo-Riemannian metric we shall understand a metric of any signature, and by an indefinite (metric) structure a structure including a pseudo-Riemannian metric.) Then, we determine the set of connections on ξ compatible with those structures and we introduce a canonical connection. Considering an almost para-Hermitian (resp. indefinite Hermitian) structure on the base manifold M and an indefinite Hermitian (resp. para-Hermitian) structure of the bundle ξ, we prove that the corresponding diagonal lift of these structures, with respect to a connection on ξ, are mem-structures on the total space E. Finally, some properties of those mem-structures are established.

We recall the physical origin of the topic ([9, 11]). Let M^4 be a spacetime of general relativity, with gravitational tensor g of signature $-+++$. Let F be the electromagnetic field of type $(0, 2)$, which is skewsymmetric, that is a 2-form. Setting $F(X, Y) = g(JX, Y)$, the tensor field J so defined is the electromagnetic tensor field of type $(1, 1)$ associated to F. We have $g(JX, Y) + g(X, JY) = 0$. The characteristic equation of J is $\det(J - \lambda I) = 0$, which is satisfied by J, and we have

$$J^4 + 2kJ^2 + ll = 0, \quad k = -\frac{1}{4} \text{trace } J^2, \quad l = \det J.$$

If $x \in M^4$, it is said that J_x is of 1^{st}, 2^{nd}, or 3^{rd} class at x if, respectively,

$$l_x \neq 0, \quad l_x = 0, \quad k_x \neq 0, \quad l_x = 0, \quad k_x = 0.$$
It is said that J is of 1st, 2nd, or 3rd class if it is of such class at every x. The characteristic polynomial of the second class is $J^2(J^2 + 2k)$, but the minimal polynomial is $J(J^2 + 2k)$, so that the condition $J(J^2 + 2k) = 0$ characterizes the second class. The field of an electromagnetic plane wave is of 3rd class. The field of a moving electron is of 2nd class. More complicated fields belong to the 1st class. The equation one gets from the minimal polynomial in the 1st class is

\[(J^2 - f^2)(J^2 + h^2) = 0.\]

with f, h nowhere-vanishing C^∞ functions on M^4. Such a tensor field J on a general manifold M determines a G-structure on M.

To handle the nonconstant local cross-section situation corresponding to (1.1), one can use the relationships among G-structures, related sections of an associated bundle and functions of certain kind on M, as follows: Let $(\mathcal{P}, \pi_E, M, H)$ be a principal bundle with group H, $H \times W \to W$ a left action of H on a manifold W, and $(E = \mathcal{P} \times_H W, \pi_E, M, W)$ the associated bundle. A J-subset S of W with corresponding group G, a subgroup of H, is defined by the conditions: (1) $S \subset$ fixpoint set of G, (2) $h \in H, h(S) \cap S \neq \emptyset \Rightarrow h \in G$.

For instance, points are J-subsets with G the corresponding isotropy group. A cross-section K of π_E is a J-section if it can be locally represented as the “product” of a cross-section σ of π_P and a S-valued function \tilde{K}, so that

$$K_x = \sigma_x \cdot \tilde{K}_x = \text{equivalence class of } (\sigma_x, \tilde{K}_x) \text{ in } E.$$

Then \tilde{K} is globally defined, and the σ generate a principal subbundle of \mathcal{P}. K is a constant J-section if and only if \tilde{K} is constant. Different sections can generate the same subbundle, and in fact, every principal subbundle can be generated by a constant J-section.

Now, let \mathcal{P} be the principal bundle of frames over M, so that $H = GL(n, \mathbb{R})$, and let W be a real vector space. If $J \in W$ is given with the conditions stated above, a J-section generates a J-structure with group G, which is a G-structure. The tensor K has in principle variable components in adapted frames. This is a slight generalization with respect to the usually considered G-structures, given by tensors with constant components, which here correspond to constant J-sections. Since every J-structure is generated by some constant J-section, this generalization is useless for the study of the J-structure itself; but if the emphasis shifts to the study of variable J-sections, the results are significant, specially with respect to the parallelizability of the tensors.

In the particular case of a $(1, 1)$ tensor field J satisfying $(J^2 - f^2)(J^2 + h^2) = 0$, with characteristic polynomial $(x - p)^{r_1}(x - p)^{r_2}(x^2 + q^2)^s$, $r_1, r_2, s \geq 1$, $r_1 + r_2 + 2s = n = \dim M$, the J-subset consists of matrices of the form

$$\begin{pmatrix}
pI_{r_1} & -pI_{r_2} \\
-pI_{r_2} & qI_s
\end{pmatrix}$$

2
and the structural group is \(G = GL(r_1, \mathbb{R}) \times GL(r_2, \mathbb{R}) \times GL(s, \mathbb{C}) \). It is proved ([7]) that the \(G \)-structure defined by \(J \) above is also defined by a tensor field, say again \(J \), satisfying \((J^2 - 1)(J^2 + 1) = 0\), that is, the relation \(J^4 = 1 \) considered in the present paper.

