Homogeneous structures on real and complex hyperbolic spaces*

M. Castrillón López, P. M. Gadea, & A. F. Swann

Abstract
The connected groups acting by isometries on either the real or the complex hyperbolic spaces are determined. A Lie-theoretic description of the homogeneous Riemannian, respectively Kähler, structures of linear type on these spaces is then found. On both spaces, examples that are not of linear type are given.

1 Introduction
A tensorial approach to homogeneous Riemannian manifolds was introduced by Ambrose & Singer [2]. Tricerri & Vanhecke [16] studied these ideas in depth and decomposed the space \(T \) of such tensors into three components \(T = T_1 + T_2 + T_3 \) (direct sum). The space \(T_1 \) is characterised by the fact that it is the space of sections of a vector-bundle whose fibre dimension grows linearly with that of the base manifold.

Substantial results on homogeneous Riemannian structures on the real hyperbolic space and its related homogeneous descriptions have been obtained by Tricerri & Vanhecke (e.g., [16]), Pastore ([11, Th. 2], [13, Sect. 3], [12, Sect. 3]) and Pastore & Verrocoa [14, Props. 2.2, 3.1]. One main result of [16] is that non-trivial homogeneous structures in \(T_1 \) can only be realised on the real hyperbolic space \(\mathbb{R}H(n) \).

Subsequently similar results were obtained [6, 5] for the complex and quaternionic cases. One considers homogeneous Kähler or homogeneous quaternionic Kähler manifolds, and then one examines the similar decomposition giving spaces analogous to \(T_1 \). In these cases one finds several subspaces with the linear growth property. It is proved that if a non-trivial homogeneous structure is of linear type, i.e., belongs to the sum of these spaces, then the geometry is that of the complex, respectively quaternionic, hyperbolic space, and that the tensor is of a special type.

*Partially supported by Ministry of Science and Innovation, Spain, under Project MTM2008-01386.
2000 AMS Subject Classification: Primary 53C30; Secondary 53C20, 53C55.
Key words: Homogeneous Riemannian structures, homogeneous Kähler structures, hyperbolic spaces, parabolic subgroups, Langlands refined decomposition.
As is well-known, the same underlying Riemannian manifold M can admit many homogeneous tensors. Different tensors may describe M as different homogeneous spaces G/H. One open question in [16, p. 55] was the determination of all homogeneous structures on $\mathbb{R}H(n)$ for $n \geq 3$. In the present paper, we will demonstrate how results of Witte [17] can be used to write down all the pairs G and H which can then in principle be used to determine all the possible corresponding tensors. The zero tensor corresponds to G being the full (connected) isometry group $SO(n+1)$ (as is the case for any symmetric space), whereas Tricerri & Vanhecke proved that the tensors of type T_1 come from the description of $\mathbb{R}H(n)$ as a solvable manifold.

The same idea was used in [5] to tackle the quaternionic case and to describe the isometry group when the tensor is of linear type. In this paper we go on to show how the techniques apply to the situation for $\mathbb{R}H(n)$ and $\mathbb{C}H(n)$. In the latter case, this provides a purely Lie-theoretic approach to the construction of the structure of linear type found in [6].

2 Preliminaries

2.1 Some conventions

Throughout the paper, sums of vector spaces, algebras, bundles, etc. are direct. We will denote by $\Lambda^{1,0}$ the standard representation of the unitary group $U(n)$ on \mathbb{C}^n, and by $[\Lambda^{1,0}]$ the corresponding real representation.

We shall follow Tricerri-Vanhecke’s conventions for the curvature tensor of a Riemannian manifold and that of $\mathbb{R}H(n)$:

\begin{align}
R_{XY}Z &= \nabla_{[X,Y]}Z - \nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z, \\
R^{\mathbb{R}H(n)}_{XY}Z &= c(g(X,Z)Y - g(Y,Z)X), \quad c < 0.
\end{align}

Similarly we take

\begin{align}
R^{\mathbb{C}H(n)}_{XY}Z &= \frac{c}{4}(g(X,Z)Y - g(Y,Z)X \\
&\quad + g(JX,Z)Y - g(JY,Z)X + 2g(JX,Y)JZ), \quad c < 0.
\end{align}

2.2 Homogeneous Riemannian and Kähler structures

Let (M,g) be a connected, simply-connected, complete Riemannian manifold. Ambrose & Singer [2] gave a characterisation for (M,g) to be homogeneous in terms of a $(1,2)$ tensor field S, usually called a homogeneous Riemannian structure (Tricerri & Vanhecke [16]). If ∇ denotes the Levi-Civita connection and R its curvature tensor, then one introduces the torsion connection $\tilde{\nabla} = \nabla - S$ which satisfies the Ambrose-Singer equations

\[\tilde{\nabla}g = 0, \quad \tilde{\nabla}R = 0, \quad \tilde{\nabla}S = 0. \]
The manifold \((M, g)\) above admits a homogeneous Riemannian structure if and only if it is a homogeneous Riemannian manifold.

