Determinación de los estados de intermuda en *Nephrops norvegicus* (L.), mediante la observación de los pleópodos*

F. SARDA

Instituto de Investigaciones Pesqueras de Barcelona.
Paseo Nacional, s/n. Barcelona-3.

Palabras clave: Estados de muda, exuviación, pleópodos, *Nephrops norvegicus*.

Key words: Moulting stages, ecdysis, pleopods, *Nephrops norvegicus*.

RESUMEN: Se determinan morfológicamente los estados y subestados del ciclo de intermuda de la cigala, *Nephrops norvegicus* (L.) (Crustacea: Decapoda), según la metodología utilizada por Drach (1944). La observación de los pleópodos se ha realizado por transparencia al microscopio óptico, definiéndose los siguientes estados y su duración en tantos por ciento del tiempo total entre dos ecdisis: \(A_1, A_2, B_1, B_2 \) (postmuda, 8,8 %); \(C \) (intermuda, 63 %) y \(D_1', D_1'', D_1''', D_1'''', D_2', D_2'' y D_1'\) (premuda, 28,8 %).

SUMMARY: Determination of the intermoult stages in *Nephrops norvegicus* (L.) by setal development. — The stages and substages in the intermoult cycle of Norway lobster *Nephrops norvegicus* (L.) (Crustacea: Decapoda), according to modified criteria of Drach (1944) are determined. The pleopods were examined under microscope, and the relative duration (%) of the stages is estimated: \(A_1, A_2, B_1, B_2 \) (postecdysis, 8.8 %); \(C \) (intermoult, 63 %) and \(D_1', D_1'', D_1''', D_1''''', D_2' \) and \(D_1'\) (preecdysis, 28.8 %).

INTRODUCCIÓN

La metodología utilizada para el conocimiento de los diferentes estados del ciclo de intermuda en crustáceos, mediante la observación de las sedas de los pleópodos, ha sido descrita con anterioridad por Drach (1939-1944) en Braquiuros y Natantia. Otros autores han realizado estudios en este sentido utilizando diversos crustáceos y basándose en los cambios morfológicos que experimentan a lo largo del ciclo de muda, tanto a nivel de pleópodos como de caparazón en general, como criterio de determinación de los estados de intermuda.

La formación de las nuevas sedas en el interior de la vieja cutícula presenta unas características generales, mediante las cuales se pueden determinar los distintos estados de intermuda en los crustáceos (Drach y Tchernigovtzeff, 1947) (fig. 1).

* Recibido el 28 de julio de 1982.
Sin embargo, las diferencias particulares que presenta cada especie, tanto desde un punto de vista morfológico como de duración de cada una de las etapas, han dado lugar a una serie de estudios sobre el tema:

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Autor</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944</td>
<td>Drach</td>
<td>Leander serratus</td>
</tr>
<tr>
<td>1952</td>
<td>Charniaux-LeGrand</td>
<td>Varios Anfípodos</td>
</tr>
<tr>
<td>1959</td>
<td>Scheer</td>
<td>Varios Natantía</td>
</tr>
<tr>
<td>1964</td>
<td>Kurup</td>
<td>Petrolisthes cinctipes</td>
</tr>
<tr>
<td>1967</td>
<td>Drach-Tchernigovtzeff</td>
<td>Varios Decápodos</td>
</tr>
<tr>
<td>1968</td>
<td>Bellon-Humbert</td>
<td>Lysmata uncicornis</td>
</tr>
<tr>
<td>1968</td>
<td>Schaefer</td>
<td>Penaeus duorarum</td>
</tr>
<tr>
<td>1968</td>
<td>Stevenson-Cohen</td>
<td>Varios Decápodos</td>
</tr>
<tr>
<td>1968</td>
<td>Tchernigovtzeff-Ragage</td>
<td>Sphaeroma serratum</td>
</tr>
<tr>
<td>1972</td>
<td>Fish</td>
<td>Eurydice pulchra (Isópodo)</td>
</tr>
<tr>
<td>1972</td>
<td>Huguet</td>
<td>Atyaephyra desmaresti</td>
</tr>
<tr>
<td>1973</td>
<td>Aiken</td>
<td>Homarus americanus</td>
</tr>
<tr>
<td>1973</td>
<td>Chatau</td>
<td>Nephrops norvegicus</td>
</tr>
<tr>
<td>1973</td>
<td>Davis y col.</td>
<td>Balanus anphytrite</td>
</tr>
<tr>
<td>1975</td>
<td>Freeman y Bartell</td>
<td>Palaemonetes pugio</td>
</tr>
<tr>
<td>1975</td>
<td>Mills y Lake</td>
<td>Parastacoïdes tasmanicus</td>
</tr>
<tr>
<td>1975</td>
<td>Reaka</td>
<td>Varios Stomatopodos</td>
</tr>
<tr>
<td>1978</td>
<td>Van Herp y Bellon-Humbert</td>
<td>Astacus leptodactylus</td>
</tr>
</tbody>
</table>

