MICROARQUITECTURA, CARACTERÍSTICAS Y COMPOSICIÓN DE LOS OTOLITOS DE LOS PECES TELEÓSTEOS
Memoria redactada para aspirar al grado de Doctor en Ciencias Biológicas por la Universidad de Barcelona, por:

Beatriz Morales Nin

Este trabajo ha sido dirigido por el Dr. Carlos Bas Peired, Profesor de Investigación del Instituto de Investigaciones Pesqueras de Barcelona (C.S.I.C.)

Dr. D. Carlos Bas Peired
A Pepe, Miguel, Elena y Beatriz.
ÍNDICE

I. INTRODUCCIÓN
 I.1 Planteamiento del problema y objetivos 1
 I.2 Plan de trabajo 4
 I.3 Antecedentes
 I.3.1 El sistema laberíntico de los Teleósteos 6
 I.3.2 Otolitos cristalinos 11
 I.4 Agradecimientos 12

II MICROARQUITECTURA DE LOS OTOLITOS
 II.1 Introducción 14
 II.2 Material y métodos 16
 II.3 Estructura de la fracción cristalina 20
 II.4 Estructura de la fracción orgánica 36
 II.5 Otolitos cristalinos 59
 II.6 Estructura de los patrones de crecimiento
 II.6.1 Incrementos de crecimiento diario 73
 II.6.2 Agrupaciones de ritmo supradiario 77
 II.6.3 Estructura de los anillos de crecimiento estacional 79
 II.7 Estructura de las discontinuidades del crecimiento 81
 II.8 Estructura de los anillos de freza 84
 II.9 Modelo estructural propuesto 115

III CARACTERÍSTICAS Y EVOLUCIÓN DE LOS COMPONENTES DE LOS OTOLITOS
 III.1 Introducción 121
 III.2 Material y métodos
 1) Determinación de los elementos presentes en los otolitos 123
 2) Determinación de la composición cristalográfica de los otolitos 123
 3) Determinación de la proporción de materia orgánica en los otolitos 124
 4) Determinación de la composición aminoacídica de los otolitos 125
III.3 Resultados obtenidos
III.3.1 Determinación de los elementos presentes en los otolitos
III.3.2 Determinación de la composición cristalográfica de los otolitos
III.3.3 Determinación de la proporción de materia orgánica en los otolitos
III.3.4 Determinación de la composición aminoacídica de los otolitos

III.4 Discusión y conclusiones

IV FORMACIÓN Y PERIODICIDAD DE LOS INCREMENTOS DE CRECIMIENTO DIARIO EN LOS OTOLITOS DE Dicentrarchus labrax

IV.1 Introducción 162
IV.2 Material y métodos 163
IV.3 Formación y periodicidad de los incrementos
IV.3.1 Inicio de la formación de los incrementos de crecimiento diario 165
IV.3.2 Periodicidad de la formación de los incrementos 169
IV.4 Características de los ICD formados durante las primeras fases de vida
IV.4.1 Variación del grosor de los ICD hasta los 100 días de vida 172
IV.4.2 Pautas de crecimiento de los otolitos
 Crecimiento en longitud y anchura 178
 Relación entre la talla y los parámetros del otolito 179
 Crecimiento de los juveniles 180

IV.5 Influencia de los factores externos en la formación de los incrementos de crecimiento diario
IV.5.1 Influencia del fotoperíodo 191
IV.5.2 Influencia de la alimentación 203
IV.5.3 Efecto de la salinidad 180

IV.6 Discusión y conclusiones 212
V RESULTADOS GLOBALES

V.1 Formación y características del otolito: interacciones entre la matriz protéica y el carbonato cálcico 213

V.2 Características y desarrollo de los otolitos

V.2.1 Características estructurales y químicas 220

V.2.2 Desarrollo del núcleo de los otolitos 222

V.3 Influencia del medio en la formación de los incrementos de crecimiento diario 223

V.4 Conclusiones 229

VI BIBLIOGRAFÍA 232
I INTRODUCCIÓN
I.1 Planteamiento del problema y objetivos

Los otolitos de los Teleósteos son cuerpos policristalinos que actúan como estatolitos en el sistema laberíntico. Su compleja estructura, compuesta de macrocristales de aragonito y fibras de materia orgánica, se resuelve en la formación de bandas o anillos, alternadamente traslúcidos u opacos, utilizados tradicionalmente en la determinación de la edad de los peces.

El crecimiento del otolito se realiza por aposición periódica de materiales, formándose estructuras rítmicas, progresivamente más complejas dependiendo del nivel estructural considerado.

Las relaciones existentes entre el crecimiento del pez y el del otolito, así como la periodicidad de la formación de estos, abren un amplio campo de posibilidades en el estudio del crecimiento y de los ritmos de éste. Los ritmos de formación, las irregularidades de este patrón de crecimiento, el grosor de los incrementos y su naturaleza pueden reflejar la tasa de crecimiento, las variaciones del mismo y los efectos del medio sobre la especie estudiada. La freza es otro factor que produce la formación de anillos o discontinuidades del patrón de crecimiento del otolito. Dichas interrupciones permiten determinar la edad de la primera puesta, el número de puestas y la frecuencia de las mismas (BLACKER, 1974; MIRANDA 1981).

Paralelamente a la creciente importancia de los otolitos en la determinación de la edad y de las tasas de crecimiento y mortalidad larvaria, se han desarrollado diversas metodologías de gran interés biológico basadas en su composición química: la formación del otolito se produce en equilibrio con el medio, por tanto la proporción de sus componentes puede ser indicativa de los factores ambientales durante la vida del pez. Por ejemplo, el isotopo 018 permite establecer la temperatura a la que el pez vivió (MULCAHY, 1979). La inclusión de metales en la matriz del otolito permite determinar las diferencias entre poblaciones de áreas distintas (GAULDIE, 1980) o el grado de contaminación del medio (MORALES, 1980).
A pesar de la amplia utilización de los otolitos en los estudios ecológico-pesqueros y en la biología de las especies, las características microestructurales de los mismos, las interacciones entre sus partes, la variación de sus características químicas con la edad y las influencias de los factores bióticos y abióticos sobre ellos no son conocidos. Considerando dicha falta de información y la importancia que tienen los otolitos desde el punto de vista biológico, hemos creído interesante intentar cubrir las lagunas existentes en este campo, abarcando los siguientes aspectos:

a) Estructura y desarrollo de los otolitos: como base para los estudios a realizar es necesario conocer detalladamente los caracteres microestructurales de los otolitos. Efectuando un estudio detenido de sus componentes, las interacciones entre estos y el modo en que se resuelven sus estructuras de crecimiento, de diferente período y las particularidades de cada uno de los tipos de estructuras formados. Las discontinuidades del crecimiento del tejido del otolito y sus causas son estudiadas en detalle, especialmente en cuanto a la estructura de las bandas de freza y diferenciando las producidas por esta causa de las debidas al estrés físico. En este apartado se han incluido los otolitos cristalinos, describiendo su estructura.

b) Composición química de los otolitos: determinada desde el aspecto de sus dos componentes principales, orgánico y cristalino.

Dentro de este objetivo y motivados por las variaciones estructurales que los otolitos presentan al envejecer, hemos realizado análisis de ejemplares pertenecientes a un amplio rango de edades, intentando establecer los cambios producidos y sus causas.

c) Características de los incrementos de crecimiento diario en las primeras fases de vida y factores que los afecten: dentro de este tema se ha establecido, en primer lugar, las características de los incrementos de crecimiento diario en Dicentrarchus labrax, determinando el inicio de su formación y la periodicidad de la misma. A continuación se determinó, en esta especie, la periodicidad y momento del día en que se forman los incrementos de crecimiento.
Finalmente, se estudió la influencia del desarrollo y de varios factores externos, tales como alimentación, fotoperíodo y salinidad, en la formación de los incrementos de crecimiento diario. En este estudio se han empleado larvas y juveniles de D. labrax procedentes de una misma puesta en cada una de las fases experimentales consideradas.

Con todo ello deseamos establecer una serie de datos fundamentales para el conocimiento de las características de los otolitos y su variación con la edad, aportando nuevos datos al campo de los conocimientos existentes. Aporte de gran interés biológico ya que proporciona nueva información sobre los ritmos de crecimiento y sus tasas, las respuestas de las especies en sus primeras fases ante los cambios morfológicos y del medio y las características de un tejido, como el de los otolitos, de importancia funcional en la respuesta del animal a los estímulos externos y motrices.
I.2 Plan de trabajo

Se elaboró un estudio preliminar de la situación, estructura y morfología de los otolitos -Ap.I.3, Antecedentes- con objeto de facilitar la comprensión de los temas tratados en capítulos posteriores.

El trabajo propiamente dicho, se inicia con un completo estudio de la estructura y formación de los otolitos, Cap. II. En este capítulo se abarcan: la microarquitectura de los otolitos, considerando la estructura de la fracción cristalina, de la fracción orgánica y de los patrones de crecimiento cíclico. En este último punto se estudian y describen las características de los incrementos de crecimiento diario, supradiario, estacional, de las discontinuidades del crecimiento y de los anillos de freza. Así mismo, se analiza la estructura de los otolitos cristalinos.

Se han utilizado otolitos de 6 especies diferentes, tres procedentes del Mediterráneo: Merlucius merlucius; Dicentrarchus labrax y Pagellus acarne y tres capturadas en el Atlántico Sud-oriental: Genypterus capensis; Merlucius capensis y M. paradoxus.

La metodología empleada ha consistido en estudiar mediante microscopía electrónica secciones realizadas según los distintos planos de formación de los otolitos, comparando los diferentes niveles estructurales estudiados. Se ha elaborado un modelo que a nuestro juicio describe la compleja microarquitectura de dichos cuerpos policristalinos.

En el Capítulo III se estudian los elementos constituyentes de los otolitos y su evolución a lo largo de la vida del pez, considerando: a) La composición elemental del núcleo y del primer anillo hialino en D. labrax, empleando para ello un analizador de rayos X (EDAX) acoplado a un microscopio electrónico de barrido. b) Se identificó el componente cristalino, mediante un difractómetro de rayos X, de los otolitos de D. labrax, M. capensis y G. capensis. En este apartado se analizan los otolitos cristalinos de las dos últimas especies consideradas. c) Se analizó el componente orgánico de los otolitos de las especies del apartado anterior, considerando la cantidad de materia orgánica, determinada por la técnica de Microkjeldahl, su variación
en un amplio rango de edades y la composición aminoacídica, determinada por medio de un autoanalizador Beckman.

En el Capítulo IV se aborda la formación y morfología de los incrementos de crecimiento diario, abarcando el inicio de la formación de los incrementos de crecimiento diario y su periodicidad, así como las características de los mismos en relación con el proceso ontogénico y los factores ambientales.

Así mismo, se determinó la influencia de distintos fotoperíodos: natural, oscuridad e iluminación continuos, y de los cambios bruscos de alimentación y salinidad.

En este capítulo se han empleado otolitos de larvas y juveniles de D. labrax, otolitos que se han estudiado por medio de microscopía óptica y electrónica. En algunos casos se ha utilizado un microscopio proyector de pantalla Nikon.

Finalmente, en el Cap. V se describen los resultados obtenidos en los distintos apartados enumerando las principales conclusiones generales del presente trabajo.

En cada uno de los temas tratados se ha incluido una presentación, planteando los centros de interés que se pretenden dilucidar. La diversidad de técnicas empleadas en el presente trabajo han aconsejado desglosarlas, con objeto de obtener mayor claridad, en varios apartados correspondientes a cada uno de los temas tratados.

En último lugar, Cap. VI, se enumera una extensa lista de referencias bibliográficas.
I.3 Antecedentes

I.3.1. El sistema laberíntico de los Teleósteos; los otolitos: forma y función

El órgano auditivo de los peces está compuesto únicamente del oído interno, que contiene los dispositivos sensoriales responsables de la audición y del equilibrio.

El laberinto se considera que representa el estadio final del proceso de profundización de los neuromastos, del tipo correspondiente a la línea lateral, llegando a estar casi completamente separados del medio y englobados en la caja craneana. El ductus endolymphaticus de los esclamobranquios actúa como un ligero nexo de unión entre el medio externo y el oído. El laberinto se origina ontogénicamente de un placode común a la línea lateral (LOWENSTEIN, 1962). La subdivisión del laberinto en canales semicirculares y órganos otolíticos es filogenéticamente fundamental y se encuentra por primera vez en los Ciclóstomos. Salvo pequeñas diferencias en su estructura, como la ausencia de canal semicircular horizontal en los Ciclóstomos y la presencia de una abertura externa en los elasmobranquios, la mayoría de las variaciones en la estructura del sistema laberíntico conciernen a las proporciones relativas y a la posición de los órganos otolíticos, utriculus, sacculus y lagena. La completa ausencia de cochlea o de cualquier rudimento de ella, diferencia netamente el laberinto de los peces del oído interno de otros vertebrados.

La pars superior del laberinto comprende los tres canales semicirculares y el utriculus. Los canales semicirculares son tubos membranosos de forma curvada, llenos de fluido. En uno de los extremos los canales se abren a una ampulla esférica, la cual contiene una zona sensitiva, la cresta de la ampolla. Los tres canales se disponen en los tres planos del espacio, perpendicularmente entre sí y con una inclinación de 45° respecto al plano sagital. Los canales se abren en el utriculus que a su vez se comunica con la pars inferior del laberinto, formada por dos cámaras llamadas sacculus y lagena (Fig. 1.1 y 1.2).

Las zonas sensitivas de las ampollas consisten en un saliente en forma

Figura I.2- Sistema auditivo interno de los Teleósteos (tomado de Blacker, 1974).
de cresta, la crista ampullaris, la cual sobresale en la parte central. Sobre la cresta se encuentra el epitelio sensorial compuesto de células sensoriales y de soporte. Las células sensoriales son de tipo ciliar con un kinocilio rodeado de varias estereocilias que actúan como soporte (POPPER, 1980). Estas células están embebidas en una gelatina que discurre desde la cima de la crista al lado opuesto de la pared de la ampulla. Esta estructura actúa como la hoja de una turbina y es desviada por los movimientos de la linfa dentro del canal. Estos movimientos tienen lugar cuando el canal se ve sujeto a aceleraciones angulares producidas por movimientos de la cabeza del pez en el espacio.

Las cámaras otológicas utriculus, sacculus y lagena actúan como estadocistos. La zona sensorial, mácula, consiste en células ciliares con procesos pilíferos y células de soporte. Sobre cada zona sensorial se sitúa un cuerpo cristalino, usualmente compuesto de sales de calcio. Este cuerpo, oto-lito, es específicamente más denso que la endolinfa que lo rodea, por tanto tiende a conseguir el nivel más bajo posible, deslizándose y presionando el epitelio sensorial, dependiendo de los movimientos y de las ondas sonoras.

Los oto-litos están fijados sobre la mácula mediante una masa gelatinosa la membrana otólica, que permite el movimiento independiente de ambas estructuras. La membrana otólica posee estructura fibrosa con numerosos huecos, en cada uno de éstos, se introduce la terminación de un kinocilio (POPPER, 1981).

Las células sensoriales de las cámaras óticas presentan la misma estructura que las de las cristas, son de forma elipsoidal; su base, sinapsa con neuronas aferentes y eferentes pertenecientes al VIII nervio craneal. En el ápice poseen un grupo de cilia que se proyectan en el saco otológico. Este extremo ciliar posee gran número de estereocilias (40 a 70 dependiendo de la especie) y un único kinocilium situado en posición excéntrica (POPPER, 1981).

Las diferencias en la relación entre el oto-lito y la mácula son sustanciales, en algunas especies el oto-lito cubre completamente las células sensoriales, mientras que en otras el oto-lito puede ser menor que la mácula o puede estar situado de manera que solo ciertas partes de él estén en contacto con la mácula. En todos los casos la membrana otólica se extiende poniendo en con-
tacto el otolito con todas las células sensoriales.

La irrigación sanguínea proviene de la carótida interna, los vasos capilares son abundantes en el tejido conectivo que llena los espacios entre el laberinto y los huesos craneales. La pared del sacculus está ricamente regada por vasos y capilares, que se ramifican entre los nervios de la mácula acústica, sin penetrar la membrana otolítica. La linfa que llena las cavidades del oído es segregada por las paredes del mismo y no tiene contacto con el fluido craneal del pez (POPPER, 1980).

El laberinto no está incluido en el tejido óseo, sino que prácticamente está suspendido en la cavidad craneal. El laberinto se encuentra bañado por la perilinfa, o fluido craneal de composición similar al plasma, salvo en su concentración de ión K⁺ que es menor (ENGER, 1964). Las propiedades del fluido que llena el laberinto son bastante diferentes a las de la perilinfa; mientras el nivel de ión K⁺ es 23 veces mayor, la cantidad de Na⁺ es menor y la cantidad del Cl⁻ es prácticamente igual en la perilinfa y la endolinfa (ENGER, op. cit.).

Los cuerpos cristalinos, otolitos, poseen estructura y forma característica dependiendo del sáculo ótico que ocupen. La sagitta, situada en el sacculus, posee generalmente forma oval, aunque puede variar mucho en su forma. Generalmente presenta un surco profundo, sulcus acusticus, que recorre la cara contigua a la mácula, dentro de esta hendidura se introduce el epitelio sensorial. La sagitta, cuya forma y tamaño son caracteres específicos, ocupa un 75% del volumen de la cámara sacular.

En la lagena se sitúa el otolito asteriscus de forma aproximadamente triangular. Este otolito no posee sulcus acusticus, y presentan una marcada dentición en la zona media, cercana al epitelio sensorial de la lagena. Estos otolitos ocupan, prácticamente la totalidad de la cavidad lagernar.

El otolito lapillus es el de menor tamaño, y se encuentra situado en el utriculus.

El tamaño y forma de la cavidades saculares y de los otolitos varía según la especie, aunque en general su tamaño es mucho mayor que en el resto
de los vertebrados (BLACKER, 1974).

Las funciones del laberinto son múltiples, siendo las principales: el mantenimiento y regulación del tono muscular, la recepción de los estímulos producidos por las aceleraciones angulares y lineares, la gravedad y el sonido. La pars superior y la pars inferior poseen funciones diferenciadas. La primera es responsable de las respuestas posturales a las aceleraciones angulares y a la gravedad, además, las áreas sensoriales de los canales semicirculares producen descargas espontáneas, incluso cuando el laberinto está en reposo, que contribuyen al mantenimiento del tono muscular (LOWESTEIN, 1957).

La pars inferior es la implicada en la recepción del sonido, aunque parte de la mácula sacular responde a los cambios de postura.

Las distintas capacidades de audición de los teleósteos se basan, principalmente, en la variación morfológica de la estructura del sacculus, y de la lagena. Las variaciones morfológicas más importantes son la variación en tamaño, forma y relieve de los otolitos así como las discrepancias en el tamaño relativo de la mácula y del otolito y su grado de asociación.
1.3.2. Otolitos cristalinos

Con cierta frecuencia se encuentran en los peces otolitos anormales, con su patrón de formación total o parcialmente alterado. Estos otolitos reciben el nombre de cristalinos debido a su aspecto translúcido y con grusos cristales.

En general los otolitos cristalinos corresponden a los siguientes tipos principales, los que están totalmente mal formados, muy poco frecuentes (0,1% en los gádidos) y los parcialmente alterados. Dentro de este tipo se presentan dos clases principales de otolitos: los que presentan una zona marginal cristalina y los que tienen toda la capa externa cristalina. Este tipo de otolitos cristalinos es más frecuente, alrededor de un 3% de los ejemplares de diversas especies los presentan (datos personales).

Dado que la forma y tamaño de los otolitos son características específicas controladas genéticamente, se presenta la cuestión de cómo se puede producir las alteraciones en la formación del otolito. Generalmente solo uno de los otolitos presenta alteraciones por tanto, es de suponer que esta alteración en la cristalización se debe a un proceso local. Podría darse el caso de una infección, o algún otro tipo de anomalía que afectase únicamente a un sé culo ótico.

Otro hecho destacable es la mayor frecuencia de otolitos cristalinos en los ejemplares más viejos (90% mayores de 3 años, en Merluccius capensis) lo cual parece reforzar la impresión de que la formación de otolitos cristalinos está ligada a un proceso degenerativo del sé culo ótico, asociado con la edad.
I.4 Agradecimientos

Quiero manifestar mi agradecimiento a todas aquellas personas que con su ayuda han hecho posible la realización de esta Tesis.

En primer lugar al Dr. Carlos Bas por la dirección del presente trabajo y por el interés que se ha tomado tanto en los aspectos cinetíficos como en las ayudas de orden material que han permitido desarrollar este trabajo.

Al Dr. Enrique Arias por la ayuda prestada en los aspectos químicos de esta Tesis y por la revisión crítica y sugerencias aportadas.

Quiero hacer especial mención a la colaboración de los Dres. Silvia Zanuy y Manuel Carrillo, y en persona de éste, a la Planta de Acuicultura de Torre la Sal, por haber facilitado los *Dicentrarchus labrax* empleados en los procesos experimentales.

Al Dr. Pedro Arte cuya experiencia y cooperación han permitido mantener con éxito a los numerosos grupos experimentales en las instalaciones del Acuario del Instituto de Investigaciones Pesqueras.

A D. Antonio Fauquet por la preparación de las muestras para microscopía electrónica y por las numerosas horas empleadas en la observación de las mismas.

Al Dr. Jordi Lleonart por el asesoramiento estadístico y por la introducción a las técnicas del mismo.

Al Dr. Enrique Macpherson por su apoyo y sugerencias, así como por haber facilitado parte del material empleado, procedente de Sud-Africa.

A la Sra. Montserrat Marsal del Departamento de Metalurgia de la Escuela Técnica Superior de Ingenieros Industriales, por los análisis de rayos X (EDAX) y por la observación de algunas muestras mediante microscopía electrónica.

A los Dres. Parra y Traveria, pertenecientes al Consejo Superior de Investigaciones, por el análisis de aminoácidos y de la composición cristalográfica, respectivamente de los otolitos.

A la Sra. Mª Luisa Cros por sus observaciones sobre la estructura cristalina.
A la Sra. Balbina Moli por la elaboración de los dibujos que acompañan al texto.

A la Sra. Silvia Verón por el mecanografiado del texto.

Al Sr. Juan Biosca por el procesamiento del numeroso material gráfico que acompaña esta memoria.

Finalmente a todos los miembros de la U.E.I. de Recursos del Instituto de Investigaciones Pesqueras de Barcelona por su colaboración.
II MICROARQUITECTURA DE LOS OTOLITOS
II.1 Introducción

Las características morfológicas y estructurales de los cuerpos cristalinos, que actúan como cuerpos estáticos en el sistema laberíntico de los vertebrados, están estrechamente ligados al grado evolutivo y filogenético. En la Fig. II.1 se resumen sus diversos tipos estructurales, funcionales y su composición.

Los otolitos en los Teleósteos están compuestos por una fracción orgánica y otra inorgánica, aragonito. Las variaciones en la proporción de ambos componentes originan la formación de anillos de crecimiento. Así, a nivel diario, se forman en numerosas especies un anillo de crecimiento diario, compuesto por una unidad incremental, rica en cristales y fibras orgánicas y una unidad discontinua, formada mayoritariamente por fibras orgánicas (PANNELLA, 1971, 74, 82; MUGIYA, 1982).

Dada la importancia de los otolitos en los estudios que se realizan sobre los teleósteos y considerando que actualmente no se conoce totalmente su microarquitectura, ésta se ha analizado detalladamente, tomando en cuenta los siguientes aspectos:
- Estructura cristalina
- Estructura de la fracción proteica
- Estructura de los patrones de crecimiento cíclico
- Otolitos cristalinos
- Discontinuidades del crecimiento

A partir de los datos obtenidos se elaboró un modelo estructural en el que se describe la interacción entre los distintos elementos.
* presencia de cuerpos exógenos en el laberinto

Figura 11.1 - Esquema descriptivo de los cuerpos estaticos presentes en el sistema laberíntico de los principales grupos de vertebrados (tomado de Carlstrom, 1963).
II.2 Material y métodos

En el estudio de la microarquitectura de los otolitos se hace necesario el empleo de técnicas que nos permitan acceder a su estructura interna. En el presente trabajo se han empleado secciones transversales y longitudinales de los otolitos, es decir según el plano perpendicular al eje antero-posterior y paralelamente a dicho plano (Fig. II.2). Las superficies así obtenidas se han estudiado mediante un microscopio electrónico de barrido (scanner) por permitir éste, gracias a sus especiales características, una buena observación de la estructura del otolito.

En la preparación de las secciones se han empleado dos técnicas, el pulido y la fractura. El pulido se realizó según el plano antero-posterior del otolito, en algunos casos con otolitos incluidos en Araldita. El pulido de los otolitos incluidos se realizó con un juego de muelas de precisión perteneciente al Departamento de Cristalografía de la Universidad de Barcelona. Los otolitos sin incluir se pulieron a mano mediante un juego de muelas rotativas o sobre lámina de vidrio con aluminas de grosor decreciente. El acabado final se realizó con pasta de diamante en los otolitos incluidos. En ambos casos se empleó agua como lubricante.

Las secciones transversales se realizaron por simple rotura, mediante presión con el filo de un bisturí sobre una superficie semi-rígida. En algunos casos la superficie de rotura se pulió según la técnica descrita.

Todas las muestras preparadas se lavaron repetidas veces con agua destilada y ultrasonidos, eliminando los restos producidos por el pulido. La mayor parte de las muestras se trataron con HCl 0,1 N durante unos segundos, eliminando las estrías producidas por el pulido y facilitando la diferenciación de las estructuras del otolito.

Para el estudio de la matriz protética de los otolitos se requiere el empleo de técnicas que fijando la matriz permitan su observación al microscopio electrónico, es decir, que las preparen para ser sometidas al alto vacío y a las fuertes cargas eléctricas de este aparato.
Figura III.2- Esquema mostrando los distintos planos de corte empleados en el estudio de los otolitos.
La metodología empleada ha consistido en una serie de pasos; en primer lugar los otolitos recién extraídos se lavaron con cacodilato sódico 0,1 M, cortándose transversalmente a continuación. La fijación se realizó con 2,5 % de glutaraldehido más 2 % de paraformaldehído en un tampón compuesto de cacodilato sódico 0,1 M y cetilperidinio clórico al 4 %. La duración de la fijación fue de 30 minutos.

Los otolitos se desmineralizaron con EDTA 0,2 M (pH = 7,4) durante 5 minutos. La mitad de cada uno de los otolitos se deshidrató en una serie de pasos de 30 minutos de duración a 4°C de temperatura, en etanol de concentraciones que aumentaron progresivamente de 50 % a 100 %. Una de las mitades de cada otolito se trató con hipoclorito sódico al 1 % durante 5 minutos.

Todas las muestras se introdujeron a continuación en acetato de amilo y se situaron en los cubiletes del aparato de punto crítico.

Las secciones se deshidrataron mediante la técnica de punto crítico, consistente en una combinación de presión y temperatura tales que el paso de líquido a gas se produce sin una interfase. Para llevar a cabo este proceso a una temperatura y presión convenientes, es necesario que las muestras estén en anhídrido carbónico líquido. El paso entre la muestra situada en acetato de amilo y el anhídrido líquido se realiza mediante sucesivos llenados y vaciados del aparato de punto crítico con este último, hasta que todo el acetato desaparece.

Después de esta sustitución se realiza el proceso de secado, calentando a 32°C, momento en que la presión de la cámara pasa a 1500 psi, convirtiéndose todo el líquido en gas. En este momento puede abrirse la cámara dejando escapar el gas y extrayendo el tejido seco. Las muestras así tratadas se han preparado para su observación al scanner como el resto de los otolitos.

Las muestras se fijaron a los estativos del microscopio mediante plata coloidal. Los pequeños bloques de resina plástica que contenían los otolitos pulidos se fijaron de igual manera, pero situando, además, un fino filamento de plata desde el estativo a la superficie a estudiar. De esta manera se previno la formación de cargas eléctricas durante la observación.
Los estativos de las muestras preparadas se introdujeron en un rota
tapor, cubriéndose con una capa de oro-paladio de 300 Å de grosor.

La observación se realizó mediante un scanner marca Stereoscan 180 de
la casa Cambridge Instruments, perteneciente al Instituto de Investigaciones
Pesqueras de Barcelona. La tensión empleada durante la observación fué de
30 KV.

Las especies estudiadas pertenecieron a dos áreas distintas, como son
el Mediterráneo y el Atlántico Sud-oriental, siendo las siguientes: _Dicone-
trachus labrax_, _Pagellus acarne_ y _Merluccius merluccius_, y en la segunda
Merluccius capensis, _Merluccius paradoxus_ y _Genypterus capensis_, procedentes
de pescas de arrastre y parte de los ejemplares de _D. labrax_ del Centro de
Acuicultura de Torre la Sal.
II.3 Estructura de la fracción cristalina

El carbonato cálcico cristalizado en forma de aragonito es el compone
rente mayoritario de los otolitos de los Teleósteos. La estructura de los
cristales de aragonito es compleja; en general los cristales se disponen
radialmente del centro al borde de los otolitos.

En la Fig. II.3 correspondiente a una sección obtenida por fractura
de un otolito de *P. acarne* se muestran los haces cristalinos. La rotura de
los cristales se ha producido según varios planos, permitiendo observar di-
dferentes características de los cristales. En el plano de fractura señalado
con una flecha las secciones de los cristales presentan la forma típica
del aragonito. En otros planos la rotura permite visualizar cristales en
forma prismática (P) o en forma de haces de fibras cristalinas (F). Las ma-
trices orgánicas han dejado su impresión en los cristales, apareciendo como
un fino retículo grabado en la superficie cristalina.