In particular, the necessary condition is given as follows. Fix a point \(p \in M\) and let \(m = T_p M\). Writing \(\bar{R}\) for the curvature tensor of \(\bar{\nabla}\), we can consider the holonomy algebra \(\mathfrak{h}\) of \(\bar{\nabla}\) as the Lie subalgebra of skew-symmetric endomorphisms of \((m, g_p)\) generated by the operators \(\bar{R}_{XY}\), where \(X, Y \in m\). Then, according to Nomizu [10] (see also [2, 16]), a Lie bracket is defined on the vector space

\[
\mathfrak{g} = \mathfrak{h} + m
\]

by

\[
\begin{align*}
[U, V] &= UV - VU, \\
[U, X] &= U(X), \\
[X, Y] &= S_X Y - S_Y X + \bar{R}_{XY},
\end{align*}
\]

One calls \((\mathfrak{g}, \mathfrak{h})\) the reductive pair associated to the homogeneous Riemannian structure \(S\). The connected, simply-connected Lie group \(\tilde{G}\) whose Lie algebra is \(\mathfrak{g}\) acts transitively on \(M\) via isometries. The kernel \(\Gamma\) of this action is a discrete normal subgroup of \(\tilde{G}\), and \(G = \tilde{G}/\Gamma\) acts effectively on \(M\). The stabilizer \(H = \text{stab}_G(p)\) is a connected subgroup with Lie algebra \(\mathfrak{h}\). Thus \(M \cong G/H\) and the Riemannian metric \(g\) corresponds to an invariant metric on \(G/H\).

Homogeneous Riemannian structures are sections of \(T^* M \otimes \mathfrak{so}(M)\), where \(\mathfrak{so}(M)\) is the bundle of endomorphisms that preserve the metric \(g\) infinitesimally, i.e., \(\mathfrak{so}(M)\) consists of \(A\) such that \(g(AX, Y) + g(X, AY) = 0\) for all vector fields \(X, Y\). Decomposing under the action of \(O(n)\), Tricerri & Vanhecke [16] showed that there are 8 classes of homogeneous Riemannian structures. The three primitive classes are denoted by \(T_1 \cong \Gamma(T^* M)\), \(T_2\) and \(T_3 \cong \Gamma(\Lambda^2 T^* M)\); the class of linear type is \(T_0\). We write simply \(T_{i+j}\) for the class \(T_i + T_j\). Note that a homogeneous structure that belongs to \(T_i\) at some point of \(M\) has the same type at all other points.

One recovers \(S\) from (2.4) as follows. The Levi-Civita connection \(\nabla\) is given (Besse [4, p. 183]) by

\[
2g(\nabla_B C^*, D^*) = -\{g([B, C]^*, D^*) + g(B^*, [C, D]^*) + g(C^*, [B, D]^*)\},
\]

where for \(B \in \mathfrak{g}\), \(B^*\) denotes the vector field with one-parameter group \(g \mapsto \exp(tB)g\), \((g \in G, t \in \mathbb{R})\). Note that \([B^*, C^*] = -[B, C]^*\). The homogeneous tensor is now given by \(S = \nabla - \bar{\nabla}\), where \(\bar{\nabla}\) is the canonical connection \(\bar{\nabla}\). The latter is uniquely determined [16, p. 20] by its value at \(eH \in G/H\), where one has \(\nabla_{B^*} C^* = -[B, C]^*\). Indeed \(\bar{\nabla}\) is the connection for which every left-invariant tensor on \(G/H\) is parallel [9, p. 192]. Working at \(eH\), we now have

\[
2g(S_B C, D) = g([B, C], D) - g([C, D], B) + g([D, B], C).
\]
Remark 2.1. Two homogeneous structures S_1, S_2 are equivalent if there is an isometry φ of (M, g) such that $S_2 = \varphi^{-1} \varphi^* S_1$. In the Ambrose-Singer picture this corresponds to the existence of a Lie algebra homomorphism $\psi: \mathfrak{g}_1 \to \mathfrak{g}_2$ mapping $\mathfrak{h}_1 \to \mathfrak{h}_2$ and $\mathfrak{m}_1 \to \mathfrak{m}_2$, with $\psi|_{\mathfrak{m}_1}$ a linear isometry [16, Theorem 2.4].

If (M, g, J) is a Kähler manifold, the isometries considered in the definition are also required to preserve the complex structure J and this leads to the condition $\nabla J = 0$. In this case, homogeneous Kähler structures were classified by Abbena & Garbiero [1] into 16 classes, corresponding to spaces invariant under the action of $U(n)$. Using work of Sekigawa [15] one considers the bundle $T^* M \otimes \mathfrak{u}(M)$ where, with the usual notations, $\mathfrak{u}(M) = \{ A \in \mathfrak{so}(M) : AJ = JA \}$. The four primitive classes are denoted by $\mathcal{K}_1, \ldots, \mathcal{K}_4$, and, denoting $\mathcal{K}_i + \mathcal{K}_j$ simply by \mathcal{K}_{i+j}, the class of linear type is $\mathcal{K}_{2+4} \cong \Gamma(TM + TM)$.

2.3 Witte’s Theorem on co-compact groups

We consider transitive (isometric) actions on non-compact Riemannian symmetric spaces M. For this section let G be the component of the identity of the isometry group of M, and assume that G is semi-simple. Then $M = G/K$ with K compact. We are particularly interested in, $\mathbb{R}H(n) = SO(n, 1)/O(n)$ and $\mathbb{C}H(n) = SU(n, 1)/S(U(n) \times U(1))$. A group T acts transitively on M only if $T \setminus G/K$ is a point. Since K is compact this implies that T is a non-discrete co-compact subgroup of the semi-simple group G.

