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ABSTRACT 1 

Cytokinesis is the final process of the vegetative cycle, which divides a cell into two 2 

independent daughter cells once mitosis is completed. In fungi, as in animal cells, 3 

cytokinesis requires the formation of a cleavage furrow originated by constriction of an 4 

actomyosin ring which is connected to the plasma membrane and causes its 5 

invagination. Additionally, since fungal cells have a polysaccharide cell wall outside the 6 

plasma membrane, cytokinesis requires the formation of a septum coincident with the 7 

membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-8 

shaped fungus that has become a popular model organism for the study of actomyosin 9 

ring formation and constriction during cell division. Here we review the current 10 

knowledge of the septation and separation processes in this fungus, as well as recent 11 

advances in understanding the functional interaction between the transmembrane 12 

enzymes that build the septum and the actomyosin ring proteins.   13 

14 
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INTRODUCTION 1 

Cytokinesis is the final stage of the eukaryotic cell cycle during which, after mitotic 2 

exit, the formation of a cleavage furrow separates the cell giving rise to two new cells. 3 

Cell division in fungal and animal cells is well conserved. Cleavage furrow formation 4 

always requires the establishment and closure of a cytokinetic actomyosin ring (AR). A 5 

major difference between fungal and animal cells is that fungi are surrounded by a rigid 6 

cell wall; therefore, in fungal cells AR contraction occurs simultaneously with the 7 

biosynthesis of a cell wall structure known as a septum  (Willet et al., 2015b; Rincón 8 

and Paoletti, 2016) (Figure 1A). In unicellular fungi such as yeasts, at the end of 9 

cytokinesis there is a controlled septum degradation that separates the two daughter 10 

cells. The fission yeast Schizosaccharomyces pombe has been used as a model organism 11 

to study the eukaryotic cytokinesis because of the high degree of conservation among 12 

AR components throughout evolution. S. pombe is a simple, genetically tractable 13 

organism with highly regular rod-shaped, stable growth patterns (Mitchison et al., 14 

1985). Additionally, S. pombe divides symmetrically, giving rise to two daughter cells of 15 

the same size (Mitchison, 1957). In contrast, Saccharomyces cerevisiae and other yeasts 16 

grow asymmetrically forming a bud that will give rise to a daughter cell. They also 17 

divide asymmetrically, with the mother cell larger than the daughter cell. Therefore, the 18 

positioning of the division plane in the geometrical center of S. pombe cells is different 19 

from S. cerevisiae and similar to the majority of animal cells (Balasubramanian et al., 20 

2004). Several recent reviews discuss the regulatory mechanisms that control division 21 

plane positioning in S. pombe, which proceeds through the assembly of cytokinetic 22 

precursors on the medial cortex into nodes that coalesce into AR (Pollard and Wu, 2010; 23 

Lee et al., 2012; Willet et al., 2015b; Rincón and Paoletti, 2016). Here we review the 24 

current knowledge of septation in the fission yeast, emphasizing the importance of 25 
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correct septum formation for cell integrity and survival especially during cell separation. 1 

Additionally, we discuss recent advances on the cooperation between the AR and 2 

septum during the cleavage furrow ingression. 3 

 4 

Cell wall and septum composition in fission yeast 5 

All fungi contain a polysaccharide cell wall which includes glucans and mannoproteins 6 

as major components. Two types of glucans are the major structural components of 7 

fission yeast cell wall: branched β(1,3)-D-glucan with 14% of β(1,6) branches 8 

constitutes 48-54% of total cell wall polysaccharides, and α(1,3)-D-glucan which 9 

constitutes 28-32% (reviewed in Durán et al., 2004). Additionally, there is a small 10 

amount of linear β(1,3)-D-glucan, mainly present in the primary septum and cell tips 11 