En la Fig. II.4 se muestra el borde de una sección de un otolito de
D. labrax obtenida como en la Fig. anterior. Uno de los cristales se ha se-
nalado con flechas para que pueda seguirse en su totalidad. La zona central
del otolito, correspondiente al núcleo, muestra macrocristales gruesos com-
puestos por unidades de 2 micrometros de grosor, formadas a su vez por dos
sub-unidades de crecimiento diario. La más gruesa de ellas, correspondería
al período de máximo crecimiento, mientras que la más fina, se depositaría
durante el período de disminución de deposición de calcio (ver Cap. IV).
Cada día se formarían, por tanto, dos unidades de crecimiento cristalino
correspondientes a los ciclos metabólicos del calcio.

En la zona marginal de esta *sagitta* (señalada con H), formada durante
el período de crecimiento lento invernal, los cristales de aragonito son me-
nos gruesos, disminuyendo su diámetro drásticamente. Las unidades de creci-
miento cristalino son más irregulares y más finas que en la zona de creci-
miento intenso.

En las secciones pulidas los cristales prismáticos son alterados de
forma que muestran los elementos que los constituyen. En la Fig. II.6, correspondiente a un otolito de *D. labrax*, los macrocristales prismáticos han desaparecido, observándose numerosísimos microcristales aciculares dispuestos radialmente. Cada 3 micrmetros, aproximadamente y dispuestas en sentido radial, se encuentran unas suturas (señalas con doble flecha) que registran las separaciones entre un macrocristal prismático y el contiguo. Los microcristales se ven interrumpidos periódicamente por unas discontinuidades situadas perpendicularmente a ellos. Estas interrupciones o zonas discontinuas (ZD) corresponden al ciclo de disminución de la deposición del calcio.

Las unidades de crecimiento continuo (ZC en la Fig.) se forman durante los ciclos de deposición intensa. La formación de las zonas de crecimiento continuo y discontinuo se manifiesta en las secciones sin pulir de los otolitos, aunque no tan claramente como en las pulidas (Fig. II.4).

La tasa de calcio en el plasma de *D. labrax* disminuye al amanecer, período en el que se formaría la zona discontinua (WATABE et alt., 1981, ver Cap. IV). Sin embargo, es notable destacar que si bien gran parte de los cristales son interrumpidos en la zona discontinua, muchos de ellos continúan su crecimiento a través de varias de estas zonas (señaladas en la Fig. con una flecha).

La continuidad de parte de los cristales es importante desde dos puntos de vista; primero, por dar una mayor cohesión estructural del otolito, justificando que éste no se fracture siguiendo un plano, sino que lo haga por numerosas partes. En segundo lugar, implica que la tasa de deposición de calcio disminuye, pero no se detiene totalmente.

En la Fig. II.7 perteneciente a un otolito de *M. capensis* se muestran numerosas fibras cristalinas y cristales prismáticos. El intercrecimiento cristalino produce frecuentemente cuñas, disponiéndose las fibras en zig-zag. Este tipo de crecimiento es común en todos los otolitos, ver Figs. II.3 y II.4. Según DEGENS (1969) el número de cuñas depende de la cantidad de materia orgánica y de la proporción de iones Na en el otolito.

A continuación, se muestran dos figuras correspondientes a otolitos
de *P. acarne* en las que se aprecia su compleja estructura cristalina. Los macrocristales aciculares formados con ritmo diario se muestran en la zona inferior de la Fig. II.8 (señalados con doble flecha). Los prismas cristalinos, de forma característica del aragonito, son numerosos en la zona inferior e izquierda de la fotografía. En algunas zonas los prismas se han separado de tal forma que se aprecia como están formados por finas y largas fibras cristalinas (señaladas en la Fig. con flecha gruesa). El intercrecimiento cristalino en forma de cuñas es claro (señalado con cuadros en la Fig.). Así mismo, se han señalado en ciertas áreas las impresiones dejadas por matrices orgánicas en los cristales.

En la Fig. II.9 los aspectos mencionados se muestran a mayor aumento.

La cara externa de los otolitos presenta aspecto reticular, producido por la disposición irregular de los materiales en la superficie del otolito. En la Fig. II.10 del borde de una sección de un otolito de *P. acarne*, se muestra este aspecto reticular (*C*, cara externa). La deposición de materiales está relacionada con la interacción de la membrana otolítica, transmisor de las sustancias precursoras del otolito y la superficie del mismo.

En esta Fig. y en la siguiente, Fig. II.11, se ilustra la disposición radial de los haces cristalinos; algunos están torsionados con respecto a la estructura general (señalados con flechas en la Fig.) Estas torsiones que están producidas por el crecimiento morfológico del otolito a partir de una zona central homogénea, son causadas por las características genéticas que imponen la forma del otolito.

Las secciones perpendiculares al eje longitudinal del crecimiento de los prismas cristalinos, muestran el aspecto acicular de sus componentes (Fig. II.12).

La forma en que interactuan los microcristales para formar las fibras y prismas cristalinos es patente en las dos siguientes figuras (II.13 y II.14) pertenecientes a un otolito a *D. labrax*.

Se observa que los planos de exfoliación coinciden con las zonas más ricas en matriz orgánica. Tanto en sentido longitudinal, en que las fibras
cristalinas se separan por estas zonas, como en sentido transversal a los cristales, donde las capas formadas cuando el crecimiento cristalino es menor, originan la aparición de planos (señalados con flecha en la figura) en los que se produce cierta discontinuidad y cambio de identidad de los cristales, dando la imagen de prismas incluidos en otros prismas.

De los datos anteriormente presentados se deduce que los otolitos están formados por tres elementos cristalinos:

1) Cristales aciculares de 0,2 micrómetros de anchura y 2-3 micrómetros de longitud, formados por ritmo diario, generalmente parte de estos cristales continúan su crecimiento varios días. El diámetro y longitud de los cristales puede variar dependiendo de la tasa de crecimiento.

2) Cristales fibrosos formados por agregados de los pequeños cristales. Estos cristales se asocian entre sí para dar lugar a los prismas cristalinos.

3) Prismas cristalinos pertenecientes al sistema ortorrómbico, formados por los elementos anteriormente descritos. El grosor de los prismas disminuye en las épocas de crecimiento desfavorable. Frecuentemente se presentan cuñas de intercrecimiento cristalino en forma de zig-zag.

La forma de interacción de estos elementos y su relación con los otros constituyentes de los otolitos se describe en el apartado II.8, Modelo estructural propuesto.
Fig. II.3- Borde de la sección de un otoñito de *P. acarne*, Observese los prisms cristalinos (P) y los cristales fibrosos (F). (X500).
Fig. II.4 - Sección de un otolito de *D. labrax*. Macrocristales orientados radialmente y perpendicularly a la superficie externa. Entre flechas se encuentra señalado uno de ellos. Zona marginal correspondiente al período de crecimiento lento (H). (X1.140).
Fig.II.5- Sección de un otolito de *M. merluccius*. Observense los microcristales aciculares y las interrupciones cíclicas de éstos. (X2.200).
Fig. II.6- Sección de un otolito de D. labrax. Las zonas de crecimiento activo aparecen en relieve en la figura (ZC) y las discontinuas como surcos (ZD). Parte de los cristales han continuado su crecimiento a través de varias discontinuidades (señalados con flecha parte de ellos). (X3.200).
Fig. II.7- Otolito de *M. capensis* mostrando los haces fibrosos y las
oñas de intercercimiento cristalino. Algunos cristales están torsionados
(x×60).
Fig.II.8- Otolito de *P.acarne* mostrando la compleja estructura cristalina: cristales aciculares (señalados con doble flecha), las fibras cristalinas (con flecha gruesa) y los prismas de aragonito. (X1.730).
Fig.II.9- Ampliación de la Figura anterior. (X2.940).
Fig. II.10 - Borde de una sección de un otolito de *P. acarne*. Nótese la cara externa reticular (C) y la torsión de parte de los cristales señalados con flecha). (X2.940).
Fig. II.11 - Otolito de D. labrax. Nótese la torsión e interrupción de parte de los cristales de aragonito. (X158).
Fig. II.12- Sección perpendicular al eje longitudinal de los cristales en un otolito de D. labrax. Los cristales primarios tienen aspecto aciculífero (X3.200).
Fig.II.13- Prismas cristalinos de un otolito de *D. labrax* mostrando sus componentes: microcristales y fibras. (X3.500).
Fig. II.14- Parte del otolito anterior tomado en mayor detalle. Observe como los prismas cristalinos se continúan e interactúan. (X3,800)
II.4 Estructura de la fracción orgánica

La matriz proteica es de gran importancia en los procesos de formación de los otolitos, habiéndose sugerido que la formación de aragonito in vivo sólo puede producirse en asociación a un proteína, la cual actuaría como núcleo de la cristalización (DEGENS et alt., 1969).

Dada la escasa información existente acerca de la estructura de la matriz proteica, hemos considerado necesario realizar un estudio detallado de la matriz, eliminando previamente el material cristalino según se describió en el Cap. II.1.

Los otolitos empleados pertenecían a las especies M. merluccius y D. labrax del litoral Catalán. La observación se realizó mediante un scanner.

En el Fig. II.15 de una sección de un otolito de M. merluccius, se muestra la presencia de una matriz continua de finas fibras de 100 Å de diámetro. Los ciclos diarios de crecimiento se presentan como zonas densas, zonas incrementales, y como zonas poco densas que aparecen como surcos de 2 micrómétros de anchura (señaladas con flechas en la Fig.). Estos surcos corresponden a las zonas discontinuas en las que la tasa de deposición del calcio disminuye (ver Cap. IV).

En la siguiente figura, tomada a mayor aumento, (Fig. II.16) se percibe claramente la estructura de la matriz, compuesta por numerosísimas fibras dispuestas formando un denso retículo. La mayoría de las fibras están orientadas en sentido radial, es decir, según la dirección de crecimiento de los cristales de aragonito. En las zonas continuas las fibras se disponen concentradamente, sugiriendo que al cesar o disminuir la tasa de crecimiento cristalino, la proteína se dispone cubriendo la superficie; al reemprenderse la formación cristalina, la proteína se dispone mayoritariamente en la dirección de crecimiento. Sin embargo, la deposición de la matriz no es continua, apareciendo zonas menos densas.

Aparentemente la disminución de la tasa de formación de proteína se produce poco después de la detención de la formación de cristales. Esta hipótesis se deduce de que en la mayoría de los otolitos se registra una
disminución de la densidad de la matriz posterior a la formación de las fibras concentricas de las zonas discontinuas. Este hecho concuerda con los datos obtenidos por CARRILLO et alt. (1980) en los niveles de aminoácidos en el plasma, en los que el máximo nivel se encuentra al inicio del período de oscuridad, disminuyendo en las primeras horas del día. Si la zona discontinua se forma en las primeras horas del día o en las últimas de la noche, (ver Cap. IV) su formación estará causada por la disminución de la tasa de deposición del calcio seguida a continuación por la disminución de la deposición de proteína.

Las finas fibras de 100 Å de grosor se disponen en un apretado retículo que forma la matriz intracristalina. Estas fibras se asocian entre sí formando fibras más gruesas, de 350 Å de diámetro, correspondientes a las formadas en las zonas discontinuas (Fig. II.14 a II.18).

Vemos por tanto que las fibras constituyentes de la matriz densa e intracristalina, forman a su vez fibras que originaran una matriz secundaria dispuesta en las discontinuidades cristalinas.

En varias de las microfotografías se muestran fibras concéntricas que no corresponden a las zonas discontinuas, es decir, que se forman fibras concéntricas en las zonas incrementales (Figs. II.16 a 22). La presencia de estas fibras depositadas con ritmo inferior al diario, podrían estar relacionadas con la presencia de subunidades de crecimiento diario (ver ap. II.16).

En distintas áreas de la matriz fibrosa se presentan numerosos glo-mérulos de 100 a 200 Å de grosor; estas estructuras corresponden a los extremos de las fibras fracturadas al realizar la sección. En la Fig. II.23 se han señalado con una flecha blanca algunas de las fibras rotas pertenecientes al mismo plano, con flecha negra las que se continuarían en el plano superior de la fractura.

Las fibras orgánicas componentes de la zona central del otolito son mucho más densas y compactas que en el resto de la superficie (Fig. II.15). A medida que avanza el crecimiento las matrices son más laxas, sin apare-
cer fibras secundarias claras. El diámetro de los espacios interfibrilares es mayor en las zonas marginales, correspondiendo al tamaño de los cristales de aragonito y el menor porcentaje de proteína de éstas áreas (ver Cap. III).

Los otolitos de *D. labrax* poseen características morfológicas distintas a los de *M. merluccius*, en general son mucho más densos y gruesos, con frecuentes irregularidades de crecimiento. Correspondiendo a estas diferencias la matriz orgánica es distinta en ambas especies, siendo más densa y rica en fibras secundarias en *D. labrax*.

En la Fig. II.22 se muestran las características de las matrices. La primaria de retículo finísimo, está compuesta por fibras de 100 Å de diámetro, conservando, a pesar de la desmineralización sufrida, la estructura propia de los cristales, de 2 a 3 micrómetros de anchura. La matriz secundaria, compuesta por fibras de 500 Å de grosor, está dispuesta en fibras concéntricas y en radiales. Las fibras concentrícas generalmente corresponden a las unidades discontinuas, mientras que las fibras radiales actúan intercomunicando las zonas del otolito.

A mayor aumento (Fig. II.24) se observa como las matrices son continuas, representando manifestaciones distintas del mismo material.

La zona larval está caracterizada por matrices densas de retículo finísimo y en las que no son evidentes las fibras secundarias (Figs. II.23 y II.26). El diámetro de las fibras es de 50 Å. La transición entre esta zona y la estructura normal del otolito se produce bruscamente, aumentando el diámetro de las fibras más de 10 veces en un corto espacio (Fig. II.27).

Las discontinuidades del crecimiento, muy numerosas en esta especie, (Fig. II.28) están compuestas principalmente por la matriz secundaria que crece a través de la discontinuidad; la formación de los cristales de aragonito se reemprende sin solución de continuidad sobre la matriz.

Algunos otolitos se han tratado con Clorox, eliminando parte de la fibras protéicas. Este tratamiento ha sido mucho más efectivo en *M. merlu-
icio, relativamente más pobre en proteína. En la Fig. II.29 correspondiente a la otra mitad del otolito de la Fig. II.15, se muestra como la estructura del otolito está formada por pequeños microcristales aciculares. En P. labrax se han eliminado principalmente las fibras secundarias, manteniéndose la matriz primaria aunque algo alterada.

En resumen podemos decir que la matriz protéica forma un retículo denso o contínuo compuesto por dos tipos de fibras principales:
- Fibras de unos 100 A de diámetro
- Fibras formadas por agregados de las primeras alcanzando un diámetro de 900 A.

Ambos tipos de fibras forman a su vez dos tipos de matrices:
- Matriz primaria compuesta por fibras de primer orden, formando un retículo finísimo de luz de malla de décimas de micrómetro de grosor. Este tipo de matriz es preponderante en la zona nuclear.
- Matriz secundaria compuesta por fibras de segundo orden formando un retículo de aberturas de tamaño variable, disponiéndose entre los cristales y las discontinuidades del crecimiento. Constituye las unidades discontinuas de los incrementos de crecimiento diario.

Ambos tipos de matriz son continuos, es decir, que no existe independencia estructural de sus elementos constituyentes.

En las siguientes figuras se muestran detalladamente las relaciones entre la matriz y la estructura cristalina (II.31 a II.33).
Fig. II.15- Incrementos de crecimiento diario en el núcleo de un otolito de *Merluccius*. Unidades discontinuas (señaladas con flecha) en algunos incrementos se aprecian sub-unidades del crecimiento. (X960).
Fig. II.16- Otolito de *M. merluccius* mostrando la densa matriz nuclear. Las fibras concéntricas corresponden a las unidades discontinuas de los círculos de crecimiento diario. (X2.060).
Fig. II.17- Incrementos de crecimiento diario en la matriz orgánica de *Protococcus* compuestos por fibras secundarias. Obsérvese la continuidad de ambas matrices. (X2, 506).
Fig. II.18 - Mayor detalle de la figura anterior. (X2.800).
Fig. II.19- Otolito de *M. merluccius* mostrando la continuidad de la matriz primaria y secundaria. (X4.400).
Fig.II.20- Otolito de *M. merluccius* con las unidades discontinuas formadas por fibras concéntricas y algunas de estas en las incrementales. (X7,900).
Fig. II.21- Zona marginal de un otolito de *M. merluccius.* (X5,000).
Fig. II.22- Otolito de D. labrax mostrando la matriz secundaria dispuesta a través de los haces cristalinos (C) y de las discontinuidades del crecimiento (D). (X3,200).
Fig. II.23- Otolito de D. labrax mostrando la matriz primaria (señalada con flecha fina) y la secundaria (señalada con flecha gruesa). En la zona inferior de la figura se encuentra la zona larval. (X2.240).
Fig. II.24- Otolito de la figura anterior mostrando en mayor detalle las matrices orgánicas. (X9.000).
Fig. II.25- Otolito de _D. labrax_ mostrando las matrices orgánicas. (8,700).
Fig. II.26- Zona larval de un otolito de D. labrax mostrando la densa matriz de esta zona y los microcristales que crecen a través de ella. (X9.000).
Figura II.27: Transición entre la zona larval y el núcleo en un otolito de *Ankylaspis* (X9.000).
Fig. II.28- Zona discontinua de un otolito de *D. labrax* mostrando cómo crece la matriz secundaria a través de ella. (X4,300).
Fig. II.29- Otolito de M. merluccius tratado con EDAX y Clorox. La estructura de las matrices correspondiente a la cristalina es claramente visible. (X750).
Fig. II.30- Otolito de D. labrax tratado con EDTA y Clorox. (X4.000).
Fig.II.31- Matriz de la zona marginal de un otolito de *M. merluccius* mostrando la disposición propia de los cristales de aragonito. (X3.600).
Fig. II.32- Matriz de un otolito de D. labrax mostrando la estructura propia de los cristales de aragonito. (X7,700).
Figura II.33: Matrices primaria y secundaria de un otolito de D. labrax. (X8.700).
II.5 Otolitos cristalinos

Con cierta frecuencia se forman otolitos totalmente o parcialmente anómalos, con estructuras cristalinas formadas por calcita (ver Cap. III). La aparición de dichos cristales se produce súbitamente sobre la estructura normal de un otolito. En las Figuras II.34 y II.35 correspondientes a un otolito de rosada y a uno de merluza, respectivamente, se aprecia la aparición de los cristales de calcita sin solución de continuidad sobre la superficie del otolito. Generalmente aparecen estructuras reticulares sobre la superficie normal, probablemente causadas por un crecimiento más intenso asociado a membranas anormales. La estructura observada es muy parecida a la de la capa gelatinosa de la mácula acústica. Al corresponder estas microfotografías a la cara externa del otolito, la estructura reportada debe pertenecer a la presencia de membranas anormales asociadas a la formación cristalina.

En la primera de estas figuras, tomada sobre la zona central del otolito, los cristales se han formado siguiendo una dirección secante al extremo anterior del mismo (ver fotografía). Sobre la primera capa de cristales estrechos se han formado otros cristales más gruesos y de estructura propia de la calcita.

En la Fig. II.35 correspondiente a la zona marginal de la sagitta, el crecimiento de los cristales anómalos se ha realizado según el eje orientado en dirección dorso-ventral del otolito. Los cristales más internos, probablemente formados en primer lugar, han crecido hasta tomar forma glomerular.

En una macrofotografía tomada a mayor aumento (Fig. II.36) se observan los cristales de calcita formados por crecimiento dentrítico, es notable, así mismo, la presencia de capas orgánicas intercristalinas (ver Fig.).

En la siguiente Figura (II.38) correspondiente al extremo de un otolito cristalino de rosada, se aprecian los gruesos cristales glomerulares formados en la zona marginal. El crecimiento de los cristales se realiza por finísimas capas (ver en la Fig. señalados por una flecha) dispuestas de for-
ma que los cristales resultantes están orientados en dirección externa al otolito.

Los cristales están compuestos, en su mayoría, de capas paralelas formadas por crecimiento dentrítico (Fig. II.39). En esta fotografía se aprecian claramente las capas constituyentes de los cristales. En la zona inferior se muestran prismas de clacita formando un estrato netamente diferenciado; Sobre éstos, aparecen los extremos de otra capa prismática (señalados con una flecha en la Fig.) sobre la cual se ha producido un acúmulo masivo de materiales.

La siguiente serie de fotografías corresponden a otolitos cristalinos de merluza sudafricana. El crecimiento de los cristales tiene tendencia a realizarse de forma columnar. (Fig. II.40) aunque de manera desordenada. Algunos de los cristales crecen sobre los otros presentando la tendencia a englobarlos (ver en la Fig. los cristales señalados con flechas). En algunos casos el proceso se ha completado resultando un crecimiento espiral (en la Fig. señalado con doble flecha).

El crecimiento dentrítico de los cristales produce formas geométricas características, piramides, relojes de arena (Fig. II.41), etc. La tendencia general del crecimiento cristalino en dirección externa se muestra en la Fig. II.42.

Es destacable la presencia de numerosas capas orgánicas entre los cristales (en la Fig. señalados con 0) y en las suturas entre éstos. La presencia de las capas orgánicas intercristalinas justifica la alta proporción de materia orgánica presente en los otolitos.

La formación de cristales de calcita se produce asociada a formaciones superficiales reticulares causadas, probablemente, por la presencia de matrices orgánicas anormales. La impronta dejada por dicha matriz es similar en aspecto a la membrana otolítica, por lo que cabe la posibilidad de que ésta haya sufrido un crecimiento anómalo asociado a la alteración causante de la anormalidad del proceso cristalino.
Los cristales de carbonato cálcico formados en primer lugar poseen la
estructura propia de la calcita, cristalizada en el sistema romboédrico. El
crecimiento secundario de los cristales se produce por la formación de ca-
pas superpuestas con dos tendencias de crecimiento, una helicoidal resultan-
do en la formación de cristales glomerulares y otra, menos frecuente, rec-
tilínea resultando en la formación de cristales geométricos.

Se ha registrado un caso de reabsorción secundaria de los materiales
de los otolitos cristalinos (Fig. II.43). Esta reabsorción sugiere la posi-
bilidad de un flujo de elementos, en determinadas circunstancias, entre el
otolito y el líquido que lo rodea.

La calcita es la única forma del carbonato cálcico que, dadas sus ca-
racterísticas, puede formar in vivo sin mediar la interacción de una matriz
orgánica. Este hecho, basado en las propiedades cristalinas del carbonato,
se comprueba en las microfotografías tomadas. Los cristales se han formado
por crecimiento denticulado, depositándose la proteína en los espacios y su-
turas intercristalinas.

El ritmo de formación del otolito, con períodos de deposición de cris-
tales y otros en los que predomina la proteína, parece conservarse. Durante
el período de crecimiento cristalino, se forman las láminas de calcita de
un grosor de 2-3 micrómetros, similar al grosor de la unidad incremental de
los incrementos de crecimiento diario. Durante el período de mínima calci-
ficación, se forman las finas capas orgánicas, dispuestas entre los crista-
les, sin tomar una disposición espacial clara.

En líneas generales el crecimiento del otolito se conserva, existien-
do una clara tendencia al crecimiento radial de los cristales. Como resul-
tado de este tipo de crecimiento se forman cristales columnares compuestos
de numerosos microcristales.

En general, los cristales formados miden unos 150 micrómetros, pose-
yendo la forma propia de la calcita. Posteriormente, el crecimiento cris-
talino en grosor, se realiza según una componente espiral, tomando los cris-
tales aspecto glomerular. Este tipo de crecimiento se produce preferentemen-
te en las zonas más internas, por tanto formadas en primer lugar, del oto-
lito.

En resumen el proceso sería el siguiente:

- Formación de placas cristalinas de 2-3 micrometros de grosor, independien-
temente de la formación de una matriz orgánica. Esta se deposita en los es-
pacios intercristalinos sin tomar una disposición espacial clara. La forma-
ción de estos elementos reflejan la continuidad del ritmo de crecimiento
del otoolito.

- El conjunto de placas cristalinas y láminas orgánicas intercristalinas,
forman típicos cristales de calcita de un 150 micrometros de grosor.
- El crecimiento del otoolito se realiza en sentido radial, originándose
cristales columnares dirigidos en el sentido de crecimiento. Posteriormente,
los cristales, sufren un crecimiento de tipo espiral, que engloba a varios
prismas, formándose cristales glomerulares de gran tamaño.

La matriz orgánica es amorfa, depositándose en los espacios intercrist-
talinos y entre las placas de calcita, sin formar una matriz organizada es-
pecialmente interaccionada con los elementos cristalinos.
Fig. II.34- En este otolito de *G. capensis* la aparición de los cristales es producida sin solución de continuidad sobre la estructura normal. Se observan huellas de una matriz reticular sobre la superficie normal.\(^{(X52)}\).
Ilustración 35: Cristales de calcita en un otolito de *M. capensis*. Notese el aspecto columnar de los cristales y el secundario espiral. (X36).
VII.36- Cristales de calcita formados por crecimiento dendritico. Entre estos cristales se observan matrices orgánicas. (X273).
Fig.11.37- En este otolito de G.capensis se muestra la estructura en capas de cristales de calcita. (X200).
Fig. II.38: Cristales de calcita mostrando su estructura en capas paralelas. En la zona inferior de la figura se muestran varios cristales típicos de la otolito de G. capensis. (X185).
II.39- El crecimiento de los cristales de este otolito de M. capensis
integra formas geométricas. (X185).
Fig. II.40-Cristales de calcita formados por crecimiento dendritico en un hueso de M. capensis. Entre las columnas cristalinas se encuentran capas de materia orgánica. (X79).
L.II.41- Otolito de *M. capensis* en el que el crecimiento cristalino ha originado formas geométricas. (X252).
FIG. 42- La dirección general del crecimiento cristalino se muestra claramente en esta figura. En la zona externa el crecimiento ha sido mucho más intenso que en el cáliz de M. capensis. (X50).
Fig. II.43- Otolito cristalino de M. capensis en el que se ha producido reabsorción secundaria de los materiales depositados. (X184).
II.6. Estructura de los patrones de crecimiento

II.6.1. Incrementos de crecimiento diario (ICD)

Los elementos estructurales anteriormente descritos se depositan en los otolitos con cierta periodicidad, formándose finas capas de 5 a 10 micrómétros de grosor.

Un incremento representa un ciclo de deposición que es iniciado por una capa orgánica o línea de crecimiento. A continuación se deposita con relativa rapidez carbonato cálcico y otolina; el incremento se completa cuando la calcificación cesa y se acumula materia orgánica formando un nuevo estrato.

Este proceso se realiza en la mayoría de las especies con periodicidad diaria, sincronizado con ritmos de luz (PANNELLA, 1971, 1974; BROTHERS et alt., 1976, entre otros). Se forma, por tanto, un incremento de crecimiento diario (ver Cap. IV).

Cada incremento está formado por dos unidades de distinta anchura. La más gruesa, unidad de crecimiento activo, de grosor comprendido entre 1,2 y 4 micrómétros, es la que posee mayor proporción de carbonato, presentando cristales gruesos y nítidos (Fig. II.44, UC: unidad de crecimiento activo, incrementos de crecimiento diario entre flechas).

Las unidades más finas, unidades discontinuas, están caracterizadas por tener un grosor más uniforme, entre 1 y 3 micrómétros. Estas bandas aparecen al tratar con HCl diluido las muestras, presentando aspecto de surcos o hendiduras (Fig. II.45. UD: unidad de crecimiento continuo). BROTHERS et alt. (op. cit.) y TIMOLA (1977) reportaron que al ser estas zonas más atacables por el ácido deberían contener más carbonato cálcico. Sin embargo, en las microfotografías se observa que estas unidades tienen elementos cristalinos menores y gran riqueza de fibras orgánicas, con aspecto general de menor calcificación. Estas características
estructurales indican que las unidades discontinuas poseen en mayor proporción otolina, que los repetidos lavados han disuelto.

En las secciones preparadas para que la materia orgánica se conserve, se hace patente que las unidades discontinuas están formadas por haces de fibras orgánicas dispuestas concentricamente. Éticas son continuas con las del resto de la matriz y formadas por agregados de fibras 1º. (Fig. II.46). De las estructuras citadas se deduce que durante el día y parte de la noche se deposita carbonato y otolina de manera activa formando la unidad continua. Por cierto período de tiempo el depósito de calcio de detiene casi totalmente, condensándose la otolina formando haces gruesos (Fig. II.47). A pesar de la disminución de la deposición de carbonato, esta continua en cierta medida ya que numerosos microcristales atraviesan varias zonas discontinuas (Fig. II.44 y II.45).

El grosor de los incrementos depende del de las unidades que las componen. En la Fig. II.48 correspondiente a un otolito de M. paradoxus las unidades de crecimiento activo presentan un grosor promedio de 2,5µm. En la zona derecha de la fotografía las unidades poseen un grosor de 3,3µm. Esta diferencia se debe a un cambio de la tasa de crecimiento. En otra sagitta de la misma especie el grosor de las unidades es de 3,3µm. y en la zona marginal de 2,9µm. (Fig. II.49).

En la Fig. II.50 correspondiente a un otolito de D. labrax, se muestran con mayor detalle la estructura de las zonas continuas. Notense las numerosas continuidades de los cristales de aragonito a través de varios incrementos. El grosor de las unidades es en esta microfotografía de 2,5µm., zona derecha y en la izquierda, correspondiente a un anillo invernal, de 1,2µm.