Witte [17] gives a classification of non-discrete co-compact subgroups for a connected, semisimple Lie group G with finite centre as follows (cf. Goto & Wang [8]). Start with a maximal \mathbb{R}-diagonalisable subalgebra \mathfrak{a} of the Lie algebra \mathfrak{g} of G [7, pp. 190-192]. Decompose \mathfrak{g} with respect to the action of \mathfrak{a} as $\mathfrak{g} = \mathfrak{g}_0 + \bigoplus_{\lambda \in \Sigma} \mathfrak{g}_\lambda$, where Σ is the set of roots corresponding to \mathfrak{a}. Choose a system Θ of simple roots in Σ. Write Σ^+ for the set of positive roots with respect to Θ and let Ψ be a subset of Θ. Let $|\Psi|$ denote the set of roots in Σ that are linear combinations of elements of Ψ. A standard parabolic subalgebra $\mathfrak{p}(\Psi)$ of \mathfrak{g} is defined by $\mathfrak{p}(\Psi) = \{ \mathfrak{l}(\Psi) + \mathfrak{n}(\Psi) \}$, where $\mathfrak{l}(\Psi) = \mathfrak{g}_0 + \sum_{\lambda \in |\Psi|} \mathfrak{g}_\lambda$ and $\mathfrak{n}(\Psi) = \sum_{\mu \in \Sigma^+ \setminus |\Psi|} \mathfrak{g}_\mu$, are respectively reductive and nilpotent. The first can be decomposed as $\mathfrak{l}(\Psi) = \mathfrak{l} + \mathfrak{e} + \mathfrak{a}(\Psi)$, with \mathfrak{l} semi-simple with all factors of non-compact type, \mathfrak{e} compact reductive, and \mathfrak{a} the non-compact part of the centre of $\mathfrak{l}(\Psi)$. The decomposition $\mathfrak{p}(\Psi)^0 = \text{LEAN}$,

$$\mathfrak{p}(\Psi) = \mathfrak{l} + \mathfrak{e} + \mathfrak{a}(\Psi) + \mathfrak{n}(\Psi),$$

is referred to as the refined Langlands decomposition of the parabolic subgroup $\mathfrak{p}(\Psi)$ in [17] (cf. [8]), and one has the

Theorem 2.2 (Witte [17]). Let L_r be a connected normal subgroup of L and F_r a connected closed subgroup of $E A$. Then there is a closed co-compact subgroup of G contained in $\mathfrak{p}(\Psi)$ with identity component $L_r F_r N$. Moreover, every non-discrete co-compact subgroup of G arises in this way.
3 Real hyperbolic space

We consider now the real hyperbolic space RH(n), n > 1, with curvature (2.2) (cf. Tricerri & Vanhecke [16, Ch. 5]).

The usual homogeneous description of RH(n) is as RH(n) = SO(n, 1)/O(n), where SO(n, 1) is its full group of isometries. In this case, the homogeneous tensor S vanishes and the manifold is symmetric.

To discuss the other homogeneous structures, we take SO(n, 1) as the set of determinant 1 matrices preserving the bilinear form diag(Id_{n-1}, (0 1)). The Iwasawa decomposition is then SO(n, 1) = O(n)AN, with

\[
\begin{align*}
\mathfrak{so}(n) &= \left\{ \begin{pmatrix} B & v \\ -v^T & 0 \\ -v^T & 0 \end{pmatrix} : B \in \mathfrak{so}(n-1), \; v \in \mathbb{R}^{n-1}\right\}, \\
\mathfrak{a} &= \mathbb{R}A_0, \quad \mathfrak{n} = \left\{ \begin{pmatrix} 0 & 0 & v \\ -v^T & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : v \in \mathbb{R}^{n-1}\right\},
\end{align*}
\]

where \(A_0 = \text{diag}(0, \ldots, 0, 1, -1) \).

3.1 The solvable description

The first alternative description of the real hyperbolic space RH(n) is as the Lie group AN, which may be identified with \(\mathbb{R}_{>0}\mathbb{R}^{n-1} \) and multiplication

\[
(x_1, \ldots, x_n)(y_1, \ldots, y_n) = (x_1y_1, x_1y_2 + x_2, \ldots, x_1y_n + x_n).
\]

The Lie algebra structure of \(\mathfrak{a} + \mathfrak{n} \) is given by

\[
\begin{pmatrix} 0 & 0 & v \\ -v^T & x & 0 \\ 0 & 0 & -x \end{pmatrix}, \begin{pmatrix} 0 & 0 & w \\ -w^T & y & 0 \\ 0 & 0 & -y \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ yv^T - xw^T & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\]