Notice that the \(G \)-structure is exactly the same, not an associated or equivalent one. In the 4-dimensional case the group reduces to \(G = GL(1, \mathbb{R}) \times GL(1, \mathbb{R}) \times GL(1, \mathbb{C}) \). It is also proved ([7]) that there exists an adapted Riemannian metric so that the group can be reduced to \(G = O(r_1) \times O(r_2) \times U(s) \), and in the 4-dimensional case to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times U(1) \), that is, essentially to the unitary group \(U(1) \).

2 Structures of electromagnetic type on a vector bundle

Let \(\xi = (E, \pi, M) \) be a \(C^\infty \) vector bundle with total space \(E \) and projection map \(\pi \) over a connected paracompact base manifold \(M \). The rank of \(E \) is the (common) dimension of the fibres. Let \(C^\infty(M) \) denote the ring of real functions, \(T^q_p(M) \) the \(C^\infty(M) \)-module of \((p, q)\)-tensor fields, and \(T(M) \) the \(C^\infty(M) \)-tensor algebra of \(M \). We respectively denote by \(T^q_p(\xi) \) and \(T(\xi) \) the \(C^\infty(M) \)-module of tensor fields of type \((p, q)\) and the \(C^\infty(M) \)-tensor algebra of the bundle \(\xi \).

We recall that an almost product (resp. almost complex) structure on a manifold \(M \) is defined by a tensor field \(J \) of type \((1, 1)\) satisfying \(J^2 = I \) (resp. \(J^2 = -I \)). An almost para-Hermitian (resp. indefinite almost Hermitian) structure on \(M \) is defined by a couple \((J, g)\), given by an almost product (resp. almost complex) structure \(J \) and a pseudo-Riemannian metric compatible with \(J \) in the sense that \(g(JX, Y) + g(X, JY) = 0, X, Y \in \mathfrak{X}(M) \); that is, as an anti-isometry (resp. isometry). A para-Kähler (resp. indefinite Kähler) manifold is a manifold \(M \) endowed with an almost para-Hermitian (resp. indefinite almost Hermitian) structure such that the Levi-Civita connection of \(g \) parallelizes \(J \).

Definition 2.1. A structure of electromagnetic type on \(\xi = (E, \pi, M) \) is an \(M \)-endomorphism \(J \) of \(\xi \) satisfying

\[
J^4 = I,
\]

with characteristic polynomial \((x - 1)^{r_1}(x + 1)^{r_2}(x^2 + 1)^s\), where \(r_1, r_2, s \) are constants greater than or equal to 1 such that \(r_1 + r_2 + 2s = \text{rank} \ E \).

Setting \(P = J^2 \), we have \(P^2 = I \), so \(P \) is a product structure on \(\xi \), admitting \(J \) as a “square root”. Conversely, if \(P \) is a product structure admitting a “square root” \(J \), then \(J \) is an \(\xi \)-structure on \(\xi \). Denoting by \(\xi_1 \) and \(\xi_2 \) respectively the \(+1\) and \(-1\) eigen-subbundles of \(P \), it is easy to see that \(\xi_1 \) and \(\xi_2 \) are invariant by \(J \) and that \(J_1 = J|_{\xi_1} \) defines a product structure of \(\xi_1 \) and \(J_2 = J|_{\xi_2} \) a complex structure of \(\xi_2 \). So, one has

\[
(2.1) \quad \xi = \xi_1 \oplus \xi_2, \quad J = J_1 \oplus J_2.
\]
Conversely, if ξ_1 and ξ_2 are two supplementary subbundles of ξ, J_1 is a product structure of ξ_1, and J_2 a complex structure of ξ_2, then $J = J_1 \oplus J_2$ is an em-structure on ξ. Denoting by P_1 and P_2 the projections of ξ on ξ_1 and ξ_2 respectively, we obtain

$$P = P_1 - P_2, \quad J = J_1 \circ P_1 + J_2 \circ P_2.$$

Summing up we have

Proposition 2.1. An em-structure on the vector bundle $\xi = (E, \pi, M)$ can be defined by each one of the following conditions:

1. An M-endomorphism J of ξ satisfying $J^4 = I$,
2. A product structure P of ξ admitting a “square root” J,
3. Two supplementary subbundles ξ_1 and ξ_2 of ξ respectively endowed with a product structure and a complex structure.