Las unidades discontinuas poseen una anchura más regular, entre 1 y 2µm. En la Fig. II.47 el grosor disminuye a 2µm. En la
fig. II.49 el grosor promedio es de 1,6 μm. en la zona de crecimiento rápido y de 1 μm. en la de crecimiento lento.

Vemos que el grosor de los incrementos varía de una especie a otra, entre poblaciones distintas y aún en el mismo especimen dependiendo de diversos factores como la edad y los periodos anuales.

Las variaciones de la naturaleza y grosor de los ICD reflejan los cambios en el ritmo de crecimiento. Así, durante las primeras fases de vida en las que el crecimiento es más intenso, los incrementos son gruesos y están compuestos de densas fibras (Fig. II.51 a II.53). Posteriormente, el ritmo es menor, disminuyendo el grosor de los ICD depositados; en los periodos favorables los incrementos son relativamente espesos y nítidos, (Fig. II.54). Mientras que en los períodos de crecimiento lento son más finos y pocos definidos (Fig. II.55).

Durante el crecimiento activo o favorable las unidades incrementales representan el 75% del incremento diario, las fibras se depositan apretadamente en la dirección del crecimiento cristalino. En los períodos de crecimiento lento, las unidades discontinuas representan el 80% del incremento. Las fibras se disponen reticularmente dejando numerosos espacios interfibrilares. La tasa de producción de proteína disminuye paralelamente a la del calcio, sin embargo, al crecer lentamente los cristales, las fibras que estarían emparedadas entre ellos se disponen más laxamente, tomando el citado aspecto reticular.

En muchas muestras se ha registrado la presencia de finas subunidades de los incrementos de crecimiento diario, están presentes tanto en la unidad incremental como en la discontinua, siendo su número variable. La formación de estas unidades pueden tener origen intrínseco, dependiente de los ciclos fisiológicos o depender de los cambios del medio o de los efectos de éste sobre el metabolismo.
En la Tabla III.1 se especifican las posibles causas de la aparición de subunidades diarias.
II.6.2. Agrupaciones de ritmo supradiario

Frecuentemente se encuentran en los otolitos patrones de crecimiento rítmico de distintas periodicidades, en los cuales la estructura, grosor y la continuidad de los elementos se ven alterados.

En la Fig. II.56 se muestran ritmos de unos 28 días (señalados entre dos M) que a su vez poseen un ritmo menor, con dos períodos diferenciados, uno de 10 días y otro de 18 (separados con un flecha).

En la especie M. capensis se han detectado varios tipos de ritmos: agrupaciones de 7-8 días y a continuación de 5-6 días. (Fig. II.58). En la sagitta de un ejemplar de 48 cm. de talla se encuentran interesantes tipos de ritmos (Fig. II.58) en los que se alternan series de incrementos nítidos con otras de incrementos más difusos. En la siguiente figura (Fig. II.59) correspondiente al mismo otolito pero tomada a mayor ampliación, se ven en detalle las diferencias estructurales entre ambos tipos de incrementos. En la zona de incrementos menores (señalada por triángulos) los cristales de aragonito son más pequeños y no existen diferencias netas entre las zonas continuas y discontinuas, así mismo son numerosas las sub-unidades de crecimiento diario. El grosor de ambos tipos de incrementos es similar, 3µm., y la ritmicidad de 8 días, aunque en algunos períodos se presenten irregularidades (señaladas son doble flecha).

En general las diferencias en los incrementos de ritmos distintos son estructurales, afectando poco al grosor.

En la especie D. labrax los ritmos están presentes, siendo frecuentes los de 7-8 días (Fig. II.60) aunque en esta especie se encuentran diferencias en el grosor de los incrementos de ambos períodos. En primer lugar tras una discontinuidad se disponen 2 incrementos finos y nítidos, con zonas discontinuas bien
marcadas. A continuación se depositan 6-7 incrementos más gruesos en los que las zonas discontinuas son poco claras y los cristales gruesos. Intercalados con estos ritmos se registran en esta misma figura zonas discontinuas (D) y zonas en las que los incrementos mucho más finos no presentan ritmicidad semanal (entre dos flechas). Esta figura es un buen ejemplo de la falta de regularidad de los ritmos en D. labrax.

En la siguiente figura (Fig. II.61), correspondiente a una lubina de 16 cm. de talla, los ritmos son de 6-7 incrementos. Los dos tipos de ritmos forman a su vez ritmos de periodicidad mayor, la más frecuente es de 28 días, correspondiente a un ciclo lunar (Fig. II.53, II.58).

La presencia de agrupamientos ritmicos de 7,14 y 28 días es frecuente en numerosos organismos marinos: peces (PANNELLA, 1971) en los estatolitos de los cefalopodos (CLARKE, 1978) y en las conchas de los moluscos (LUTZ & RHOADS, 1980). La presencia de estos ritmos depende de las fases lunares, cuya influencia en el medio marino es indudable. El mecanismo de acción es complejo, debe estar relacionado con los movimientos de las aguas y los cambios producidos en el nivel de nutrientes, temperatura, etc., originados por dichos movimientos.

El ritmo de formación diario en los otolitos se mantiene, pequeñas variaciones ritmicas en la proporción de materiales o en la densidad de éstos, producen las diferencias cíclicas en la estructura de los incrementos formados.
II.6.3 Estructura de los anillos de crecimiento estacional

En las especies de aguas templadas donde se producen ciclos estacionales en las variaciones del ecosistema, con descenso de la temperatura, desaparición de la termoclina, etc., se forman en los otolitos dos anillos claramente diferenciados.

En la época favorable, alta temperatura, se forma un anillo denso de aspecto opaco, anillo de crecimiento activo. En la desfavorable se forma un anillo translúcido, anillo de crecimiento lento.

A nivel microestructural los elementos constituyentes de ambos anillos son diferentes, los cristales formados durante la época de crecimiento rápido son gruesos, mientras que los formados durante las épocas de crecimiento lento son finos y poco definidos. Las fibras orgánicas depositadas en la época favorable son numerosas y densas, mientras que en las desfavorables son laxas y no presentan elementos claramente definidos (Figs. II.45 y 46).

Los anillos de crecimiento diario son en consecuencia distintos en ambas épocas, gruesos, compactos y de elementos aciculares cristalinos definidos en las épocas favorables. Finos y laxos en las desfavorables siendo, a veces, poco nítidos (Figs. II.50 y II.55).

Las causas de las citadas diferencias en la composición de los anillos dependen de la disminución de las actividades anabólicas, el metabolismo del calcio es el que experimenta una disminución más drástica, siendo los anillos de crecimiento lento más ricos, comparativamente, en proteína (BLACKER, 1974).

En resumen, podemos concluir que la formación de anillos estacionales se produce en las especies de mares templados relacionándose con las variaciones cíclicas del medio. En general el ritmo de crecimiento diario continua, cambiando la intensidad y tasa de formación. En condiciones extremas de bajada de temperatura, ayuno, etc., el crecimiento se detiene formándose discontinuidades del mismo. Generalmente a partir de la madurez sexual y en los ejemplares más lonjevos pierde regularidad el
crecimiento, formándose frecuentes discontinuidades y no correspondiendo el número de incrementos con el de días transcurridos. Es decir, que el cambio inicialmente cualitativo, pasa a ser cualitativo y cuantitativo.
II.7 Estructura de las discontinuidades del crecimiento

Frecuentemente aparecen en los otolitos marcas o zonas en las que el patrón de deposición del otolito se ha alterado. Estas discontinuidades registran un suceso, o una serie de ellos, que alterarán el patrón de crecimiento rítmico.

Existen numerosos tipos de discontinuidades: desde la ligera alteración del patrón de formación que sólo afecta a parte del otolito, hasta la interrupción de secuencias enteras de incrementos en toda la periferia del otolito. La magnitud de la discontinuidad refleja la importancia y duración de ésta en la vida del pez.

Las discontinuidades más ligeras no alteran el patrón general del crecimiento, las agujas de aragonito no cambian de dirección ni de grosor. En la Figura II.62, correspondiente a un otolito de G. capensis, se aprecian cuatro discontinuidades de este tipo (en la Figura señaladas con D). La primera de las discontinuidades es doble, reflejando un stress repetido en un intervalo de tiempo, probablemente se trate de una reproducción realizada en dos fases.

En la siguiente figura, Fig. II.63 correspondiente a un otolito de D. labrax, la discontinuidad va seguida de una recuperación paulatina del ritmo normal de crecimiento, alcanzándose éste a partir del 5,6 incremento.

Una alteración profunda puede causar un cambio brusco en la dirección de los incrementos de crecimiento diario. En la Figura II.64, correspondiente a un otolito de D. labrax, se aprecia el cambio de dirección de crecimiento de los incrementos de crecimiento y de los cristales de aragonito. Esta discontinuidad corresponde temporalmente con un traslado a que se sometió a los peces; Dicho traslado duró varias horas y se realizó en un tanque de agua de mar con burbujeo de oxígeno. El fuerte estrés sufrido ha causado la alteración del patrón de crecimiento de los otolitos.

Los dos tipos de discontinuidades citados se encuentran en la sagi-
de la Figura II.65 correspondiente a la zona central de un otolito de *M. capensis*. Ver en la citada Figura la discontinuidad ligera (D) y la profunda (DP). Probablemente la primera discontinuidad fue causada por un cambio de la alimentación y la segunda por el paso de la vida pelágica a bentónica, que en esta especie se realiza a los 8 cm. de talla.

En la siguiente microfotografía perteneciente a un otolito de la especie *M. merluccius* del Mediterráneo, se muestra una leve discontinuidad del crecimiento (Fig. II.66).

Los cambios más drásticos pueden causar alteraciones graves del desarrollo e incluso la reabsorción de los materiales depositados en el otolito. En la microfotografía de la Figura II.67, correspondiente a un otolito de *D. labrax*, podemos apreciar cómo el patrón de crecimiento del otolito está totalmente alterado, tanto en la dirección de los cristales como en la deposición de los incrementos. A la derecha de la imagen vemos como los incrementos han sido reabsorbidos, depositándose un estrato orgánico que recubre la superficie de reabsorción antes de reanudarse el crecimiento del otolito. El número de incrementos afectado es de unos 17, aunque es posible que se hayan reabsorbido algunos más sin dejar restos. La regularidad del crecimiento se restablece tras la formación de una zona de transición y de una nueva discontinuidad.

En la siguiente figura, Fig. II.68 correspondiente a una lubina sometida al mencionado traslado, se hace patente el gran estrés sufrido por el animal, todo tipo de discontinuidades se han producido, desde alteraciones leves hasta cambios de la dirección de crecimiento.

Las discontinuidades también afectan a la matriz orgánica, la formación de ésta cesa interrumpiéndose el entramado protéico. Sin embargo, esta detención no es total ya que se han registrado la presencia de fibras gruesas de tipo secundario que conectan las partes del otolito, disponiéndose a través de la discontinuidad (Fig. II.69).

La presencia de estas discontinuidades se muestra como un registro sumamente exacto de los sucesos de la vida del pez, indicando, además,
la gravedad del proceso anormal y su duración. Interrupciones del patrón de formación del otolito precedidas y continuadas por una alteración paulatina de la estructura y grosor de los incrementos de crecimiento, indicarán un proceso gradual, por ejemplo, el efecto de las mareas o un cambio estacional. Una disrupción brusca indicará, por el contrario, un proceso repentino, estrés físico, reproducción, etc.

La evidencia de la reabsorción de los materiales depositados en los otolitos, observada en algunos de los otolitos cristalinos y en las interrupciones del crecimiento, es de gran importancia ya que implica que el calcio depositado en éstos, no permanece en un compartimiento estanco, sino que forma parte del metabolismo activo de dicho elemento.

En la Tabla II.1 se especifican las posibles causas y tipos de discontinuidades formadas.
II.8 Estructura de los anillos de freza

Durante el período reproductivo las reservas energéticas son movilizadas hacia la producción de gametos, alterándose el metabolismo del calcio y el ritmo de crecimiento. En algunas especies durante este período se moviliza el calcio depositado en los huesos y escamas (SIMKISS, 1974).

En los otolitos no existe evidencia de que se produzca una reabsorción similar, sin embargo, en especies tropicales en las que no se forman anillos estacionales, se producen anillos de freza, que interrumpen el patrón de formación del otolito. Estas interrupciones pueden ser causadas por detención del crecimiento del otolito, con posterior reinicio, o por absorción del material depositado.

Deseando averiguar cual de estos dos procesos ocurre y la estructura de los incrementos de crecimiento diario formados durante este período, hemos realizado un estudio de las bandas marginales presentes en los otolitos de D. labrax en período de freza y de post-puesta.

Al micorscopio electrónico de barrido los anillos de freza aparecen como un grupo de finas discontinuidades del crecimiento. En la Fig. II.70, correspondiente a una lubina hembra de 45 cm. de talla, se observa un grupo de dichas discontinuidades con una estructura claramente diferenciada. A cierta distancia del borde se encuentra otro grupo de dichas bandas, indicando que el ejemplar ya se había reproducido anteriormente (F: anillo de freza).

En la misma figura se observa como anteriormente y posteriormente a la reproducción se habían movilizado y reabsorbido parte de los materiales depositados en el otolito, originándose una irregularidad del patrón de crecimiento (ver en la Fig. zonas indicadas con flecha inclinada).

En la siguiente figura, Fig. II.71 tomada a mayor aumento, se aprecia claramente la estructura de los incrementos de crecimiento formados durante el período reproductivo. Los incrementos son más finos y de elementos menos definidos que en el resto de la superficie. El proceso ha
sido el siguiente: reabsorción de parte de los materiales depositados, formación de una discontinuidad del crecimiento, reinicio del crecimien-
to con menor intensidad, y nueva detención del crecimiento. Este proceso se repite varias veces durante el período reproductivo. En la mencionada Fig. el intervalo entre dos líneas es de 14 días, habiéndose capturado al animal 4-5 días después de la última puesta parcial y en plena madurez del ejemplar.

El patrón registrado en el resto de los otolitos estudiados es simi-
lar, aunque en algunos casos la deposición de ICD no es homogénea en
toda la superficie (Fig. II.71).

En los otolitos pertenecientes a machos en freza, el patrón de for-
mación es distinto; Se deposita un área homogénea, sin ritmos, con finos
ICD de naturaleza poco definida. No se presenta reabsorción de los mate-
riales ni marcas periódicas (Fig. II.72).

Los fenómenos reproductivos alteran la formación del otolito afec-
tando a la periodicidad de los ICD (hembras) y a su grosor, que disminu-
uye en un 50% (machos y hembras). La menor tasa de crecimiento indicada
por esta disminución, depende claramente de los efectos que sobre el cre-
cimiento tienen las hormonas reproductivas.

En los otolitos de hembras se han encontrado reabsorciones de los
materiales depositados, paralelas a las que se producen en otros tejidos
calcificados.

Los procesos de puesta parcial quedan reflejados en los otolitos
de las hembras, pudiendo actuar como un registro de la periodicidad y
duración de las actividades reproductoras.
Fig. II.44- Sección pulida de un otolito de M. capensis mostrando los incrementos de crecimiento diario. En relieve unidades de crecimiento activo (UC) y unidades de detención de crecimiento más oscuras (UD). (X1.000).
Fig. II.45- Incrementos de crecimiento diario dispuestos regularmente. Observese los microcristales de aragonito dirigidos perpendicularly a los incrementos. Otolito de D. labrax. (UD: unidad discontinua). (X1.140).
Fig. II.46- Matriz orgánica de un otolito de *M. merluccius* mostrando las capas continuas y las discontinuas compuestas por haces de fibras contráctiles. (X1,510).
Fig. II.47- Matriz orgánica de un otoñito de M. merluccius mostrando los segmentos contiguos y discontinuos de los incrementos de crecimiento diarios. Observe las sub-unidades presentes en las unidades discontinuas. (X1.920).
Fig. II. 48- Incrementos de crecimiento diario en una sagitta de *M. parado-*.
Observese el paulatino decrecimiento de los incrementos hasta los situados a la izquierda de la figura, pertenecientes a un anillo de crecimiento de (H). (X360).
Fig. II.49- Otolito de *M. paradoxus* mostrando las características de las capas de crecimiento activo (V) y lento (I). (X177).
Fig. II.50- Transición entre la zona de crecimiento rápido o estival y el crecimiento lento invernal en un otolito de D. labrax. (X1.290).
Fig. II.51- Otolito desmineralizado de *M. merluccius* mostrando los incrementos de crecimiento diario de la zona nuclear. (X192).
Fig. II.52- Núcleo larval del otolito de la figura anterior. (530).
Fig. II.53- Incrementos de crecimiento diario en la zona nuclear del tallo de la Fig. II.51. (X1.000).
Fig.II.54- Incrementos de crecimiento formados durante un período de crecimiento rápido en el otolito de la Fig.II.51.(X3.200).
Fig.II.55- Incrementos de crecimiento diario formados durante el período de crecimiento lento. Otolito de la Fig.II.51. (X3.200).
Fig. II.56- Otolito de *M. paradoxus* mostrando agrupaciones de 28 días en sus incrementos. (M: períodos mensuales). (X850).
Fig. II. 57- Ritmos de formación de 7-8 días (entre flechas finas) y de 5-6 días (entre flechas gruesas) en un otolito de *M. capensis* (X410).
Fig.II.58- Otolito de *M. capensis* mostrando agrupaciones de incrementos rizados seguidos de incrementos difusos. (X370).
Fig. II. 59- En esta microfotografía tomada a mayor aumento del otolito de la figura anterior se observan las numerosas subunidades de los incrementos (pág. 340).
Fig. II.60- Otolito de D. labrax mostrando agrupaciones de 6-7 incrementos, discontinuidades del crecimiento (D) y agrupamientos de los incrementos en periodos de 14 días. (X370).
Fig. II.61- Agrupaciones de 6-7 incrementos en un otolito de D. labrax.
Fig. II.62- Discontinuidades del crecimiento (D) en un otolito de G. canalis. (X320).
Fig.II.63- Ligera discontinuidad del crecimiento en un otolito de *D. labrax* en la cual se reemprende lentamente el crecimiento normal. (Xl.140).
Fig.II.64- Otolito de D. labrax en el que una discontinuidad del crecimiento ha alterado la dirección de sus elementos estructurales. [X1.120].
Fig. II.65- Zona central de un ootolito de *M. capensis* mostrando una discontinuidad ligera y otra profunda que altera el patrón de formación. (X482).
Fig. II.66- Sección pulida de un otolito de *M. merluccius* mostrando una leve discontinuidad del crecimiento. (X540).
Fig. II.67- Otolito de *D. labrax* en el que numerosos estrés han producido reabsorción de parte de su estructura (*SR*: superficial de absorción) y la aparición de discontinuidades del crecimiento (*D*: discontinuidad). (X480).
Fig.11.68- Cotoito de D. Labrax mostrando una seria interrupción del patrón de crecimiento y la reabsorción de parte de los materiales depositados. (X340).
Fig. II.69- Otolito desmineralizado de *M. merluccius* en el que se muestra cómo la matriz secundaria crece a través de la discontinuidad de crecimiento. (XX:400).
Fig.II.70- Otolito perteneciente a una hembra de D. labrax en el que se diferencian los anillos de freza (F) y la reabsorción de parte de los materiales depositados. (X226).
Fig.II.71- En este otoent ro de D. labrax se muestra en la zona marginal la estructura de un anillo de freza. (X770).
Fig. II.72- La estructura de la zona marginal de un otoíto de macho de Lletxentax en freza, muestra las diferencias entre los anillos de freza de machos y hembras. (X395).
II.9 Modelo estructural propuesto

De los apartados anteriores se deduce que la estructura de los oto-
litos es compleja y formada por dos elementos principales: el cristalino,
mayoritario, y el orgánico. Los macrocristales de aragonito observables
al microscopio óptico, han mostrado estar compuestos por numerosísimos
micocristales. Esta observación viene corroborada por la observación de
láminas finas de los otolitos con luz polarizada, láminas que no present-
tan extinción al cruzar los nícoles, estando por tanto, formadas por nu-
merosas unidades cristalinas y no por cristales unitarios dispuestos pa-
ralelamente.

De los estudios realizados podemos deducir la existencia de un mo-
delo cristalino, (Fig. II.73) compuesto por los siguientes elementos:

- **Microcristales primarios**: de forma acicular y tamaño comprendido entre
 2 y $10^{\mu m}$ y de $0,3\mu m$ de diámetro. Estos cristales se forman con perío-
dicidad corta, de 1 a varios días.

- **Cristales secundarios**: de tipo fibroso por agregados de micocristales.
 Su longitud es variable, pero el diámetro es bastante regular, oscilando
alrededor de $3\mu m$.

- **Macrocristales de aragonito**: de forma prismática y tamaño variable, de-
pendiente del otolito, formados por agregados de los anteriores elementos.

La matriz orgánica desempeña un rol importantísimo en la formación
del otolito (ap. II.2) actuando como núcleo de la cristalización, depend-
iente de ella el tipo de cristal formado. De los estudios realizados se
deduque que está compuesta por dos elementos fundamentales:

- **Matriz primaria**: formada por finísimas fibras de unos 200 Å de diámetro.
 Esta matriz corresponde a la registrada en el interior de los cristales
 prismáticos de aragonito.

- **Matriz secundaria**: formada por gruesos haces de fibras de 900 Å de gro-
sor. Esta matriz es continua con la primaria, representando la matriz
 intercristalina.

La matriz primaria, de retículo finísimo, forma pequeños espacios
que se corresponden estrechamente con el diámetro de los microcristales formados. Esta matriz intracrinalina es responsable de la cristalización del carbonato en forma de aragonito y del tamaño de los microcristales, quedando englobada en los macrocristales.

La matriz secundaria, formada por agregados de fibras de la matriz, se dispone entre los macrocristales, y en las unidades discontinuas de los incrementos de crecimiento diario. Forma, por tanto, un retículo concéntrico y otro que intercomunica los distintos haces cristalinos. Su función es de unión y de continuidad a través del otolito. La presencia de uniones entre las fibras secundarias en los espacios intercristalinos, es la causante del crecimiento en cuña de los macrocristales de aragonito.

La matriz secundaria está presente en las discontinuidades del crecimiento, continuándose a través de éstas. En resumen podemos decir que la matriz 1ª actúa a nivel de la cristalización, mientras que la secundaria actúa como elemento estabilizador de la estructura de los otolitos, siendo continua en toda su estructura.

Las distintas tasas de deposición de los dos elementos, originan la formación de incrementos de crecimiento diario, compuestos de una unidad de crecimiento continuo, con elementos cristalinos y orgánicos, y una unidad discontinua formada principalmente por la matriz 2ª. La formación de estas dos unidades tiene un origen intrínseco, dependiente de los bio-ritmos del animal. Generalmente, la unidad discontinua se forma en las primeras horas del período luminoso.

Variaciones de la tasa de deposición de los materiales estructurales de los otolitos de ritmo menor al diario producen la formación de subunidades del crecimiento. Estas subunidades están ligadas a la formación de fibras concéntricas de la matriz 2ª y dependen de ritmos diarios de actividad o variaciones diarias del medio.

En los casos en que los ritmos de formación son superiores al diario, dependiendo de factores externos cíclicos como las mareas, se forman agrupamientos rítmicos de los incrementos de crecimiento diario. Es-
tos agrupamientos cíclicos no se producen en la zona nuclear larval de los otolitos y son poco frecuentes en las épocas de crecimiento lento, indicando que el organismo en los períodos de estrés o desfavorables no es sensible a las variaciones poco acusadas del ecosistema.

Las variaciones estacionales de éste, originan la formación de anillos estacionales, con incrementos de crecimiento diario diferenciados estructuralmente: durante los períodos favorables los incrementos formados son gruesos y nítidos con elementos cristalinos bien definidos y matrices densas. En los períodos desfavorables los incrementos son poco claros, los elementos cristalinos son finos, la matriz primaria poco densa y la secundaria de aspecto menos homogéneo.

Los estrés fisiológicos y los producidos por los efectos del medio causan la formación de discontinuidades del crecimiento que alteran el patrón de formación del otolito. La formación de cristales se interrumppe, la matriz 1ª no se forma, depositándose únicamente la matriz 2ª.

En algunos casos los materiales del otolito son reabsorbidos, desapareciendo parte de los incrementos formados. Esta reabsorción de los materiales del otolito debe producirse a través de la enzima que interviene en la deposición del calcio, enzima que actúa en sentido contrario produciendo la disolución de los materiales del otolito. Esta movilización es similar a la registrada en las escamas, que actuan como órganos de reserva del calcio. La movilización de éste en las escamas está ligada a la freza, así mismo en los otolitos con anillos de freza hemos registrado la formación de discontinuidades del crecimiento del otolito y reabsorciones de los materiales de éste.

En el Tabla II.1 se resumen los principales tipos de formaciones registradas.

La estructura de los otolitos cristalinos ha mostrado la formación de cristales laminares primarios, formados con ritmos similar al de los otolitos normales, que crecen dentriticamente. El crecimiento secundario se produce en dirección helicoidal, formándose cristales glomerulares. En
general, los cristales crecen en dirección exterior. La matriz orgánica depositada en estos ootolitos es anormal; forma depósitos intercristalinos y membranas que unen los espacios entre cristales. En los ootolitos cristalinos se ha registrado un reabsorción de los materiales, indicando que en éstos también se produce la movilización de los elementos depositados.

Nuestros resultados coinciden en parte con los de DEGENS et alt. (1969) en cuanto a que los haces cristalinos pueden presentar torsiones relacionadas con el crecimiento morfológico y en la presencia de cuñas de intercrecimiento. Cuestionamos, sin embargo, la propuesta de dichos autores de que los cristales de aragonito son continuos del centro al borde del ootolito. En nuestra opinión tal continuidad no se produce.

Generalmente los tejidos calcáreos de origen biológico poseen una matriz orgánica asociada a los cristales. En las conchas de los moluscos los prismas cristalinos están compuestos por numerosos microcristales ordenados y rodeados por matrices orgánicas (BØGGLD, 1930; TRAVIS-GONCALVES, 1969). Las matrices intercristalinas han sido reportadas en los moluscos (MUTVEI, 1970; WATABE, 1974), en las espículas de los celenterados (DUNKELBERG y WATABE, 1974) y en los relativamente largos prismas de aragonito de los ootolitos de Engraulis rigens (WATABE, pers. comm.).

Los estudios realizados por los mencionados autores nos permiten apoyar el modelo propuesto de la estructura de los ootolitos de los Teleósteos, confirmando el carácter general de los mecanismos de mineralización de los tejidos calcificados en los seres vivos.
<table>
<thead>
<tr>
<th>Patrón de formación</th>
<th>Definición</th>
<th>Variaciones registradas</th>
<th>Posibles causas</th>
<th>Significado eco-biológico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdiario</td>
<td>finas subunidades</td>
<td>presencia y número</td>
<td>ritmos fisiológicos</td>
<td>ritmos de actividad y alimentación</td>
</tr>
<tr>
<td>Diario</td>
<td>unidades de crecimiento compuestas por una incremental y una discontinua</td>
<td>claridad y límites</td>
<td>ritmos actividad</td>
<td>ritmos alimentación y actividad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ritmos circadianos</td>
<td>migraciones diarias, ritmos fisiológicos internos</td>
</tr>
<tr>
<td>Estacionales</td>
<td>anillos crecimiento densidad óptica distinta</td>
<td>periodicidad y tamaño</td>
<td>cambios estacionales medio o fisiológicos</td>
<td>duración y características de la estación, crecimiento, freza</td>
</tr>
<tr>
<td>Discontinuidades</td>
<td>interrupción del patrón de ocasional reabsorción</td>
<td>perdida periodicidad</td>
<td>estrés, freza, ayuno, enfermedad</td>
<td>estrés fisiológico o ambiental</td>
</tr>
</tbody>
</table>
Esquema mostrando la estructura propuesta para los elementos constituyentes de los otolitos de los Teleósteos.
III CARACTERÍSTICAS Y EVOLUCIÓN DE LOS COMPONENTES DE LOS OTOLITOS
III.1 Introducción

Los otolitos están constituidos esencialmente por Ca\(^{++}\); Na\(^{+}\); Mg\(^{++}\); CO\(^{-}\) y por una serie de elementos que entran a formar parte en microcanti-
dades, tales como el Hg\(^{+}\), S\(^{=}\), Si\(^{++}\), etc. (MACPHERSON et alt., 1977; MORALES, 1981; entre otros). La forma como estos constituyentes intervienen en las
reacciones metabólicas para formar parte del organismo y su posterior eli-
minación, ha sido objeto de numerosos estudios. Así, BERG (1968) asegura
que la mayor parte de Ca\(^{++}\)es absorbido a través del intestino y que su
eliminación se efectúa por el intestino, branquias y riñones. La pérdida
del mismo se realiza primordialmente por vía intestinal (SIMKISS, 1974)y
por la branquial (MUGIYA, 1981) mientras que, por la renal sólo se elimina
en pequeñas cantidades según describe HICKMAN (1968).

El calcio se encuentra en el plasma sanguíneo y en el fluido del
otolito bien en forma iónica, bien unido a determinadas proteínas. Su con-
centración varía a lo largo del día, según demostró MUGIYA et alt. (1981)
en sus experiencias realizadas con Ca\(^{++}\). La homeostasis del Ca\(^{++}\)se mantie-
ne por la prolactina, en los peces salmoniformes y por la calcitonina en
los peces de tejidos óseos celulares.

Por lo que respecta al CO\(_3\)^{2-}, que es otro de los constituyentes bási-
cos, puede provenir del CO\(_3\),H\(^{+}\) marino o del CO\(_2\), respiratorio. La acción de
la anhidrasa carbónica (CA) potencia la formación del CO\(_3\)^{2-}, a partir del
CO\(_3\),H\(^{+}\) o por hidratación o por hidroxilación del CO\(_2\).

