Density Matrix Renormalization Group Approach for Many-Body Open Quantum Systems

J. Rotureau,1,2,3 N. Michel,1,2,3 W. Nazarewicz,1,2,4 M. Płoszajczak,5 and J. Dukelsky6

1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
2Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
3Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
4Institute of Theoretical Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw, Poland
5Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex, France
6Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain

(Received 3 March 2006; published 13 September 2006)

The density matrix renormalization group (DMRG) approach is extended to complex-symmetric density matrices characteristic of many-body open quantum systems. Within the continuum shell model, we investigate the interplay between many-body configuration interaction and coupling to open channels in case of the unbound nucleus 3He. It is shown that the extended DMRG procedure provides a highly accurate treatment of the coupling to the nonresonant scattering continuum.

DOI: 10.1103/PhysRevLett.97.110603

The theoretical description of strongly correlated open quantum systems (OQS), such as the weakly bound or unbound atomic nuclei or atomic clusters, requires the rigorous treatment of both the many-body correlations and the continuum of positive-energy states and decay channels. The solution of this challenging problem has been advanced recently in the OQS formulation of the nuclear shell model (SM), the so-called Gamow shell model (GSM). GSM is the multiconfigurational SM with a single-particle (SP) basis given by the Berggren ensemble [1] consisting of Gamow (resonant or Siegert) states and the nonresonant continuum of scattering states. The resonant states are the generalized eigenstates of the time-independent Schrödinger equation, which are regular at the origin and satisfy purely outgoing boundary conditions. The SP Berggren basis is generated by a finite-depth potential, and the many-body states can be expanded in Slater determinants spanned by resonant and nonresonant SP basis states [2,3]. The use of the Berggren ensemble implies the complex-symmetric representation for the many-body Hermitian Hamilton operator, \(H_{GSM} \). Of all the eigenstates of \(H_{GSM} \), of major interest are the many-body resonant states representing either bound states or narrow resonances corresponding to various decaying channels [4].

The identification of the many-body resonant states is a major conceptual and numerical task. In general, many-body resonant states of GSM do not correspond to the lowest-energy eigenvalues. Instead, they are obtained in the two-step generalized Lanczos procedure. In the first step, \(H_{GSM} \) is diagonalized in a basis consisting of SP resonant states only (the pole approximation) and provides the first-order approximation to many-body resonances \(|\Psi_i^{(0)}\rangle \), where index \(i \) enumerates all eigenvectors in this restricted space (the pole space). These eigenvectors have, by construction, outgoing asymptotics; they serve as pivots in the second step of the procedure where one includes couplings to nonresonant continuum states. Many-body resonant states in the full GSM space correspond to the eigenstates having the largest overlap with vectors \(|\Psi_i^{(0)}\rangle \).

The GSM, which up to now has been applied to weakly bound or unbound atomic nuclei [2,3,5], can be equally applied for the description of other OQS, e.g., open microwave resonators and self-bound atomic systems, such as \(^3\)He\(_N\) neutral droplets at the limits of their stability [6]. Another possible application of the GSM is to quantum dots, where the interplay between electron-electron correlations and the continuum coupling yields the transition in the conductance properties.

The principal limitation of GSM applications is the explosive growth in the number of configurations (i.e., dimension of the many-body Fock space) with both the number of active particles and the size of the SP space. To ensure completeness of the Berggren basis, for each resonant SP state with the angular momentum quantum numbers \(l \) and \(j \), one should include a large set of discrete nonresonant continuum states \(\{(l_j)^f\}; f = 1, \ldots, M_j^{(f)} \) lying on a continuous contour \(L^f \) in the complex \(k \) plane [2,3]. These continuum states become new active shells in the many-body framework of GSM, and because of their presence, the dimension of the \(H_{GSM} \) matrix grows extremely fast, and the matrix is also significantly denser than that of a conventional SM. On the other hand, most of the configurations involving many particles in the nonresonant continuum contribute very little to low-energy GSM eigenfunctions. This means that a different strategy, based on a dominant role of the pole space in the GSM, should be developed for a smart selection of the most important configurations involving nonresonant continuum states. For that purpose, we propose a new method based on the density matrix renormalization group (DMRG) approach for finding the resonant states of \(H_{GSM} \).

The DMRG method was introduced to overcome the limitations of Wilson-type renormalization groups to describe strongly correlated 1D lattice systems with short-...
range interactions [7] (see recent reviews [8,9]). Extensions of DMRG to 2D lattice models are, in general, less accurate and require a reduction to a 1D problem by selecting a path in the 2D plane. More recently, by reformulating the DMRG in a SP basis, several applications to finite Fermi systems like molecules [10], superconducting grains [11], quantum dots [12], and atomic nuclei [13] have been reported. While most of the DMRG studies were focused on equilibrium properties in strongly correlated closed quantum systems (CQS) with Hermitian density matrix, nonequilibrium systems involving non-Hermitian and nonsymmetric density matrices can also be treated [14]. The applications of DMRG in the context of the SM (the CQS formalism), both in the M scheme [15] and in the angular-momentum-conserving J scheme [16], exhibit convergence problems. In this work, we shall present the first detailed test of the J-scheme DMRG approach [17] in the many-body OQS described by the GSM [2,3]. The main idea of the GSM + DMRG approach is to gradually consider different SP shells of the discretized nonresonant continuum in the configuration space and retain only \(N_{\text{opt}}\) optimal states dictated by the eigenvalues of the density matrix with the largest modulus. The procedure will be illustrated using the example of many-body resonances in the neutron-unbound nucleus \(^{7}\text{He}\) described in terms of \(N_{\nu} = 3\) active (valence) neutrons outside the closed (and inert) core of \(^4\text{He}\).