Let us show how a homogeneous structure \(S \in T_1 \) corresponds to the homogeneous description of RH(n) as the group AN. Note that Tricerri & Vanhecke [16] proved that the condition \(S \in T_1 \) implies that \((M, g)\) is isometric to RH(n). With the notation of [16], we have that

\[
S_X Y = g(X, Y)\xi - g(\xi, Y)X,
\]

for some non-zero \(\xi \in \mathfrak{X}(M) \). The torsion connection is \(\tilde{\nabla} = \nabla - S \). From the Ambrose-Singer equations (2.5) we have \(\tilde{\nabla}\xi = 0 \), so \(\|\xi\| \) is constant, and

\[
\tilde{R}_{XY} Z = R_{XY} Z - R_{XY}^{S} Z,
\]

where

\[
R_{XY}^{S} Z = S_{S_{X} Y} - S_{X} Y Z - S_{X} (S_{Y} Z) + S_{Y} (S_{X} Z).
\]
Using the concrete expression for S one gets
\[R^S_{XY}Z = -\|\xi\|^2 (g(X, Z)Y - g(Y, Z)X) = c' R^{R(n)}_{XY}Z, \]
where $c' = -\|\xi\|^2/c$ by (2.2). Since $\nabla \xi = 0$, we have $\tilde{R} \xi = 0$. But $\tilde{R} \xi = (1 - c') R^{R(n)} \xi$ and $R^{R(n)}$ has non-zero sectional curvature on all planes, so $c' = 1$, $\|\xi\|^2 = -c$ and $\tilde{R} \equiv 0$. Hence, the holonomy of ∇ is trivial and this structure of type T_1 thus gives a description of $R(n)$ as a group. According to (2.5), the Lie algebra structure is given by
\[[X, Y] = -g(\xi, Y)X + g(\xi, X)Y, \]
so $[\xi, X] = \|\xi\|^2 X, [X, Y] = 0$, for $X, Y \in \xi^\perp$.

Conversely, consider the group AN. Note that $a + n$ has n as its derived algebra, at that the elements acting as $+1$ on n are of the form $A_0 + X$. Using the equivalence of Remark 2.1, we may thus assume that the splitting $a + n$ is orthogonal and $g(V, V) = \|v\|^2$, where $V = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right)$. Let $k = g(A_0, A_0)$. Then $g([B, C], D) = g(B, \xi)g(c, D) - g(C, \xi)g(B, D)$, with $\xi = A_0/\sqrt{k}$. Using (2.6) we get
\[g([B, C], D) = g(D, \xi)g(B, C) - g(C, \xi)g(B, D), \]
which is of class T_1 and g is real hyperbolic with $c = -1/k$, since $R = R^S$. We thus see that homogeneous structures of type T_1 correspond to the homogeneous description $R(n) = AN$, as claimed in Tricerri & Vanhecke [16]. Furthermore these are the only homogeneous Riemannian structures carried by AN.

3.2 Other homogeneous descriptions

To describe the other homogeneous structures on $R(n)$, we need Witte’s Theorem 2.2. Up to conjugation, the only maximal R-diagonalisable subalgebra of $so(n, 1)$ is $a = \text{span}\{A_0\}$. Its set of roots is $\{\pm \lambda\}$, $\lambda(A_0) = 1$, and $\Theta = \{\lambda\}$ is a system of simple roots. There are only two choices for Ψ, either empty or equal to all of Θ. The corresponding refined Langlands decompositions read
\[p(\Theta) = so(n, 1) + \{0\} + \{0\} + \{0\}, \quad p(\varnothing) = \{0\} + so(n-1) + a + n, \]
where n is as in (3.2). For the first parabolic subalgebra, we have that the co-compact subgroup is either all of $SO(n, 1)$ or discrete. As for the second refined decomposition, we consider connected subgroups F_r of $EA = SO(n-1)/R$. As $E \leq K$, the group $G = F_r N$ acts transitively on $R(n) = SO(n-1)/K$ if and only if the projection $F_r \to EA = SO(n-1)/R \to A = R$ is surjective. We thus have

Theorem 3.1. The connected groups acting transitively on $R(n)$ are the full isometry group $SO(n, 1)$ and the groups $G = F_r N$, where N is the nilpotent factor in the Iwasawa decomposition of $SO(n, 1)$ and F_r is a connected closed subgroup of $SO(n-1)/R$ with non-trivial projection to R.

6
Given a group G acting transitively on $\mathbb{R}H(n)$ with stabiliser H, determination of the corresponding tensor S depends on a choice of complement m to \mathfrak{h} in \mathfrak{g}. Considering the maximal case with \mathfrak{g} the normaliser $\mathfrak{so}(n-1) + \mathbb{R} + n$ of $\mathbb{R} + n$ and $\mathfrak{h} = \mathfrak{so}(n-1)$ there will be families of choices of complements m in (2.4) and hence families of homogeneous structures if either

\[(a) \mathfrak{so}(n-1) \cong \mathbb{R} \text{ or } (b) \mathfrak{so}(n-1) \cong n\]

as vector spaces. Case (a) occurs when $n = 3$ and corresponds to the homogeneous description $SO(2)AN / SO(2)$. Case (b) occurs when $n = 4$: $\mathfrak{so}(3) \cong \mathbb{R}^3$. Interestingly this is exactly the case when $RH(4) = HH(1)$, (note that $\mathfrak{so}(3) = \text{Im } H$). This gives rise to Tricerri & Vanhecke’s example [16, p. 89] of a $T_{1,3}$ structure, see also Bérard-Bergey [3]. This may be seen as follows. For $\lambda \in \mathbb{R}$, let

\[m_\lambda = \left\{ \begin{pmatrix} \lambda(b \times) & b & a \\ -b^T & a & 0 \\ -b^T & 0 & -a \end{pmatrix} : a \in \mathbb{R}, b \in \mathbb{R}^3 \right\},\]

where

\[b \times = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \times = \begin{pmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{pmatrix}\]