Otros elementos que entran a formar parte del otolito en concentra-
ciones importantes son el Na\(^{+}\) y el Mg\(^{++}\). El primero de los cuales puede
sustituir isomórficamente al Ca\(^{++}\)en la estructura cristalina, dado que
sus radios iónicos son muy parecidos. La proporción de Na\(^{+}/Ca\(^{++}\) se mantiene
a lo largo de la vida del pez, mientras que la del Ca\(^{++}/Mg\(^{++}\)sufrir una
variación, por lo que, en el primer caso, se llega a la conclusión de que
el Na\(^{+}\) se encuentra ligado a la estructura cristalina y el segundo la ha-
llamos en forma de impurezas (MACPHERSON y MANRIQUEZ, 1979).
La presencia de magnesio en una solución de CaCO₃ favorece la formación de aragonito. Su función primordial es facilitar la cristalización, sin pasar a formar parte de la estructura cristalina.

Los constituyentes orgánicos se encuentran en microcantidades representando una fracción pequeña frente al peso del otolito. Generalmente el porcentaje de nitrógeno oscila entre el 0,22 y 0,26% en peso de las bandas opacas y de 0,15 a 0,18% del peso de las hialinas (MUGIYA, 1964). La variación de la materia orgánica en los anillos estacionales está ligada a cambios en la proporción de proteína y prealbúminas del suero.

Entre los compuestos orgánicos presentes en los otolitos se encuentran polisacáridos, cuya función es la de estabilizar la estructura proteica. La unión de los polisacáridos con los precursores de la matriz se realiza en el fluido del otolito, ya que al realizar la electroforesis de éste se desplazan conjuntamente.

Dada la escasa información existente sobre la composición de los otolitos y su variación en relación con la edad y las cristalizaciones anormales, pretendemos estudiar en el presente Capítulo:

1) La composición elemental de la zona nuclear y la del 1º anillo hialino formado, determinando si existen diferencias entre ambas zonas que reflejen las estructurales registradas (ver Cap. II).

2) La composición cristalina de los otolitos de ejemplares de especies distintas, de diferentes edades y entre ellos, de cristalizaciones anormales.

3) Determinar la proporción de proteína constituyente de los otolitos de dos especies caracterizadas por presentar morfologías distintas, atendiendo a un amplio rango de edades. Así mismo se determinará el porcentaje de proteína en los otolitos de cristalizaciones anormales, comparándolo con el presente en los otolitos normales de la misma especie.

4) Determinación cuantitativa y cualitativa de los aminoácidos presentes en los otolitos comprobando si existen modificaciones proteicas.
III.2 Material y métodos

Dada la diversidad de los objetivos propuestos se han empleado metodologías distintas adaptadas al desarrollo de cada uno de ellos. A continuación especificaremos, punto por punto, los distintos métodos empleados:

1) Determinación de los elementos presentes en los otolitos

En la determinación de los elementos presentes en los otolitos y las variaciones de estos entre la zona nuclear y el primer anillo de crecimiento lento, se han analizado otolitos de D.labrax de 0 y 1 año de vida, respectivamente, correspondientes a ejemplares de tallas comprendidas entre 60 y 150 mm.

Los otolitos se fracturaron transversalmente, la superficie de fractura se pulió, procediéndose a su lavado con ultrasonidos en agua destilada. Una vez secos se montaron en un estativo para microscopia electrónica con plata coloidal. El metalizado se realizó con carbono, ya que el oro produce una fuerte emisión electrónica que enmascara los resultados reales.

Los análisis se realizaron con un analizador de rayos X (EDAX) acoplado a un microscopio electrónico de barrido Philips SEM 500, perteneciente a la Cátedra de Metalurgia de la Escuela Técnica de Ingenieros de Barcelona. En cada análisis se barrió un área de 30 micrómetros² de la zona considerada.

2) Determinación de la composición cristalina de los otolitos

En la determinación de la composición cristalina de los otolitos se han preparado varias muestras de otolitos normales pertenecientes a la especie D.labrax de 6 meses, 1 y 4 años de vida y de otolitos normales y cristalinos de las especies M.capensis y G.capensis.

En el estudio de la citada composición se ha empleado un difractómetro de rayos X marca Philips PW 1001, perteneciente al Departamento de Cristalografía de la Universidad Central de Barcelona.
El procedimiento empleado fue el siguiente: se lavaron los oto-
litos con agua destilada secándose a continuación en una estufa a 50°C.
Una vez secos, se procedió a pulverizar parte de los mismos, mientras
que otros se analizaron enteros, con objeto de averiguar si en el pro-
ceso de trituración se alteraba el estado cristalino. En los casos que
se empleó material pulverizado se colocó una muestra de 0,1 gr y en
los demás el otolito, haciendo incidir sobre el un haz de rayos X. El
patrón de difracción fue registrado por radiación de Cu en una cámara
Guinier de Wolff y pasado por un monocromador de lamina de cuarzo marca
Xonius.

3) Determinación de la proporción de materia orgánica en el otolito

Con objeto de determinar la cantidad de materia orgánica presente
en los otolitos y su variación con la edad, se analizaron numerosas
muestras procedentes de otolitos de *M. capensis* de tallas comprendidas
entre 14 y 84 cm y de otolitos de *D. labrax* de tallas comprendidas en-
tre 8 y 61 cm.

En la determinación de la proporción de la materia orgánica de
los otolitos cristalinos se analizaron varios otolitos de *G. capensis*
de tallas comprendidas entre 90 y 115 cm y varios de normales perte-
 necientes a ejemplares de tallas similares. En el análisis de los oto-
litos cristalinos se utilizó solamente las partes de cristalización
anormal.

La cantidad de nitrógeno presente se determinó por el método de
Microkjeldahl (LEPPER, 1950). El procedimiento seguido fue el siguien-
te: los otolitos una vez pesados se digirieron en matraces kjeldahl
utilizando *K₂SO₄*, y *H₂SO₄*, como reactivos, actuando *HgO* como cataliza-
dor. El proceso se finalizó cuando toda la materia orgánica estaba di-
gerida.

La disolución así obtenida se introdujo, junto con una mezcla
de *NaOH-Na₂S₂O₃*, en el destilador de kjeldahl y se llevo a ebullición.
El *H₂N* producido durante la reacción se recogió en un matraz erleme-
yer con una solución de \(H_2BO_3 \), y un indicador (verde de bromocresol-rojo de metilo). Finalmente, la cantidad de amoníaco producida se valoró con HCl 0,02 N.

La cantidad de nitrógeno se calculó por la fórmula:

\[
\%N = \frac{\text{mL HCl valoración - mL HCl blanco}}{\text{peso de la muestra en mg}} \times P \cdot \text{eq. N} \times 100
\]

A partir del porcentaje de nitrógeno calculamos la cantidad de proteína multiplicando el valor obtenido por 6,25. Este factor viene determinado por la proporción media en peso de nitrógeno en una amplia gama de proteínas.

4) Determinación de la composición aminoácida de los otolitos

En el estudio de la composición aminoácida de la proteína de los otolitos y de la posible variación de dicha composición producida por el habitat y la edad de los ejemplares, se prepararon varios grupos de muestras para la determinación de los aminoácidos.

El primer grupo de muestras (A1) estaba formado por otolitos de \(D.\text{labrax} \) de 4 meses de edad. Los tres siguientes grupos correspondían a ejemplares de 6 meses de edad (A2, A3, A4). Así mismo, se preparó una muestra con los otolitos de una lubina de 4 años de edad (A5).

Finalmente, se prepararon dos muestras de otolitos de \(M.\text{capensis} \) de 1 año de edad (B1) y de 10 años de edad (B2).

Para la determinación de los aminoácidos presentes en la proteína del otolito se realizó una hidrólisis ácida de los mismos: las muestras se hidrolizaron con HCl 6 N en tubo cerrado, en atmósfera de nitrógeno, a 108\(^\circ\) C durante 24 h. Finalizada la hidrólisis, la muestra se evaporó a sequedad en un evaporizador rotatorio a fin de eliminar el HCl que contenía. Posteriormente, el residuo obtenido se disolvió en un tampón de pH 2,2.
El contenido de aminoácidos de cada una de las muestras se determinó en un analizador de aminoácidos Beckman modelo 119-C.

El proceso de separación se efectuó por cromatografía de intercambio iónico, mediante columnas que contenían resina de poliestireno sulfonada, equilibrada previamente con una disolución de iones Na⁺, a la forma sódica de la resina se le añadió la solución ácida (pH=2,2) de la mezcla de aminoácidos que se encuentran en forma de cationes. Dependiendo del grado de ionización de los mismos, del pH y de la concentración de NaCl en el medio eluyente, los aminoácidos van eluyendo en la columna a velocidades diferentes y pueden recogerse en distintas fracciones.

Una vez salidos de la columna, los diferentes eluatos se mezclan con ninhydrina. La mezcla de aminoácido más ninhydrina se dirige en un tubo capilar hacia un matraz de reacción por donde circula durante 10-15 min a una temperatura de 100° C.

Posteriormente, la mezcla coloreada pasa a través de un colorímetro de flujo provisto de 2 filtros de 570 y 440 mocrometros, respectivamente, en el que se mide la absorción del producto coloreado de un modo continuo. Los valores medidos se transmiten a un registrador en el que se pueden determinar el tipo y cantidad de los aminoácidos presentes en la muestra.
III.3 Resultados obtenidos

III.3.1 Determinación de los elementos presentes en los otolitos

Los resultados de los análisis, calculados por un microordenador acoplado al sistema analítico, se dieron en porcentaje con respecto al calcio, elemento mayoritario presente. Al ser los valores porcentuales tan sólo orientativos, los resultados dan tan sólo un índice relativo de la abundancia.

La proporción de cada elemento detectado se detalla en la Tabla III.1.

Los elementos Mg, Na, P, S, Cl, K y Hg están distribuidos con gran variabilidad. En líneas generales, los más abundantes son el K y Sr, seguidos en importancia por el P. A continuación en el índice de abundancia sigue el Cl, siendo el más escaso el S.

Este elemento debe estar formando parte de las proteínas de la matriz, ya que dos de éstas, metionina y cistina, poseen una molécula de S en su composición. Precisamente este elemento disminuye en la zona marginal del otolito, donde la matriz orgánica es menos densa (Cap. II).

Otros dos elementos presentan variación en cuanto a su distribución, siendo más abundantes en la zona marginal compuesta mayoritariamente por cristales. La tasa de Na con respecto del Ca, esta relacionada con el número de cuñas de intercrecimiento de los cristales de aragonito (DEGENS et alt., 1969). En los cristales pertenecientes a la zona nuclear el número de dichas cuñas es menor, guardando correlación con la menor concentración de Na.

El Mg se encuentra en mayor proporción en la zona marginal, este elemento varía a lo largo de la vida del pez, sin presentar relación clara con la edad de los ejemplares (MACPHERSON y MANRIQUEZ, 1977). La presencia de Mg en una solución de CaCO₃ favorece la cristalización de aragonito (MUGIYA, 1966). A pesar de su función como facilitador de la cristalización, este elemento se precipita en muy pequeña proporción con el aragonito.
Tabla III.1 - Porcentaje de los elementos detectados en los otolitos de *Dicentrarchus labrax*.

Porcentaje de cada elemento con respecto al calcio.

<table>
<thead>
<tr>
<th>talla mm</th>
<th>zona analizada</th>
<th>Mg</th>
<th>Na</th>
<th>Al</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>K</th>
<th>Sr</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>nucleo</td>
<td>+</td>
<td>0,25</td>
<td>0,22</td>
<td>0,05</td>
<td>0,05</td>
<td>0,14</td>
<td>0,53</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>nucleo</td>
<td>+</td>
<td>0,37</td>
<td>0,27</td>
<td>0,07</td>
<td>0,22</td>
<td>0,33</td>
<td>0,46</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>nucleo</td>
<td>+</td>
<td>0,27</td>
<td>0,17</td>
<td>0,10</td>
<td>0,09</td>
<td>0,29</td>
<td>0,37</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>nucleo</td>
<td>+</td>
<td>0,26</td>
<td>0,22</td>
<td>0,05</td>
<td>0,03</td>
<td>0,13</td>
<td>0,39</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>nucleo</td>
<td>+</td>
<td>0,29</td>
<td>0,19</td>
<td>+</td>
<td>0,30</td>
<td>0,46</td>
<td>0,25</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>nucleo</td>
<td>+</td>
<td>0,25</td>
<td>0,33</td>
<td>0,16</td>
<td>+</td>
<td>0,44</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>nucleo</td>
<td>+</td>
<td>0,05</td>
<td>0,13</td>
<td>0,10</td>
<td>+</td>
<td>+</td>
<td>0,11</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>hialino</td>
<td>+</td>
<td>0,47</td>
<td>0,28</td>
<td>+</td>
<td>0,07</td>
<td>0,14</td>
<td>0,47</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>hialino</td>
<td>0,04</td>
<td>0,19</td>
<td>0,43</td>
<td>0,09</td>
<td>0,59</td>
<td>0,45</td>
<td>+</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>hialino</td>
<td>0,04</td>
<td>0,09</td>
<td>0,17</td>
<td>0,09</td>
<td>+</td>
<td>+</td>
<td>0,08</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

+trazas
III.3.2 Composición cristalográfica

En la Fig. III.1 se muestran los diagramas de difracción obtenidos para los otolitos de D. labrax, M. capensis y G. capensis normalmente cristalizados (D, M y G respectivamente) y de los otolitos cristalinos de merluza (MC), junto con los correspondientes a la calcita y al aragonito puros (C y A). En la Fig. III.2 se muestra el diagrama de difracción sobre papel de los otolitos cristalinos de G. capensis.

En las Tablas III.2, III.3 y III.4 se muestran los valores de los ángulos de incidencia a partir de los cuales se obtuvieron las distancias del r置culo en Amstrongs (dA) por medio de la ley de Brag:

\[n=2d \sin \lambda \]

donde: n es la longitud de onda del Cu (k=1,78892 y k=1,79278 A), d la distancia del r置culo en Amstrongs y \(\lambda \) es el ángulo de incidencia.

Los valores de la intensidad óptica (I) se obtuvieron a partir de una escala relativa, a continuación se compararon los valores obtenidos en nuestros análisis con los correspondientes a las fichas características de otras sustancias que aparecen en el Joint Comittee on Power Difraction Standarts, consultándose los referentes a la calcita, el aragonito y la vaterita (fichas 5-0586, 5-0453 y 13-192 del J.C.P.D.S., respectivamente).

Los otolitos de las tres especies estudiadas presentan un patrón de difracción similar, característico del aragonito, concluyendo que es esta sustancia la que lo compone. En el caso de los otolitos cristalinos de G. capensis el patrón registrado corresponde a la calcita muy pura y en los de M. capensis a calcita más una pequeña cantidad de vaterita.

El aragonito, estado pilimorflco del carbonato calcico, esta caracterizado por cristalizar en el sistema ortorrombico, formando cristales prismáticos alargados, constituyentes característicos de los otolitos.
El proceso de formación del aragonito en las condiciones de presión y temperatura propias de un organismo vivo, sólo se puede explicar si la matriz proteica actúa como núcleo de la cristalización. Probablemente la matriz posee una disposición similar a la del aragonito, creándose una relación entre ésta y los precursores del carbonato que facilite la deposición del aragonito.

Al producirse alteraciones estructurales se depositan mayoritariamente cristales de calcita, la forma más estable del carbonato cálcico y la única que dadas sus características puede formarse in vivo sin intervención de procesos especiales. En los otolitos cristalinos (Cap.II) la disposición de los cristales romboédricos de calcita se produce sin interacción con la matriz proteica. No se ha observado la presencia de matrices intracristalinas, el crecimiento en general es desordenado, acumulándose materia orgánica en los espacios intercristalinos.

En las cristalizaciones anormales de *M. capensis* se han detectado pequeñas cantidades de vaterita, que al ser muy inestable debe pasar rápidamente a calcita.
Fig. III.1- Diagramas de difracción de la calcita (C) y el aragonito (M) y de los otolitos de D. labrax (D), M. capensis (M) y G. capensis (G) y de los cristalinos de M. capensis (MC).
Fig.III.2- Diagrama de difracción sobre papel obtenido para el otolito cristalino de Genypterus capensis.
Tabla III.2- Valores de difracción de los otolitos de *Dicentrarchus labrax*.

<table>
<thead>
<tr>
<th>Diagrama obtenido</th>
<th>Diagrama JCPDS 5-0453</th>
</tr>
</thead>
<tbody>
<tr>
<td>4^o</td>
<td>dA</td>
</tr>
<tr>
<td>52,63</td>
<td>3,380</td>
</tr>
<tr>
<td>54,67</td>
<td>3,260</td>
</tr>
<tr>
<td>62,45</td>
<td>2,860</td>
</tr>
<tr>
<td>66,05</td>
<td>2,722</td>
</tr>
<tr>
<td>66,80</td>
<td>2,692</td>
</tr>
<tr>
<td>72,83</td>
<td>2,477</td>
</tr>
<tr>
<td>75,24</td>
<td>2,401</td>
</tr>
<tr>
<td>76,40</td>
<td>2,366</td>
</tr>
<tr>
<td>77,46</td>
<td>2,355</td>
</tr>
<tr>
<td>77,86</td>
<td>2,324</td>
</tr>
<tr>
<td>83,10</td>
<td>2,184</td>
</tr>
<tr>
<td>86,66</td>
<td>2,098</td>
</tr>
<tr>
<td>92,64</td>
<td>1,970</td>
</tr>
<tr>
<td>97,79</td>
<td>1,873</td>
</tr>
<tr>
<td>101,51</td>
<td>1,809</td>
</tr>
<tr>
<td>106</td>
<td>1,738</td>
</tr>
<tr>
<td>107,15</td>
<td>1,721</td>
</tr>
</tbody>
</table>

aragonito
Tabla III.3- Valores de difracción de los otolitos cristalinos de *Merluccius capensis*.

<table>
<thead>
<tr>
<th>Diagrama obtenido</th>
<th>Diagrama JCPDS-5-0586</th>
<th>Diagrama JCPDS-13-192</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,16 3,85 M</td>
<td>3,86 12</td>
<td></td>
</tr>
<tr>
<td>49,85 3,569 M</td>
<td>3,58 100</td>
<td></td>
</tr>
<tr>
<td>54,21 3,569 MD</td>
<td>3,30 100</td>
<td></td>
</tr>
<tr>
<td>58,80 3,055 FF</td>
<td>3,035 100</td>
<td></td>
</tr>
<tr>
<td>63,03 2,836 DDD</td>
<td>2,845 3</td>
<td></td>
</tr>
<tr>
<td>65,85 2,720 DD</td>
<td>2,73 100</td>
<td></td>
</tr>
<tr>
<td>72,35 2,492 MF</td>
<td>2,495 14</td>
<td></td>
</tr>
<tr>
<td>79,25 2,285 F</td>
<td>2,285 18</td>
<td></td>
</tr>
<tr>
<td>86,95 2,092 F</td>
<td>2,095 18</td>
<td></td>
</tr>
<tr>
<td>88,25 2,063 MD</td>
<td>2,059 100</td>
<td></td>
</tr>
<tr>
<td>95 1,925 D</td>
<td>1,927 5</td>
<td></td>
</tr>
<tr>
<td>95,73 1,911 MD</td>
<td>1,913 17</td>
<td></td>
</tr>
<tr>
<td>97,74 1,874 MD</td>
<td>1,875 17</td>
<td></td>
</tr>
<tr>
<td>114 1,874 MD</td>
<td>1,626 4</td>
<td></td>
</tr>
<tr>
<td>114,73 1,617 MD</td>
<td>1,604 8</td>
<td></td>
</tr>
<tr>
<td>130,51 1,441 M</td>
<td>1,440 5</td>
<td></td>
</tr>
</tbody>
</table>

cálcula **vaterita**
Tabla III.4- Valores de difracción de los otolitos cristalinos de *Genypterus capensis*.

<table>
<thead>
<tr>
<th>Diagrama obtenido</th>
<th>Diagrama JCPDS-5-0586</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dA</td>
</tr>
<tr>
<td>4°</td>
<td>dA</td>
</tr>
<tr>
<td>23,05</td>
<td>3,854</td>
</tr>
<tr>
<td>29,37</td>
<td>3,037</td>
</tr>
<tr>
<td>31,37</td>
<td>2,848</td>
</tr>
<tr>
<td>35,93</td>
<td>2,597</td>
</tr>
<tr>
<td>39,43</td>
<td>2,283</td>
</tr>
<tr>
<td>43,13</td>
<td>2,095</td>
</tr>
<tr>
<td>47,14</td>
<td>1,926</td>
</tr>
<tr>
<td>47,47</td>
<td>1,913</td>
</tr>
<tr>
<td>48,50</td>
<td>1,875</td>
</tr>
<tr>
<td>56,51</td>
<td>1,626</td>
</tr>
<tr>
<td>57,39</td>
<td>1,604</td>
</tr>
<tr>
<td>60,63</td>
<td>1,525</td>
</tr>
<tr>
<td>60,98</td>
<td>1,517</td>
</tr>
<tr>
<td>61,32</td>
<td>1,510</td>
</tr>
<tr>
<td>64,60</td>
<td>1,441</td>
</tr>
<tr>
<td>65,60</td>
<td>1,421</td>
</tr>
<tr>
<td>70,20</td>
<td>1,339</td>
</tr>
</tbody>
</table>

cálcita
III.3.3 Proporción de proteína

La determinación de proteínas realizada con otolitos de *M. capensis* se muestra en la Tabla III.5 y en las Figs.III.3 y III.4.

Su proporción para cada clase de edad se resume a continuación:

<table>
<thead>
<tr>
<th>Edad</th>
<th>Talla media</th>
<th>% proteína</th>
<th>nºi-n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15,22 cm</td>
<td>1,1585</td>
<td>0,5305</td>
</tr>
<tr>
<td>2</td>
<td>22,00 cm</td>
<td>0,6493</td>
<td>0,1669</td>
</tr>
<tr>
<td>3</td>
<td>33,30 cm</td>
<td>0,5533</td>
<td>0,1489</td>
</tr>
<tr>
<td>4</td>
<td>43,12 cm</td>
<td>0,4618</td>
<td>0,0714</td>
</tr>
<tr>
<td>5</td>
<td>45,66 cm</td>
<td>0,5418</td>
<td>0,0960</td>
</tr>
<tr>
<td>6</td>
<td>52,50 cm</td>
<td>0,3920</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>58,50 cm</td>
<td>0,4905</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>66,57 cm</td>
<td>0,7901</td>
<td>0,7901</td>
</tr>
<tr>
<td>9</td>
<td>72,53 cm</td>
<td>0,5308</td>
<td>0,0935</td>
</tr>
<tr>
<td>10</td>
<td>80,60 cm</td>
<td>0,4615</td>
<td>0,1728</td>
</tr>
<tr>
<td>11</td>
<td>82,75 cm</td>
<td>0,6251</td>
<td>0,0877</td>
</tr>
</tbody>
</table>

Es notable la amplia variación del rango de valores de proteína registrada para cada clase de edad, esta variación es muy acusada para los ejemplares de 1 año de edad. La dispersión entorno de la media es alta, especialmente en la clase de edad 1 y 8. Las clases 2, 3 y 10 presentan una dispersión similar. La baja correspondencia entre los promedios de proteína en cada clase de edad y su irregular dispersión, causan que no se haya podido establecer ningún tipo de relación matemática entre ambas series de valores.

Sin embargo, con objeto de determinar si los porcentajes de proteína de cada clase de edad es significativamente diferente, hemos realizado un análisis de la varianza de una via ANOVA (SOKAL y ROHLF, 1969) para el promedio de proteína en cada clase de edad. La tabla de la ANOVA obtenida es la siguiente:
\[
\begin{array}{cccc}
\text{SQ} & \text{df} & \text{MS} & F \\
5,29 & 10 & 0,50 & 5,19 \\
5,09 & 51 & 0,11 & \hline \\
10,38 & 61 & \\
\end{array}
\]

En las tablas de la distribución F para 10 y 60 grados de libertad, respectivamente, el valor de F encontrado para un nivel de significación del 99% (F\(_{01,10,60}=2,63\)) es menor que el calculado. Por tanto, podemos concluir que la proporción de proteína en los otolitos de merluza de cada clase de edad considerada, es significativamente distinta y función de la clase de edad a que pertenecen.

Los resultados obtenidos para *D. labrax* se muestran en la Tabla III.6 y en las Figs.III.5 y III.6, dando los resultados en función de la talla y de la edad, respectivamente.

A continuación exponemos los valores de porcentaje de proteína medio para cada clase de edad:

<table>
<thead>
<tr>
<th>Edad talla media</th>
<th>%proteína (\text{sn-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>8 cm</td>
</tr>
<tr>
<td>1</td>
<td>4,3700</td>
</tr>
<tr>
<td>2</td>
<td>0,8432</td>
</tr>
<tr>
<td>3</td>
<td>0,7950</td>
</tr>
<tr>
<td>4</td>
<td>0,6240</td>
</tr>
<tr>
<td>5</td>
<td>0,6720</td>
</tr>
<tr>
<td>6</td>
<td>43,00</td>
</tr>
<tr>
<td>7</td>
<td>1,0000</td>
</tr>
<tr>
<td>8</td>
<td>0,9750</td>
</tr>
</tbody>
</table>

En esta especie la proporción de proteína, aunque netamente superior a la de *M. capensis*, muestra una distribución similar. En los ejemplares menores de 1 año, con el otolito formado únicamente por el núcleo, la proporción de proteína es muy alta, disminuyendo bruscamente en las siguientes clases de edad.
La variación interna de la proporción de proteína en cada clase es muy alta, como en el caso anterior, por lo que de igual modo no se ha podido establecer una relación matemática entre ambas series de valores.

Se ha realizado el análisis de la varianza de una vía entre la edad y el porcentaje de proteína correspondiente, obteniéndose la siguiente tabla de la ANOVA:

<table>
<thead>
<tr>
<th></th>
<th>Sq</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>23,88</td>
<td>4</td>
<td>5,97</td>
<td>60,37</td>
<td></td>
</tr>
<tr>
<td>1,29</td>
<td>13</td>
<td>0,10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 25,16 | 17 |

En las tablas de la distribución F para un nivel de significación del 99% y para 4 y 13 grados de libertad, el valor de F obtenido (F.01, 4,13 = 4,21) es netamente inferior al calculado. Por tanto, las diferencias en el porcentaje de proteína son debidas a causas biológicas y no al azar.

Los otolitos pertenecientes a los ejemplares más jóvenes, poseen estructuras densas y ricas en fibras orgánicas. En el desarrollo posterior, se depositan preferentemente materiales cristalinos, perdiendo densidad la matriz proteica formada. Estas diferencias morfológicas entre los ejemplares de distinta edad se reflejan en la composición y en el porcentaje de proteína.

La morfología del otolito dependiente de las características de cada especie, origina diferencias en la concentración de proteína.

El porcentaje de proteína en los otolitos de *G. capensis* normales y cristalinos se expone en la Tabla III.7.

Los otolitos normales presentan un porcentaje que va de 0,2131 a 0,5390, siendo en promedio 0,3983 %. Este rango de valores es similar al registrado en los otolitos de *M. capensis* de tallas comparables.

Los otolitos cristalinos poseen un porcentaje de proteína comprendido entre 0,3113 y 0,9281 %, la media es de 0,5518 %. A tallas simila-
res la proporción de proteína en los otolitos cristalinos es superior a la presente en los normales. Con objeto de averiguar si ambas series de valores son significativamente diferentes hemos aplicado la prueba de Barlett con la hipótesis inicial de que ambas medias son iguales.

Suponiendo $H_0: \bar{x} = \bar{y} = d(\sigma_x^2 = \sigma_y^2)$ siendo d grados de libertad

Aplicamos la fórmula:

$$t(n_x + n_y - 2) = \frac{\bar{x} - \bar{y} - d}{\sqrt{\frac{1}{n_x} \sum_{i=1}^{n_x} x_i^2 + \frac{1}{n_y} \sum_{i=1}^{n_y} y_i^2}}$$

El valor calculado de $t(n_x + n_y - 2)$ = 30,2505 para 8 grados de libertad es mayor que el obtenido en las tablas de distribución de t a un nivel de significación de 99% ($t_{0.01, 8} = 3.355$).