Las distintas etapas que constituyen cada una de las partes del ciclo de intermunda, se han definido como una serie de pasos encadenados y sucesivos cuya misión será, en unos casos, formar un nuevo caparazón, y en otros endurecerlo y mantenerlo hasta la exuvación siguiente. Estas etapas se agrupan en los procesos de pre o proecdisis y postecdisis.

Drach y Tchernigovtzeff (1947) hacen una revisión de la sedogénesis, para determinar y definir dichos estados, en especies muy calcificadas (Reptantia) y en otras poco calcificadas (Natantia), siguiendo la nomenclatura iniciada por Drach (1939).

Utilizando la misma nomenclatura, el presente trabajo señala las características morfológicas de las distintas etapas de intermunda de Nephrops norvegicus, basándose en la observación microscópica por transparencia de los pleópodos (exopodito y endopodito, indistintamente).
MATERIAL Y MÉTODOS

Se ha trabajado sobre ejemplares de *Nephrops norvegicus* mantenidos en cautividad en las condiciones descritas por Sardá (1979). Las observaciones al microscopio se han realizado por transparencia sobre un total de 180 ejemplares de tallas comprendidas entre 13 y 60 mm de caparazón.

![Diagrama](image.png)

Fig. 1. — Nomenclatura seguida para la determinación morfológica de una seda de pleópodo en formación.
Estas observaciones fueron realizadas sobre dos grupos de individuos; 130 de ellos fueron sacrificados entre abril y mayo de 1978. Los 50 individuos restantes se mantuvieron como testigos unos 20 meses aproximadamente, pudiéndose seguir en ellos no sólo la evolución morfológica de sus sedas, sino la duración de varios ciclos de muda completos en cada uno de ellos.

Una vez identificado el estado de muda en que se encontraba el animal a su llegada al laboratorio, se realizaron observaciones periódicas y particulares para cada ejemplar, a intervalos variables, con el fin de determinar la duración de cada uno de los sucesivos estados y la morfología de las sedas en cada uno de ellos. El número de observaciones viene limitado por el número de pleópodos que podían ser seccionados, antes de la ecdisis siguiente.

Los pleópodos fueron seccionados cuidadosamente, para evitar el deslizamiento de las nuevas capas bajo la vieja cutícula y colocados inmediatamente sobre un portaobjetos con agua de mar, procurando realizar la observación lo antes posible para evitar las deformaciones debidas a cambios de presión osmótica, formación de cristales de ClNa y modificaciones en los tejidos por descomposición.

Las observaciones y fotografías se realizaron con microscopio óptico WILD M 20, a 100 aumentos en la mayoría de los casos, siendo únicamente utilizados 400 aumentos para diferenciar aspectos concretos del interior de las sedas.

Una vez realizada la exuvación, se toma ésta como referencia en el tiempo y se calculan los días transcurridos entre cada observación y el momento en que se realizó la exuvación. La duración de los estados de postecdisis se calcularon referidos a la exuvación anterior, y para los estados de preecdisis respecto de la exuvación siguiente. La duración del estado de intermuda se halló por diferencia entre la suma de los periodos de pre y postecdisis y la duración total del ciclo completo (Sardá, 1980).