is the matrix given by the operation of taking the cross product with $b = (b_1, b_2, b_3)^T$ in \mathbb{R}^3. Now let A_0 be as before and let V_0 be the typical element of m_λ defined by $a = 0$. Then $[A_0, V_0]_{m_\lambda} = V_0$, $[V_0, V_0]_{m_\lambda} = 2\lambda V_0 \times c$, since the top right entry determines the projection to $m_\lambda \subset \mathfrak{so}(3) + m_\lambda$. For $B \in m_\lambda$, write $B = b_0 A_0 + V_0$, $b_0 \in \mathbb{R}$. Then $g([B, C], D) = b_0 \langle c, d \rangle - c_0 \langle b, d \rangle + 2\lambda \det(b \times d)$, so

\[2g(SBC, D) = -2c_0 \langle b, d \rangle + 2d_0 \langle b, c \rangle + 2\lambda \det(b \times d)\]

The two first summands constitute a tensor of type T_1, and the last summand one of type T_3, as claimed.

Other families of homogeneous structures arise by taking a subgroup of $SO(n-1)$ whose representation on \mathbb{R}^{n-1} includes a copy of the adjoint representation. Thus for any connected compact G, let $n = \dim G + 1$. Then G acts on $\mathbb{R}^{n-1} \cong \mathfrak{g}$ preserving the Killing form and hence preserving some inner product. This realises G as a subgroup of $SO(n-1)$ and the homogeneous space $\mathbb{R}H(n) = GAN / G$ will have non-trivial choices of complements.

It is these non-standard choices of complements that give rise to new homogeneous tensors S. For example, consider the solvable description $\mathbb{R}H(n) = AN$. As a computation shows, the normaliser of AN in $G = KAN$ has Lie algebra $\mathfrak{so}(n-1) + a + n$. Extending AN to any subgroup of the normaliser means that we can still use $a + n$ as an ad-invariant complement, and the computation of S remains unchanged from §3.1.
4 Complex hyperbolic space

We now consider the complex hyperbolic space $\mathbb{CH}(n)$ with constant holomorphic curvature c, see the convention (2.3).

4.1 Transitive actions

Viewed as the symmetric space $SU(n,1)/S(U(n) \times U(1))$, the space $\mathbb{CH}(n)$ has $S \equiv 0$. The group has an Iwasawa decomposition $SU(n,1) = KAN$. As $\mathbb{CH}(n) \equiv AN$, this gives a second homogeneous description of the quaternionic hyperbolic space, in this case as a Lie group.

To explore all possible groups acting transitively, we now compute the Iwasawa decomposition through the description of $SU(n,1)$ as the complex matrices that are unitary with respect to the bilinear form $B = \text{diag}(\text{Id}_{n-1},(0 \, 1 \, 0))$. The Lie algebra of $SU(n,1)$ is then given by

$$\mathfrak{su}(n,1) = \left\{ C \in M_{n+1}(\mathbb{C}) : C^T B + BC = 0, \, \text{tr} C = 0 \right\}$$

For the Iwasawa decomposition, consider

$$u(n) = \left\{ \begin{pmatrix} \alpha & v & v \\ -\bar{v}^T & ia & ia \\ -\bar{v}^T & ia & ia \end{pmatrix} : \alpha \in u(n-1), \, v \in \mathbb{C}^{n-1}, \, z = \bar{z} + \text{tr} \alpha = 0 \right\}$$

where $\alpha \in u(n-1), \, a, b \in \mathbb{R}$. Then the Lie algebra of K is given by

$$\mathfrak{k} = \left\{ \begin{pmatrix} \alpha & v & v \\ -\bar{v}^T & i(a+b) & i(a-b) \\ -\bar{v}^T & i(a-b) & i(a+b) \end{pmatrix} : \alpha \in u(n-1), \, v \in \mathbb{C}^{n-1}, \, a, b \in \mathbb{R}, \, 2i(a+b) + \text{tr} \alpha = 0 \right\}$$

That is, $\mathfrak{k} = \mathfrak{s}(u(n) + u(1))$ and $K = S(U(n) \times U(1))$.

We now apply Witte’s construction §2.3. Up to conjugation, $su(n,1)$ contains a unique maximal \mathbb{R}-diagonalisable subalgebra $\mathfrak{a} = \text{span}_\mathbb{R}(A_0)$, with $A_0 = \text{diag}(0, \ldots, 0, 1, -1)$. The corresponding set of roots is $\Sigma = \{ \pm \lambda, \pm 2\lambda \}$, where $\lambda(A_0) = 1$, and $\Theta = \{ \lambda \}$ is a system of simple roots with positive root system $\Sigma^+ = \{ \lambda, 2\lambda \}$. Then there are only two choices for Ψ, either empty or equal to all of Θ. The resulting parabolic subalgebras $\mathfrak{p}(\Theta)$ have the following refined Langlands decompositions:

$$\mathfrak{p}(\Theta) = su(n,1) + \{0\} + \{0\} + \{0\},$$
$$\mathfrak{p}(\emptyset) = \{0\} + su(n-1) + u(1) + u_1 + u_2,$$
where

\[
\mathfrak{g}(u(n-1) + u(1)) = \left\{ \begin{pmatrix} \alpha & 0 & 0 \\ 0 & ia & 0 \\ 0 & 0 & ia \end{pmatrix} : \alpha \in u(n-1), \ a \in \mathbb{R}, \ 2ia + tr \alpha = 0 \right\}, \quad a = \mathbb{R}A_0,
\]

\[
n_1 = \left\{ \begin{pmatrix} 0 & 0 & v^T \\ -v^T & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : v \in \mathbb{C}^{n-1} \right\}, \quad n_2 = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & ib \\ 0 & 0 & 0 \end{pmatrix} : b \in \mathbb{R} \right\},
\]

the last being the +1 and +2-eigenspaces of ad A_0. (The centraliser is $\mathfrak{g}_0 = \mathfrak{g}(u(n-1) + u(1)) + a$.) The Iwasawa decomposition is $SU(n, 1) = KAN$, where N has Lie algebra $n = n_1 + n_2$.