Podemos concluir que los otolitos cristalinos de rosada poseen proporcionalmente mayor concentración de proteína que los otolitos normales de la especie, siendo estas diferencias significativamente distintas.
Fig. III.3- Porcentaje de proteína en los otolitos de *M. capensis* en relación con la talla.
Fig. III.4- Porcentaje de proteína en los otolitos de *M. capensis* en relación con la clase de edad a que pertenecían.
Fig.III.5- Porcentaje de proteína de los otolitos de D. labrax en relación con la talla.
Fig.III.6- Porcentaje de proteína en los otolitos de *D. labrax* en relación con la clase de edad a que pertenecían.
<table>
<thead>
<tr>
<th>talla</th>
<th>edad</th>
<th>peso</th>
<th>otolito</th>
<th>cc HCl</th>
<th>cc HCl</th>
<th>%N</th>
<th>%proteína</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1</td>
<td>16,55</td>
<td>0,30</td>
<td>0,10</td>
<td>0,3383</td>
<td>2,1148</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>17,70</td>
<td>0,30</td>
<td>0,20</td>
<td>0,1581</td>
<td>0,9887</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>16,10</td>
<td>0,35</td>
<td>0,25</td>
<td>0,1739</td>
<td>1,0869</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>17,20</td>
<td>0,35</td>
<td>0,25</td>
<td>0,1627</td>
<td>1,0174</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>18,10</td>
<td>0,40</td>
<td>0,25</td>
<td>0,2320</td>
<td>1,4502</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>18,90</td>
<td>0,25</td>
<td>0,10</td>
<td>0,2222</td>
<td>1,3888</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>16,70</td>
<td>0,30</td>
<td>0,10</td>
<td>0,3353</td>
<td>2,0958</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>17,70</td>
<td>0,20</td>
<td>0,15</td>
<td>0,0790</td>
<td>0,4937</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>18,20</td>
<td>0,30</td>
<td>0,15</td>
<td>0,2307</td>
<td>1,4423</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>16,90</td>
<td>0,32</td>
<td>0,15</td>
<td>0,2816</td>
<td>1,7603</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>17,50</td>
<td>0,30</td>
<td>0,20</td>
<td>0,1600</td>
<td>1,0000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>19,30</td>
<td>0,25</td>
<td>0,20</td>
<td>0,0725</td>
<td>0,4533</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>18,50</td>
<td>0,25</td>
<td>0,20</td>
<td>0,0756</td>
<td>0,4729</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>22,40</td>
<td>0,25</td>
<td>0,20</td>
<td>0,0625</td>
<td>0,3906</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>21,70</td>
<td>0,30</td>
<td>0,20</td>
<td>0,1290</td>
<td>0,8064</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>23,70</td>
<td>0,25</td>
<td>0,10</td>
<td>0,1772</td>
<td>1,1075</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>22,40</td>
<td>0,25</td>
<td>0,10</td>
<td>0,1874</td>
<td>1,1718</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>21,70</td>
<td>0,30</td>
<td>0,10</td>
<td>0,2580</td>
<td>1,6129</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>98,20</td>
<td>0,60</td>
<td>0,20</td>
<td>0,3490</td>
<td>0,8432</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>101,20</td>
<td>0,60</td>
<td>0,20</td>
<td>0,1073</td>
<td>0,6708</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>105,40</td>
<td>0,70</td>
<td>0,25</td>
<td>0,1322</td>
<td>0,8266</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>108,90</td>
<td>0,50</td>
<td>0,20</td>
<td>0,0769</td>
<td>0,4807</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>99,70</td>
<td>0,55</td>
<td>0,20</td>
<td>0,1004</td>
<td>0,6275</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>112,10</td>
<td>0,50</td>
<td>0,20</td>
<td>0,0715</td>
<td>0,4471</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>115,40</td>
<td>0,70</td>
<td>0,25</td>
<td>0,1147</td>
<td>0,7171</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>123,00</td>
<td>0,50</td>
<td>0,20</td>
<td>0,0680</td>
<td>0,4260</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>134,30</td>
<td>0,50</td>
<td>0,20</td>
<td>0,0620</td>
<td>0,3900</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>4</td>
<td>142,80</td>
<td>0,50</td>
<td>0,20</td>
<td>0,058</td>
<td>0,3670</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>135,20</td>
<td>0,55</td>
<td>0,15</td>
<td>0,082</td>
<td>0,5170</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>173,30</td>
<td>0,60</td>
<td>0,10</td>
<td>0,080</td>
<td>0,3140</td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td>Peso (mg)</td>
<td>Otolito cm³</td>
<td>HCl muestra</td>
<td>HCl blanco</td>
<td>%N</td>
<td>%Proteína</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>385,20</td>
<td>1,25</td>
<td>0,25</td>
<td>0,072</td>
<td>0,454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>177,50</td>
<td>0,60</td>
<td>0,10</td>
<td>0,078</td>
<td>0,492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>173,30</td>
<td>0,70</td>
<td>0,15</td>
<td>0,088</td>
<td>0,555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>170,00</td>
<td>0,60</td>
<td>0,15</td>
<td>0,074</td>
<td>0,463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>190,00</td>
<td>0,85</td>
<td>0,15</td>
<td>0,103</td>
<td>0,644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>199,20</td>
<td>0,75</td>
<td>0,10</td>
<td>0,084</td>
<td>0,527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>200,50</td>
<td>0,60</td>
<td>0,15</td>
<td>0,062</td>
<td>0,392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>245,40</td>
<td>0,75</td>
<td>0,20</td>
<td>0,062</td>
<td>0,392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>302,70</td>
<td>1,00</td>
<td>0,15</td>
<td>0,078</td>
<td>0,491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>374,50</td>
<td>1,25</td>
<td>0,20</td>
<td>0,078</td>
<td>0,490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>267,20</td>
<td>0,60</td>
<td>0,15</td>
<td>0,047</td>
<td>0,294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>375,40</td>
<td>1,30</td>
<td>0,25</td>
<td>0,078</td>
<td>0,489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>294,30</td>
<td>1,20</td>
<td>0,15</td>
<td>0,099</td>
<td>0,624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>385,60</td>
<td>1,30</td>
<td>0,25</td>
<td>0,094</td>
<td>0,589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>370,60</td>
<td>1,25</td>
<td>0,20</td>
<td>0,079</td>
<td>0,495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>372,60</td>
<td>1,40</td>
<td>0,20</td>
<td>0,090</td>
<td>0,563</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>355,90</td>
<td>1,30</td>
<td>0,20</td>
<td>0,086</td>
<td>0,540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>331,30</td>
<td>1,20</td>
<td>0,10</td>
<td>0,092</td>
<td>0,581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>361,30</td>
<td>1,15</td>
<td>0,10</td>
<td>0,081</td>
<td>0,508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>215,50</td>
<td>0,82</td>
<td>0,25</td>
<td>0,074</td>
<td>0,462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>361,30</td>
<td>1,15</td>
<td>0,10</td>
<td>0,081</td>
<td>0,508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>202,30</td>
<td>1,05</td>
<td>0,25</td>
<td>0,110</td>
<td>0,692</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>263,00</td>
<td>0,90</td>
<td>0,25</td>
<td>0,069</td>
<td>0,432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>501,80</td>
<td>1,50</td>
<td>0,20</td>
<td>0,072</td>
<td>0,453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>486,50</td>
<td>1,90</td>
<td>0,25</td>
<td>0,027</td>
<td>0,169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>410,90</td>
<td>1,50</td>
<td>0,25</td>
<td>0,085</td>
<td>0,533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>456,30</td>
<td>1,60</td>
<td>0,20</td>
<td>0,085</td>
<td>0,536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>477,40</td>
<td>2,00</td>
<td>0,10</td>
<td>0,111</td>
<td>0,696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>495,90</td>
<td>1,75</td>
<td>0,25</td>
<td>0,084</td>
<td>0,529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>455,80</td>
<td>1,80</td>
<td>0,20</td>
<td>0,098</td>
<td>0,614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>410,90</td>
<td>1,85</td>
<td>0,20</td>
<td>0,112</td>
<td>0,702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>talla</td>
<td>edad</td>
<td>peso otolito</td>
<td>cc HCl</td>
<td>cc HCl blanco</td>
<td>%N</td>
<td>% proteína</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>--------------</td>
<td>--------</td>
<td>---------------</td>
<td>-----</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td></td>
<td>mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0,5</td>
<td>2,00</td>
<td>0,35</td>
<td>0,30</td>
<td>0,70</td>
<td>4,37</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,5</td>
<td>1,00</td>
<td>0,35</td>
<td>0,30</td>
<td>0,70</td>
<td>4,37</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>16,80</td>
<td>0,45</td>
<td>0,40</td>
<td>0,08</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>21,80</td>
<td>0,45</td>
<td>0,30</td>
<td>0,19</td>
<td>1,20</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>33,30</td>
<td>0,50</td>
<td>0,30</td>
<td>0,16</td>
<td>1,05</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>29,00</td>
<td>0,40</td>
<td>0,30</td>
<td>0,09</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>38,50</td>
<td>0,50</td>
<td>0,30</td>
<td>0,14</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>50,00</td>
<td>0,55</td>
<td>0,35</td>
<td>0,11</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>54,20</td>
<td>0,50</td>
<td>0,35</td>
<td>0,08</td>
<td>0,48</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>82,00</td>
<td>0,60</td>
<td>0,35</td>
<td>0,08</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>72,70</td>
<td>0,65</td>
<td>0,30</td>
<td>0,13</td>
<td>0,84</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>39,70</td>
<td>0,55</td>
<td>0,30</td>
<td>0,18</td>
<td>1,10</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>92,00</td>
<td>0,60</td>
<td>0,30</td>
<td>0,09</td>
<td>0,57</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4</td>
<td>75,30</td>
<td>0,65</td>
<td>0,30</td>
<td>0,13</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>97,20</td>
<td>0,55</td>
<td>0,30</td>
<td>0,07</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>102,10</td>
<td>0,75</td>
<td>0,30</td>
<td>0,12</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4</td>
<td>99,20</td>
<td>0,90</td>
<td>0,30</td>
<td>0,17</td>
<td>1,06</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>4</td>
<td>97,90</td>
<td>0,45</td>
<td>0,30</td>
<td>0,04</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>5</td>
<td>113,20</td>
<td>1,00</td>
<td>0,35</td>
<td>0,16</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>6</td>
<td>134,80</td>
<td>1,10</td>
<td>0,35</td>
<td>0,16</td>
<td>0,97</td>
<td></td>
</tr>
</tbody>
</table>
Tabla III.7- Porcentaje de proteína en los otolitos normales y cristalinos de *Genypterus capensis*.

<table>
<thead>
<tr>
<th>Talla pes</th>
<th>Peso otolito mg</th>
<th>cc HCl</th>
<th>cc HCl blanco</th>
<th>%Nitrógeno</th>
<th>%Proteína</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 cm</td>
<td>462,10</td>
<td>1,50</td>
<td>0,30</td>
<td>0,0727</td>
<td>0,4544</td>
</tr>
<tr>
<td>97 cm</td>
<td>410,60</td>
<td>0,80</td>
<td>0,30</td>
<td>0,0340</td>
<td>0,2131</td>
</tr>
<tr>
<td>98 cm</td>
<td>423,80</td>
<td>1,10</td>
<td>0,30</td>
<td>0,0528</td>
<td>0,3303</td>
</tr>
<tr>
<td>100 cm</td>
<td>444,40</td>
<td>1,45</td>
<td>0,30</td>
<td>0,0727</td>
<td>0,4549</td>
</tr>
<tr>
<td>115 cm</td>
<td>746,70</td>
<td>2,60</td>
<td>0,30</td>
<td>0,0862</td>
<td>0,5490</td>
</tr>
</tbody>
</table>

| Otolitos normales |

<table>
<thead>
<tr>
<th>Talla pes</th>
<th>Peso otolito mg</th>
<th>cc HCl</th>
<th>cc HCl blanco</th>
<th>%Nitrógeno</th>
<th>%Proteína</th>
</tr>
</thead>
<tbody>
<tr>
<td>91 cm</td>
<td>28,10</td>
<td>0,30</td>
<td>0,25</td>
<td>0,0498</td>
<td>0,3113</td>
</tr>
<tr>
<td>99 cm</td>
<td>125,10</td>
<td>0,60</td>
<td>0,20</td>
<td>0,0895</td>
<td>0,5595</td>
</tr>
<tr>
<td>100 cm</td>
<td>103,70</td>
<td>0,75</td>
<td>0,20</td>
<td>0,1485</td>
<td>0,9281</td>
</tr>
<tr>
<td>117 cm</td>
<td>80,80</td>
<td>0,50</td>
<td>0,25</td>
<td>0,0866</td>
<td>0,5414</td>
</tr>
<tr>
<td>117 cm</td>
<td>187,90</td>
<td>0,70</td>
<td>0,25</td>
<td>0,0670</td>
<td>0,4191</td>
</tr>
</tbody>
</table>

| Otolitos cristalinos |
III.3.4 Composición aminoácídica

Se han identificado en todas las muestras analizadas los siguientes aminoácidos: ác. aspartico, ác. glutámico, treonina, serina, prolina, glicina, alanina, valina, isoleucina, leucina, fenilalanina, histidina, lisina y arginina. En 3 muestras se obtuvo ác. cisteínico, producido por la hidrólisis de la cisteína, en 2 tirosina y en 1 metionina. Los resultados de los análisis se especifican en la Tabla III.8.

Los cromatogramas obtenidos muestran la alta proporción de aminoácidos ácidos (Figs. III.7 a III.13) y la relativamente alta de aminoácidos hidrófobos no polares. El porcentaje de aminoácidos no polares es de 34%, de cargados negativamente de 28,12% y de cargados positivamente de 19%.

Los resultados de los grupos de muestras A1, A2, A3 y A4 se han expresado en μmoles/μmoles totales y los de las muestras A5, B1 y B2 en μmoles/gr.

Los grupos de lubinas jóvenes presentan diferencias en la presencia de metionina en uno de los grupos y de tirosina en dos de ellos. Con objeto de dilucidar si las diferencias registradas en la composición aminoácídica son significativas, se realizó el análisis de la varianza entre los cuatro grupos, obteniéndose la siguiente tabla de la ANOVA:

<table>
<thead>
<tr>
<th></th>
<th>SQ</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,68</td>
<td>3</td>
<td>1,56</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td>0,12</td>
<td>60</td>
<td>1,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,80</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para un nivel de significación del 99% y para 3 y 60 grados de libertad, respectivamente, en las tablas de la distribución F se obtuvo un valor netamente superior al calculado (F_{0,01,3,60}=1,92). Concluyéndose, por tanto, que las diferencias entre los grupos no son significativas.
La composición del otolito de lubina adulta (A5) es similar a la obtenida para los ejemplares jóvenes. La principal diferencia es la presencia de ácido cisteínico.

La estructura de la matriz proteica en los otolitos de edades dispares, es decir, jóvenes y ya lonjevos, es distinta (ver Cap.II). En consideración a la posibilidad de que estas diferencias estén ligadas a distintas composiciones aminoácidas, se han analizado otolitos de merluza de 1 año de edad (B1) y de los 10 años (B2). La composición de los otolitos en ambos grupos es similar, la principal diferencia registrada es la gran abundancia de arginina en los ejemplares de 1 año. Para determinar si las diferencias entre ambas series de análisis son significativas se realizó la prueba de Wilcoxon para muestras emparejadas, elaborándose la siguiente tabla:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_1-x_2)</th>
<th>n (^\circ) orden</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,50</td>
<td>0,70</td>
<td>-0,20</td>
<td>1</td>
</tr>
<tr>
<td>4,70</td>
<td>3,40</td>
<td>1,30</td>
<td>10</td>
</tr>
<tr>
<td>3,10</td>
<td>2,10</td>
<td>1,00</td>
<td>8,50</td>
</tr>
<tr>
<td>3,70</td>
<td>3,20</td>
<td>0,50</td>
<td>4,50</td>
</tr>
<tr>
<td>6,20</td>
<td>4,60</td>
<td>1,60</td>
<td>11</td>
</tr>
<tr>
<td>5,50</td>
<td>2,40</td>
<td>3,10</td>
<td>13</td>
</tr>
<tr>
<td>4,20</td>
<td>2,70</td>
<td>2,50</td>
<td>12</td>
</tr>
<tr>
<td>2,80</td>
<td>2,00</td>
<td>0,80</td>
<td>6,50</td>
</tr>
<tr>
<td>2,60</td>
<td>1,60</td>
<td>1,00</td>
<td>8,50</td>
</tr>
<tr>
<td>1,00</td>
<td>0,60</td>
<td>0,40</td>
<td>2,50</td>
</tr>
<tr>
<td>3,00</td>
<td>2,20</td>
<td>0,80</td>
<td>6,50</td>
</tr>
<tr>
<td>1,10</td>
<td>0,60</td>
<td>0,50</td>
<td>4,50</td>
</tr>
<tr>
<td>1,20</td>
<td>1,00</td>
<td>0,20</td>
<td>1</td>
</tr>
<tr>
<td>1,50</td>
<td>1,50</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1,80</td>
<td>11,10</td>
<td>-9,30</td>
<td>2</td>
</tr>
</tbody>
</table>

Obteniéndose los siguientes valores: \(t_{sn} = 3 \) y \(t_{sp} = 91 \).
La menor t obtenida ($t=3$) es menor que la obtenida en la tabla de Wilcoxon para un nivel de significación del 99% y 15 grados de libertad ($t_{01,15}=19$). Las diferencias registradas entre los dos grupos de edad considerados, son significativamente distinas.

Así mismo, se compararon los valores de cantidad de aminoácidos presentes en la muestra de lubina adulta (A5) y de merluza adulta (B2) mediante el mismo test. La tabla obtenida es la siguiente:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_1-x_2</th>
<th>nº orden</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,30</td>
<td>0,70</td>
<td>0,60</td>
<td>4,50</td>
</tr>
<tr>
<td>6,00</td>
<td>3,40</td>
<td>2,60</td>
<td>11</td>
</tr>
<tr>
<td>2,80</td>
<td>2,10</td>
<td>0,70</td>
<td>6,50</td>
</tr>
<tr>
<td>4,10</td>
<td>3,20</td>
<td>0,90</td>
<td>8</td>
</tr>
<tr>
<td>6,30</td>
<td>4,60</td>
<td>1,70</td>
<td>10</td>
</tr>
<tr>
<td>3,10</td>
<td>2,40</td>
<td>0,70</td>
<td>6,50</td>
</tr>
<tr>
<td>3,20</td>
<td>2,70</td>
<td>0,50</td>
<td>3</td>
</tr>
<tr>
<td>3,40</td>
<td>2,00</td>
<td>1,40</td>
<td>9</td>
</tr>
<tr>
<td>1,70</td>
<td>1,60</td>
<td>0,10</td>
<td>1,50</td>
</tr>
<tr>
<td>1,20</td>
<td>0,60</td>
<td>0,10</td>
<td>1,50</td>
</tr>
<tr>
<td>2,20</td>
<td>2,20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0,70</td>
<td>0,60</td>
<td>0,10</td>
<td>1,50</td>
</tr>
<tr>
<td>0,80</td>
<td>1,00</td>
<td>-0,20</td>
<td>1,5</td>
</tr>
<tr>
<td>1,30</td>
<td>1,50</td>
<td>-0,20</td>
<td>1,50</td>
</tr>
<tr>
<td>1</td>
<td>11,10</td>
<td>-10,10</td>
<td>3</td>
</tr>
</tbody>
</table>

Los valores obtenidos de $t_{sn}=6$ y $t_{sp}=66$.

En las tablas de la prueba de Wilcoxon el valor obtenido de t es mayor que el calculado ($t_{01,15}=19$). Por tanto las diferencias entre ambos grupos son significativas.

Podemos concluir que, si bien, entre ejemplares de la misma especie y edad similar la composición aminoácida no varía significativamente, sí existen diferencias entre los grupos de edades dispares. Paralelamente existen diferencias en la composición de los oto-litos de especies diferentes.
Fig.III.7- Cromatograma obtenido para los otolitos de D. labrax de la muestra A1.
Fig. III.8- Cromatograma obtenido para los otolitos de D. labrax de la muestra A2.
Fig. III.9- Cromatograma obtenido para los otolitos de D. labrax de la muestra A3.
Fig. III.10- Cromatograma obtenido para los otolitos de _D. labrax_ de la muestra A4.
Fig. III.11- Cromatograma obtenido para los otolitos de D. labrax de la muestra A5.
Fig. III.13- Cromatograma obtenido para los otolitos de *M. capensis* de la muestra B2.
Fig. III.12- Cromatograma obtenido para los otolitos de *M. capensis* de la muestra Bl.
Tabla III.8- Composición aminoácida de los otolitos de *D. labrax* (A1, A2, A3, A4 y A5) y *M. capensis* (B1 y B2).

<table>
<thead>
<tr>
<th>muestra</th>
<th>CIS</th>
<th>ASP</th>
<th>THR</th>
<th>SER</th>
<th>GLU</th>
<th>PRO</th>
<th>GLY</th>
<th>ALA</th>
<th>CY5</th>
<th>½VAL</th>
<th>MET</th>
<th>ILE</th>
<th>LEU</th>
<th>TYR</th>
<th>PHE</th>
<th>HIS</th>
<th>LYS</th>
<th>ARG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1'</td>
<td>0</td>
<td>0,09</td>
<td>0,04</td>
<td>0,09</td>
<td>0,10</td>
<td>0,03</td>
<td>0,10</td>
<td>0,09</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0,07</td>
<td>0,14</td>
<td>0,02</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>A2'</td>
<td>0</td>
<td>0,13</td>
<td>0,06</td>
<td>0,10</td>
<td>0,15</td>
<td>0,05</td>
<td>0,12</td>
<td>0,08</td>
<td>0</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
<td>0,07</td>
<td>0</td>
<td>0,02</td>
<td>0,02</td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>A3'</td>
<td>0</td>
<td>0,13</td>
<td>0,06</td>
<td>0,11</td>
<td>0,14</td>
<td>0,05</td>
<td>0,13</td>
<td>0,08</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
<td>0,03</td>
<td>0,06</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>A4'</td>
<td>0</td>
<td>0,13</td>
<td>0,08</td>
<td>0,13</td>
<td>0,14</td>
<td>0,05</td>
<td>0,12</td>
<td>0,09</td>
<td>0</td>
<td>1,70</td>
<td>0</td>
<td>1,20</td>
<td>2,20</td>
<td>0</td>
<td>0,70</td>
<td>0,80</td>
<td>1,30</td>
<td>1,00</td>
</tr>
<tr>
<td>A5''</td>
<td>1,30</td>
<td>6,00</td>
<td>2,80</td>
<td>4,10</td>
<td>6,30</td>
<td>3,10</td>
<td>3,20</td>
<td>3,40</td>
<td>0</td>
<td>1,70</td>
<td>0</td>
<td>1,20</td>
<td>2,20</td>
<td>0</td>
<td>0,70</td>
<td>0,80</td>
<td>1,30</td>
<td>1,00</td>
</tr>
<tr>
<td>B1''</td>
<td>0,50</td>
<td>4,70</td>
<td>3,10</td>
<td>3,70</td>
<td>6,20</td>
<td>5,50</td>
<td>4,20</td>
<td>2,80</td>
<td>0</td>
<td>2,60</td>
<td>0</td>
<td>1,00</td>
<td>3,00</td>
<td>0</td>
<td>1,10</td>
<td>1,20</td>
<td>1,50</td>
<td>1,80</td>
</tr>
<tr>
<td>B2''</td>
<td>0,70</td>
<td>3,40</td>
<td>2,10</td>
<td>3,20</td>
<td>4,60</td>
<td>2,40</td>
<td>2,70</td>
<td>2,00</td>
<td>0</td>
<td>1,60</td>
<td>0</td>
<td>0,60</td>
<td>2,20</td>
<td>0</td>
<td>0,60</td>
<td>1,00</td>
<td>1,50</td>
<td>1,11</td>
</tr>
</tbody>
</table>

1 resultados expresados en µmoles/µmoles totales

1' resultados expresados en µmoles/µl
III.4 Discusión y conclusiones

La fracción cristalina de los otolitos está compuesta por carbonato cálcico cristalizado en forma de aragonito, dispuesto en prismas propios del sistema ortorrombico. El componente cristalino no varía con la edad o la especie.

En la zona nuclear, formada durante las primeras fases del crecimiento, la cantidad de materia orgánica es alta, representando el 5% del total en peso. En esta zona los cristales son pequeños y dispuestos densamente, las cuñas de intercrecimiento cristalino son relativamente escasas. La matriz orgánica es densa, con apretadas mallas y espacios interfibrilares pequeños. La proporción de materia orgánica disminuye en los ejemplares de 1 año de vida, pasando a ser del 1% del peso total.

Paralelamente, en el anillo invernal decrece la cantidad de azufre, con respecto de la detectada en el núcleo. Este elemento forma parte de la matriz proteica como componente de la metionina y cistina.

Inversamente las cantidades de magnesio y sodio aumentan en esta zona. Según DEGENS et alt. (1969) el número de cuñas de intercrecimiento está ligado a la cantidad de sodio, hemos comprobado que en el anillo hialino estas son más frecuentes que en el núcleo.

En los ejemplares más jóvenes la cantidad de proteína se estabiliza en un 0,5%.

La gran variabilidad de la proporción de materia orgánica en los otolitos de las merluza de 1 año de vida, se relaciona con las diferencias morfológicas del tamaño del núcleo. Estas dependen de la época de puesta y de las tasas individuales de crecimiento. Posteriormente, en el desarrollo se tiende hacia la homogeneidad en la estructura de los otolitos. En las lubinas cuya puesta es mucho más reducida en el tiempo, el tamaño del núcleo es más uniforme y por tanto la dispersión en la proporción de proteína de estos grupos es menor.

En *M. capensis* hemos detectado variaciones de la composición ami-
noácida de la proteína dependientes de la edad. El 45% de los aminoácidos está afectado, incluyéndose entre ellos a varios esenciales en una proteína fibrosa, como son el aspartico, glutámico y arginina.

La prolina e hidroxiprolina son responsables de la forma helicoidal de la proteína, en *M. capensis* se encuentra únicamente prolina, que disminuye con la edad en un 50%. Esta disminución puede compensarse por un aumento de la serina acompañado por disminución de la treonina.

En el caso estudiado, la serina disminuyó ligeramente, mientras que la treonina lo hizo en un 30%, compensando los cambios registrados.

La alanina, que según WADA (1966) solo se encuentra en la zona de la concha de los moluscos compuesta por aragonito, no varío en los otolitos de merluza con la edad.

La composición aminoácida de los otolitos de *D. labrax* y *M. capensis* es significativamente distinta. Según DEGENS (op.cit.) esta variabilidad depende de la evolución filogénética y ambiental.

Los cambios registrados son de carácter limitado, ya que si hubiesen determinado cambios en la polaridad de la molécula proteínica, se habría alterado la cristalización del aragonito.

Los otolitos cristalinos de *G. capensis* están compuestos de cálcita muy pura, mientras que los de *M. capensis* poseen, además, pequeñas cantidades de vaterita.

La cálcita es la forma más estable del carbonato cálcico y la única que puede formarse in vivo sin interactuar con una matriz orgánica. La vaterita es súbitamente inestable, pasando rápidamente a cálcita. La combinación de cálcita, vaterita y aragonito ha sido reportada en la concha de algunos moluscos (WADA, op.cit.) formando tejidos de regeneración y el cálculos urinarios. Probablemente la vaterita se forma previamente, pasando inmediatamente a cálcita.

En los otolitos cristalinos de *G. capensis* la cantidad de materia orgánica es muy alta, depositándose en los espacios intercristalinos sin interactuar con los cristales (Cap.II). Esta característica
súmada a que la cálcita puede formarse in vivo sin depender para ello de una matriz orgánica, parece indicar que la alteración depende de la proteína. Sin embargo, en la mayoría de los casos la anormalidad solo afecta a parte del otolito. Por tanto, la formación de calcita es un proceso local probablemente relacionado con una degeneración de saculo ótico.

De lo anteriormente expuesto se puede concluir:
- El componente cristalino de los otolitos es el aragonito. Este componente no varía con la edad o la especie.
- La cantidad de proteína en los otolitos es función de la edad y de la especie considerada.
- Los aminoácidos, componentes de la fracción orgánica, registran variaciones dependientes de la edad y la especie. La variación es limitada y no afecta a la polaridad de la molécula.
- La formación de los otolitos cristalinos está ligada a una deposición de materia orgánica muy superior a la normal. El carbonato cálcico se encuentra en forma de cálcita y en algunos casos con trazas de vaterita. La formación de los cristales se produce sin interacción con la matriz proteínica y probablemente ligado a una alteración localizada del saculo ótico.
IV FORMACIÓN Y PERIODICIDAD DE LOS INCREMENTOS
DE CRECIMIENTO DIARIO EN *Dicentrarchus labrax*
IV.1 Introducción

En el presente Capítulo se abordan varios aspectos fundamentales en la formación de los otolitos, como son:
- Las características de los ICD formados en las primeras fases de vida, relacionándolas con el desarrollo morfológico.
- Los efectos de los factores externos en la formación de los ICD. Analizándose la influencia que el fotoperíodo, la salinidad y la alimentación tienen sobre la formación y características de los ICD.

Los cambios de temperatura no se consideraron, ya que dentro de los margenes naturales en una especie marina, sus variaciones alteran el
gusor de los ICD pero no su deposición (ASCHOFF, 1975; TAUBERT y COLBE, 1977).

En el desarrollo de estos temas se han utilizado larvas y juveniles de Dicentrarchus labrax, una de las especies utilizadas en los otros capítulos, de excelentes condiciones de adaptabilidad a las condiciones experimentales.

Con objeto de eliminar posibles desviaciones originadas por ejemplares de distintas edades, en todos y cada uno de los experimentos se han utilizado lubinitas procedentes de una misma puesta. En los casos posibles el período experimental fue de 60 días.

Previamente al inicio de las distintas experiencias se determinó que la formación de los ICD es diaria en la especie y el momento en que se inicia su deposición en los otolitos.
IV.2 Material y Métodos

En este Capítulo se emplearon lubinas nacidas en la planta de Acuicultura Marina de Torre la Sal (Castellón). En cada caso los ejemplares procedían de una misma puesta inducida artificialmente.

Las características de los experimentos realizados son las siguientes:

- Apartado IV.4: en este apartado se emplearon juveniles nacidos el 10-I-80, que permanecieron en Torre la Sal hasta los sacrificios que se realizaron a los 23, 48, 95 y 100 días de vida, respectivamente.

- Apartado IV.2: con objeto de determinar el desarrollo morfológico del otolito y su relación con el crecimiento en las primeras etapas de la vida de D. labrax, se han considerado dos grupos de ejemplares. Uno de 56 lubinas nacidas en 1979 de edades comprendidas entre 121 y 180 días y otro de 59 lubinas nacidas en 1980 de 95 a 138 días, utilizadas en el ap. IV.4.1. En ambos grupos se determinó la longitud y la anchura máxima de los otolitos izquierdos, por considerar estos parámetros como los más indicativos del desarrollo morfológico del otolito.