(Cortés et al., 2007). This glucan might play a role similar to chitin, present in most 12 

fungi but not found in S. pombe (Kreger, 1954; Horisberger et al., 1978). There is also a 13 

small proportion of β(1,6)-D-glucan that might be important for cross-linking different 14 

polysaccharides (Magnelli et al., 2005), and of galactomannan linked to the cell wall 15 

glycoproteins (Ballou et al., 1994). 16 

Analysis by transmission electron microscopy (TEM) has found the septum to be a 17 

three-layered structure with a central primary septum (PS) flanked by two layers of 18 

secondary septum (SS) (Johnson et al., 1973) (Figure 1B). The SS deposition is 19 

simultaneous to the PS growth (Cortés et al., 2007).  The PS is a special layer of the cell 20 

wall that in fission yeast is rich in linear β(1,3)-D-glucan. In S. cerevisiae and other 21 

fungi the PS is mainly made of chitin (Cabib et al., 2005); the SS contains the same 22 

polymers of the cell wall (Humbel et al., 2001) . 23 
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Fungal wall β(1,3)-D-glucan is synthesized by the enzymatic complex β(1,3)-D-glucan 1 

synthase (EC 2.4.1.34, UDP-glucose:1,3-β-D-glucan 3-β-D-glucosyltransferase). This 2 

complex, conserved in all fungi, includes at least two proteins: a catalytic subunit that is 3 

a large protein with several transmembrane domains, and the Rho1 GTPase acting as 4 

regulatory subunit that activates the catalytic subunit when bound to GTP (Arellano et 5 

al., 1996; Drgonova et al., 1996). Different paralog genes coding for the catalytic 6 

subunit, named Fks or Bgs, are present in fungal cells (Free, 2013). In budding yeast 7 

and other fungi, these subunits have partially redundant roles (Mazur et al., 1995) while 8 

each of the four subunits present in fission yeast is essential. Bgs1, 3, and 4 function 9 

during vegetative growth and Bgs2 functions during sporulation. Bgs1,3 and 4 localize 10 

to growing poles, division area, and sites of wall synthesis during sexual differentiation 11 

(Roncero et al., 2010). Ultrastructural analysis of the septa formed in bgs1Δ 12 

germinating spores established that Bgs1 is responsible for the linear β(1,3)-D-glucan 13 

synthesis and  PS formation (Cortés et al., 2007) (Figure 1B).  The function of Bgs3 is 14 

not yet known. Bgs4 is responsible for the synthesis of the major cell wall β-glucan, and 15 

is essential for the maintenance of cell integrity especially during cell separation, SS 16 

formation, and for correct PS completion (Cortés et al., 2005; Muñoz et al., 2013) 17 

(Figure 1B). 18 

The only enzyme identified as a putative -glucan synthase is Ags1, also named Mok1. 19 

Like the Bgs enzymes, Ags1 is a membrane protein essential for cell integrity and is 20 

detected at the growing poles and the septum (Katayama et al., 1999). Ags1 is required 21 

for SS formation (Figure 1B) and for gradual and balanced cell separation (Cortés et al. 22 

2012). Ags1 orthologs are not found in budding yeasts but are widely extended in other 23 

fungi although they are not always essential (Edwards et al., 2011; Henry et al., 2012). 24 

 25 
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Establishment of the septum position 1 

The position of the septum depends on the AR formed at the middle of the cell cortex. 2 

In fission yeast, the nucleus and the anillin Mid1 mark the position of AR assembly 3 

which is initiated by the maturation of medial cortical nodes (reviewed in Willet et al., 4 

2015b; Rincón and Paoletti, 2016). Once the ring is formed, it is necessary to keep it in 5 

position until constriction starts (Wu et al., 2003; Arasada and Pollard 2014; McDonald 6 

et al., 2016). In spherical protoplasts deprived of the wall, the AR slides to the poles 7 

(Mishra et al., 2012) suggesting that the AR needs to be anchored through the 8 

membrane to the extracellular cell wall, and that the cylindrical shape of fission yeasts 9 

might also play a role in the AR stability (Mishra et al., 2012). However, it has been 10 

shown in cylindrical cells that the -glucan synthesized by Bgs4 plays a main role in 11 

maintaining the AR in the cell middle before septum formation begins (Muñoz et al., 12 