Remark 2.1. A product structure P which admits a “square root” is a particular one because rank ξ_2 must be even.

Definition 2.2. A structure of metric electromagnetic type (mem-structure) on the vector bundle ξ is a pair (J, g), where J is an em-structure and g a pseudo-Riemannian metric on ξ satisfying the compatibility condition

$$g(JX,Y) + g(X,JY) = 0, \quad X, Y \in \xi.$$

Denoting by δ_J the derivation defined by J in the tensor algebra $T(\xi)$, the relation (2.2) can be written as

$$\delta_J g = 0,$$

from which it follows $g(PX, PY) = g(X, Y)$, $X, Y \in \mathfrak{X}(M)$. Therefore, the pair (P, g) is a pseudo-Riemannian product structure of ξ and so the subbundles ξ_1 and ξ_2 are mutually orthogonal with respect to g. Denoting respectively by g_1 and g_2 the restrictions of g to ξ_1 and ξ_2, from (2.2) we obtain

$$\delta_{J_1} g_1 = 0, \quad \delta_{J_2} g_2 = 0,$$

which may be written

$$g_1(J_1 X, J_1 X) = -g_1(X, Y), \quad g_2(J_2 X, J_2 Y) = g_2(X, Y), \quad X, Y \in \mathfrak{X}(\xi).$$

Hence (J_1, g_1) is a para-Hermitian structure of ξ_1 and (J_2, g_2) is an indefinite Hermitian structure of ξ_2. Conversely, if ξ_1 and ξ_2 are two supplementary subbundles of ξ such that ξ_1 is endowed with a para-Hermitian structure (J_1, g_1) and ξ_2 with an indefinite Hermitian structure (J_2, g_2), then considering J as given by (2.1) and setting

$$g = g_1 \oplus g_2,$$

one obtains a mem-structure on ξ. So we have
Proposition 2.2. A mem-structure (J, g) on ξ is equivalent to a pair of supplementary subbundles ξ_1 and ξ_2 respectively endowed with a para-Hermitian structure (J_1, g_1) and an indefinite Hermitian structure (J_2, g_2).

Remark 2.2. If (J, g) is a mem-structure on ξ, then we have: rank ξ_1 and rank ξ_2 are even; trace $J_1 = \text{trace} J_2 = 0$; sign $g_1 = 0$.

Setting for a mem-structure (J, g) on ξ:

$$\Omega(X,Y) = g(JX,Y), \quad \Omega_i(X,Y) = g_i(J_iX,Y), \quad i = 1, 2,$$

it follows that Ω, Ω_1, and Ω_2 are 2-forms which determine almost symplectic structures of ξ, ξ_1 and ξ_2, so that

$$\Omega = \Omega_1 \oplus \Omega_2.$$

These 2-forms satisfy

$$(2.5) \quad \delta J \Omega = 0, \quad \delta J_1 \Omega_1 = 0, \quad \delta J_2 \Omega_2 = 0.$$

Remark 2.3. The meaning of conditions (2.2), (2.3) and (2.5) is the following: The groups of automorphisms of $\mathfrak{X}(\xi_1)$, $\mathfrak{X}(\xi_2)$, and $\mathfrak{X}(\xi)$ given by

$$\alpha_t = I_1 \cosh t + J_1 \sinh t, \quad \beta_t = I_2 \cos t + J_2 \sin t, \quad \gamma_t = \alpha_t \oplus \beta_t,$$

t $\in \mathbb{R}$, determine actions on the tensor algebras $\mathcal{T}(\xi_1)$, $\mathcal{T}(\xi_2)$, and $\mathcal{T}(\xi)$, which respectively preserve the structures (J_1, g_1, Ω_1), (J_2, g_2, Ω_2), and (J, g, Ω).

3 Compatible connections

3.1 The general case

Definition 3.1. A connection D on the vector bundle ξ is said to be compatible with an em-structure J if

$$(3.1) \quad DJ = 0.$$

From this it follows $DP = 0$, hence D preserves the subbundles ξ_1 and ξ_2, i.e., for $X \in \mathfrak{X}(M)$, $Y_1 \in \mathfrak{X}(\xi_1)$, $Y_2 \in \mathfrak{X}(\xi_2)$, one has $D_X Y_1 \in \mathfrak{X}(\xi_1)$, $D_X Y_2 \in \mathfrak{X}(\xi_2)$. Setting then

$$D^1_X Y_1 = D_X Y_1, \quad D^2_X Y_2 = D_X Y_2, \quad X \in \mathfrak{X}(M), \quad Y_1 \in \mathfrak{X}(\xi_1), \quad Y_2 \in \mathfrak{X}(\xi_2),$$

we have that D^1 and D^2 are respectively connections on ξ_1 and ξ_2, so that

$$(3.2) \quad D_X = D^1_X \circ P_1 + D^2_X \circ P_2, \quad D^1_X J_1 = 0, \quad D^2_X J_2 = 0, \quad X \in \mathfrak{X}(M).$$