- Apartado IV.5.1: los alevines empleados nacieron en el citado laboratorio el 10-I-83, trasladándose a Barcelona el 14-IV-83. Tras un período de aclimatación se sometieron a las siguientes condiciones experimentales:

Fotoperíodo natural (FN): grupo testigo, mantenido siempre con iluminación natural y en el mismo régimen que los otros dos. La intensidad luminosa era de 200 lux a la hora de máxima insolación.

Fotoperíodo continuo (IC): sometido a iluminación constante de 700 lux de intensidad.

Oscuridad continua (OC): el tanque de este grupo fue cubierto de tal manera que la iluminación a nivel del agua era de 0 lux.

Los tres grupos se estabularon en tanques de 300 litros de capacidad, en régimen de circuito abierto de agua de mar y a una temperatura que osciló alrededor de 15°C, con tendencia a aumentar. La alimentación consistió en triturado de boga y mejillón, suministrada a las 12 h. y en exceso. Cada 48 h. se realizó una limpieza de los restos de alimen-
to depositados en el fondo del tanque. Por término medio los alevines disponían de alimento durante 6 h. continuas. La ración fue de 3 gr/individuo/día.

Tras 60 días de experimentación se sacrificó a los ejemplares tras mantenerlos 24 h. en ayuno total.

- **Apartado IV.5.1.2**: la influencia de la alimentación se determinó sacrificando ejemplares de 60 días de vida que se habían alimentado únicamente con *Artemia marina* (grupo experiment. A1). El resto de los ejemplares se sacrificó tras 60 días de estar sometido a una nueva alimentación compuesta de pienso y triturado de boga (grupo experiment. A2).

- **Apartado IV.5.3**: la influencia de los cambios de salinidad se determinó mediante un grupo inicial, nacido el 13-1-1983 criado en agua de mar de salinidad 37 por mil. Parte de este grupo se sacrificó a los 60 días de edad (grupo S1) y el resto se pasó a agua salobre de salinidad 3.7 mil, sacrificándose transcurridos 60 días (grupo S2).

Los otolitos procedentes de los grupos experimentales considerados se estudian, según los casos, mediante microscopía óptica o electrónica. Se emplearon las técnicas descritas en otros capítulos.

En la determinación de la formación de la unidad de incremento diario (Ap.IV.3.2) se determinó el grado de formación mediante el índice de TANAKA (1981) donde:

\[
C = \frac{A_n}{A_{n-1}} \times 100
\]

siendo \(A_n\): anchura del incremento en formación

\(A_{n-1}\): anchura del incremento formado previamente
IV.3 Formación y periodicidad de los incrementos

IV.3.1 Inicio de la formación de los incrementos de crecimiento diario

Se ha realizadp el recuento de los ICD en los otolitos de lubina por medio de un microscopio Wild. En los otolitos menores se realizaron varias lecturas, según los distintos radios del otolito, considerando la lectura más frecuente como la más correcta. En los casos en que las lecturas no coincidieron, el otolito se desechó como no interpretable. En los otolitos mayores no es posible seguir la secuencia en varios radios en estos casos se ha escogido la dirección de lectura más favorable. El borde del otolito se contó como incremento cuando presentaba una banda oscura.

Para determinar el inicio de la formación de los incrementos hemos comparado los resultados de la interpretación de los otolitos más claros con la edad cronológica real. Los resultados obtenidos se especifican en la Tabla IV.1.

Entre la edad real y la calculada por recuento de los ICD existe una correlación de 0.995. Su relación sigue una recta de regresión (Fig. IV.1) de ecuación:

\[Y = 0.999X - 1.770 \]

siendo X edad e Y n° ICD

El inicio de la formación de los ICD se produce a los 2 días de edad y hasta por lo menos los 100 días de vida; Su periodicidad es diaria.

La formación de los ICD es independiente de la talla y función de la edad.

A los dos días de la eclosión, las larvas poseen saco vitelino y flotan pasivamente cerca de la superficie. El nado activo y la alimentación no se inician hasta fases más avanzadas del desarrollo, sobre los 8 días de vida.

Por tanto, el inicio de la formación de los ICD se produce en una fase temprana del desarrollo en la que las larvas son independientes
del aporte alimenticio externo. Dado que la salinidad y el nivel de oxígeno permanecieron constantes durante la fase experimental, los factores externos que pueden haber afectado a la formación son la temperatura y el fotoperíodo. El primero de ellos presentó un rango de variación mínimo, de varias décimas de grado a lo largo del día. Variaciones tan limitadas de la temperatura no afectan a la periodicidad de los ritmos circadianos, alterando, en caso de hacerlo, a la amplitud del fenómeno (NEVILLE, 1967).

El fotoperíodo es el factor externo que puede haber actuado sobre la ritmicidad de la formación de los incrementos.

En este punto se plantean dos cuestiones, primero si la formación de los incrementos es innata y segundo, si los es, su independencia de los cíclicos luminosos. Estas cuestiones se plantearán de nuevo en los apartados IV.3.2 y IV.5.1, discutiéndose en el apartado IV.6.

En conclusión, podemos afirmar que la formación de los incrementos de crecimiento es diaria en D. labrax al menos hasta los 100 días de vida, iniciándose su depósito a los dos días después de la eclosión.
Fig. IV.1– Relación entre la edad cronológica y el número de incrementos de crecimiento diario en D. labrax.
Tabla IV.1 Relación entre la edad cronológica y el número de ICD

<table>
<thead>
<tr>
<th>Edad días</th>
<th>Número medio ICD</th>
<th>Dispersión</th>
<th>N° ejempl.</th>
<th>Talla media mm.</th>
<th>Intervalo tallas mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>21.16</td>
<td>1.47</td>
<td>6</td>
<td>6.27</td>
<td>4.85 - 6.69</td>
</tr>
<tr>
<td>48</td>
<td>46.05</td>
<td>0.70</td>
<td>5</td>
<td>6.71</td>
<td>6.30 - 7.27</td>
</tr>
<tr>
<td>95</td>
<td>92.80</td>
<td>1.09</td>
<td>5</td>
<td>15.50</td>
<td>14.00 - 17.45</td>
</tr>
<tr>
<td>100</td>
<td>97.80</td>
<td>0.83</td>
<td>5</td>
<td>16.75</td>
<td>15.30 - 17.50</td>
</tr>
</tbody>
</table>
IV.3.2 Periodicidad de la formación de los incrementos

El momento en que se forman las unidades de los ICD se ha establecido mediante el sacrificio realizado cada 4 h. durante un ciclo de 24 h., de un grupo experimental de 20 D. labrax de 2 meses de edad, que se habían mantenido 48 h. en ayuno previamente a los sacrificios.

El grosor relativo de la porción de crecimiento activo y la de crecimiento lento, de los dos ICD últimos formados, fue medida sobre microfotografías utilizando una lupa y un ocular micrométrico.

El índice de formación se calculó por el índice de TANAKA et alt. (1981) de formación del incremento de crecimiento marginal (C) obteniéndose los siguientes valores:

<table>
<thead>
<tr>
<th>hora del día</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 h.</td>
<td>35 %</td>
</tr>
<tr>
<td>21 h.</td>
<td>60 %</td>
</tr>
<tr>
<td>01 h.</td>
<td>75 %</td>
</tr>
<tr>
<td>05 h.</td>
<td>100 %</td>
</tr>
<tr>
<td>09 h.</td>
<td>10 %</td>
</tr>
<tr>
<td>13 h.</td>
<td>20 %</td>
</tr>
</tbody>
</table>

El momento de finalización de un ICD puede determinarse por el cambio de "C" a lo largo del día (Fig. IV.2). De los resultados obtenidos se deduce que en D. labrax la formación de la unidad discontinua, más pobre en calcio, se produce entre las 5 y 7 horas, al inicio del período luminoso natural.

La formación de la unidad continua o incremental del ICD representa el 80 % del ciclo diario, depositándose, en el 20 % del día restante, la unidad discontinua. La distinta duración de los ciclos de formación viene reflejada en las diferencias en el grosor de ambas unidades, siendo siempre mucho más ancha la unidad continua.

Los ritmos de formación dependen de los metabólicos, correspondiendo a la formación de la unidad discontinua, con menor proporción de cal-
cio, a un período de baja concentración de este ión en el plasma. La proporción de proteína, o sus precursores, no debe aumentar necesariamente durante este período, ya que las unidades discontinuas no presentan mayor concentración de ésta.

En *D. labrax* se han registrado ciclos diarios en los niveles de aminoácidos y calcio en el plasma siendo la concentración de este ión mínima en las primeras horas del día (CARRILLO pers. comm.). Confirmandose que la formación de la unidad discontinua corresponde a un período de disminución del anabolismo del calcio.

Los factores que pueden estar en el origen de la formación de la unidad discontinua al amanecer son los siguientes: ciclos de actividad y de alimentación, con la variación de la temperatura o con el inicio del fotoperíodo.

La alimentación no es el factor determinante, ya que los ejemplares llevaban 48 h. en ayuno, no pudiendo reflejar la formación un aporte de alimento. La posibilidad de que la periodicidad fuese inducida por los ciclos de alimentación durante el período experimental, deben desecharse, ya que los ejemplares se alimentaron sobre el mediodía, suministrándoles alimento en exceso.

Las variaciones diarias de la temperatura durante el período experimental fueron mínimas, oscilando entre 17°3' y 17°8', no coincidiendo ningún cambio marcado con la deposición de la unidad discontinua.

La coincidencia de la formación de la unidad discontinua con el amanecer indica sincronización entre el período luminoso y los ciclos de formación del otolito. Sin embargo no se puede descartar la influencia de los períodos de actividad sobre la formación. En el ap.IV.5 se discutiran estos aspectos relacionándolos con los resultados de otros apartados.

En resumen podemos afirmar que la formación de los ICD es diaria, depositándose la unidad discontinua en las primeras horas del día, probablemente en relación con el inicio del período luminoso.
Fig.IV.2- Periodicidad de la formación de los incrementos de crecimiento diario en relación con la hora del día.
IV.4 Características de los ICD formados durante las primeras fases de vida

IV.4.1 Variación del grosor de los ICD hasta los 100 días de vida

El grosor de los incrementos de crecimiento diario es un fiel reflejo de las tasas de crecimiento diario actuando como un registro de las fases vitales por las que atraviesa el especimen. Por tanto hemos determinado el grosor de los incrementos de 40 otolitos de lubinas de 23, 48, 95 y 100 días de vida, respectivamente pertenecientes a una misma puesta.

Hemos realizado el promedio del grosor de los ICD formados en una misma fecha en todos los ejemplares, con objeto de minimizar la varianza individual y seguir la tendencia del grupo. En todos los casos la edad cronológica corresponde al número de incrementos más dos, que es el intervalo que transcurre entre la eclosión y el inicio de la formación de los incrementos.

Los valores obtenidos se presentan en la Tabla IV.2 especificándose los promedios de amplitud, la dispersión y el número de ICD medidos para cada edad. En la Fig. IV.3 se muestra la evolución del grosor de los ICD y la dispersión cada 5 días.

Los 3 primeros ICD formados, entre el 3º y 7º días de vida, son gruesos y nítidos, disminuyendo bruscamente de amplitud el 8º días. Esta disminución es producida por la reabsorción del saco vitelino. El crecimiento se reemprende al iniciarse la alimentación activa, que generalmente se produce a los 9-10 días.

A partir de esta edad se depositan ICD de grosor variable con cierta tendencia a aumentar de anchura. A partir del 50º días, se depositan finos ICD de estructura poco definida, con elementos cristalinos pequeños y preponderancia de materiales orgánicos. Posteriormente a los 80 días los ICD formados van ganando nítidez y grosor.

En una temperatura de 15ºC, algo superior a la inicial en el desarrollo de los ejemplares del presente estudio, el desarrollo morfológico es largo requiriendo unos 80 días (BARNABE et alt., 1976). Las escamas se forman entre los 70-80 días de edad, correspondiendo a la deposición
en el otolito de los finos ICD de 1.7 micrómetros de grosor. La estructura de dichos incrementos con finos cristales, corresponde a la movilización de los elementos calcáreos para la formación de las escamas.

En la Fig. IV.3 se han graficado las variaciones de la temperatura, luz solar y los cambios de alimentación durante el período experimental.

La temperatura aumentó progresivamente, presentando fuertes oscilaciones de hasta un grado diario, originadas por los vientos y las horas de insolación. Se intentó establecer la relación existente entre las oscilaciones diarias de la temperatura y el grosor del ICD correspondiente (Tabla IV.3) resultando ser independientes en todos los casos (índices de correlación menores a 0.40). Sin embargo se observa claramente como a cada descenso marcado, corresponde la formación de ICD más finos. Este hecho sugiere que dentro de cierto margen, la temperatura no altera la tasa de formación, sin embargo descensos bruscos producen cambios en el metabolismo, afectando a la formación.

Cada vez que se realizó un cambio de alimentación el grosor de los ICD aumentó, al ser la dieta modificada según las necesidades de las larvas (tamaño de partículas, etc.), parece haber mejorado la nutrición y por tanto las tasas de crecimiento.

En el ap. IV.6 se discutirán más ampliamente las influencias del medio en la formación de los ICD.
Fig. TV.3- Variación del grosor de los incrementos de crecimiento diario en relación con las variaciones del medio durante el período experimental.
<table>
<thead>
<tr>
<th>edad días</th>
<th>w</th>
<th>o_{n-1}</th>
<th>n^o</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.15</td>
<td>1.73</td>
<td>17</td>
<td>30</td>
<td>3.55</td>
<td>1.83</td>
<td>14</td>
<td>57</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>84</td>
<td>3.27</td>
<td>1.78</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2.77</td>
<td>0.95</td>
<td>17</td>
<td>31</td>
<td>3.33</td>
<td>1.33</td>
<td>14</td>
<td>58</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>85</td>
<td>3.05</td>
<td>1.35</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>2.31</td>
<td>1.00</td>
<td>19</td>
<td>32</td>
<td>3.92</td>
<td>1.86</td>
<td>14</td>
<td>59</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>86</td>
<td>3.07</td>
<td>1.76</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>2.49</td>
<td>1.14</td>
<td>19</td>
<td>33</td>
<td>3.52</td>
<td>2.01</td>
<td>13</td>
<td>60</td>
<td>1.40</td>
<td>0.40</td>
<td>3</td>
<td>87</td>
<td>3.30</td>
<td>1.99</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2.26</td>
<td>0.99</td>
<td>20</td>
<td>34</td>
<td>3.36</td>
<td>1.65</td>
<td>13</td>
<td>61</td>
<td>1.54</td>
<td>0.56</td>
<td>3</td>
<td>88</td>
<td>3.04</td>
<td>1.76</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1.94</td>
<td>1.00</td>
<td>20</td>
<td>35</td>
<td>3.35</td>
<td>1.57</td>
<td>13</td>
<td>62</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>89</td>
<td>2.72</td>
<td>1.15</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>2.46</td>
<td>1.31</td>
<td>20</td>
<td>36</td>
<td>3.81</td>
<td>2.15</td>
<td>13</td>
<td>63</td>
<td>1.27</td>
<td>0.42</td>
<td>3</td>
<td>90</td>
<td>3.46</td>
<td>1.58</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2.30</td>
<td>1.30</td>
<td>20</td>
<td>37</td>
<td>4.04</td>
<td>2.40</td>
<td>13</td>
<td>64</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>91</td>
<td>2.77</td>
<td>1.30</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>2.23</td>
<td>2.65</td>
<td>20</td>
<td>38</td>
<td>3.82</td>
<td>1.85</td>
<td>13</td>
<td>65</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>92</td>
<td>3.36</td>
<td>1.01</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>2.41</td>
<td>1.18</td>
<td>20</td>
<td>39</td>
<td>3.23</td>
<td>1.27</td>
<td>13</td>
<td>66</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>93</td>
<td>3.91</td>
<td>2.06</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>2.25</td>
<td>1.18</td>
<td>20</td>
<td>40</td>
<td>2.62</td>
<td>1.09</td>
<td>13</td>
<td>67</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>94</td>
<td>3.49</td>
<td>1.75</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>2.22</td>
<td>2.58</td>
<td>20</td>
<td>41</td>
<td>3.12</td>
<td>1.49</td>
<td>13</td>
<td>68</td>
<td>1.34</td>
<td>0.42</td>
<td>3</td>
<td>95</td>
<td>3.38</td>
<td>1.72</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>2.00</td>
<td>2.03</td>
<td>20</td>
<td>42</td>
<td>3.48</td>
<td>2.39</td>
<td>13</td>
<td>69</td>
<td>1.21</td>
<td>0.44</td>
<td>3</td>
<td>96</td>
<td>2.85</td>
<td>0.93</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>2.49</td>
<td>1.79</td>
<td>20</td>
<td>43</td>
<td>3.45</td>
<td>2.14</td>
<td>13</td>
<td>70</td>
<td>1.77</td>
<td>0.03</td>
<td>3</td>
<td>97</td>
<td>2.95</td>
<td>0.91</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>2.79</td>
<td>2.44</td>
<td>20</td>
<td>44</td>
<td>3.79</td>
<td>2.86</td>
<td>13</td>
<td>71</td>
<td>1.21</td>
<td>0.46</td>
<td>3</td>
<td>98</td>
<td>3.30</td>
<td>1.11</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>2.73</td>
<td>1.82</td>
<td>20</td>
<td>45</td>
<td>3.58</td>
<td>1.93</td>
<td>13</td>
<td>72</td>
<td>1.27</td>
<td>0.40</td>
<td>3</td>
<td>99</td>
<td>4.18</td>
<td>1.46</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>2.63</td>
<td>2.67</td>
<td>20</td>
<td>46</td>
<td>3.93</td>
<td>2.54</td>
<td>13</td>
<td>73</td>
<td>1.51</td>
<td>0.45</td>
<td>3</td>
<td>100</td>
<td>3.50</td>
<td>1.84</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>2.40</td>
<td>1.21</td>
<td>20</td>
<td>47</td>
<td>4.12</td>
<td>2.89</td>
<td>13</td>
<td>74</td>
<td>1.51</td>
<td>0.45</td>
<td>3</td>
<td>101</td>
<td>3.90</td>
<td>1.11</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>2.54</td>
<td>2.35</td>
<td>20</td>
<td>48</td>
<td>4.36</td>
<td>3.65</td>
<td>12</td>
<td>75</td>
<td>1.84</td>
<td>0.12</td>
<td>3</td>
<td>102</td>
<td>3.90</td>
<td>0.98</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>2.62</td>
<td>2.56</td>
<td>20</td>
<td>49</td>
<td>3.43</td>
<td>2.83</td>
<td>6</td>
<td>76</td>
<td>1.81</td>
<td>0.12</td>
<td>3</td>
<td>103</td>
<td>3.90</td>
<td>1.21</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>2.54</td>
<td>2.35</td>
<td>20</td>
<td>50</td>
<td>2.92</td>
<td>3.21</td>
<td>4</td>
<td>77</td>
<td>1.81</td>
<td>0.12</td>
<td>3</td>
<td>104</td>
<td>3.95</td>
<td>0.98</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>2.73</td>
<td>1.15</td>
<td>13</td>
<td>51</td>
<td>2.35</td>
<td>2.32</td>
<td>4</td>
<td>78</td>
<td>1.81</td>
<td>0.12</td>
<td>3</td>
<td>105</td>
<td>4.00</td>
<td>0.99</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>3.02</td>
<td>1.53</td>
<td>13</td>
<td>52</td>
<td>1.87</td>
<td>1.37</td>
<td>4</td>
<td>79</td>
<td>2.63</td>
<td>1.58</td>
<td>4</td>
<td>106</td>
<td>4.15</td>
<td>1.01</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>3.44</td>
<td>1.64</td>
<td>13</td>
<td>53</td>
<td>2.12</td>
<td>1.24</td>
<td>4</td>
<td>80</td>
<td>2.63</td>
<td>1.58</td>
<td>4</td>
<td>107</td>
<td>4.21</td>
<td>0.98</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>2.78</td>
<td>1.51</td>
<td>14</td>
<td>54</td>
<td>1.51</td>
<td>0.45</td>
<td>3</td>
<td>81</td>
<td>3.32</td>
<td>1.28</td>
<td>6</td>
<td>108</td>
<td>3.22</td>
<td>1.21</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>3.17</td>
<td>1.81</td>
<td>14</td>
<td>55</td>
<td>1.47</td>
<td>0.49</td>
<td>3</td>
<td>82</td>
<td>3.76</td>
<td>2.34</td>
<td>6</td>
<td>109</td>
<td>3.90</td>
<td>0.90</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>3.07</td>
<td>1.63</td>
<td>14</td>
<td>56</td>
<td>1.54</td>
<td>0.56</td>
<td>3</td>
<td>83</td>
<td>2.97</td>
<td>1.26</td>
<td>6</td>
<td>110</td>
<td>4.06</td>
<td>0.07</td>
<td>2</td>
</tr>
<tr>
<td>edad</td>
<td>(w)</td>
<td>(\alpha_{n-1})</td>
<td>(n^2)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>3.82</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>4.15</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>4.40</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>4.48</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>4.21</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>4.29</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Edad días</td>
<td>(W) (\mu m)</td>
<td>(T^\circ C)</td>
<td>Edad días</td>
<td>(\bar{W}) (\mu m)</td>
<td>(T^\circ C)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8.73</td>
<td>14</td>
<td>40</td>
<td>115.23</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11.50</td>
<td>13.3</td>
<td>41</td>
<td>118.71</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13.81</td>
<td>13</td>
<td>45</td>
<td>133.48</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16.30</td>
<td>12.5</td>
<td>46</td>
<td>137.58</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18.56</td>
<td>12.5</td>
<td>47</td>
<td>141.94</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>21.02</td>
<td>12.5</td>
<td>48</td>
<td>145.37</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23.32</td>
<td>13</td>
<td>51</td>
<td>152.51</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>25.55</td>
<td>14</td>
<td>52</td>
<td>154.63</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>27.96</td>
<td>14.5</td>
<td>54</td>
<td>157.61</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30.21</td>
<td>14.3</td>
<td>55</td>
<td>159.15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>32.42</td>
<td>14</td>
<td>58</td>
<td>162.78</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>34.43</td>
<td>14</td>
<td>59</td>
<td>164.18</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>36.92</td>
<td>12.2</td>
<td>60</td>
<td>165.72</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>39.71</td>
<td>13.5</td>
<td>61</td>
<td>166.93</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>42.44</td>
<td>13.6</td>
<td>64</td>
<td>171.83</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>45.07</td>
<td>13.6</td>
<td>65</td>
<td>173.38</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>47.47</td>
<td>14</td>
<td>66</td>
<td>174.38</td>
<td>16.1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>50.01</td>
<td>13.8</td>
<td>72</td>
<td>182.66</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>57.90</td>
<td>13</td>
<td>73</td>
<td>184.70</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>60.92</td>
<td>13.9</td>
<td>74</td>
<td>186.51</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>64.36</td>
<td>12</td>
<td>75</td>
<td>188.32</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>67.14</td>
<td>13</td>
<td>79</td>
<td>198.71</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>70.37</td>
<td>12.2</td>
<td>81</td>
<td>205.44</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>80.26</td>
<td>13.4</td>
<td>82</td>
<td>208.71</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>84.18</td>
<td>13.2</td>
<td>85</td>
<td>218.13</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>87.70</td>
<td>13.2</td>
<td>86</td>
<td>221.17</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>91.06</td>
<td>13.9</td>
<td>87</td>
<td>223.89</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>94.59</td>
<td>13.8</td>
<td>88</td>
<td>227.35</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>106.24</td>
<td>12.4</td>
<td>89</td>
<td>230.12</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>109.49</td>
<td>14</td>
<td>92</td>
<td>240.88</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>112.11</td>
<td>14.7</td>
<td>93</td>
<td>244.26</td>
<td>15.8</td>
<td></td>
</tr>
</tbody>
</table>
IV.4.2 Pautas de crecimiento de los otolitos

Crecimiento en longitud y anchura

En la Tabla IV.4 se especifican los valores de longitud y anchura de los otolitos, en relación con la talla y la edad en días.

Las regresiones lineales entre la edad en días y los parámetros del otolito son las siguientes:

<table>
<thead>
<tr>
<th>edad-longitud del otolito</th>
<th>año</th>
<th>edad-anchura del otolito</th>
</tr>
</thead>
<tbody>
<tr>
<td>y=0.012x+0.472</td>
<td>1979</td>
<td>y=0.004x+0.884</td>
</tr>
<tr>
<td>r²=0.80</td>
<td></td>
<td>r² =0.85</td>
</tr>
<tr>
<td>y=0.030x-2.604</td>
<td>1980</td>
<td>y=0.016x-1.349</td>
</tr>
<tr>
<td>r²=0.94</td>
<td></td>
<td>r² =0.92</td>
</tr>
<tr>
<td>y=0.032x-2.572</td>
<td>1979-80</td>
<td>y=0.025x-1.173</td>
</tr>
<tr>
<td>r²=0.82</td>
<td></td>
<td>r² =0.85</td>
</tr>
</tbody>
</table>

siendo x edad en días, y parámetro del otolito

Los datos correspondientes al grupo de lubinas más jóvenes se ajustan mejor a la edad, con una baja dispersión de valores (Figs. IV.4 a IV.7).

La relación entre la longitud y anchura de los otolitos es distinta en ambos grupos de edades (Figs. IV.8 y IV.9). Las ecuaciones de la regresión lineal entre ambos valores son las siguientes:

\[
\begin{align*}
 y &= 0.445x + 0.251 & 1979 \\
 y &= 0.559x + 0.061 & 1980
\end{align*}
\]

siendo x longitud, y anchura del otolito

Los índices alométricos entre ambas variables para el año 1979 se acerca a la isometría (K=0.98), mientras que en el grupo del año 1980 se establece una alometría negativa (K=0.50).

En este último grupo se muestra cierto agrupamiento entre los valores de longitud y anchura menores de 1.00 mm. de longitud y 0.70 mm. de anchura. Hemos calculado el índice alométrico entre ambos grupos resultando ser negativo en los primeros (K=0.67) y negativo pero con cierta tendencia a la isometría en los segundos (K=0.88). Las ecuaciones entre ambas series de valores son las siguientes:
y = 0.461x + 0.112 (de 95 a 116 días)
y = 0.534x + 0.113 (de 125 a 138 días)

siendo x longitud, y anchura del otolito

Relación entre la talla y los parámetros del otolito

Los dos principales parámetros morfológicos del otolito, longitud y anchura, se han relacionado con la talla del pez al que pertenecen, estableciendo la alometría y las ecuaciones que las relacionan. En la Tabla IV.2 se especifican los promedios obtenidos para cada valor por clase de edad; Los cálculos se realizaron a partir de los valores originales.

Los parámetros para cada año se han graficado en las Figs. IV.10 y IV.11.

Las ecuaciones calculadas son las siguientes:

1979

talla-longitud \[y = 1.34 + 0.02x \]
\[r^2 = 0.80 \quad k = 0.6684 \]
talla-anchura \[y = 0.38 + 0.02x \]
\[r^2 = 0.90 \quad k = 0.7194 \]

1980

talla-longitud \[y = 0.05x - 0.46 \]
\[r^2 = 0.94 \quad k = 1.1232 \]
talla-anchura \[y = 0.03x - 0.18 \]
\[r^2 = 0.97 \quad k = 1.3795 \]

En el grupo de 1979 las rectas que relacionan la talla con la longitud y anchura del otolito son paralelas. Esta relación concuerda con la isometría obtenida para ambas dimensiones en este grupo.

Las lubinas de este mismo año presentan relaciones alométricas negativas entre la talla y los parámetros del otolito.

Los ejemplares de 1980 están caracterizados por rectas de pendientes distintas, estableciéndose alometrías positivas entre las medidas del otolito y la talla.

Al pertenecer el grupo de lubinas de 1980 a clases de edad menores que las de 1979, parece deducirse que en las primeras fases del desarrollo el cuerpo y las dimensiones del otolito aumentan progresivamente pero con una mayor tasa de crecimiento de éste. En los ejemplares más lon-
jevos, a partir de los cuatro meses de vida, las tasas de crecimiento se invierten aumentando en mayor medida la talla del ejemplar. Así mismo, estos datos concuerdan con las relaciones alométricas entre las dimensiones del otolito.

Crecimiento de los juveniles

En la tabla IV.4 y en la Fig. IV.12 se describe el crecimiento de los juveniles de lubina de los dos años considerados.

Durante las primeras fases de vida el crecimiento presente una pauta exponencial (RICKER, 1975) por tanto hemos calculado el crecimiento de cada uno de los años y de los dos años en conjunto mediante una función exponencial.

Las ecuaciones calculadas son las siguientes:

1979

\[y = 3.1111 \times 10^{-5} x^2 \]
\[r = 0.85 \]
\[V_b = 0.07 \]

1980

\[y = 9.1074 \times 10^{-6} x^{2.64} \]
\[r^2 = 0.98 \]
\[V_b = 0.01 \]

1979-80

\[y = 7.2856 \times 10^{-4} x^{2.19} \]
\[r^2 = 0.95 \]
\[V_b = 0.01 \]

Los datos pertenecientes al año 1979, lubinas de 121 a 186 días, son las que presentan mayor dispersión y una correlación menor entre la edad y la talla. En el año 1980, con un intervalo de edades comprendido entre 95 y 138 días, el ajuste es mejor y por consiguiente la correlación mayor. Para ambos años en conjunto la correlación es buena manteniéndose un nivel de dispersión bajo.