Los resultados se tomaron para distintos rangos de talla con el fin de observar las diferencias existentes entre ellas. Para la determinación de dichas clases de talla, se han seguido criterios referentes a la madurez sexual según los siguientes intervalos:

| Individuos entre 10 y 19,9 mm Lc (longitud de caparazón). Inmaduros. |
|-------------------------|----------------------------------|
| » 20 y 23,9 mm Lc. Próximos a la pubertad. |
| » 24 y 26,9 mm Lc. Realizan la muda de pubertad. |
| » 27 y 29,9 mm Lc. Realizan su primera madurez. |
| » 30 y 39,9 mm Lc. Adultos. |
| » 40 y 50 mm Lc. Adultos. |

Por otra parte, se siguió el endurecimiento del caparazón (Drach, 1939, 1944; Drach y Tchernigovtzeff, 1967) antes y después de la ecdisis. Las observaciones se realizaron cada cuatro días, sobre un total de 26 ejemplares, hasta que alcanzaban el estado C. Se separaron también por clases de talla.

La determinación del endurecimiento se ha realizado sobre las zonas del
caparazón señaladas en la figura 2, y su dureza se compara con la resistencia que ofrecen a la presión de los dedos según el siguiente baremo:

Muy blando (consistencia de papel mojado).
Blando (como papel seco).
Flexible (como cartulina, deformable bajo presión).
Duro (indeformable o quebradizo bajo fuerte presión).

Fig. 2.—Zonas de referencia para comparar el endurecimiento del caparazón en la postecdisis.

RESULTADOS

A) **IDENTIFICACIÓN DE LAS ETAPAS DE INTERMUDA, CON ESPECIAL REFERENCIA A LA EXUVIACIÓN O ECDSIS**

Las etapas de intermuda en la cigala, identificadas por sedogénesis, presentan las diferencias y características siguientes:

— *Estado A.* Corresponde al período que sigue inmediatamente a la ecdisis. Las sedas se presentan bien desarrolladas aunque puede observarse una leve disminución de su anchura y «despeinado» de las bárbulas en el punto donde la seda sufre el cambio de invaginación en el interior de la matriz del pleópodo (fig. 3, A). Este punto irá desapareciendo, hasta hacerse imperceptible al final del estado. La matriz rellena uniformemente toda la seda, sin mostrar ninguna estructura característica.

El estado A puede dividirse en otros dos estados morfológicos, *A*₁ y *A*₂. El estado *A*₁ se caracteriza porque en la base de las sedas aparecen multitud de formaciones celulares y diversas granulaciones que han sido arrastradas al interior de la seda, cuando sufrió la desinvaginación en la ecdisis (fig. 3, B). El subestado *A*₂ no presenta dicho carácter. La plataforma basal calcárea de las sedas está poco calcificada, presentando aspecto translúcido al microscopio. El estado *A*₃ (avanzado) no parece tan marcado como en otros crustáceos. Las sedas tienen el mismo aspecto que en *A*₁, pero la matriz empieza
Fig. 3.—Aspecto morfológico de las sedas en la postecdisis: A, estado A_1; B, estado A_2; C, estado B_0, y D, estado B_1.
a separarse del epitelio por la parte del extremo de la seda, dejando una pequeña nerviación central, apenas perceptible en algunos tramos. Las granulaciones han desaparecido, pero la matriz sigue uniforme.

— Estado B. Se caracteriza por un continuo y rápido endurecimiento del caparazón. Durante la primera etapa, B₁, la matriz llena toda la seda; no obstante, empiezan a formarse grandes lagunas o vacuolas desde la base, donde son mucho más grandes y patentes que hacia la mitad de la seda. En algunos casos puede observarse la nerviación central casi formada, rodeada completamente por las lagunas, lo que a veces la hace prácticamente invisible, o tan sólo visible en áreas determinadas. La matriz es ancha y empieza a separarse de las paredes (fig. 3, C y D).

El estado B₂ puede identificarse por la clara percepción de la nerviación central; la matriz es más estrecha que en el caso anterior y rodeada de lagunas muy regulares a ambos lados de la nerviación, de tal manera que a veces parece que la nerviación sea la que forma rugosidades laterales. El menor número de rugosidades y lobulaciones es un buen indicio de la proximidad del siguiente estado, C.