Conversely, if D^1 and D^2 are respectively connections on ξ_1 and ξ_2, then D given as in (3.2) is a connection on ξ satisfying $DP = 0$. If D_1 and D_2 satisfy the respective conditions in (3.2), then D satisfies (3.1) too. Thus, it follows
Proposition 3.1. A connection D on ξ is compatible with the em-structure J if and only if there exist two connections D^1 on ξ_1 and D^2 on ξ_2, respectively compatible with the product structure J_1 and the complex structure J_2, so that

(3.3) \[D = D^1 \circ P_1 + D^2 \circ P_2. \]

Consider now on the subbundles ξ_i of ξ, the operators Φ_i and Ψ_i given by

(3.4) \[(\Phi_i, D^i)_X = \frac{1}{2}(D^i_X + J_i^{-1} \circ D_X^i \circ J_i), \quad (\Psi_i, A^i)_X = \frac{1}{2}(A^i_X + J_i^{-1} \circ A_X^i \circ J_i), \]

where $X \in \mathfrak{X}(M)$, D^i is a connection on ξ_i, and $A^i \in \Lambda^1(M) \otimes \mathfrak{X}(\xi_i) \otimes \Lambda^1(\xi_i)$ (now and in the sequel we take $i = 1, 2$). From [1, 13] and Proposition 3.1 we obtain

Proposition 3.2. The set of connections on ξ compatible with the em-structure J is given by

\[D_X = \{(\Phi_i, D^i)_{X} + (\Psi_i, A^i)_{X}\} \circ P_1 + \{(\Phi_j, D^j)_{X} + (\Psi_j, A^j)_{X}\} \circ P_2, \]

where $X \in \mathfrak{X}(M)$ and D^i is an arbitrary fixed connection on ξ_i, A^i denotes any element of $\Lambda^1(M) \otimes \mathfrak{X}(\xi_i) \otimes \Lambda^1(\xi_i)$, and Φ_i, Ψ_i, A_i are given by (3.4).

Definition 3.2. A connection D on ξ is said to be compatible with the mem-structure (J, g) if

\[DJ = 0, \quad Dg = 0, \]

From which it follows: $DP = 0$; $D = D^1 \circ P_1 + D^2 \circ P_2$, where D^i are the restrictions of D to ξ_1 and ξ_2; $D^i J_1 = 0$; and $D^i g_1 = 0$. Conversely, if D^1 and D^2 are connections on ξ_1 and ξ_2, compatible with the para-Hermitian structure (J_1, g_1) and the indefinite Hermitian structure (J_2, g_2) respectively, then the connection D given by (3.3) is compatible with the mem-structure (J, g) on ξ. So, we have

Proposition 3.3. A connection D on ξ is compatible with the mem-structure (J, g) on ξ, if and only if there are two connections D^1 and D^2 on the subbundles ξ_1 and ξ_2, respectively compatible with the para-Hermitian structure (J_1, g_1) and the indefinite Hermitian structure (J_2, g_2), so that D is given by (3.3).

Setting then

(3.5) \[(\Phi_g, D^i)_X = \frac{1}{2}(D^i_X + g_i^{-1} \circ D_X^i \circ g_i), \quad (\Psi_g, A^i)_X = \frac{1}{2}(A^i_X + g_i^{-1} \circ A_X^i \circ g_i), \]

we obtain from [1], Prop. 3.3, and (2.4)

Proposition 3.4. The set of connections on ξ compatible with the mem-structure (J, g) is given by

\[D_X = \{(\Phi_{g_1} \circ \Phi_J), D^{i_1}\}_{X} + ((\Psi_{g_1} \circ \Psi_J), A^1)_{X}\} \circ P_1 \]
\[+ \{(\Phi_{g_2} \circ \Phi_J), D^{i_2}\}_{X} + ((\Psi_{g_2} \circ \Psi_J), A^2)_{X}\} \circ P_2, \]

where D^{i_1} is an arbitrary fixed connection on ξ_1, $A^1 \in \Lambda^1(M) \otimes \mathfrak{X}(\xi_1) \otimes \Lambda^1(\xi_1)$, and Φ_J, Φ_g, Ψ_J, Ψ_g, are given by (3.4) and (3.5).
3.2 The case of the tangent bundle

We now consider the case of ξ being the tangent bundle of the manifold M, i.e., $\xi = (TM, \pi, M)$. In this case, for a mem-structure (J, g) on M, the pair (P, g) is a pseudo-Riemannian almost product structure on M, and $(J_1, g_1), (J_2, g_2)$, are respectively a para-Hermitian [4] and an indefinite Hermitian structure [10] on ξ_1 and ξ_2. If ∇ is a linear connection on M, compatible with P, i.e., $\nabla P = 0$, then its restrictions ∇^1 and ∇^2 to ξ_1 and ξ_2 are connections on these subbundles.