En general el ajuste de la curva calculada a los datos de talla-edad es muy bueno, indicando que durante los primeros 6 meses de vida el crecimiento de *D. labrax* es exponencial.

En los ejemplares del grupo de 1980 en los que se disponía de datos del grosor de los ICD se estableció la relación entre el porcentaje de incremento diario en talla, anchura y longitud del otolito (Fig. IV.13).

Las tres variables aumentan hasta los 50 días de vida decreciendo hasta alcanzar un mínimo a los 100 días de vida. A partir de este momento se reinicia el crecimiento, decreciendo de nuevo a los 120 días. Los tres
parámetros considerados siguen la misma tendencia, siendo la anchura la que presenta una tasa de crecimiento mayor.

La talla y la longitud del otolito tienen una relación prácticamente alométrica, mientras que la talla y la anchura del otolito siguen una alometría positiva. En cuanto a la relación entre la anchura y longitud del otolito se establece una relación alométrica negativa, siendo el crecimiento algo más paralelo a partir de los 125 días de edad.

Las relaciones alométricas entre las dimensiones estudiadas son resultado de las diferencias en la tasa de crecimiento diario de cada una de ellas. Se han registrado ciclos de crecimiento en los que los incrementos de los parámetros varían de forma paralela, reflejando sin duda un proceso fisiológico o externo que ha alterado el crecimiento total de los ejemplares. En las fases de disminución, las tasas de crecimiento siguen una tendencia bastante uniforme, mientras que en los ciclos de aumento las diferencias entre los parámetros son mucho más acusados.
Fig. IV.4- Relación entre la anchura del otolito y la edad en días. Grupo D. labrax del año 1979.

Fig. IV.5- Relación entre la anchura del otolito y la edad en días. Grupo de D. labrax del año 1980.
Fig.IV.6- Relación entre la longitud del otolito y la edad en días. Grupo de *D. labrax* del año 1979.

Fig.IV.7- Relación entre la longitud del otolito y la edad en días. Grupo de *D. labrax* del año 1980.
Fig. IV.8- Relación entre la anchura y longitud del otolito del grupo de *D. labrax* perteneciente al año 1979.
Fig. 4-9. Relación entre la anchura y la longitud del otolito del grupo de D. labrax perteneciente al año 1980.
Fig. IV.10- Relación entre los parámetros del otolito y la talla en el grupo de D. labrax del año 1979.
Fig. IV.11- Relación entre los parámetros del otolito y la talla para el grupo de _D. labrax_ del año 1980.
Fig. IV.12- Curvas de crecimiento de los grupos experimentales de D. labrax.
Fig. IV.13 - Porcentaje de incremento diario en talla y en los parámetros del otolito del grupo de D. labrax de 1980.
<table>
<thead>
<tr>
<th>Edad</th>
<th>Talla (mm)</th>
<th>Longitud otolito (mm)</th>
<th>Anchura otolito (mm)</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>17.00</td>
<td>0.78</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>26.00</td>
<td>1.36</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td>126</td>
<td>27.45</td>
<td>1.515</td>
<td>0.875</td>
<td>2</td>
</tr>
<tr>
<td>132</td>
<td>23.05</td>
<td>1.36</td>
<td>0.825</td>
<td>2</td>
</tr>
<tr>
<td>137</td>
<td>28.00</td>
<td>1.55</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td>159</td>
<td>41.20</td>
<td>1.8433</td>
<td>1.066</td>
<td>3</td>
</tr>
<tr>
<td>165</td>
<td>31.50</td>
<td>1.6025</td>
<td>0.9700</td>
<td>4</td>
</tr>
<tr>
<td>169</td>
<td>65.71</td>
<td>2.8542</td>
<td>1.5937</td>
<td>8</td>
</tr>
<tr>
<td>174</td>
<td>60.00</td>
<td>3.20</td>
<td>2.75</td>
<td>1</td>
</tr>
<tr>
<td>176</td>
<td>50.10</td>
<td>2.23</td>
<td>1.2800</td>
<td>2</td>
</tr>
<tr>
<td>177</td>
<td>66.23</td>
<td>2.928</td>
<td>2.6200</td>
<td>5</td>
</tr>
<tr>
<td>178</td>
<td>50.00</td>
<td>2.185</td>
<td>1.3100</td>
<td>2</td>
</tr>
<tr>
<td>179</td>
<td>66.67</td>
<td>2.7800</td>
<td>1.6166</td>
<td>3</td>
</tr>
<tr>
<td>180</td>
<td>83.33</td>
<td>3.72</td>
<td>1.8766</td>
<td>3</td>
</tr>
<tr>
<td>181</td>
<td>60.03</td>
<td>2.9766</td>
<td>1.5200</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>60.00</td>
<td>2.91</td>
<td>1.75</td>
<td>1</td>
</tr>
<tr>
<td>183</td>
<td>75.25</td>
<td>3.685</td>
<td>1.84</td>
<td>2</td>
</tr>
<tr>
<td>186</td>
<td>56.04</td>
<td>2.62</td>
<td>1.394</td>
<td>5</td>
</tr>
</tbody>
</table>
IV. 5 Influencia de los factores externos en la formación de los incrementos de crecimiento diario

IV.5.1 Influencia del fotoperíodo

Los alevines mantenidos en las tres condiciones experimentales: iluminación continua (IC), oscuridad continua (OC) y fotoperíodo natural (FN), reaccionaron de manera distinta a las condiciones. Los pertenecientes al grupo OC sufrieron una tasa de mortalidad relativamente alta (40 %), mientras que en los otros dos grupos fue del 10 %. El crecimiento durante el período experimental fue así mismo distinto; la talla media final de los experimentos fue de 38.66 mm. en el grupo OC, contra 41.40 mm. en FN y 44.80 mm. en FC.

D. labrax es una especie depredadora visual, por lo que las diferentes tasas de crecimiento deben estar ligadas a la capacidad de obtener alimento, dependiente de la capacidad de localizarlo visualmente. En la alta mortalidad del grupo OC, además del factor de obtención de alimento, las perturbaciones metabólicas originadas por la falta de luz deben haber jugado un importante papel.

Con respecto a la estructura de los otolitos hay que hacer constar que en un 60 % de ellos apareció una fina marca, correspondiente al traslado realizado del laboratorio de Torre de Sal a Barcelona. Dicha banda consistió en la formación de 2-3 gruesas fibras orgánicas concéntricas (Fig. IV.14). El traslado se realizó en un pequeño tanque de 20 l. con agua de mar que contenía disuelto Furanaace, un antibiótico de amplio espectro, en una concentración de 2 partes por millón.

La posible subida de temperatura durante el traslado y la agitación pueden haber producido una alteración del metabolismo que se refleja en la formación de la discontinuidad.

El número de incrementos en cada grupo fue el siguiente:
experimento	número de ICD en cada ejemplar
Grupo FN | 153 152 153 150 155 152 152 153 149 152
Grupo IC | 152 157 153 152 154 152 154 153 155 156
Grupo OC | 148 150 140 149 142 148 147 145 152

La edad de los ejemplares corresponde al número de ICD más dos días, período necesario para que se forme el 1º ICD (Ap. IV.3). En los ejemplares en que se formó la discontinuidad producida por el traslado, se determinó que antes de éste se habían depositado 92 ICD, correspondientes a la edad real menos 2 días y que tras el traslado, se habían depositado 60 ICD, correspondientes al período experimental de 60 días (grupo FN).

Con objeto de comprobar que las diferencias en el número de ICD formado eran o no significativas, se realizó un análisis de la varianza de una via. La tabla de la ANOVA es la siguiente:

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>tratamientos</td>
<td>250.91</td>
<td>2</td>
<td>125.45</td>
<td>19.18</td>
</tr>
<tr>
<td>error</td>
<td>170.06</td>
<td>26</td>
<td>6.54</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>420.97</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En las tablas de distribución de la F (SOKAL y ROLF, 1978) para un nivel de significación de 99 %, el valor de $F_{1,2,28} = 6.07$, es netamente inferior al calculado. Por tanto, las diferencias en el número de ICD formados son significativas.

Paralelamente a los cambios registrados en el número de ICD se producen ciertos cambios en la naturaleza de los mismos. Así, en el Grupo OC los incrementos tienden a disminuir de grosor, pasando de 2.5 micrometros antes de la experimental a 1.5 micrometro de promedio, durante ésta. La tendencia a disminuir de grosor durante el período estudiado es clara y progresiva (Fig. IV.15). Además, de los cambios de grosor, los ICD formados en este período son más ricos en fibras orgánicas y con elementos cristalinos cortos y finos, tomando en general los ICD aspecto difuso y poco nítido (Fig. IV.16).
En el grupo IC los ICD presentan cierta tendencia a ser más gruesos, midiendo en promedio 3.0 micrómetros, con una matriz orgánica densa y cristales bien desarrollados (Fig. IV.17).

Las características del grupo testigo (FN) son intermedias a las de los otros dos grupos y similares a las registradas en los otros ejemplares de lubina estudiados. (Cap. II). Las características de los grupos experimentales se resumen en la Tabla IV.5.

Otro aspecto destacable es la presencia de ritmos de 7-8 y 28 días en la formación de los ICD. Los ritmos de 7-8 días y uno superior de 28 días, corresponden a los ciclos mareales y a las fases lunares. En el grupo OC los ritmos persistieron, pero perdiendo amplitud paulatinamente, es decir que los 1º formados poseían un número de ICD próximo al natural, formándose posteriormente marcas rítmicas más finas, decreciendo paulatinamente el número de ICD y no correspondiendo a los ciclos lunares.

La persistencia de la actividad rítmica en los grupos OC e IC, sometidos a condiciones estables de iluminación y alimentación, plantean la posibilidad de que a través de un ritmo presente en la temperatura del agua se haya inducido dicha ritmicidad. En la Fig. IV.11 se presentan las oscilaciones de la temperatura, tomada siempre a la misma hora y directamente en los tanques experimentales, durante el período considerado. En dicha figura se aprecia la tendencia a aumentar las temperaturas durante el período y la presencia de oscilaciones de 7 días. Estas oscilaciones no son regulares, pero pueden actuar como sincronizadores. Sin embargo, la paulatina perdida de amplitud de los ciclos en el grupo OC, produce la desincronización entre los ciclos de temperatura y la aparición de los ritmos en los otolitos.

Existe, por tanto, un reloj interno responsable de la formación, que para mantener su regularidad debe sincronizarse con un estímulo externo cíclico. En condiciones de oscuridad total durante un período prolongado, el metabolismo se ve afectado (CARRILLO, pers. comm.) y como los relojes internos dependen de procesos metabólicos, es de esperar que en el grupo OC se produzcan alteraciones en los ritmos (ver ap. IV.6).
De lo anteriormente expuesto parece deducirse que la formación de los ICD es diaria, dependiente de un reloj interno y sincronizada con el ciclo del fotoperíodo natural. En el ap. IV.6 se discutirán nuestros resultados comparándolos con los obtenidos por otros autores.
Fig. IV.14- Discontinuidad del patrón de formación del otolito producida por el traslado y aclimatación. Otolito perteneciente al grupo FN. Trazo claro 10 micrómetros.
Fig. IV.15- Disminución progresiva del grosor de los ICD formados durante el período experimental en el grupo OC. Trazo claro 10 micrómetros.
Fig. IV.16- Incrementos de crecimiento diario formados en el grupo OC. Observese su aspecto difuso sin elementos definidos. Trazo claro 100 micrórmetros.
Fig. IV.17 - Incrementos de crecimiento diario formados en el grupo IC.

Trazo claro 100 micrómetros.
Fig. IV.18- Rítmicos de formación de los incrementos de crecimiento diario en el grupo OC. Obsérvese la pérdida de amplitud en los períodos. Trazo claro 100 micrómetros.
Fig. IV.19- Variación de la temperatura del agua durante el período experimental.
<table>
<thead>
<tr>
<th></th>
<th>Grupo FN</th>
<th>Grupo IC</th>
<th>Grupo OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº ICD</td>
<td>152.60 tras inicio exp.</td>
<td>154.62 tras inicio exp.</td>
<td>147.55 inicio exp.</td>
</tr>
<tr>
<td>grosor</td>
<td>2.5 micrometres</td>
<td>3.0 micrometres</td>
<td>1.5 micrometros</td>
</tr>
<tr>
<td>naturaleza</td>
<td>claros y nítidos</td>
<td>claros y nítidos</td>
<td>difusos</td>
</tr>
<tr>
<td>composición</td>
<td>fibras y cristales normales</td>
<td>fibras gruesas y cristales anchos</td>
<td>fibras poco densas y cristales cortos y finos</td>
</tr>
<tr>
<td>ritmos</td>
<td>7-8 y 28 ICD</td>
<td>7-8 y 28 ICD</td>
<td>amplitud variable, disminuyendo hasta 3-4 y 12-15 ICD</td>
</tr>
</tbody>
</table>
IV.5.2 Influencia de la alimentación

Los juveniles de 2 meses de edad alimentados con Artemia (Grupo A) presentaban en sus otolitos ICD claros y bien definidos con 2-3 subunidades de crecimiento diario en parte de su estructura.

Las primeras 25 unidades depositadas miden en promedio 1.8 micrómetros de grosor, a continuación se formaron unos 15 incrementos gruesos y ricos en subunidades (2.5 micrómetros en promedio). Los siguientes incrementos formados tenían en promedio una anchura de 1.6 micrómetros disminuyendo progresivamente hasta 1.3 micrómetros ($c_{n-1} = 0.62$). (Fig. IV.20)

En el grupo B, tras los 40 días de estar sometidos a una nueva dieta, se registró la formación de una discontinuidad leve correspondiente al cambio en el 60% de los otolitos. Esta discontinuidad no alteró el número de incrementos formados que correspondía a la edad.

El grosor de los incrementos formados en este grupo después del cambio de dieta, osciló alrededor de 1.7 micrómetros ($c_{n-1} = 0.5021$). Se encontraron ritmos de crecimiento de 7 y 14 días, así como la presencia de discontinuidades del crecimiento que no correspondían a ningún cambio del medio (Fig. IV.21).

No se detectó ninguna diferencia notable en la estructura de los otolitos de ambos grupos.

Comparando estos resultados con los del ap. IV.4, se hace patente un comportamiento común. En fases posteriores del desarrollo de los ejemplares de ese grupo, los cambios sucesivos de alimentación parecen haber actuado incrementando la tasa de formación.

La abundancia de alimento actúa sobre la tasa de crecimiento estando relacionada con el grosor de los incrementos depositados; Sin embargo, peces sometidos a ayuno continuaron formando incrementos en sus otolitos (MARSHALL Y PARKER, 1982). Parece existir cierta evidencia de que la alimentación influye directa y rápidamente en la composición del fluido oto-lítico (LOVE, 1980).

De lo anteriormente expuesto se deduce que la alimentación no actúa sobre la formación de los incrementos, sino sobre el grosor y com-
posición de los mismos.

En nuestros grupos se suministró alimento en cantidades suficientes y adaptado a las necesidades de los alevines, por lo que no se produjo un estrés marcado que se refleje en la estructura de los otolitos.
Fig. IV.20- Oto
ti
to perteneciente al grupo A. (X1.100).
Fig. IV.21- Otolito perteneciente al grupo B. (XI.140).
IV.5.3 Efecto de la salinidad

Parte de los alevines de 183 días de vida criados en agua de mar de salinidad 37 por mil se sacrificaron (Grupo S1), trasladándose el resto a agua salobre de salinidad 3.7 por mil. Las condiciones de alimentación y temperatura fueron similares. Tras 60 días de experimentación se sacrificaron los ejemplares restantes.

La mortalidad registrada tras el cambio del medio fue muy alta.

Los incrementos formados en el grupo S1 poseían las características propias correspondientes a la edad a la que pertenecían, en promedio poseían 2.5 micrometros de grosor.

En el grupo S2 se registró la formación de un anillo macroscópico de naturaleza hialina, correspondiente a las nuevas condiciones.

En el 80% de las muestras estudiadas al scanning de este grupo, los incrementos formados presentaban una clara discontinuidad del crecimiento, con la reabsorción en algunos casos de hasta 20 ICD. (Fig. IV.22). En algunos de los otolitos se pudo determinar el número de incrementos formados en la fase experimental, registrándose una gran variación (número promedio 54 ICD, $\sigma_{n-1}=3.8902$). Parece que tras un período de aclimatación de unos días el crecimiento diario se reemprendió.

El grosor de los incrementos formados durante esta fase fue de unos 2 micrometros, con mayor preponderancia de elementos cristalinos, ritmos de 7 y 28 días y frecuentes discontinuidades ligeras del crecimiento (Fig. IV.23).

En el 50% de los otolitos de este grupo se registró la formación de discontinuidades y reabsorciones repetidas de los materiales depositados en la zona contigua a la mácula. Las reabsorciones limitadas a una pequeña área, han sido compensadas con crecimientos preferentes, tomando un aspecto de formación en ondas característico (Fig. IV.24). La periodicidad de estos ritmos es de 7,14 y 28 incrementos.

El calcio juega un papel preponderante en la osmorregulación de los peces, por lo que un cambio brusco de la salinidad del medio tiene un efec-
to drástico en la supervivencia y en la formación de los otolitos.

Los ejemplares supervivientes se han adaptado tras un período de aclimatación de varios días, quizás aumentando la capa mucosa de su bran-quirias, disminuyendo la secreción de sales, etc. y movilizando elementos de sus estructuras óseas.

Una pequeña parte de los ejemplares estudiados no ha registrado cambios en sus otolitos, mientras que la mayor parte han sufrido reab-
sorciones parciales de sus elementos. La periodicidad y naturaleza de los incrementos se han visto alteradas.

La adaptación a la nueva salinidad causa un mayor gasto energético, como parece indicar la menor tasa de crecimiento registrada.

La particular estructura de algunos otolitos en la zona contigua a la mácula acústica, muestra que a través de ésta se han movilizado pequeñas cantidades de elementos minerales, depositándose posteriormente y repitiéndose este proceso varias veces.
Fig. IV.22 - Discontinuidad del crecimiento (señalada con flecha) del grupo S2. Obsérvense los incrementos absorbidos y los ritmos formados cerca de la macula (parte superior de la figura). (X360).
Fig. IV.23- Incrementos formados en el grupo S2, con preponderancia de elementos cristalinos. Ligeras discontinuidades del crecimiento. (X390).
Fig. IV.24 - Zona contigua a la macula. Observe los típicos incrementos formados. Grupo S2. (X1.140).
IV.6 Discusión y conclusiones

En el presente apartado presentamos, punto por punto, las discusiones que se desprenden de los apartados anteriores, elaborando las conclusiones pertinentes.

Inicio de la formación de los ICD en los otolitos

En D. labrax mantenidas en un régimen de iluminación natural el inicio de la formación de los ICD se produce a los 2 días de edad. En este momento las larvas permanecen pasivamente cerca de la superficie alimentándose de las reservas de su saco vitelino, que no absorberán hasta los 8 días de edad.

Según los autores que han trabajado en este campo se producen varios tipos de inicio de formación:
- Formación, en especies de larga incubación, de incrementos durante el período embrionario, siempre y cuando que los huevos no se mantengan en oscuridad (RADTKE y DEAN, 1982; BROTHERS et al., 1976).
- Inicio de la formación coincidiendo con la absorción del saco vitelino (METOHT y KRAMER, 1979; ROJAS, 1979).
- Inicio de la formación al eclosionar (BROTHERS op. cit.).
- Inicio de la formación coincidiendo con la vida activa y antes de absorber el saco vitelino (TAUBERT y COLBE, 1977).

No existe un momento fijo para el inicio de la formación de ICD en los otolitos, dependiendo de la especie y de la estrategia reproductiva de la misma.

D. labrax presenta un comportamiento propio, se inicia la formación cuando es independiente del aporte alimenticio y cuando permanece inactiva.

Si la formación depende de un aporte externo, debería haberse iniciado al eclosionar la larva, momento en que ya estuvo sometida a las variaciones cíclicas de éste.

Parece que la formación depende de un mecanismo interno, que requiere cierta madurez antes de iniciar su funcionalidad. Probablemente se trate del desarrollo de la glándula pineal y sus ciclos de secreción hormonal.
Periodicidad de la formación de los incrementos

La formación de los incrementos es diaria, depositándose la unidad discontinua en las primeras horas del día, en el período de penumbra.

En un reciente estudio se demostró que la tasa de calcio en el plasma de *D. labrax* disminuye en las primeras horas del día (CARRILLO et al., 1982). El nivel de este ión en el plasma depende del metabolismo y de los ciclos de actividad.

La lubina es activa durante el día y la noche, con dos periodos de reposo, uno en las últimas horas de oscuridad y otro al mediodía. La formación de la unidad discontinua se produce poco después de este primer período y cuando los niveles del calcio en el plasma son mínimos.

El segundo período de reposo podría relacionarse con la formación de subunidades. En nuestros especímenes acostumbrados a ser alimentados al mediodía no se registró ningún descenso del crecimiento en esta hora, siendo por contrario muy alto y claramente dependiente de la alimentación.

Podemos concluir que la formación de los ICD es diaria y sincronizada con el inicio del período luminoso y probablemente relacionada con los ciclos de inactividad.

Variación del grosor de los incrementos de crecimiento diario en las 1° fases de vida

Las tasas de crecimiento se manifiestan en la variación del grosor de los incrementos. Se han registrado dos crisis notables, una correspondiente a la absorción del saco vitelino y otra más prolongada, con la formación de las escamas.

Se consideró las posibles relaciones entre el crecimiento y la temperatura, resultando relativamente independientes en este período.

Relaciones entre la talla y los parámetros del otolito

El crecimiento de los aleveines en los primeros sies meses de vida
sigue una pauta exponencial.

La longitud y anchura del otolito presentan una alta correlación con la edad, aumentando más intensamente en longitud (pendiente de la recta edad-longitud>pendiente recta edad-anchura).

En los especímenes más jóvenes (95-138 días) el crecimiento del otolito se realiza preferentemente en longitud, mientras que en los de más de 4 meses se tiende a un crecimiento isométrico entre ambas variables. Este crecimiento diferencial es responsable del cambio de la forma lenticular, de los otolitos de las larvas, a la forma almcendrada típica de la especie.

En las primeras fases de vida el cuerpo y los otolitos crecen en conjunto (relaciones alométricas positivas), con mayor incremento de la longitud que de la anchura. Sin embargo, en el grupo más londjevo el crecimiento es inverso (relaciones alométricas negativas), aunque la longitud y anchura varían de forma paralela. Probablemente, a partir de cierta edad, el crecimiento del otolito se dirija a aumentar en grosor y ornamentarse, con lo que las relaciones con la talla cambian.

Las variaciones de las tasas de crecimiento diario en talla y de los parámetros del otolito, se producen de manera paralela. La anchura fue la que presentó un comportamiento más diferenciado, como era de esperar por sus relaciones alométricas con la talla y con la longitud del otolito. Se han registrado ciclos marcados en las tasas probablemente relacionados con el desarrollo morfológico de los alevines.

Efectos del medio sobre la formación de los ICD

- Fotoperíodo: los resultados obtenidos en los tres grupos experimentales parecen indicar que las condiciones luminosas afectan tanto al tipo de incremento como a su formación.

En el grupo de oscuridad continua, los ICD eran finos, difusos y de elementos poco definidos. Los ritmos supradiarios fueron disminuyendo de amplitud. En el grupo de iluminación continua los incrementos fueron gruesos y nítidos con ritmos marcados. El grupo testigo presentó un comportamiento
intermedio.

Se han depositado incrementos en los tres grupos experimentales; Si la formación de éstos fuese una simple respuesta a la alternancia día/noche, no deberían estar presentes en los grupos OC, IC.

La formación parece depender de un ritmo interno intrínseco e independiente del medio. Sin embargo, se ha producido cierta desincronización en los grupos de condiciones constantes entre el ritmo interno y la duración real del día (distinto número de ICD depositados en cada grupo).

En el grupo de iluminación continua los ICD se han depositado con un ritmo menor a 24 h. (62 ICD contra 60 días) y en el de oscuridad continua con un período ligeramente mayor (55 ICD contra 60 días). En nuestra opinión, en el grupo OC el metabolismo se ha visto profundamente alterado, como prueban la alta mortalidad, menor tasa de crecimiento y grosor de los ICD, retardándose el funcionamiento del reloj.

Es conocido que los relojes internos tienen periodicidad próxima a 22 h. y son reforzados por un estímulo externo, oscilatorio, cuya frecuencia interactúa con la del reloj, produciéndose una fase.

La desincronización en los dos grupos experimentales parece confirmar que la alternancia día/noche es el estímulo externo desencadenante del ciclo de formación, sincronizándose éste con el período de penumbra del amanecer. Cuando no actúa el estímulo externo, el reloj actúa libremente desincronizándose con respecto al día natural. Probablemente en el grupo IC actúe el ritmo interno normal y en el OC éste se vea ralentizado por el estrés causado por el medio.

El estímulo puede variar dependiendo de la especie y de las condiciones. Sin embargo, en D. labrax es el período luminoso el responsable de que el ritmo interno de crecimiento transcurra paralelamente al tiempo real.

- Alimentación: La alimentación actúa sobre la segregación de la hormona del crecimiento y por tanto puede influir sobre la formación de los otolitos. Sin
embargo, se ha demostrado que en temperaturas normales durante el ayuno el crecimiento de los otolitos continua (MARSHALL y PARKER, 1982).

La acción de la alimentación sobre un reloj interno debe ser nula, ya que se la ritmicidad de éste dependiera de la tasa de alimento, perdiría su funcionalidad. Su acción queda limitada al crecimiento producido, alterando por tanto el grosor de los ICD.

En nuestro grupo experimental sometido a un cambio de dieta, no se produjo ninguna alteración importante de los otolitos. Se formaron tantos incrementos como días transcurridos, con lo que se confirma nuestra hipótesis de independencia.

El grosor de los incrementos no se vio alterado, si bien se formó en algunos caos, una discontinuidad estructural, el ritmo de crecimiento no se alteró. Los alevines se adaptaron perfectamente al cambio de dieta o utilizaron sus reservas para mantener la tasa de crecimiento.

En los ejemplares del ap. IV.3.2 que se habían acostumbrados a ser alimentados al mediodía, se registró la tasa máxima de crecimiento de la unidad continua del otolito, en las horas posteriores. Como los alevines se habían mantenido en ayunas, este fenómeno era independiente de la ingestión de alimentos en aquel momento. Respondía a una respuesta del organismo en ausencia del estímulo que la desencadenó. Esta hipótesis, es decir la dependencia de la tasa con respecto de la alimentación, viene confirmada porque en los ejemplares libres, a las horas del mediodía, corresponde un período de inactividad en el que las tasas de crecimiento deberían ser mínimas.

- Salinidad: El cambio repentino de agua de mar a agua salobre produjo una alta mortalidad; en ejemplares jóvenes, de menos de 3 meses de vida, la supervivencia es nula (ZANUY, per. comm.). Es necesario la madurez del sistema osmótico para que los alevines puedan adaptarse.

En los otolitos estudiados del grupo S2 se registró absorción de los materiales depositados, alterándose en algunos casos hasta 20 ICD.

En los casos que se ha podido determinar, parece que tras un período de aclimatación de pocos días, el crecimiento se reemprendió con ritmicidad diaria, con reabsorciones parciales de materiales y preponderancia de fibras
cristalinas.

El mantenimiento del equilibrio osmótico requiere mayor gasto energético, como parece demostrar la disminución del grosor de los incrementos formados tras el cambio.

La salinidad actúa, por tanto, a dos niveles, sobre la periodicidad de la formación y sobre la tasa de crecimiento.

- **Temperatura**: La temperatura influye de forma limitada sobre los relojes internos, puede actuar en la tasa de crecimiento pero no sobre la periodicidad de los mismos, a menos que varíe cíclicamente y en ausencia de otro estímulo.

En los resultados obtenidos de nuestro grupo experimental (ap. IV.4) se mostró total independencia entre las variaciones diarias de la temperatura y las tasas de crecimiento diario. Sin embargo, a descensos acusados de la temperatura seguía la formación de ICD más finos.

Consideramos estos resultados como parciales ya que los especímenes utilizados estaban realizando su metamorfosis, por lo que no son indicativos del comportamiento de juveniles y adultos.

Los efectos del medio sobre la formación de los ICD pueden resumirse de la siguiente manera:
La formación de los incrementos de crecimiento diario en *D. labrax* depende de un mecanismo interno, reloj interno, de periodicidad próxima a 24 h.

El reloj interno inicia su funcionamiento a los 2 días de la eclosión, cuando la larva es independiente del aporte alimenticio externo y permanece inactiva. La formación continua de forma diaria, depositándose la unidad discontinua del incremento en las primeras horas del día.

La deposición de la unidad discontinua parece estar ligada a los ritmos de actividad y se produce cuando la calcemia del plasma es mínima.

Se ha demostrado que la alternancia de los ciclos de luz y oscuridad es la responsable de que el reloj interno se sincronice con el medio. Cuando este estímulo no actúa, la periodicidad del reloj es algo menor de 24 h. En la oscuridad total que afecta fuertemente al metabolismo, el ciclo parece ser mayor de 24 h.

La importancia del ciclo luminoso viene confirmada por la formación de la unidad discontinua al inicio del mismo.

La alimentación tiene un efecto limitado sobre la formación de los incrementos, actúa sobre el grosor de los mismos y la tasa de formación diaria.

Los cambios de salinidad y la permanencia en una salinidad menor a la normal, producen alteraciones en el patrón de formación de los otolitos; se absorben materiales y las tasas de crecimiento son menores que en el medio salino.

La temperatura actúa sobre las tasas de crecimiento, afectando al grosor de los incrementos siempre y cuando sus cambios sobrepasen un cierto límite.