2013). Bgs1 has also been implicated in the maintaining of AR position. Accordingly, 13 

the AR of cells carrying cps1-191, a temperature-sensitive allele of bgs1
+
,  slides along 14 

the plasma membrane (Arasada et al., 2014).  15 

 16 

Coupling AR contraction with septum synthesis.  17 

The septation initiation network (SIN) is a kinase cascade that activates Sid2, a kinase 18 

from the NDR (Nuclear Dbf-2-related) family. Sid2 is essential in the regulation of 19 

cytokinesis (reviewed in Simanis, 2015). The SIN is orthologous to the mitotic exit 20 

network (MEN) in budding yeast, and the Hippo pathway in animal cells (Hergovich et 21 

al., 2006). The SIN cooperates in the regulation of mitotic entry, spindle elongation and 22 

checkpoint inactivation, telophase nuclear positioning, assembly of AR, and, 23 

importantly, it is essential for the AR contraction and concomitant synthesis of the 24 
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septum (reviewed in Simanis, 2015). Additionally the SIN inhibits a second NDR 1 

kinase pathway called the morphogenesis Orb6 (MOR) network (Ray et al., 2010), 2 

which is orthologous to the network called regulation of Ace2 and morphogenesis 3 

(RAM) in S. cerevisiae and other fungi (Saputo et al., 2012). The MOR network is 4 

required for cell separation and apical growth (Gupta et al., 2014). Most SIN 5 

components are essential, and temperature-sensitive SIN mutants form defective AR but 6 

do not initiate septum synthesis, leading to the formation of elongated multinucleated 7 

cells at the restrictive temperature (reviewed in Krapp et al., 2008; Simanis, 2015). 8 

Because Rho1 GTPase can rescue some SIN mutants, it has been proposed that SIN 9 

activates Rho1, which in turn activates the Bgs enzymes, (Jin et al., 2006), but it has not 10 

been proved. Additionally, it has been proposed that there is a feedback loop were Rho1 11 

activates the SIN to ensure SIN activity while septation is progressing (Alcaide-Gavilan 12 

et al., 2014).  13 

In animal cells AR constriction is dependent on myosin type II and exerts the force 14 

needed to pull the plasma membrane and form the cleavage furrow. In fungi AR 15 

constriction is also myosin II dependent (Mishra et al., 2013) and is required for the 16 

initiation of septum formation, but does not provide the pulling force for the furrow 17 

ingression (Proctor et al., 2012). Since AR constriction and septum synthesis occur 18 

simultaneously (Figure 1A), it has been proposed that linear β(1,3)-D-glucan synthesis 19 

provides the major force for the furrow closure (Proctor et al., 2012). On the other hand, 20 

the AR is dispensable when the septum is already forming but ingression is much 21 

slower in its absence (Proctor et al., 2012). It seems therefore that ring constriction 22 

activates septum synthesis. Supporting this hypothesis, two recent works propose that 23 

septum synthesis is mechanosensitive and somehow coupled to contractile AR tension 24 

(Thiyagarajan et al., 2015; Zhou et al., 2015). By manipulating the curvature of the 25 
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cleavage furrow it was shown that the AR promotes local septum growth in a curvature-1 

dependent manner suggesting that Bgs1 is regulated by AR tension (Zhou et al., 2015). 2 

Conversely, as mentioned above, when Bgs1 is defective the AR slides (Arasada et al., 3 

2014), is disorganized (Cortés et al., 2015), and does not contract (Liu et al., 1999). 4 

Whether and how the AR contractile force stimulates the cell wall machinery, and how 5 

the cell wall maintains the AR and stimulates its contraction are currently major 6 

questions in fungal septation.  7 

Focal adhesions in animal cells connect the extracellular matrix to the cytoskeleton and 8 

transmits signals in both directions. Similarly, during fission yeast cytokinesis several 9 

proteins might form a complex to connect the cell wall with the AR through the plasma 10 

membrane. Major candidates to organize this complex are the F-BAR proteins (Roberts-11 

Galbraith and Gould, 2010), which can bridge the plasma membrane and the 12 

cytoskeleton. Cdc15 is the founding member of the PCH family (Carnahan and Gould, 13 

2003; Wu et al, 2003) and contributes to AR formation via the direct binding of its F-14 

BAR domain to the formin Cdc12 that nucleates the AR actin filaments (Willet et al., 15 

2015a). Additionally, Cdc15 contains an SH3 domain that binds proteins required for 16 

septation such as Pxl1, Fic1, or Rgf3 (Roberts-Galbraith et al., 2009; Ren et al., 2015). 17 

A second F-BAR protein named Imp2 (Demeter et al., 1998) also has an SH3 domain 18 

functionally interchangeable with that of Cdc15 and both collaborate in the recruitment 19 

of the mentioned proteins (Roberts-Galbraith et al., 2009; Ren et al., 2015). It has been 20 

recently described that Cdc15 oligomerization is critical for fission yeast cytokinesis 21 