If T is the torsion tensor of ∇, we shall call torsion tensor of ∇^i to the tensor fields T_i given by $T_i = P_i \circ T|_{\xi_i}$, or in more detail

$$T_i(X, Y) = \nabla_X Y_i - \nabla_Y X_i - P_i[X, Y], \quad X, Y \in \mathfrak{X}(\xi_i).$$

We call tensors of nonholonomy of the distributions ξ_1 and ξ_2 to the tensor fields $S^1 = P_2 \circ T|_{\xi_1}$ and $S^2 = P_1 \circ T|_{\xi_2}$, respectively. We obtain

$$S^1(X, Y_1) = -P_2[X, Y_1], \quad S^2(X_2, Y_2) = -P_1[X_2, Y_2].$$

It follows

Proposition 3.5. The distribution ξ_1 (resp. ξ_2) is involutive if and only if $S^1 = 0$ (resp. $S^2 = 0$).

After some computations we obtain from [3, 10, 14]

Proposition 3.6. For a mem-structure (J, g) on a manifold M, there exists a unique linear connection ∇ with torsion tensor T, satisfying the conditions

$$(3.6) \quad \nabla P = 0, \quad T(PX, Y) = T(X, PY),$$

$$(3.7) \quad \nabla_X J_i = 0, \quad \nabla_X g_i = 0, \quad T^i(J_iX, I_iY) = T^i(I_iX, J_iY).$$

Definition 3.3. We shall call the canonical connection associated to the mem-structure (J, g) on the manifold M to the connection given by the conditions (3.6) and (3.7).

Remark 3.1. Notice that this connection slightly differs from that given in Theorem 5.3 in [14].

For the canonical connection we obtain from (3.6):

$$\nabla^1_{X_2} Y_1 = P_1[X_2, Y_1], \quad \nabla^2_{X_2} Y_2 = P_2[X_2, Y_2].$$

Denoting by ξ^1_1, ξ^2_1 the eigen-subbundles of J_1 corresponding to $\varepsilon = +1$, $\varepsilon = -1$, by π^1_1, π^2_1 the projection maps of ξ_1 on ξ^1_1, and ξ^2_1 and by X^1_1, Y^1_1 any elements of $\mathfrak{X}(\xi^1_1)$, we obtain from the first equation in (3.7)

$$\nabla^1_{X_1^1} Y^1_1 = \pi^1_1 P_1[X^1_1, Y^1_1], \quad \nabla^1_{X_1^1} Y^2_1 = \pi^2_1 P_1[X^1_1, Y^2_1],$$

$$g_1(\nabla^1_{X^1_1} Y^1_1, Z^2_1) = X^1_1g_1(Y^1_1, Z^2_1) - g_1([X^1_1, Z^2_1], Y^1_1),$$

$$g_1(\nabla^1_{X^1_2} Y^2_1, Z^1_1) = X^2_1g_1(Y^2_1, Z^1_1) - g_1([X^2_1, Z^1_1], Y^2_1).$$

7
From the second equation in (3.7) above it results, exactly as in [14, Th. 5.1], the expression for $\nabla^2_{X_2} Y_2$

For J and g we obtain

$$(\nabla_{X_2} J) Y_1 = 0, \quad (\nabla_{X_2} J) Y_2 = 0, \quad (\nabla_{X_2} J) Y_2 = (\nabla^2_{X_2} J) Y_2,$$

$$(\nabla_{X_2} J) Y_1 = (\nabla^1_{X_2} J) Y_1, \quad (\nabla_{X_2} g)(Y_1, Z_1) = 0, \quad (\nabla_{X_2} g)(Y_2, Z_2) = 0,$$

$$(\nabla_{X_2} g)(Y_1, Z_1) = (L_{X_2} g)(Y_1, Z_1), \quad (\nabla_{X_2} g)(Y_2, Z_2) = (L_{X_2} g)(Y_2, Z_2),$$

where L stands for the Lie derivative.