La metamorfosis de las larvas y sus períodos críticos se reflejan en el tipo de incremento formado, la absorción del saco vitelino y la formación de escamas, con la movilización de los recursos minerales hacia su crecimiento, han resultado ser los procesos que alteran en mayor medida a los incrementos.

Las tasas de crecimiento diario en talla, en longitud y anchura del otolito, se manifiestan claramente en el grosor del incremento correspondiente. Las tasas diarias de crecimiento del organismo están interrelacionadas, formando parte de un todo.
V RESULTADOS GLOBALES
V.1 Formación y características del otolito: interacciones entre la matriz protéica y el carbonato cálcico.

Los otolitos están compuestos principalmente de una matriz proteica, que representa menos del 1% en peso, y por carbonato cálcico cristalizado en forma de aragonito.

La cristalización del aragonito en las condiciones propias de un organismo vivo, sólo es factible si se produce gracias a la interacción con una matriz protéica del tipo del colágeno (DEGENS et alt., 1969). Por tanto, a pesar de su pequeña contribución en materia, la presencia de la proteína es fundamental para la formación del otolito.

Los materiales que constituyen el otolito, inones calcio, iones carbonato y los precursores de la proteína, son secretados al fluido que llena el sáculo ótico, a través de la zona celular de la mácula acústica (MUGIYA, 1968). Estos elementos disueltos en el fluido, se unen previamente depositados, creciendo el otolito por suma de materiales en su superficie. En las fases iniciales el aporte es homogéneo, pasando a realizarse, en los otolitos más desarrollados, preferentemente en la cara interna y en los lados dorsal y ventral.

La secreción de los precursores de la proteína es relativamente uniforme, aunque en ciertos períodos es más densa. Como el aporte de los materiales orgánicos depende principalmente de la dieta, (IRIE, 1960) podemos suponer que estas zonas más densas se relacionan con la actividad alimenticia.

Frente a este aporte continuo de materiales orgánicos, los elementos cristalinos son agregados con fuertes oscilaciones dependientes del ciclo metabólico diario del calcio (MUGIYA, 1976). La periodicidad del aporte de materiales cristalinos es la base de la estructura cíclica de los otolitos, en los que se alternan capas ricas en carbonato con capas compuestas mayoritariamente por proteína.

El proceso de formación es el siguiente: los precursores de la matriz, aminoácidos libres o pequeñas cadenas proteicas, se fijan sobre la existen-
te, formando nuevas fibras orgánicas. Simultaneamente el carbonato se une mediante puentes atómicos a la matriz, formándose microcristales de aragonito.

Al finalizar el ciclo de deposición de calcio se habrá depositado una serie de pequeños cristales de aragonito de forma acicular y décimas de micrómetro de diámetro. En torno a estos cristales y comprimida entre ellos se encuentra la matriz orgánica, compuesta por fibras de 100 a 200 Å de grosor, dispuestas formando un denso retículo. El conjunto de microcristales y matriz forman una unidad de crecimiento activo sobre las anteriores.

Al cesar el aporte de carbonato, la matriz que continua formándose al mismo ritmo, no se ve empujada por el crecimiento cristalino. Las fibras formadas son más gruesas, de 500 a 900 Å de diámetro, disponiéndose sobre la superficie formando una capa en sentido perpendicular a los ejes de crecimiento cristalino. Gracias a los elementos disueltos en el fluido, parte de los microcristales continúan su desarrollo, creciendo a través de la capa orgánica o discontinua.

El crecimiento cristalino se reemprende, al aumentar las tasas de calcio en el fluido, formándose una nueva capa incremental. El período de crecimiento activo representa del 70-80 % del registrado en cada ciclo de crecimiento, por consiguiente las unidades de crecimiento continuo siempre son más gruesas que las capas discontinuas.

La aposición de materiales en la superficie del otolito origina el crecimiento en sentido radial de sus elementos, formándose los microcristales en la misma dirección, tomado aspecto de fibras longitudinales. La continuidad de parte de los microcristales a través de varios ciclos de crecimiento, da mayor homogeneidad a la estructura formada.

Frecuentemente las fibras orgánicas se unen creciendo el nuevo cristal ligeramente desplazado con respecto al anterior, formándose una cuña de intercrecimiento. Estas cuñas fueron reportadas por DEGENS et alt. (1969) quienes las relacionaron con la cantidad de materia orgánica presente en los otolitos. Estos resultados confirman nuestra observación estructural.
Las detenciones del crecimiento o el desarrollo morfológico del otolito alteran el patrón cristalino. Se forman discontinuidades o torsiones cristalinas, dependiendo del proceso de alteración. La matriz proteica crece a través de las discontinuidades o forma capas que recubren las zonas de cambio de dirección de los cristales, dando consistencia y unidad a la estructura formada.

El conjunto de microcristales se dispone, según las leyes cristalográficas del aragonito, formando prismas cristalizados en el sistema ortorrómbico. Estos prismas contienen en su interior las matrices orgánicas y están rodeados a su vez de nuevas matrices. En general, la anchura de los prismas es de unos 3 micrómetros y su longitud variable, dependiendo de las características del desarrollo del otolito.

La identidad de los prismas o macrocristales, depende de los planos por donde se produzca la exfoliación o rotura. Estos planos que cumplen las leyes cristalográficas, siguen las zonas ricas en materia orgánica, formando las bases de los prismas las capas discontinuas y las caras siguen el sentido del crecimiento.

El conjunto de los elementos descritos forman las siguientes estructuras:
- Microcristales aciculares de aragonito de décimas de micrómetro de anchura formados con períodos de 1 a pocos días.
- Fibras cristalinas, formadas por el crecimiento lineal de los sucesivos microcristales, dispuestas radialmente del centro a los bordes del otolito. Frecuentemente estas fibras presentan cuñas de intercrecimiento, originadas por cambios en las fibras orgánicas, y torsiones debidas al desarrollo del otolito.
- Prismas de aragonito o macrocristales, formados por agregados de los anteriores elementos. Generalmente su anchura es de 3 micrómetros.
- Matriz orgánica primaria o intercristalina compuesta por un denso retículo de fibras de 100 a 200 Å de diámetro. Esta matriz rodea a los microcristales siguiendo se dirección de crecimiento.
- Matriz secundaria o intercristalina, compuesta por fibras de 500 a 900 Å. Forma las unidades discontinuas dispuestas paralelamente a las caras del otolito y da continuidad a las interrupciones del crecimiento cristalino, uniendo las distintas partes del otolito.

Dependiendo del modo por el que se acceda a la estructura interna del otolito podemos visualizar a sus elementos constituyentes de la siguiente manera:

- Sección pulida, superficie lavada y tratada con HCl: microcristales, fibras cristalinas y zonas discontinuas como suturas en la superficie.
- Sección obtenida por fractura: microcristales, fibras y prismas. La matriz aparece como restos entre los cristales.
- Sección obtenida por fractura; punto crítico y desmineralización: matrices orgánicas.

En la zona nuclear del otolito, caracterizada por la densidad de sus componentes, se encuentra un área extraordinariamente densa formada durante el período embrionario. Esta zona está compuesta por fibras de unos 500 Å de grosor que forman un retículo denso y regular. Los microcristales formados en este período son finos y relativamente menores que los del resto de la estructura.

La homogeneidad de esta zona se debe a que en el período embrionario el aporte de materiales constituyentes es continuo. Los precursores de la matriz provienen del vitelo y no se han iniciado los ciclos de formación, dependientes del metabolismo rítmico del calcio.

El tamaño de esta zona embrionario depende de la especie y de cuándo se inician los ciclos de formación. Así, en especies de período de incubación largo puede producirse antes de la eclosión. Aunque generalmente se produce en el momento de la eclosión, a partir del cual la larva se ve sometida a la acción del medio, o al iniciar la vida activa. En este segundo caso el inicio de la formación puede depender del nado activo o de la primera alimentación.

En D. labrax se produce a los dos días de la eclosión independiente-
mente de los procesos citados anteriormente. Esta especie que posee un período de incubación relativamente largo, es un caso intermedio entre los mencionados. Probablemente el inicio de la formación se produzca cuando la madurez del sistema endocrino permita el inicio de las oscilaciones fisiológicas.

La importancia de las matrices en la formación de aragonito se ha puesto de manifiesto en los otolitos cristalinos. Estos otolitos, en los que la proporción de materia orgánica es mucho mayor que en los normales, están compuestos por finas placas de calcita y materia orgánica amorfa que ocupa los huecos intercristalinos.

Los ritmos de crecimiento diario se conservan, originando acúmulos de placas de grosor próximo al de las unidades de crecimiento activo. La dirección de crecimiento radial se mantiene, formándose columnas de pequeños prisms de calcita. Secundariamente se produce un crecimiento espiral en las zonas más maduras del otolito (formadas en primer lugar) formándose crístales glomerulares de gran tamaño.

La calcita es la única forma del carbonato cálcico que puede formarse in vivo sin interactuar con una proteína. Esta propiedad sumada a la falta de estructura de las matrices orgánicas de esta zona, afirma la importancia de la disposición espacial de la proteína en la formación de aragonito.

En algunos casos se registra la presencia de pequeñas cantidades de vaterita, que al ser muy inestable debe pasar rápidamente a calcita.

Las causas de la formación de otolitos cristalinos no son claras, generalmente la anormalidad afecta solamente a parte del otolito continuando la formación de aragonito en el resto del mismo.

En los otolitos estudiados se ha registrado la presencia de una membrana anormal, que parece ser un desarrollo patológico de la membrana otolítica. Este desarrollo debe relacionarse con una alteración de la matriz proteica que pierde su capacidad de tomar una estructura espacial tal, que al unirse con el carbonato, éste forme aragonito.
Los ciclos de formación anteriormente expuestos se resuelven en la formación diaria de dos unidades de crecimiento en los otolitos. La correspondiente al ciclo de deposición del calcio, unidad de crecimiento activo, en el que se forman los cristales aciculares quedando la matriz comprimida entre ellos, y la unidad discontinua corresponiente al ciclo de baja calcificación. En este período la matriz forma una capa de fibras orgánicas.

La alternancia de los períodos de formación originan la estructura rítmica propia de los otolitos.

Sobre el ciclo diario de formación del otolito pueden actuar los efectos cíclicos del medio, produciendo cambios en el grosor y composición relativa de los incrementos. La periodicidad de estos agentes origina, a su vez, la aparición de agrupamientos en los incrementos de amplitud dependiente de la periodicidad del estímulo.

Así, se forman los siguientes ritmos de crecimiento:
- Subdiarios, dependientes de las variaciones diarias de alimento y temperatura.
- Semanales, quincenales y mensuales dependientes de las variaciones del medio relacionadas con los ciclos lunares y los consiguientes cambios en el flujo de aguas, luminosidad, alimento, etc.
- Anuales, dependientes de las variaciones estacionales del medio, climáticas en mares templados y relacionadas con épocas de lluvias en aguas tropicales.

En los otolitos estudiados se ha demostrado la presencia de detenciones del crecimiento y de reabsorciones de los materiales depositados en los otolitos. La movilización de estos elementos se ha podido relacionar con el estrés físico producido por manipulación, con la freza y con cambios de salinidad.

La absorción de materiales depositados en los otolitos indican que estos no son un compartimiento estanco, si no que forman parte del metabolismo activo del calcio.

La absorción debe producirse cuando los niveles de calcio o de proteínas son mínimos en el plasma y por tanto en el fluido del otolito. A partir de ciertos niveles mínimos, la enzima CA que interviene en la forma-
ción del otolito (MUGIYA, 1979), debe actuar de forma inversa, facilitando la movilización de los elementos depositados. Posteriormente estos elementos pasaran al plasma. Cuando las condiciones vuelven a normalizarse se reemprende el crecimiento cristalino. La movilización de los elementos cristalinos es más frecuente que la de los orgánicos, en la mayoría de las discontinuidades y absorbiones se deposita una capa orgánica que las recubre formando una matriz secundaria que dará continuidad a la estructura formada.

La importancia de las absorbiones de materiales del otolito depende de la duración y efecto del agente que las causa. Así hemos comprobado que alteraciones poco importantes producen una detención del crecimiento, mientras que las más acusadas pueden causar la absorción de 20 o más incrementos.

En los otolitos de peces sometidos a un medio hiposalino se registraron reabsorciones cíclicas de las zonas contiguas a la mácula. Indicando que frente a necesidades frecuentes y limitadas, el organismo moviliza únicamente parte de las reservas minerales.

Las variaciones en la composición de los otolitos y las movilizaciones de sus elementos, son el resultado de los cambios tanto internos como externos a los que el organismo se ve sometido. Los otolitos como parte del organismo y partícipes de sus variaciones dinámicas, reflejan los sucesos de la vida del pez.
V.2 Características y desarrollo de los otolitos

V.2.1 Características estructurales y químicas

El núcleo, formado en la primera fase de vida durante la que el crecimiento es más intenso, es la zona más densa y refringente del otolito. Esta característica está originada por el gran acúmulo de materia orgánica que representa el 4 % en peso.

La acción combinada de la disminución del anabolismo, originada por el envejecimiento del organismo, y la movilización de los recursos hacia la producción de gametos, determinan el progresivo decrecimiento del grosor de los anillos de crecimiento y su menor concentración en materia orgánica. Así, al año de vida la proporción de proteína pasa a representar el 0.9 % del peso del otolito. Esta cantidad disminuye hasta el 0.6 % y es función de la edad (datos perteneciente a D. labrax).

La disminución en el porcentaje de proteína va acompañada por variaciones en su composición cualitativa. Se han registrado cambios en los aminoácidos que implican variaciones sustanciales en el 45 % de los mismos. Algunos aminoácidos esenciales en la formación de una proteína fibrosa como el aspártico, glutámico y la arginina disminuyen notablemente en los ejemplares más longevos. Permaneciendo estables la serina, alanina, histidina y lisina.

La lisina por medio de sus radicales ε-amino interviene en la calcificación, por lo que su estabilidad influirá en la cristalización del aragonito. En las conchas de los moluscos la serina y la alanina juegan un importante rol en la cristalización de este mineral. La proporción de aminoácidos relacionados con la formación del aragonito no cambia, mientras que si lo hacen los que intervienen en la estructura helicoidal de la proteína.

Las variaciones registradas en la composición aminoácídica dependiente de la edad y la especie, aunque notables, no han alterado la disposición atómica de la proteína. No se han registrado cambios morfológicos en las fibras, pero si en su densidad y en su disposición reticular,
mucho más laxa en los ejemplares lonjevos. Los cambios producidos en la polaridad de la otolina son reducidos ya que se mantiene la composición cristalográfica.

La estructura y densidad de los cristales no varía significativamente entre los grupos de edad considerados. Sin embargo se registra un aumento de la calcificación de los otolitos, similar al que se produce en otros tejidos con la edad.

Considerando este hecho y la composición de los anillos estacionales, relativamente más pobre en calcio durante los períodos de crecimiento lento planteamos la siguiente hipótesis:

La segregación de calcio y la deposición de éste en los otolitos permanece constante con la edad, presentando ciclos estacionales en su concentración que dependen de los períodos de freza y de crecimiento lento. Mientras que la cantidad de proteína depositada disminuye progresivamente con la edad y presenta variaciones estacionales reducidas.

La interacción de estos dos procesos da lugar a la formación de anillos hialinos o invernales, menos densos y más ricos proporcionalmente en proteína, y a la progresiva disminución de la amplitud de los anillos anuales.

Paralelamente, el crecimiento no se invierte totalmente en aumentar las dimensiones lineales, sino que existe cierta tendencia a desarrollar el grosor y las ornamentaciones típicas del otolito.
V.2.2 Desarrollo del núcleo de los otolitos

Las relaciones entre la longitud y la anchura de los otolitos de D. labrax durante los primeros seis meses son función de la edad y presentan una inflexión sobre los cinco meses de vida.

El desarrollo inicial es fuertemente alométrico, con un gran incremento de la longitud con respecto de la anchura (K=0.67 en los menores de cuatro meses). Entre los cuatro y cinco meses el crecimiento aunque sigue la tendencia anterior, es más moderado acercándose a la isometría (K=0.88). A partir de la mencionada edad el crecimiento del otolito se torna isométrico (K=0.98).

El resultado de este desarrollo diferencial es el paso del otolito lenticular de las larvas, propio de esta especie, al otolito en forma de almena de los adultos.

El crecimiento relativo de los otolitos con respecto de la talla sigue entre el nacimiento y los cuatro meses de vida una relación alométrica positiva. A partir de la mencionada edad la relación que se establece es una alometría negativa. Durante las primeras fases del desarrollo el otolito crece más intensamente que la talla, pasando esta relación a ser inversa a partir de los cuatro meses posteriores al nacimiento.

Las variaciones diarias de los parámetros del otolito y de la talla, que son en última instancia responsables de las relaciones expuestas anteriormente, siguen las pautas establecidas. Se producen tres ciclos de crecimiento coincidentes con los descritos en el desarrollo del otolito. Los fenómenos inductores de estos cambios dependen del proceso ontogénico. Así, el primer cambio, sobre los cuatro meses de edad, corresponde a la formación de las escamas y el registrado entre los cuatro y cinco meses a la formación de las gónadas.

Los otolitos como parte integrante del organismo reflejan los cambios que se producen en éste, pudiendo actuar como un registro de las variaciones del crecimiento.
V.3 Influencia del medio en la formación de los incrementos de crecimiento diarios.

La formación de los incrementos de crecimiento diario en D. labrax es diaria y se inicia a los dos días de la eclosión, cuando las larvas aún no dependen del aporte alimenticio externo y permanecen flotando pasivamente cerca de la superficie.

La formación de los incrementos podría ser originada por un reloj interno cíclico o por las variaciones periódicas del medio.

En esta fase de desarrollo podrían actuar sobre las larvas los siguientes estímulos: la alternancia día-noche y el ciclo diario de las temperaturas. Este dos agentes externos han actuado desde el momento de la eclosión y aún antes de ésta. RADTKE y DEAN (1982) reportaron que los ciclos luminosos pueden actuar sobre los embriones, originando la formación de incrementos en las especies de incubación larga.

Según BROTHERS (1979) en ausencia de otros estímulos cíclicos, las pequeñas variaciones que a nivel diario se producen en la temperatura del agua, pueden actuar como sincronizadores de la formación del otolito.

En los grupos experimentales de D. labrax sometidos a condiciones constantes de iluminación (Grupos OC, IC) sobre los que actuó la variación diaria de la temperatura, no se produjo la formación diaria de los incrementos. Parece deducirse que en esta especie las variaciones limitadas de la temperatura no pueden actuar como desencadenante de la formación diaria de los otolitos.

Sin embargo, en condiciones normales las variaciones de la temperatura ligadas a los movimientos mareales de las aguas, parecen inducir la formación de agrupamientos en los incrementos formados. Es decir, que si bien no actúan sobre la formación, sí lo hacen en la composición relativa de los incrementos y en la tasa de crecimiento, cuyas variaciones cíclicas dan lugar a la formación de ritmos de crecimiento.

Las variaciones en la alimentación pueden actuar a dos niveles, como aportación de los precursores de la matriz protéica y sobre el nivel de hormona del crecimiento segregada. En los experimentos realizados no
se detectó ninguna variación en la formación de incrementos que pudiera atribuirse a la alimentación.

Otros autores han experimentado con la alimentación como estímulo externo cíclico capaz de influir sobre la formación de los incrementos, demostrando que no posee esta capacidad (DELGADO, 1983; inter altr). En nuestro grupo experimental, utilizado para determinar el momento de la formación de la unidad discontinua, se vio como la tasa de crecimiento era máxima en el período correspondiente a las horas después de cuando se suministraba el alimento. Este crecimiento máximo se mantenía a pesar del período de ayuno previo a los sacrificios.

Este hecho parece indicar que la alimentación juega un importante papel en la tasa de formación y que las subunidades diarias pueden depender de la frecuencia de alimentación.

La influencia del fotoperíodo sobre la formación de los incrementos se determinó utilizando condiciones estables de iluminación continua, oscuridad continua y fotoperíodo natural. Se registró la presencia de incrementos de crecimiento diario en los otolitos de los tres grupos experimentales. Estos resultados apoyados en los expuestos anteriormente nos llevan a afirmar que la formación de los incrementos depende de un proceso interno, reloj interno, independiente del medio.

Se registró cierta desincronización entre los grupos mantenidos en condiciones estables y la duración real del día. En el grupo mantenido en oscuridad continua, en los que el metabolismo se vio fuertemente alterado (gran mortalidad, menor tasa de crecimiento) el ciclo fue de 26 h.. En el grupo de iluminación continua la periodicidad fue de 22 h.

Hemos registrado tres períodos diferentes en la formación de los incrementos:
- El de 24 h., correspondiente a los especímenes que han estado sometidos a los ciclos diarios luminosos de 24 h. de amplitud.
- El de 22 h., registrado en los ejemplares mantenidos en condiciones de iluminación continua.
- El de 26 h., registrado en el grupo mantenido en condiciones de oscuridad
continua.

Frente a estos tres períodos, se plantea la cuestión de cual es el propio de la especie. Este debe manifestarse en ausencia de un estímulo externo que pueda actuar como sincronizador; por tanto el de 24 h. que se registró en presencia del ciclo luminoso natural debe ser descartado.

El ciclo de 22 h. es propio de los ejemplares que presentaron mayor índice de supervivencia y condiciones físicas más favorables. Mientras que el de 26 h. se registró en los que tuvieron una alta mortalidad y estado físico peor. En consideración a este hecho y a que la mayoría de los organismos marinos presenta ritmos de 22 h. (ASCHOFF, 1974) suponemos que es este ciclo el propio de la especie.

Durante la evolución de los organismos, la duración del día fue de 22 h. Los cambios posteriores en la velocidad de rotación de la tierra han producido la desincronización entre la duración de los relojes internos y la oscilación del medio. En estas condiciones, pueden actuar ciertos estímulos externos cíclicos como sincronizadores del reloj interno con el medio (ASCHOFF op. cit.).

El ciclo de luz/oscuridad, las fases mareales y la duración del día son algunos de los fenómenos que pueden actuar como sincronizadores o zeitgeber del reloj interno (KAVALIERS, 1981).

En D. labrax la formación de la unidad discontinua del incremento diario está sincronizada con la interfase día/noche. El inicio del período luminoso a través de su acción sobre la pituitaria, desencadena el proceso de formación sincronizando los relojes internos ligados al metabolismo del calcio. Por tanto, es la alternancia día/noche la que actúa como zeitgeber de D. labrax.

La duración de los ciclos luminosos actúa sobre la tasa de crecimiento diario. A mayor duración del período luminoso más grueso es el incremento formado. Esta acción puede ser indirecta; Esta especie es depredador visual, por lo que la cantidad de alimento ingerido es función de la duración del período luminoso. Como la alimentación actúa sobre la cantidad de hormona del crecimiento segregada, el efecto conjunto de la hormona y de
la presencia de los elementos nutritivos aportados por el alimento, influyen en la formación del oto
tito.

El metabolismo se ve alterado por los cambios de la salinidad del medio, siendo necesario para mantener el equilibrio osmótico un mayor gasto energético. Este gasto se manifestó en la menor tasa de crecimiento de los especímenes del grupo experimental de salinidad baja. En este grupo parte de los materiales de los oto
titos se movilizaron, produciéndose discontinuidades en el patrón de formación del mismo.

La forma en que los diversos factores intervienen en el crecimiento y por tanto en el del oto
tito dependen de las características genéticas del individuo. Estas son modificadas por el sexo, la edad, el peso, la salud, estado nutricional y estrés (entre otros). Así, el efecto combinado de las distintas hormonas potenciará el crecimiento o lo disminuirá; Es bien conocido que las hormonas sexuales inhiben la formación de hormona de crecimiento.

Sobre el organismo el medio actúa mediante dos tipos de factores: los abióticos, como temperatura, luz, salinidad, etc. y los de origen biótico.

Uno de los factores abióticos fundamental en el crecimiento es la temperatura, a la que los peces son extremadamente sensibles, poseyendo un rango de temperaturas óptimas muy limitado (MANGUSON, pers.comm.). Otro factor que juega un importante rol en el crecimiento es la salinidad del medio. En medios hipotónicos es necesario un mayor gasto energético para mantener el equilibrio osmótico.

La luz puede actuar a dos niveles; En los depredadores visuales como limitante de la capacidad de captura del alimento y en todos los organ
ismos sobre los ciclos de actividad.

Dentro de los factores bióticos son fundamentales los relacionados con la calidad y la facilidad de captura del alimento. Es evidente que el aporte de elementos nutritivos y el gasto energético requeridos para su obtención influyen directamente sobre el crecimiento.
El efecto conjunto de los factores (Tabla V.1) se traduce en las distintas tasas de crecimiento registradas. Cuando algún factor sobrepasa el límite de tolerancia del organismo, el crecimiento se detiene.

Las variaciones cíclicas de los diversos factores originan a su vez la periodicidad de los incrementos formados. Así, a variaciones de ritmo menor al diario le corresponderán unidades subdiarias de crecimiento. Cuando el ritmo es mayor, se formarán agrupamientos de período variable, semanales, mensuales, estacionales, etc.
Tabla V.1- Factores que influyen en la formación de los incrementos de crecimiento diario.
V.4 CONCLUSIONES

Los otolitos están compuestos de carbonato cálcico cristalizado en forma de aragonito y de una proteína fibrosa de alto peso molecular. Estos componentes originan los siguientes elementos estructurales:

- Cristales aciculares de décimas de micrómetro de diámetro, formados en uno o pocos días.
- Cristales fibrosos formados por el crecimiento lineal de los microcristales dispuestos radialmente del centro a los margenes del otolito.
- Prismas de aragonito de unos tres micrómetros de diámetro pertenecientes al sistema ortorrombico, formados por agregados de los elementos anteriores.
- Una matriz orgánica compuesta por fibras de 100 a 200 Å de grosor, en forma de un retículo denso que rodea a los microcristales y queda comprimida entre ellos, formando la matriz intracristalina.
- Una matriz orgánica secundaria formada por fibras de 500 a 900 Å, que se origina en los periodos de menor crecimiento cristalino. Sus fibras se disponen transversalmente a la dirección de crecimiento radial y en los espacios intercristalinos. Las uniones entre las fibras contiguas de esta matriz secundaria, originan el típico crecimiento en forma de cuña en las zonas de contacto de los cristales.

La importancia de la matriz orgánica en la cristalización de aragonito se ha puesto de manifiesto en los otolitos cristalinos formados por calcita y un gran acúmulo de materia orgánica amorfa. La formación de áreas de cristalización anormal se produce en relación con el desarrollo patológico de membranas otolíticas.

Los ciclos diarios del metabolismo del calcio producen la formación de dos unidades de crecimiento diario en los otolitos. La de crecimiento activo compuesta por microcristales aciculares y matrices primarias y la de crecimiento discontinuo compuesta mayoritariamente por la matriz secundaria. Pequeños cambios en la proporción de estos elementos y en sus tasas de deposición originan la formación de estructuras ritmicas en los otolitos.
Los otolitos no son un compartimiento estanco dentro del organismo. Participan activamente del metabolismo del calcio, movilizándose los elementos depositados en ellos cuando las necesidades del organismo así lo requieren.

Dependiendo de la importancia del déficit de calcio se detiene el crecimiento o se reabsorbe parte de los otolitos, alterándose su patrón de formación. Hemos identificado como agentes causante de la reabsorción la freza, los cambios de salinidad, el estrés y la manipulación de los ejemplares.

La composición cristalina de los otolitos es independiente de la edad, mientras que su composición relativa y la proporción de aminoácidos que componen la matriz orgánica son función de la edad de los ejemplares.

La proporción de proteína, inicialmente alta decrece rápidamente, en relación inversa a la edad, pasando a representar del 4 % al 0.9 % en peso. Paralelamente, la composición cualitativa de la proteína varía dentro de ciertos límites.

Como resultado de la disminución del anabolismo y de la movilización de elementos hacia la producción de gametos, la fracción orgánica de los otolitos oscila ligeramente y decrece con la edad. La fracción cristalina presenta amplios ciclos estacionales, manteniéndose relativamente constante a lo largo del período vital. Como resultado de la interacción de estos dos procesos se forman anillos estacionales y aumenta la mineralización del tejido del otolito.

La formación de los incrementos de crecimiento diario de los otolitos de Dicentrarchus labrax es diaria, iniciándose a los dos días de la eclosión.

La unidad discontinua del incremento de crecimiento diario se forma en la interfase entre el período de oscuridad y luminoso.

La formación de los incrementos depende de un reloj interno sincronizado con la duración real del día mediante la interfase noche/día.

La periodicidad de este reloj interno es de 22 h. En presencia de un
estímulo cíclico, como es la alternancia día/noche, la periodicidad pasa a ser de 24 h..

En condiciones desfavorables, oscuridad total prolongada, el metabolismo se ve gravemente alterado y como consecuencia la periodicidad del reloj es mayor, de 26 h. aproximadamente.

La formación y tasa de deposición de los incrementos en los otolitos depende de los potenciales intrínsecos del organismo. Sobre éstos pueden actuar diversos factores, tanto externos como internos originando variaciones en la tasa de formación.

El fotoperíodo, la salinidad, la freza y el estrés físico pueden influir sobre la formación de los incrementos. La alimentación, la temperatura y los agentes mencionados anteriormente influyen sobre la composición relativa de los incrementos y sobre su grosor.

Es decir, que los otolitos, como parte integrante del organismo y partícipes de sus variaicones dinámicas, pueden actuar como un registro de los sucesos acaecidos a lo largo de la vida del pez a que pertenecieron.
VI BIBLIOGRAFÍA

