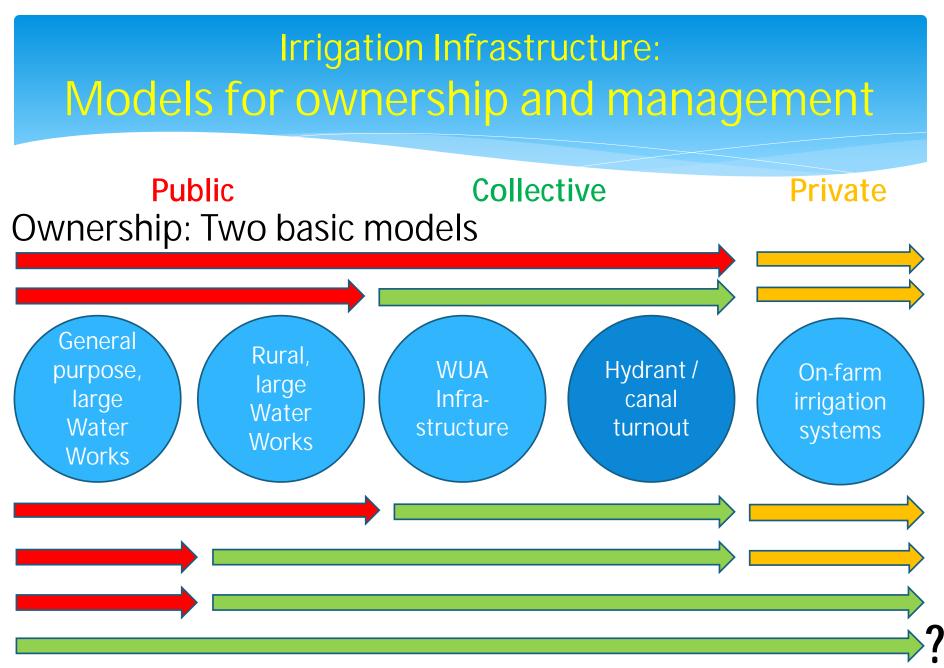
Water Governance in Irrigated **Areas: Old Problems and Innovative Solutions**


E. Playán, J. A. Sagardoy, R. Castillo

CSIC

Res. Prof. Intl. Wat. Manage. Exec. President Consultant

CINGRAL

April 5, 2016

Management: different models, collective role expanding

A Case study approach to the role of WUAs and IAs

Study case: Ghor Kabed Pump Station 91, Jordan

- * Features:
 - * Cooperative
 - * 10534 ha, 254 farm units, Horticulture, profitable
 - * Transfer in 2010: water distribution + maintenance
 - * Old pressurized irrigation system
- * Positive aspects:
 - * 60% of farmers are satisfied with the services
 - * Good management in general
- * Negative aspects:
 - * Less than 50 % of farmers are members of the cooperative
 - * Cooperative not authorized to collect water fees
 - * Most O&M costs covered by the JVA
 - * Little autonomy
- * Sustainable?
 - * Cooperative operation: limited participation

Study case: Kula Municipality, Manisa Province, Turkey

Features:

- * Municipality; (no farmers' organization)
- * Less than 100 ha; Average farm size 0.5 ha
- * Horticulture, profitable
- * New pressurized network in peri-urban area
- * Positive aspects:
 - * Good water distribution by technicians hired by the Municipality
 - Only personnel costs charged to farmers
 - * Good interaction among water providers and farmers
- * Negative aspects:
 - * Municipality bears all the construction and maintenance costs
 - * Municipalities report to the Ministry of Interior: different administrative laws and controls apply
- * Sustainable public operation: good service and interaction

Study case: Zemo Samgori Irrigation System, Georgia

- Features:
 - * 30,000 ha under rehabilitation
 - * Years of abandonment and migration to the nearby capital city
 - * Aged society, with little interest for irrigation
- * Positive aspects:
 - * ?
- * Negative aspects:
 - [•] Irrigation today in less than 10% of the area
 - * All attempts to constitute WUAs have failed
 - * Public Irrigation Agency:
 - * Low training and little knowledge of local problems
 - * Bureaucratic approach: heavy, slow functioning

* Unsustainable

- * Lack of a profitable agricultural model
- * Typical case of Public Administration failure leading to PIM/IMT

Study case: Small WUAs in Fergana Valley, Kyrgyzstan

- * Features
 - * Very small, traditional WUAs
 - * Abundant water / Aged farmers
- Positive aspects
 - * USAID project on WUA development with training programme.
 - Farmers and Agency officers are aware of the theory... but have no interest on the practice
- Negative aspects
 - Poor water management, poor infrastructure maintenance, poor water service
 - * Abandonment of irrigation practice, Emigration to nearby cities
 - * No perspectives for a modern, profitable farming system
 - * Lack of confidence on WUAs
- * Unsustainable
 - * No model for profitable irrigated agriculture
 - * Abundant water may be creating a water management problem

Study case: Roxo-Sado WUA, Alqueva project, Portugal

Features

- * The project involves 110,000 ha of new irrigated land in Alentejo
- * Main canal supplies water to WUAs and large farms
- * Crops: 50% olive, 25% cereals, 25% horticulture
- * Positive aspects
 - * EDIA, public company, is the IA (similar to a Ministry)
 - * Well-trained directive and technical personnel
 - * Design, tendering, supervision and management of all infrastructure
 - * WUAs have quickly organized and federated
- * Some Negative aspects
 - * Inherited from public initiatives:
 - * Lack of optimization
 - * Huge investments
 - * Over dimensioned infrastructure
- * Sustainable
 - * The IA performs rather well from the public sector