4 Structures of electromagnetic type on the total space of a vector bundle

Let $\xi = (E, \pi, M)$ be a vector bundle and $(x^j), (y^a),$ local coordinates in adapted charts on $M, \xi,$ and $E,$ respectively. We denote by $(\partial_j), (e_a), \partial_a\partial_a$ the corresponding local bases, where $\partial_j = \partial/\partial x^j, \partial_a = \partial/\partial y^a, j = 1, 2, \ldots, m,$ $a, b, c = 1, 2, \ldots, n$ (see [2]). Setting for each $x = (x, y) \in E, \nabla_x E = \ker \pi_x,$ we obtain the vertical distribution and so the vertical subbundle of $T E$, denoted by $V E$. Let $C^\infty = \{ f^\nu = f \circ \pi : \nu \in C^\infty(M) \}$ be the subring of $C^\infty(E)$ naturally isomorphic to $C^\infty(M)$. Setting for each $\mu \in \Lambda^1(\xi),$ locally given by $\mu(x) = \mu_a(z) e^a,$

$$\gamma(\mu)(z) = \mu_a(x) y^a,$$

we obtain a class of functions on E enjoying the property that every vector field $A \in \mathcal{X}(E)$ is uniquely determined by its values on those functions. The mapping γ may be extended to tensor fields $S \in T^1_1(\xi)$ by

$$(\gamma S)(\gamma(\mu)) = \gamma(\mu \circ S), \quad \mu \in \Lambda^1(\xi).$$

If $S(x) = S^a_b(x) e_a \otimes e^b,$ then $\gamma S(z) = S^a_b(x) y^a \partial_b,$ i.e., γS is a vertical vector field on E. Now, let D be a connection on ξ and $X \in \mathcal{X}(M), u \in \mathcal{X}(\xi).$ Setting

$$X^h(\gamma \mu) = \gamma(D X \mu), \quad u^w(\gamma \mu) = \mu(u) \circ \pi, \quad \mu \in \Lambda^1(\xi),$$

we obtain two vector fields X^h and u^w on $E,$ respectively called the horizontal lift of X and the vertical lift of $u.$ We have the useful formulas [2]:

$$(f X)^h = f^w X^h, \quad (f u)^w = f^w u^w, \quad [X^h, Y^h] = [X, Y]^h - \gamma R^D_{X Y}, \quad [u^w, v^w] = 0,$$

$$[X^h, u^w] = (D_X u)^w, \quad f \in C^\infty(M), X, Y \in \mathcal{X}(M), u, w \in \mathcal{X}(\xi).$$

Now, putting

$$Q(X^h) = X^h, \quad Q(u^w) = -u^w, \quad X \in \mathcal{X}(M), u \in \mathcal{X}(\xi),$$

we obtain an almost product Q structure on E whose $+1$ and -1 eigendistributions, are respectively called the horizontal distribution HE of the connection D and the vertical distribution VE of the bundle.
For $f \in T^1_1(M)$, $\varphi \in T^1_1(\xi)$, $g \in T_2(M)$, $\psi \in T_2(\xi)$, we define the horizontal lift or the vertical lift $f^h, \varphi^v, g^h, \psi^v$, respectively by

\begin{equation}
(4.1) \quad f^h(X^h) = f(X), \quad f^h(u^v) = 0, \quad \varphi^v(X^h) = 0, \quad \varphi^v(u^v) = \varphi(u), \\
g^h(X^h, Y^h) = g(X, Y)^v, \quad g^h(X^h, u^v) = g^h(u^v, X^h) = g^h(u^v, w^v) = 0, \\
\psi^v(X^h, Y^h) = \psi^v(X^h, u^v) = \psi^v(u^v, Y^h) = 0, \quad \psi^v(u^v, w^v) = \psi(u, w)^v, \\
X, Y \in \mathfrak{X}(M), u, w \in \mathfrak{X}(\xi).
\end{equation}

We then define the diagonal lifts J and G for the pairs (f, φ) and (g, ψ) by

\begin{equation}
(4.2) \quad J = f^h + \varphi^v, \quad G = g^h + \psi^v.
\end{equation}

From (4.1) and (4.2) we have

\begin{equation}
J^n(X^h) = (f^n(X))^h, \quad J^n(u^v) = (\varphi^n(u))^v, \quad n \in \mathbb{N}^+.
\end{equation}

So $J^4 = I$, that is J is an em-structure on E, if and only if $J^4 = I_1$ and $J^4 = I_2$, that is, either f and φ are both em-structures or one is an em-structure and the other an almost product or almost complex structure, or finally f is an almost product (resp. almost complex) and φ is a complex (resp. product) structure on M and ξ respectively. In the sequel we only consider the last case.

Hence, let J be an em-structure on the total space E of ξ given by the diagonal lift in the first equation in (4.2) of an almost product (resp. almost complex) structure f on the base manifold M and a complex (resp. product) structure φ on the bundle ξ, that is, which satisfy

\begin{equation}
f^2 = \varepsilon I_1, \quad \varphi^2 = -\varepsilon I_2, \quad \varepsilon = 1 \text{ (resp. } \varepsilon = -1),
\end{equation}

with respect to a connection D on ξ. For the almost product structure P associated to J, we obtain $P = \varepsilon Q$, that is, P coincides up to the sign with the almost product structure Q above associated to D.