Parece ser que el período de retracción se realiza de manera uniforme, progresiva y lenta, lo cual en algunos casos puede dar lugar a formas intermedias, que pueden conducir a errores entre los estados A-B₁ y B₁-B₂, en cuyo caso dependerá del criterio del observador; sin embargo, podrá verificarse con la dureza del caparazón.

— Estado C. Es el estado de reposo entre el período de postmuda de una exuviaición y el de premuda de la siguiente. Se reconoce fácilmente, porque la seda está totalmente desprovista de lobulaciones y granulaciones. El nervio central está claramente separado de la cutícula, prolongándose de manera uniforme desde la base hasta el extremo de la seda (fig. 4, A).

— Estado D₀. Es el primer estado de la proecdisis y se divide en dos etapas: D₀’’, en la que comienza a distinguirse una pequeña separación entre el epitelio y la cutícula, sin cambios apreciables en las sedas (fig. 4, B), y D₀’”, con una separación muy marcada entre el epitelio y la vieja cutícula, alcanzándose una separación máxima al final de este estado. Se observa también una retracción de la nerviación central, que se inicia en la parte terminal de la seda (fig. 4, C).

— Estado D₁. Viene definido por el inicio de la invaginación de la epidermis en la matriz del pleópodo; esta etapa es relativamente corta y se designa por la subetapa D₁’’. La invaginación sigue avanzando lentamente, D₁” (fig. 4, D) y termina al alcanzar la máxima profundidad, etapa D₁’” (fig. 5, A).
Fig. 4. — Aspecto morfológico de las sedas y pleópodos en internura y proecdísis:
A, estado C; B, estado D₁; C, estado D₂; y D, estado D₃.
Fig. 5. — Aspecto morfológico de las sedas y pleópodos en proecdísis y exuvación: A, estado D_{1}''-D_{2}''; B, estado D_{1}''''; C, estado D_{1}, y D, desinvaginación durante la exuvación.
— Estado D_2. Durante este estado termina la completa formación de la nueva seda y del pleópodo. En D_2' se hacen patentes las nuevas bárbulas que poseen unos nódulos en sus bases hacia el interior de la nueva seda (aspecto de «cremallera») (fig. 5, B). Se inicia en ella la capa pigmentada (AIKEN, 1973), que da mayor refringencia a las observaciones microscópicas. En D_2'' termina la capa pigmentada y la cutícula aumenta considerablemente de grosor. En la base de las sedas viejas se observan las nuevas, perfectamente formadas (fig. 5, C).

— Estados D_{3-4}. Estos estados varían poco en cuanto a la morfología del pleópodo y sedas se refiere. Tan sólo se observan diferencias en la consistencia del caparazón que se vuelve quebradizo al aumentar la separación entre ambas cutículas (nueva y vieja) y también por la formación de la abertura dorsal del cefalotórax.

En el estado D_3, de preparación a la exuvación, se reabsorben ciertas partes del esqueleto y se inicia la fisura que constituirá la abertura dorsal. La parte posterior del cefalotórax se separa del cuerpo del animal al mismo tiempo que se eleva. El extremo de las sedas de neoformación ocupa tan sólo la base de las antiguas.

— Estado E. Ecdisis o exuvación (fig. 5, D). Puede definirse como un fenómeno morfológico y fisiológico mediante el cual, y por medio de movimientos precisos y continuados, el animal se desprende de la vieja cutícula, dejando la nueva al descubierto.

Debido a la importancia que presenta este estado, se ha estudiado ampliamente y detalladamente todo el fenómeno que tiene lugar. Las observaciones se han realizado sobre ocho individuos de manera permanente durante todo el proceso.

Para observar la exuvación, los anívales se colocaron en recipientes transparentes de tamaño reducido en circuito abierto en el interior de una cámara a temperatura constante (15°C).

Proceso de la exuvación

Este proceso puede dividirse en dos partes:

Fase pasiva. Caracterizada por una serie de fenómenos morfológicos y de comportamiento. El cefalotórax se eleva por la parte posterior, observándose una pequeña abertura. La parte anterior del rostro permanece fija (fig. 6, A). Los extremos inferiores de los terguitos pueden doblarse, lo que indica una gran absorción sobre la vieja cutícula; en general, todo el cuerpo del animal sufre reblanecedimiento y se vuelve quebradizo.