(McDonald et al., 2015). Pxl1 is the fission yeast ortholog of animal cells paxillin, it 22 

binds to myosin II and stabilizes the AR (Ge et al., 2008; Pinar et al., 2008). Pxl1 23 

collaborates with Bgs1 to maintain the AR and form the septum (Cortés et al., 2015). 24 

Bgs1 depletion generates abnormal septa made of SS layers, which somehow are guided 25 
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by the AR (Figure 1B). When Bgs1 depletion occurs in the absence of Pxl1 there is no 1 

septum synthesis initiation (Figure 1B). It is possible that Pxl1, by binding to myosin II 2 

and Cdc15 (Cortés et al., 2015; Ren et al., 2015), transmits the AR tension to the 3 

membrane in order to concentrate the Ags1 and Bgs4 synthases and narrow the area of 4 

septum synthesis (Figure 2). Fic1 is a C2-domain containing protein whose role is not 5 

defined in S. pombe but which becomes essential in the absence of the Pxl1 (Roberts-6 

Galbraith et al., 2009, Ren et al., 2015). Rgf3 is an essential GEF that activates Rho1 7 

(Arellano et al., 1996; Tajadura et al., 2004; Morrell-Falvey et al., 2005; Mutoh et al., 8 

2005). In turn, this GTPase directly activates the Bgs enzymes and glucan synthesis 9 

(Arellano et al., 1996; Tajadura et al., 2004; Morrell-Falvey et al., 2005; Mutoh et al., 10 

2005). Whether or how Rgf3 and Pxl1 functionally interact to transform the AR 11 

contraction into an activation signal for the biosynthetic enzymes that form the septum 12 

remains to be discovered. 13 

Another F-BAR protein, Rga7, forms a complex with Cdc15 and Imp2 (Martín-Garcia 14 

et al., 2014). Rga7 also contains a Rho GTPase activating protein (GAP) domain and 15 

acts as negative regulator of Rho2 (Martin-Garcia et al., 2014). These complex 16 

networks of proteins might contribute to the coordination of contractile ring constriction 17 

and septum formation (Figure 2).  18 

F-BAR proteins may also have a role in the traffic of Bgs enzymes. Two recent works 19 

propose that Cdc15 participates in the transport of Bgs1 from late Golgi to the 20 

membrane at the division area,  and similarly, Rga7 contributes to the transfer of the 21 

Bgs4 (Arasada et al., 2014, Arasada et al., 2015). The role of exocytosis, endocytosis, 22 

and membrane traffic during the formation of the septum is only beginning to be 23 

uncovered. 24 
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 1 

Cell separation and cell integrity  2 

Separation is the most critical process of the cell cycle for the cell integrity. In animal 3 

cells, the terminal step of cytokinesis is called abscission and includes microtubule 4 

severing and membrane splitting that is mediated by the endosomal sorting complex 5 

required for transport (ESCRT) proteins (Bhutta et al., 2014). In filamentous fungi cell 6 

separation does not occur and they form hyphae composed of cell compartments 7 

delimited by septa with a small central pore. These septa are important for maintaining 8 

hyphal integrity. Thus, they are sealed immediately upon injury impeding an extensive 9 

loss of cytoplasm (Mourino-Perez et al., 2013).  10 

Cell separation does not seem to be essential for the vegetative cycle of the fission 11 

yeast. A broad range of viable mutants defective in cell separation have been described 12 

in the past (reviewed in Sipiczki, 2007), and recently a systematic visual screening of 13 

the deletion collection of S. pombe haploids identified new genes based on the “long 14 

branched” phenotype of viable cells (Hayles et al., 2013). Not all of these genes 15 

participate directly in the process of cell separation but play a role in earlier steps of 16 

cytokinesis. Thus, most cells lacking Pxl1, or temperature-sensitive SIN mutants grown 17 

at semi-restrictive temperature are septated even if they do not have a separation defect. 18 