For the first Langland refined decomposition, Witten's Theorem 2.2 tells us that for a co-compact G then G^0 is either all of $SU(n, 1)$ or it is trivial. Thus the only transitive action coming from $\Psi = \emptyset$ is that of the full isometry group $SU(n, 1)$ on $\mathbb{C}H(n)$.

In the second case, given a subgroup F_τ of $S(U(n - 1) U(1))\mathbb{R}$ that is closed and connected, we get a corresponding co-compact subgroup. To get a transitive action on $\mathbb{C}H(n) = SU(n, 1)/S(U(n) U(1))$, it is necessary and sufficient that the projection $F_\tau \to S(U(n - 1) U(1))\mathbb{R} \to \mathbb{R}$ be surjective. According to Theorem 2.2, G is then $F_\tau N$. We thus have

Theorem 4.1. The connected groups acting transitively on $\mathbb{C}H(n)$ are the full isometry group $SU(n, 1)$ and the groups $G = F_\tau N$, where N is the nilpotent factor in the Iwasawa decomposition of $SU(n, 1)$ and F_τ is a connected closed subgroup of $S(U(n - 1) U(1))\mathbb{R}$ with non-trivial projection to \mathbb{R}.

4.2 The solvable description is not of linear type

The simplest choice in Theorem 4.1 is $F_\tau = A$, this is then the description of $\mathbb{C}H(n)$ as the solvable group AN. One may determine the homogeneous type for this solvable description as follows.

Set $X = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then, for any generic element $V \in n_1$, we have

\[
[A_0, X] = 2X, \quad [A_0, V] = V, \quad [X, V] = 0,
\]

\[
[V_1, V_2] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\bar{v}^T v_2 + \bar{v}^T v_1 \\ 0 & 0 & 0 \end{pmatrix}.
\]

Here we see the solvable Lie algebra structure of $\mathfrak{g} = \mathfrak{a} + n_1 + n_2$.

To find Kähler structures, we first determine the possible invariant symplectic forms. Consider the dual splitting $\mathfrak{g}^* = \mathfrak{a}^* + n_1^* + n_2^*$. Let $a_0 \in \mathfrak{a}^*$ be the dual element to A_0, and let $x \in n_2^*$ be dual to X. Extending these to left-invariant forms on AN, we compute exterior derivatives via $da_0(B^*, C^*) = -a_0([B, C]^*)$. This gives, for any $v \in n_1^*$,

\[
da_0 = 0, \quad dv = -a_0 \wedge v, \quad dx = -2(a_0 \wedge x + \omega_1),
\]
where ω_1 is the non-degenerate two-form on n_1 determined by (4.2). It follows, that the invariant closed two-forms on AN are generated by $a_0 \wedge x + \omega_1$ and $a_0 \wedge n_1^*$. Therefore any invariant symplectic form may be written as

$$ (4.3) \qquad \omega = \lambda(a_0 \wedge (x + v) + \omega_1) $$

for some $\lambda \in \mathbb{R} \setminus \{0\}$ and $v \in n_1^*$.

If g is a left-invariant metric, let \tilde{n}_1 be the orthogonal complement of n_2 in $n = n_1 + n_2$, and let $\tilde{\aaa}$ be the orthogonal complement of n_2 in $\aaa + n_2$. Then there is a Lie algebra isomorphism $\psi: \aaa + n_1 + n_2 \rightarrow \tilde{\aaa} + \tilde{n}_1 + n_2$ respecting the direct sum decompositions. Replacing g by $\psi^* g$, we may assume n_2 is orthogonal to $\aaa + n_1$, by Remark 2.1.

Now suppose we have a left-invariant Kähler structure (g, J, ω) on $G = AN$. Our convention is that $\omega(A, B) = g(A, JB)$. Then we may assume g satisfies the orthogonality of the previous paragraph and that ω is given by (4.3). Now $X^\flat = g(X, X)x$ and $JX^\flat = g(JX, \cdot) = \omega(\cdot, X) = \lambda a_0$. In particular, $a_0 \wedge x$ is of type $(1, 1)$. As J is integrable, we have that $d(x + iJx)$ has no $(0, 2)$-component. However, $d(x + iJx) = dx = -2(a_0 \wedge x + \omega_1)$ which is real and so must be of type $(1, 1)$. Thus $\omega_1 \in \Lambda^{1,1}$ and equation (4.3), then implies that $a_0 \wedge v \in \Lambda^{1,1}$ too. Concretely, $a_0 \wedge v = Ja_0 \wedge Jv$, but the latter is proportional to $x \wedge Jv$ which is only in $a_0 \wedge n_1^*$ when $v = 0$. We conclude that $v = 0$ in (4.3) and that the decomposition $\aaa = \aaa + n_1 + n_2$ is orthogonal with n_1-invariant. Now (n_1, J, ω_1) is linearly isomorphic to the standard Kähler structure on \mathbb{C}^{n-1}, and this extends to a Lie algebra automorphism of \aaa, so J is equivalent to $v \mapsto i v$ on \aaa.

