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The concentration profile of CH4 , c(x,t), in the ice can be described 
using Fick’s second law of diffusion in one dimension:  
 

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷 𝑇 ×  

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
 

 
Where D(T) is the temperature dependent diffusion coefficient. 
It is assumed that D is constant with time. The rate of change in 
concentration with time is proportional to the rate at which the 
concentration gradient changes with distance in a given direction. 

  
 The diffusion of CH4 molecules through ASW can be modeled with a Fick’s second law of diffusion, with 

the  contour conditions adequate to our experimental configuration. 
 The different experimental conditions tested to modify water ice morphology gave diffusion coefficients 

for CH4 at 50 K that vary 70% between them.  
 At 50 K, methane diffuses about  fifteen times slower than CO in amorphous water ice.  
 

 Methodology limitations:  
 a) the diffusion of molecules through amorphous solid water pores depends on water ice morphology, 

that is affected by the growing and annealing conditions of the ice;  
 b) The temperature of study is limited to a small interval, above methane sublimation but low enough to 

be able to follow the diffusion with time. References 
[1] T.Hama and N. Watanabe, Chem. Rev.,113,8786-8839, 2013 
[2] F. Mispelaer et al., A&A, 555, A13, 2013. 
[3] L. J. Karssemeijer, ApJ, 781:16 (15pp), 2014. 

Introduction 
Icy mantles covering dust grains in dense 
clouds of the interstellar medium are known 
to be responsible for the large molecular 
complexity of the universe. Within those 
mantles atoms and molecules can meet and 
react with larger probability than in gas 
phase. In most cases, the chemical reactivity 
of interstellar ice is limited by the diffusion of 
reacting atoms or molecules in water ice, its 
major component. For this reason the 
knowledge of diffusion coefficients of 
different molecules in  water ice is of great 
astrophysical interest [1].  
In this work we have determined the surface 
diffusion of CH4 in amorphous water ice, 
following an experimental procedure inspired 
in references [2, 3]. 

Mid-IR spectra of pure methane 
and a H2O:CH4 ice at 30 K 

Experimental setup and methodology 
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Experimental procedure: 
In a high vacuum chamber methane ice layers covered by water ice layers 
were grown by vapor deposition at 30 K. Then, the CH4:H2O system was 
warmed at a controlled rate to 50 K and kept at that temperature while 
the diffusion of CH4 molecules was monitored by means of FTIR 
spectroscopy. The decay of intensity with time of the strong IR absorption 
associated to the n3 mode of methane is a measure of the number of 
methane molecules that have moved through the pores of the amorphous 
water ice layer and left the sample.  
 
Different experiments varying ice thicknesses, heating rates, and growing 
configurations (secuential or codeposited) were conducted.  
 
Diffusion coefficients were extracted from the isothermal experiments 
using Fick’s second law of diffusion [2,3].  

• High vacuum chamber:  10-8 mbar. 

• Closed cycle He cryostat. 14-300 K  

• Vertex 70 FTIR spectrometer. 

• Quadrupole mass spectrometer 

Fick’s second law of diffusion 
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Figure 2. Water ice deposited at 30 K is amorphous 
and porous (ASW).  
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Evolution of the n3 mode of CH4 

Intensity decay of the n3 mode of CH4 
versus elapsed time at 50 K.  
Black dots: experimental.  
Red line: fit to the Fick’s model. 

Molecule T(K) D (cm2 s-1) Reference 

CH4 50 1.5 ± 1 x 10-13 This work 

CH4 60 1 ± 1 x 10-12 This work 

CO 40 5.1 x 10-13 Karssemeijer [3] 

CO 50 2.4 x 10-12 Karssemeijer [3] 

CO 40 8.0 x 10-13 Mispelaer [2] 

NH3 115 4.5 x 10-13 Mispelaer [2] 

H2CO 110 2.0 x 10-14 Mispelaer [2] 

CH4 CH4 

CH4 

CH4 CH4 

CH4:H2O ice grown by codeposition at 30 K 
and warmed to 50 K 
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CH4/H2O ice grown by sequential deposition 
at 30 K and warmed to 50 K 

Table of experiments 

Comparison with other works 

We take the initial conditions:  The molecules 
     that reach 
    the surface 
desorb.   

𝑐(ℎ, 𝑡)=0 
x 

x=0 

x= h 

𝜕𝑐 0,𝑡

𝜕𝑥
= 0.  

           No CH4 can escape 
            from the bottom  

       of the film. 

𝑐 𝑥, 0 = 𝑛0.  If 0 < 𝑥 < ℎ.  

CH4 homogeneously distributed  
in the ice at t=0, 50 K 

Conclusions 

0 1000 2000 3000 4000

0.40

0.48

1000 2000 3000

0.16

0.18

0.20

0 1000 2000 3000

0.33

0.34

0 1000 2000 3000

0.12

0.14

0 1000 2000 3000

0.34

0.36

0.38

0 1000 2000 3000

0.13

0.14

0.15

0 1000 2000 3000 4000 5000 6000

0.24

0.28

0 1000 2000 3000 4000 5000 6000 7000

0.20

0.24

0.28

0 2000 4000 6000 8000

0.20

0.24

0.28

Experiment 1 Experiment 3Experiment 2

Experiment 4
Experiment 6Experiment 5

 

Experiment 8

time(seconds)

Experiment 9

time(seconds)

 I
n

t(
1

3
0

0
 c

m
-1
)

 I
n

t(
1

3
0

0
 c

m
-1
)

 I
n

t(
1

3
0

0
 c

m
-1
) Experiment 10

time (seconds)

Exp. T(K) Config. Heating rate 
LH2O 

(nm) 

LCH4 

(nm) 
D x 1013 (cm2/s-1) 

1 50 secuential 5k/min 392 42 1.50 ± 0.5 

2 50 secuential 5k/min 220 45 1.46 ± 0.5 

3 50 secuential 20K/min 357 45 0.9 ± 0.5 

4 50 secuential 5k/min 220 16 2.05 ± 0.5 

5 50 secuential 10k/min 424 38 1.54 ± 0.5 

6 50 secuential 10k/min 408 20 1.45 ± 0.5 

7 50 secuential 5k/min 479 36 1.55 ± 0.5 

8 50 codeposit. 5k/min 209 32 1.56 ± 0.5 

9 50 codeposit. 10k/min 185 33 1.55 ± 0.5 

10 50 codeposit. 5k/min 201 34 1.56 ± 0.5 

              

11 60 secuential 5k/min 469 37 
11 ± 10 

12 60 codeposit. 5k/min 490 38 

Preliminary results 