It is possible that the separation machinery, which at least includes the septins, the 19 

exocyst, Rho GTPases, and glucanases (reviewed in Martín-García and Santos 2016), is 20 

set at the beginning of septation, and if the AR constriction/septation is delayed, 21 

separation can no longer take place. The Sep1-Ace2 transcription-factor cascade 22 

regulates the periodic expression of many genes encoding proteins required for AR 23 

constriction and for cell separation (Rustici et al., 2004; Alonso-Nuñez et al., 2005). 24 
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Additionally, a posttranslational control on cell separation might be exerted during 1 

cytokinesis by the SIN, which inhibits the MOR pathway (Gupta et al., 2014). This 2 

pathway regulates septum degradation although the mechanism is not yet known (Gupta 3 

et al., 2014). 4 

To prevent cell lysis during separation, a precisely controlled degradation of the lateral 5 

cell wall at the division area and the PS is required. The remaining SS gradually curves 6 

concavely due to the internal cell pressure, and forms the new end in the daughter cells. 7 

(Cortés et al., 2012; Atilgan et al., 2015). Bgs4 depletion induces unopposed cell wall 8 

degradation leaving the plasma membrane without cell wall and consequently, the 9 

internal turgor pressure causes the cell lysis (Cortés et al., 2005; Muñoz et al., 2013). In 10 

Ags1-depleted cells lysis also occurs during separation suggesting that a correct SS 11 

assembly is essential for cell viability (Cortés et al., 2012). 12 

 Degradation of the lateral cell wall requires the Agn1 1,3-α-glucanase (Dekker et al., 13 

2004; Garcia et al., 2005), and Eng1 1,3-β-glucanase is necessary to digest the PS 14 

(Alonso-Nuñez et al., 2005). Precise secretion of these enzymes involves the formation 15 

of septin rings and the directed activity of the exocyst complex (Martin-Cuadrado et al., 16 

2005). Rho4 GTPase is also required for glucanase secretion (Santos et al., 2005), likely 17 

through exocyst regulation (Perez et al., 2015). This GTPase is activated by Gef3, 18 

which interacts with and is localized by the septins (Muñoz et al., 2014; Wang et al., 19 

2015). In this way, a precise spatio-temporal regulation of glucanase secretion preserves 20 

cell integrity. 21 

 22 

Concluding remarks 23 
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Although this review focuses on fission yeast, similar mechanisms of septation exist in 1 

other fungi. There are still a number of open questions on the septation process that 2 

need to be further addressed: the targets of the SIN that activate septation; the different 3 

functions of F-BAR proteins during septum formation; the role of Rho GTPases and 4 

other molecules that regulate cell wall synthesis; etc. In all these questions the 5 

connection between the cell wall and the AR through the plasma membrane is emerging 6 

as an important condition for a successful cytokinesis and for the maintenance of cell 7 

integrity. Although it is still unknown how this connection is accomplished, some of the 8 

main players such as Bgs enzymes, F-BAR proteins, Pxl1, and other cytoskeleton 9 

binding proteins have been already identified. The characterization of new double 10 

conditional mutants, proteomics, and high-resolution microscopy techniques will help to 11 

further characterize this connection. 12 
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 19 

FIGURE LEGENDS 20 

Figure 1. A) Time-lapse fluorescence micrographs showing simultaneously AR 21 

constriction and septum synthesis by using cells expressing GFP-cdc15 to label the AR, 22 

RFP-Bgs1 to label the membrane and calcofluor (CW) staining to label the cell wall 23 
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glucan. Bar 5 m. B) The ultrastructure of the Schizosaccharomyces pombe septum. 1 

Transmission electron micrographs of wild type septum showing the middle layer of PS 2 

flanked by the SS; septum of cells with repressed bgs4
+
 showing no SS and floppy PS 3 

(adapted from Muñoz et al., 2013); septum of cells with repressed ags1
+
 showing 4 

defective SS and floppy PS (adapted from Cortés et al., 2012); with repressed bgs1
+
 5 

showing parallel SS depositions in wild type cells and absence of septum in cells 6 

lacking Pxl1 (adapted from Cortés et al., 2015). Bar 1 m. 7 

Figure 2. Model of the protein complexes connecting AR, septum membrane, and 8 

septum wall. 9 

Figure 3. A) Model of cell separation at the end of cytokinesis. B, C) Transmission 10 

electron micrograph showing how degradation of the lateral cell wall (B) and PS (C) 11 

leaves the SS that, upon separation, changes from flat to round shape (adapted from 12 

Cortés et al., 2012). 13 

 14 
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