Now, let G be the diagonal lift in the second equation in (4.2), with respect to D, for the pair (g, ψ) of metrics on M and ξ. From (4.2) we obtain

\begin{equation}
\delta J G = (\delta f g)^h + (\delta \varphi \psi)^v,
\end{equation}

and so $\delta J G = 0$ if and only if $\delta f g = 0$ and $\delta \varphi \psi = 0$. It follows

Proposition 4.1. The pair (J, G) of diagonal lifts, with respect to a connection D on ξ, of an almost product (resp. almost complex) structure f on M and a complex (resp. product) structure φ on ξ, and the nondegenerate metrics g on M and ψ on ξ, is an em-structure on the total space E of ξ if and only if the pair (f, g) is an almost para-Hermitian (resp. indefinite almost Hermitian) structure on M. The pair (φ, ψ) is an indefinite Hermitian (resp. para-Hermitian) structure on ξ.

9
Denoting by ω and τ the 2-forms associated to the structures (f, g) on M and (φ, ψ) on ξ, and by $\Omega_1, \Omega_2, \Omega$, the 2-forms associated to the structures (f^h, g^h) on HE, (φ^v, ψ^v) on VE and (J, G) on TE, we obtain

$$\Omega_1 = \omega^h, \quad \Omega_2 = \tau^v, \quad \Omega = \omega^h \oplus \tau^v.$$

From the hypotheses of Prop. 4.1 it follows

$$\delta fg = 0, \quad \delta f\omega = 0, \quad \delta_x \varphi = 0, \quad \delta_x \tau = 0, \quad \delta J G = 0, \quad \delta J \Omega = 0.$$

Remark 4.1. The groups of automorphisms of $\mathfrak{X}(M), \mathfrak{X}(\xi), \mathfrak{X}(E)$, given respectively for $\varepsilon = 1$ and $\varepsilon = -1$, by

$$\begin{align*}
\alpha t &= I_1 \cosh t + f \sinh t, \quad \beta t = I_2 \cos t + \varphi \sin t, \quad \gamma t = \alpha^h t \oplus \beta^h t, \quad t \in \mathbb{R}, \\
\alpha t &= I_1 \cos t + f \sin t, \quad \beta t = I_2 \cosh t + \varphi \sinh t, \quad \gamma t = \alpha^h t \oplus \beta^h t, \quad t \in \mathbb{R},
\end{align*}$$

determine on the tensor algebras $T(M), T(\xi), T(E)$, actions which preserve the structures $(f, g, \omega), (\varphi, \psi, \tau)$ and (J, G, Ω).

For two connections ∇ on M and D on ξ, we define the horizontal lift ∇^h on the subbundle HE and the vertical lift D^v on the subbundle VE (each one with respect to the connection D), respectively by

$$\nabla^h_{XY} = (\nabla_X Y)^h, \quad \nabla^h_{u, v} = 0, \quad D^v_{X, w} = (D_X w)^v, \quad D^v_{u, v} w^w = 0.$$

Putting them

$$D_A X = \nabla^h_A H X + D^v_A V X, \quad A, X \in \mathfrak{X}(E),$$

where H and V denote the horizontal and vertical projectors of TE on HE and VE, we obtain a linear connection D on E, called the diagonal lift of the pair (∇, D) with respect to the connection D (see [2]), whose restrictions to the subbundles $\xi_1 = HE$ and $\xi_2 = VE$ are $D_1 = \nabla^h$ and $D_2 = D^v$. The nonvanishing components of the torsion and curvature tensors of D are given by

$$(4.3) \quad T(X^h, Y^h) = T^\nabla(X, Y)^h + \gamma R^D_{XY},$$

$$R_{X^h Y^v} Z^h = (R^\nabla_X Z)^h, \quad R_{X^h Y^v} u^w = (R^D_{XY} u)^w,$$

where $T^\nabla, R^\nabla,$ and R^D stand for the torsion tensor of ∇ and the curvature tensors of ∇ and D.