Study case: WUAs of the 2nd Region, Antofagasta, Chile

* Features

- * Very small, participative WUAs
- * Never-ending, uncoupled water rights... active water market
- * WUAs similar to the Spanish model
- * Social aspects
 - * Farmers have very good knowledge, fruit export oriented
- * Positive aspects
 - * Reasonably organized, maintain and improve infrastructure
 - * Integrate mining companies (largest water right holders in the area)
- * Some Negative aspects
 - * Need to improve WUAs : statutes, water management, organization
 - * Lack of a higher instance (effective IA) guiding and organizing
 - * In areas the IA sold water rights in excess of availability by 3 times
- * Sustainable?
 - * Risk of Water bankruptcy

Study case: Private participation (PPP) in Spain

Features

- * Applicable to developed areas
- * Large presence of multinational urban water utility companies
- * Two 50,000 ha projects on-going, with large organizational differences

* Positive aspects:

- * The participative structure remains in the hands of farmers
- * The technical body is (recently) supplied by a company

* Negative aspects:

- * Problem: large costs that the public system cannot afford
- * Companies carry more overheads and taxes... it could work if WUA personnel was inefficient
- * Expansion limited by the low cost of WUA management operations

* Sustainability?

- * Political interference can be a key negative factor
- * Large differences in the degree of success... early to tell!
- * In the long run, convergence with urban water seems to be the goal!

Summarizing

- * The private level
 - * Must be effective: profit (of some kind: appreciation)
- * The "collective" level:
 - * **Cooperatives** for irrigation need to be mandatory
 - * Municipalities suitable for small areas; have financial strength
 - * **Small WUAs** are very sensitive to local factors: agricultural profit, commitment, operating costs, farmers' knowledge...
 - * **Regular WUAs** can work very well under profitability, maturity and technical skills
- * The "Public" level, including the Irrigation Agency:
 - * Public: typical negative examples. Positive ones can be found!
 - * Public company: Good examples identified. Negative ones can be found!
 - * PPP: can be interesting in mature, developed areas. Higher costs, higher efficiency?

Opinions on WUAs and IAs: probably as good as yours!

(Symbol Ù indicates discrepancies between authors)

Role and responsibility of WUAs

- * Rights and duties of WUA members? Equitable? Proportional?
 - * In a development context, this is very site specific (customs)
 - * Some proportionality to land tenure is required
 - * Need to define this in the WUA rules and regulations
 - * Need to state the WUA Water rights in the transfer agreement
- * When to start construction: before or after WUA creation?
 - * First WUAs, to facilitate their early involvement
 - * Construction in response to the needs expressed by WUA

Role and responsibility of WUAs

- * At the time of transfer: small or large WUAs? Ù
 - Depends on the context:
 - * Development: small is better. Size measured in terms of households
 - * Developed: the larger the better, to keep costs low
 - * The key is technical staff: minimum size must permit to hire personnel
 - * At least, 200-300 ha are required in development
 - * Small WUAs may work if hydraulically simple and focused

Role and responsibility of WUAs

- * What type of WUA governance?
 - * General assembly + executive body + technical personnel
 - * Need for authority with farmers, particularly at the beginning
 - * Qualified technical staff (operation, maintenance and accounting)
 - * Board members are not paid: unsustainable and niche for corruption
- * Financial management: how to collect fees?
 - * Valuing farming and water service
 - * Not paying is an indicator of misconception or underperformance
 - * Partially pay the WUA before irrigation; apply penalties

Role and responsibility of IAs

- * Which tasks for Irrigation Agencies (IAs)?
 - * Primarily ensure water supply; gradually withdraw
 - * IA to Oversight WUAs regarding finances, equity in access, subsidiarity, legal issues responsibility...
 - * IA to retain rehabilitation and improvement
 - * After 5 yrs. (pressurized/profitable) to 15 yrs. (surface/subsistence), transfer can start
- * Which IA financial management?
 - * Economic self-sufficiency of the IA will not be attained
 - * IAs typically do more than irrigation, but can only recover irrigation-related costs
 - * PIM is not the solution for zero-cost IA operation (at least not in the short term)... this applies to virtually all public services

Role and responsibility of IAs

- * Which technical profiles for an IA? $\grave{\cup}$
 - * Particularly, engineers, agronomists and economists.
 - * Sociologists and environmentalists for conception and follow-up.
 - * In all cases: practical life-long training (peer-to-peer), experience sharing
 - * IA models:
 - * Do the complete project cycle (needing a large engineering staff)
 - * Supervise contractors (specialize on supervisory role)
- * Will IA personnel support transfer if it endangers its jobs? $\check{\cup}$
 - * Transfer rarely decreases the need for technical personnel
 - * IA personnel needs to perceive mutually beneficial relation with WUA
 - * Changes are often slow, and there is time to manage staff

Role and responsibility of IAs

* How to ensure success? There is not much new:

- * Early engagement of stakeholders
- * Planning for economic success of the farming operation is equally important.
- * Good engineering practice is critical, for farmers are not ready to see investments fail... they will lose attachment to the project
 - * Seek technical success
 - * Seek economic efficiency
 - ... Ways to spread good practice to the locals
- * The irrigation projects must be the answer to the social requirements

Concluding Remarks and open questions

Take home messages

- * WUAs are neither the problem nor the solution, but part of a successful model based on the maturity of participants (medium and long term)
- * Farming success is required for irrigation success
- * PIM / transfer / WUA success assessment:
 - * Key role of governmental policies (indicators required!)
 - * Can override the interest and capacities of the WUAs.
 - * Monitoring and Evaluation programmes should be established at IA and local level (WUAs)
- * Peer-to-peer training for professional farmers, technical bodies and managerial bodies. Extend this to farmers' irrigation management
- * IA must be fully operational for at least 5-15 years!

Thanks!