El cefalotórax adquiere un color pálido debido a la separación que experimentan las cutículas. La actividad es intensa, transportando constantemente arena del fondo del recipiente, de manera que intentar formar una cavidad. Más tarde, entra en una fase de períodos alternativos de actividad e inmovi-
lidad absoluta, a intervalos más o menos constantes. Durante los períodos de actividad, dobla con frecuencia el abdomen, hacia arriba y hacia abajo; otras veces apoya sus pinzas contra las paredes del tanque y parece realizar presión sobre las mismas como si empujara, probablemente con el fin de separar ambas cutículas. Con los segundos y terceros pereiópodos empuja los globos oculares y con los primeros maxilípedos sujeta sus antenas, al tiempo que los desplaza entre los mismos. A menudo aparecen burbujas gaseosas sobre los ojos y sobre la bertura dorsal, aunque no es una característica generalizada. Durante los períodos de inactividad, presenta una inmovilidad absoluta, incluso de las piezas bucales, antenas y del exopodito del primer par de pereiópodos, que normalmente actúa como «ventilador» branquial.

Fase activa. Comprende la exuvación propiamente dicha. Se inicia cuando el animal, doblando el abdomen bajo el cefalotórax, se deja caer sobre uno de sus lados, iniciándose, a partir de este momento, la rápida separación de ambas cutículas de manera continua y uniforme, con un movimiento imperceptible a simple vista (fig. 6, A-F).

En el cuadro I se resumen las observaciones de los movimientos realizados por ocho individuos durante su exuvación y el tiempo empleado en ello.

B) ENDURECIMIENTO DEL CAPARAZÓN EN LA POSTECDISIS

El endurecimiento del caparazón de 26 individuos de distintas tallas observado durante la postecdisis, se representa en el cuadro II, en el que observamos una separación entre los estados A_1 y A_2, marcados por la iniciación del endurecimiento del caparazón, pasando de una consistencia nula a cierta consistencia (como la que presenta el papel), que señalará el paso de un estado a otro.

Podemos definir también el paso al estado B_1 porque el animal alcanza una consistencia «apergaminada» y a B_2 por iniciarse, en ciertas partes del cuerpo, un endurecimiento casi total.

Pasamos al estado C, caracterizado por un progresivo y fuerte endurecimiento en todo el cuerpo, hasta llegar al estado C avanzado, en el que está totalmente endurecido. El endurecimiento muestra un retraso en las zonas branquial y lateral del tórax y abdomen, endureciéndose más rápidamente el rostro y zonas superiores del cefalotórax y abdomen.

Se observa una mayor rapidez del endurecimiento en los individuos de tamaño pequeño que en los adultos, los cuales tardan más debido a la mayor duración de cada una de las etapas.

C) DURACIÓN DE LAS DISTINTAS ETAPAS DEL CICLO DE INTERMUDA

En la figura 7 se representa, para los distintos rangos de talla (véase metodología), la media del número de días que cada estado dista de su exuvación respectiva, su desviación típica y el número de observaciones por cada estado.
Fig. 6. — Sucesivos aspectos de la exuvicación: A, fase pasiva; B-E, fase activa de desprendimiento del caparazón; F, inmediatamente después de la exuvicación.
CUADRO I

Descripción de los movimientos que caracterizan la exuvación de cada individuo observado y tiempo (en min) transcurrido desde el principio de la fase activa, para cada movimiento.

<table>
<thead>
<tr>
<th>Aspecto y movimientos características de la exuvación</th>
<th>Tiempo, en minutos, transcurrido desde el inicio de la exuvación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Lc (mm) de cada individuo observado</td>
<td>9h 06'</td>
</tr>
<tr>
<td>Hora inicial fase activa (caída lateral)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Movimientos de los globos oculares y antenas
Elevación del cefalotorax (parte posterior)
Liberación del rostro y de los ojos. Inicio liberación branquias, pereiópodos y primer segmento abdomen
Liberación de las piezas bucales y primer segmento abdominal. Inicio de la liberación de las quelas
Liberación segundo segmento abdominal
Sobresalen los ojos por la parte posterior del caparazón
Cabeza totalmente fuera y branquias liberadas
Liberación del 3.° segmento abdominal y pereiópodos
Primeros pereiópodos y cuarto segmento abdominal liberados
Liberación total mediante contracciones bruscas
Animal en reposo, pinzas estradas
Actividad normalizada. Movimientos de los pereiópodos para limpiar el caparazón. (Este tiempo coincide con la duración total de la exuvación)
CUADRO II