We may thus assume $g(V, V) = \lambda \|v\|^2$, and putting $g(A_0, A_0) = \mu$ we find $g(X, X) = 1/\mu$ and that we have a Kähler structure. Now computing S as in §3 and taking $\xi = A_0/\sqrt{\mu}$ gives (at p)

$$ (4.4) \qquad g(S_{BC}D) = \mu^{-1/2} \{g(B, C)g(D, \xi) - g(B, D)g(C, \xi) + g(B, JC)g(JD, \xi) - g(B, JD)g(JC, \xi) - g(C, JD)g(JB, \xi) + g(JB, \xi)\{g(C, \xi)g(JD, \xi) - g(JC, \xi)g(D, \xi)) \}.$$

The first and second lines are a tensor in K_{2+4} (for $\theta_1 = \theta_2$ in the notation of [6]). The third line is also a tensor in K_{2+4} (this time for $\theta_1 = -\theta_2$). The fourth line is a tensor in $K_{3+4} \cong \Gamma([S^{2,1}M])$. One can easily conclude that $S \in K_{2+3+4}$ at p. Now, if a connected, simply-connected, and complete Kähler manifold (M, g, J) admits a homogeneous Kähler structure S, then, as a consequence of Sekigawa’s Theorem [15] (see also [1, 6]), M is homogeneous. Also the type of S is determined by its value at p. Hence the previous tensor uniquely determines
a homogeneous Kähler structure on $\mathbb{C}H(n)$ belonging to K_{2+3+4}, and we have proved the

Proposition 4.2. Any homogeneous Kähler structure on $\mathbb{C}H(n) \equiv AN$ with trivial holonomy lies in the class K_{2+3+4} and has S given by (4.4). In particular, there are non-trivial homogeneous structures on $\mathbb{C}H(n)$ that are not of linear type. □

Remark 4.3. As a computation shows, the normaliser \mathcal{N} of AN in $G = KAN$ has Lie algebra

$$\mathfrak{n} = \left\{ C = \begin{pmatrix} \alpha & 0 & v \\ -\bar{a}^T & a & b \\ 0 & 0 & -\bar{a} \end{pmatrix} : a \in \mathbb{C}, b \in \text{Im} \mathbb{C}, \text{tr} C = 0 \right\},$$

so we can write

$$\mathfrak{n} = \mathfrak{s}(u(n-1) + u(1)) + a + n_1 + n_2.$$

We recall that $\mathfrak{k} = \mathfrak{s}(u(n) + u(1))$. Extending AN to any subgroup of the normaliser means that we can still use $a + n_1 + n_2$ as an ad-invariant complement, and the computation of S remains unchanged.

4.3 Structures of linear type

For $n > 1$, we will find the group theoretic description of the homogeneous structures on $\mathbb{C}H(n)$ of linear type, i.e., in K_{2+4}. Write $\omega(X,Y) = g(X,JY)$. According to [1, 6], such a structure is given by a tensor

$$S_XY = g(X,Y)\xi - g(\xi,Y)X + \omega(\xi,Y)JX - \omega(X,Y)J\xi,$$

where $\xi \in \mathfrak{x}(M)$ is non-zero and satisfies $\tilde{\nabla} \xi = 0$, i.e., $\nabla \xi = S\xi$, hence ξ has constant length.

As before \tilde{R} is given via (3.3). Using the explicit form of S and (2.3), we have

$$\tilde{R}^{\mathbb{C}H(n)}_{XY}Z = \|\xi\|^2 \left(g(Y,Z)X + \omega(Y,Z)JX - g(X,Z)Y - \omega(X,Z)JY \right)$$

$$+ 2\omega(X,Y)(\omega(\xi,Z)\xi + g(Z,\xi)J\xi)$$

$$= c' \tilde{R}^{\mathbb{C}H(n)}_{XY}Z + 2\omega(X,Y)(\|\xi\|^2 JZ + \omega(\xi,Z)\xi + g(Z,\xi)J\xi),$$

with $c' = -4\|\xi\|^2 / c$. Now $0 = \tilde{R}\xi = (1 - c')\tilde{R}^{\mathbb{C}H(n)}\xi$, but $\tilde{R}^{\mathbb{C}H(n)}$ has non-zero holomorphic sectional curvature, so we must have $c' = 1, \|\xi\|^2 = -c/4$ and

$$\tilde{R}_{XY}Z = 2\omega(X,Y)(\|\xi\|^2 JZ + \omega(\xi,Z)\xi - g(Z,\xi)J\xi).$$

