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Introduction o Experimental setup and methodology
lcy mantles covering dust grains in dense
clouds of the interstellar medium are known Pirailpennis 5

to be responsible for the large molecular
complexity of the universe. Within those
mantles atoms and molecules can meet and
react with larger probability than in gas
phase. In most cases, the chemical reactivity
of interstellar ice is limited by the diffusion of Mirror
reacting atoms or molecules in water ice, its |
major component. For this reason the
knowledge of diffusion coefficients of
different molecules in water ice is of great H,0 CH,
astrophysical interest [1].

In this work we have determined the surface
diffusion of CH, in amorphous water ice,

e Experimental procedure:
In a high vacuum chamber methane ice layers covered by water ice layers
were grown by vapor deposition at 30 K. Then, the CH,:H,O system was
(oneave warmed at a controlled rate to 50 K and kept at that temperature while
the diffusion of CH, molecules was monitored by means of FTIR
spectroscopy. The decay of intensity with time of the strong IR absorption
e associated to the v; mode of methane is a measure of the number of
MCT methane molecules that have moved through the pores of the amorphous
e water ice layer and left the sample.

Quadrupole Mass
| Spectrometer

e High vacuum chamber: 10 mbar. Different experiments varying ice thicknesses, heating rates, and growing

e Closed cycle He cryostat. 14-300 K configurations (secuential or codeposited) were conducted.

- - eni e Vertex 70 FTIR spectrometer. e . - -
followmg an experimental procedure inspired ertex speCtiometet Diffusion coefficients were extracted from the isothermal experiments
in references [2, 3]. * Quadrupole mass spectrometer using Fick’s second law of diffusion [2,3].
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Tabl £ : Intensity decay of the v; mode of CH, Fick’s secqnd law Of dlfoSIOr\
a e O expe Il ments Versus elapsed time at 50 K. The concentration profile of CH, , ¢(x,t), in the ice can be described

using Fick’s second law of diffusion in one dimension:
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Preliminary results TRy T T == CH, homogeneously distributed of the film
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» The diffusion of CH, molecules through ASW can be modeled with a Fick’s second law of diffusion, with CH, 50 1.5+1x1013 This work
the contour conditions adequate to our experimental configuration. CH, 60 1+1x1012 This work
» The different experimental conditions tested to modify water ice morphology gave diffusion coefficients CO 40 5.1 x 10713 Karssemeijer [3]
for CH, at 50 K that vary 70% between them. co 50 2.4 x 1012 Karssemeijer [3]
» At 50 K, methane diffuses about fifteen times slower than CO in amorphous water ice. co 40 8.0 x 10713 Mispelaer [2]
S NH 115 4.5 x 1013 Mispelaer [2]
> Methodology limitations: ’ ” s
: . : . H,CO 110 2.0x 10 Mispelaer |2
» a) the diffusion of molecules through amorphous solid water pores depends on water ice morphology,

that is affected by the growing and annealing conditions of the ice;
» b) The temperature of study is limited to a small interval, above methane sublimation but low enough to
be able to follow the diffusion with time. References
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