Comparación del endurecimiento progresivo de las distintas partes del caparazón en cada uno de los distintos estados de postecdisis, según las distintas clases de talla.
+++ muy blando; ++, blando; +, flexible; -, endurecido. (Ver explicación en el texto.)

<table>
<thead>
<tr>
<th>Lc</th>
<th>24 mm</th>
<th>25-29 mm</th>
<th>≥ 30 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado interna</td>
<td>Dias desde la ecdisis</td>
<td>Zona postorbital</td>
<td>Zona mesogástrica</td>
</tr>
<tr>
<td>A₁</td>
<td>1</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>A₂</td>
<td>4</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>B₁</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B₂</td>
<td>16</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A₁</td>
<td>1</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>A₂</td>
<td>4</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>B₁</td>
<td>8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B₂</td>
<td>16</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
FIG. 7. — Duración en días de cada uno de los estados del ciclo de intermunda por clases de talla. Los valores situados a la izquierda de las líneas verticales representan el valor medio, en días, de cada estado contado a partir de M_t para los estados A y B. Para los valores de los estados D_a, D_b, D_c y D_d, se toma como referencia M_t. La duración del estado C (interrumpida) se calcula por diferencia respecto a la duración total del ciclo (según SARMA, 1980). Entre paréntesis se representa la desviación típica y a la derecha de la línea el número de observaciones realizadas en cada caso.
Parece ser que cada uno de los estados aumenta progresivamente su duración, a medida que se separa de la exuviación, observándose una leve disminución de las proporciones respecto al total de la duración del ciclo a medida que aumenta la talla del animal (cuadro III). Esta disminución relativa vendría compensada por el aumento del período de internuda (C), que podría ser el responsable directo de la mayor parte del incremento de la duración total del ciclo con la edad. Sin embargo, el hecho de que los datos biológicos de que se dispone, propios de los experimentos de este tipo, presentan una gran varianza (debido al sexo, talla, estado de madurez, luz, temperatura, freza, amputaciones, a la propia variación de los estados, etc.) y el número de observaciones es distinto en cada caso, se hace dudoso el significado de la aplicación de métodos estadísticos de comparación. Así, las consideraciones expuestas, en cuanto a la duración relativa de los estados de internuda se refiere, deben entenderse como una posible hipótesis de trabajo como base de futuras investigaciones más concretas.

CUADRO III

Porcentaje de la duración de las etapas de premuda, internuda y postmuda para cada rango de talla.

<table>
<thead>
<tr>
<th>Clase de talla</th>
<th>10-19,9</th>
<th>20-23,9</th>
<th>24-26,9</th>
<th>27-29,9</th>
<th>30-39,9</th>
<th>40-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período considerado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>9,2</td>
<td>9,4</td>
<td>10,5</td>
<td>8,5</td>
<td>8,1</td>
<td>7,2</td>
</tr>
<tr>
<td>C</td>
<td>59,4</td>
<td>56,9</td>
<td>59,5</td>
<td>65,4</td>
<td>65,1</td>
<td>71,5</td>
</tr>
<tr>
<td>B</td>
<td>31,4</td>
<td>33,8</td>
<td>30,1</td>
<td>26,2</td>
<td>26,8</td>
<td>21,3</td>
</tr>
</tbody>
</table>

AGRADECIMIENTOS

Agradezco a los doctores Arté y Morales la colaboración y ayuda prestada en el mantenimiento de los animales durante la experiencia. A la señorita B. Molí, la realización de los dibujos y gráficos que acompañan el presente trabajo, y a los doctores Alcaraz y Lleonart las sugerencias y correcciones realizadas.
BIBLIOGRAFÍA