For the covariant derivatives, with respect to D, of the horizontal lift of f and g, and the vertical lift of φ and ψ we obtain

$$\begin{align*}
D_X f^h &= (\nabla_X f)^h, \quad D_{u, v} f^h = 0, \quad D_X g^h = (\nabla_X g)^h, \quad D_{u, v} g^h = 0, \\
D_X \varphi^v &= (D_X \varphi)^v, \quad D_{u, v} \varphi^v = 0, \quad D_X \psi^v = (D_X \psi)^v, \quad D_{u, v} \psi^v = 0.
\end{align*}$$

10
Proposition 4.2. The diagonal lift
\[D_P T \circ \] have
\[(4.4) \]
Hence, \(D_H \) and only if \(\nabla g = 0, D_\psi = 0 \); and \(D_G = 0 \) if and only if \(\nabla g = 0, D_\psi = 0 \). From (4.3) and (4.4) it follows, for \(P = J^2 \), that \(D_P = 0 \) and \(T \circ P \times I = T \circ I \times P \) for any connections \(\nabla \) on \(M \) and \(D \) on \(\xi \). After that we have
\[\nabla g^h = (\nabla X g)^h, \quad D^v \psi^v = 0, \quad D^v \psi^v = 0, \]
\[\nabla g^h = (\nabla X f)^h, \quad T^1 (f^h X, I^h Y) = (T^\nabla f X, I^h Y)^h, \quad T^2 (\psi^v X, I^2 Y) = 0, \]
where \(T^1 = HO|_{HE} \) and \(T^2 = V \circ T|_{VE} \). So we obtain
Proposition 4.2. The diagonal lift \(D \) on \(E \), for the connections \(\nabla \) on \(M \) and \(D \) on \(\xi \), is the canonical connection associated to the mem-structure \((J, G)\) if and only if
\[\nabla f = 0, \quad \nabla g = 0, \quad T^\nabla f X, Y = T^\nabla f X, Y, \]
i.e., the connection \(\nabla \) is the canonical connection [2, 10] associated to the almost para-Hermitian (resp. indefinite almost Hermitian) structure \((f, g)\) on \(M \).

Also from (4.3) and (4.4) we obtain \(D_G = 0 \) and \(T = 0 \) if and only if \(\nabla g = 0, T^\nabla = 0, R^D = 0 \) and \(D_\psi = 0 \). Hence we have
Proposition 4.3. The diagonal lift \(D \) of the pair of connections \((\nabla, D)\) coincides with the Levi-Civita connection of \(G \) if and only if \(\nabla \) is the Levi-Civita connection of \(g, D \) has vanishing curvature and \(\psi \) is covariant constant.

For the Nijenhuis tensor of \(J \),
we obtain
\[(4.5) \quad N_J (X^h, Y^h) = N_J (X, Y)^h + \gamma (\varepsilon R^D_{XY} - R^D_{fXfY} + \varphi (R^D_{fXfY} + R^D_{XfY})), \]
\[N_J (X^h, u^v) = (D^f_X u - \varepsilon D_X u - \varphi (D^f_X u + D_X \varphi u))^v, \quad N_J (u^v, w^v) = 0. \]

It follows
Proposition 4.4. The mem-structure \(J \) is integrable (i.e., \(N_J = 0 \), see [8]) if and only if \(f \) is a product (resp. a complex) structure in \(M \), the connection \(D \) has vanishing curvature and the complex (resp. product) structure \(\varphi \) on \(\xi \) is covariant constant.

For the exterior differential of the 2-form \(\Omega \) associated to the mem-structure \((J, G)\) we obtain
\[d\Omega (X^h, Y^h, Z^h) = d\omega (X, Y, Z)^v, \quad 3d\Omega (X^h, Y^h, w^v) = -\gamma (i_w \varphi \circ R^D_{XY}), \]
\[3d\Omega (X^h, u^v, w^v) = D_X \varphi (u, w)^v, \quad d\Omega (u^v, v^v, w^v) = 0. \]

Hence
Proposition 4.5. The almost symplectic structure Ω associated to the mem-structure (J,G) on E is integrable (i.e., $d\Omega = 0$) if and only if the structure (f,g) is almost para-Kähler (resp. indefinite almost Kähler), the connection D has vanishing curvature, and the 2-form τ on ξ is covariant constant.

Finally we obtain

Proposition 4.6. For the mem-structure (J,G) on E, the structures J and Ω are simultaneously integrable if and only if the structure (f,g) is a para-Kähler (resp. indefinite Kähler) structure on M, D has vanishing curvature and the pair (φ,ψ) is covariant constant.

References

Authors' addresses:
Encarna Reyes Iglesias: Department of Mathematics, E.T.S. of Architecture, University of Valladolid, Av. de Salamanca s/n, 47014–Valladolid, Spain. ereyes@cpd.uva.es
Vasile Cruceanu: Department of Mathematics, University “Al. I. Cuza”, 6600–Iaşi, Romania. cruv@uaic.ro
Pedro Martínez Gadea: Institute of Mathematics and Fundamental Physics, CSIC, Serrano 123, 28006–Madrid, Spain. pmsgadea@iec.csic.es