Thus \tilde{R}_{XY} acts as zero on $\mathbb{C}\xi$ and as $2\|\xi\|^2 \omega(X,Y)J$ on $U = (\mathbb{C}\xi)^\perp$. We see that \tilde{R} has holonomy $u(1)$ with representation $T_pM = \mathbb{R}^2 + U$, where \mathbb{R}^2 is
spanned by ξ and $J\xi$, and $J = -(1/2)||\xi||^2 \tilde{R}_\xi \xi$ acts as J on the factor U. The corresponding homogeneous manifold G/H has

$$\mathfrak{h} = u(1), \quad \mathfrak{g} = \mathfrak{h} + T_p M,$$

and from (2.5) the remaining Lie brackets in \mathfrak{g} are

$$[X, Y] = S_X Y - S_Y X + \tilde{R}_{XY}$$

$$= g(\xi, X) Y - g(\xi, Y) X - \omega(\xi, X) J Y + \omega(\xi, Y) J X$$

$$- 2\omega(X, Y) J \xi + \tilde{R}_{XY},$$

for $X, Y \in T_p M$. Writing $L_0 = J\xi - ||\xi||^2 J$, this gives

$$[Z_1, Z_2] = -2\omega(Z_1, Z_2) L_0, \quad [\xi, Z] = ||\xi||^2 Z,$$

$$[\xi, J\xi] = 2 ||\xi||^2 L_0, \quad [J\xi, Z] = ||\xi||^2 J Z,$$

for $Z, Z_1, Z_2 \in U$.

By Theorem 4.1, this Lie algebra must be that of a subgroup $G = F_r N$ of $S(U(n - 1) U(1)) \mathbb{R} N$, where F_r has non-trivial projection to \mathbb{R}. We now find this identification. Our holonomy algebra \mathfrak{h} is isomorphic to $u(1)$, so the group G has Lie algebra

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m} = u(1) + \tilde{a} + n_1 + n_2.$$

Here $\tilde{a} + n_2$ is the two-dimensional Lie algebra of F_r and the factor \tilde{a} projects non-trivially to a.

Note that $\mathfrak{h} + \tilde{a}$ is a subalgebra of the reductive Lie algebra $s(u(n - 1) + u(1)) + \tilde{a}$, so is reductive. As it is 2-dimensional, $\mathfrak{h} + \tilde{a}$ must be Abelian. Since J is the generator of the infinitesimal holonomy \mathfrak{h} and the full holonomy algebra of $CH(n)$ is $s(u(n - 1) + u(1))$, one has $J \in s(u(n - 1) + u(1))$. Now J acts trivially on $\mathfrak{h} + \tilde{a} + n_2$ and effectively on n_1. So in the splitting $T_p M = \mathbb{R}^2 + U$, U corresponds to n_1 and $\mathbb{R}^2 \subset \mathfrak{h} + \tilde{a} + n_2$. Equation (4.5) implies that for $Z \in U$ we have $[Z, JZ] = 2g(Z, Z) L_0$, so $L_0 \in n_2$. Also (4.5) implies $\xi \in \mathfrak{h} + \tilde{a} + n_2 \setminus (\mathfrak{h} + n_2)$ has only real eigenvalues on \mathfrak{g}, so we have $\tilde{a} = a$ and $\xi = ||\xi||^2 A_0 + s L_0 \in a + n_2$, $s \in \mathbb{R}$. Now there is a Lie algebra automorphism ψ of $\mathfrak{g} = \mathfrak{h} + a + n_1 + n_2$ which is the identity on $\mathfrak{h} + n_1 + n_2$ and has $\psi(A_0) = A_0 + s L_0$. By Remark 2.1, we may thus take $\xi = ||\xi||^2 A_0$.

In the notation of §4.2, we may write $L_0 = t X$ for some non-zero $t \in \mathbb{R}$. We may obtain $t > 0$ by replacing (J, J) by $(-J, -J)$ if necessary. Then using the automorphism of $\mathfrak{g} = \mathfrak{h} + a + n_1 + n_2$ that acts as $(1, 1/\sqrt{t}, 1/t)$ on these subspaces, we may ensure $L_0 = X$ and hence $J\xi = X + ||\xi||^2 J$.

Now equation (4.2) has $[V_1, V_2] = 2 (v_1, iv_2) X$. Comparing this with (4.5), gives $J = -i$. It follows that $J = \frac{1}{n + 1} \text{diag}(-2 \text{Id}_{n-1}, (n - 1) \text{Id}_2)$. The corresponding complement is

$$m = a + n_1 + \mathbb{R}(X + ||\xi||^2 J).$$

We thus have
Theorem 4.4. The complex hyperbolic space $\mathbb{CH}(n)$ admits a non-vanishing homogeneous Kähler structure of linear type, which can be realised as a homogeneous space G/H with $G = HAN \subset S(U(n - 1) U(1)) \mathbb{R}N$, $H \cong U(1)$ and ad-invariant complement described in (4.6).

Note that the above structure is realised by the homogeneous Kähler manifold given in [6, pp. 92-93]. In the Siegel domain model

$$D = \{(z = x + iy, v^1, \ldots, v^{n-1}) \in \mathbb{C}^n : y - \|v\|^2 > 0\},$$

ξ is proportional to $\partial/\partial y$.

References

Authors’ addresses:

M.C.L.: Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040-Madrid, Spain. E-mail: mcastri@mat.ucm.es

P.M.G.: Institute of Fundamental Physics, CSIC, Serrano 113-bis, 28006-Madrid, Spain. E-mail: pmgadea@iee.csic.es

A.F.S.: Department of Mathematics & Computer Science, Univ. of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark. E-mail: swann@imada.sdu.dk