The SP basis is generated by a Woods-Saxon (WS) potential with the radius \(R_0 = 2\) fm, the depth of the central potential \(V_0 = 47\) MeV, the diffuseness \(d = 0.65\) fm, and the spin-orbit strength \(V_{\text{so}} = 7.5\) MeV [2]. This SP potential reproduces experimental energies and widths of the SP resonances \(3/2^+\) (g.s.) and \(1/2^+\) (first excited state) in \(^3\text{He}\). The neutron valence space consists of the \(0p_{1/2}\) and \(0p_{3/2}\) resonant SP shells and the corresponding nonresonant shells \(\{p_{1/2}\}, \{p_{3/2}\}\). The \(L_+^{p_{3/2}}\) contour in the complex-\(k\) plane (in the following, \(k\) is expressed in units of fm\(^{-1}\)) is defined by a triangle with vertices at \([\text{Re}(k), \text{Im}(k)]\) = \((0, 0)\), \((0.33, -0.33)\), \((0.5, 0)\), and a segment along the Re(\(k\)) axis from \((0.5, 0)\) to \((1.0, 0)\). Similarly, \(P_0^{p_{3/2}}\) is given by a triangle: \((0, 0)\), \((0.17, -0.17)\), \((0.5, 0)\), and a straight segment from \((0.5, 0)\) to \((1.0, 0)\). Each segment of these contours is discretized with the same number of points corresponding to the abscissas for the Gauss-Legendre quadrature. \(H_{\text{GSM}}\) is a sum of the WS potential, representing the effect of a \(^4\text{He}\) core, and the two-body interaction among valence neutrons. The latter is approximated by a finite-range surface Gaussian interaction [5] with the range \(\mu = 1\) fm and the coupling constants depending on the total angular momentum \(J\) of the neutron pair: \(V_J^{(J=0)} = -542\) MeV fm\(^3\), \(V_J^{(J=2)} = -479\) MeV fm\(^3\). These constants are fitted to reproduce the binding energies of \(^6\text{He}\) and \(^8\text{He}\) with respect to the core. Since the core is assumed to be inert, the recoil effects are ignored, and the center-of-mass always lies at the origin.

The special role of the pole space in the GSM suggests that the configuration space in GSM + DMRG applications should be divided in two subspaces: \(A\) (the pole space built from the SP resonant shells \(\{0p_{1/2}, 0p_{3/2}\}\)) and \(B\) (built from the SP nonresonant shells \(\{p_{1/2}\}\) and \(\{p_{3/2}\}\)). In the warm-up phase of DMRG, we proceed as follows: (i) Construct all families \(\{n, j_n\}\) of states \(|k\rangle\) with \(n = 0, 1, \ldots, N_{\nu}\) particles coupled to all possible \(j_n\) values. Calculate and store the matrix elements of the Hamiltonian and all suboperators in \(A\): \(\{\Omega\} = \{a_1, (a_1^\dagger a_2)^1, (a_1^\dagger a_2)^2\}^\dagger\). Diagonalize \(H_{\text{GSM}}\) in the pole space to obtain the first approximation \(|\Psi_j^{(0)}\rangle\) for the target state. (ii) Add the first pair \((p_{1/2}, p_{3/2})\) of SP shells by coupling states in \(A\) with those in \(B\), \(|\langle k| \rangle_{\langle i\rangle}^\dagger\rangle\). Each resulting state has a fixed angular momentum \(J\) and total particle number \(N_{\nu}\). Calculate the matrix elements of \(H_{\text{GSM}}\) and all suboperators within this space. (iii) Diagonalize \(H_{\text{GSM}}\) in the enlarged space, and from all eigenstates, \(|\Psi_j\rangle = \sum_{k_i} c_{k_i} |(k_i)\rangle_{\langle i\rangle}^\dagger\rangle\), select the one that has the largest overlap with \(|\Psi_j^{(0)}\rangle\) [18]. (iv) From this selected eigenstate calculate the reduced density matrix \(\rho_{B|i}^{\beta} = \sum c_{k_i} c_{k_i}^\dagger\) for each fixed value of \(j_B\) [19,20]. Diagonalize \(\rho_{B|i}^{\beta}\), and select \(N_{\text{opt}}\) eigenstates \(|\alpha_{\beta}\rangle = \sum_{i} d_{i\beta} |i\rangle\) having the largest absolute values of their eigenvalues. Recalculate and store all the matrix elements of suboperators for these optimized states: \(B(|\alpha\rangle|\beta\rangle_B = \sum_{i\beta} d_{i\beta} |i\rangle\langle i|\beta\rangle_B\). (v) Add the next pair of shells \((p_{1/2}, p_{3/2})\) in \(B\) following steps (ii)–(iv). (vi) Continue the procedure until the last shell \((p_{1/2}, p_{3/2})\) in \(B\) is reached.

At this point, the warm-up phase ends and the so-called sweeping phase begins. Starting from the last pair of shells in \(B\), the process continues in the reverse direction. For instance, if the \(mth\) pair of \(p\) shells in \(B\) is reached, the Hamiltonian is diagonalized in the set of vectors: \(|\langle k\rangle_{\langle i\rangle}^{(m-1)}\rangle\rangle\), where \(|\langle i\rangle^{(m-1)}\rangle\rangle\) is a previously optimized state (constructed during the warm-up phase from first \(m - 1\) pairs of shells in \(B\) and coupled with \(|k\rangle\) to \(J_{\text{part.}}, i\) \) is a new state. Having selected the state

\[
|\Psi_j\rangle = \sum_{k\langle i\rangle^{(m-1)}\rangle_{\langle i\rangle}^\dagger} c_{k\langle i\rangle^{(m-1)}\rangle_{\langle i\rangle}^\dagger} |(k\langle i\rangle^{(m-1)}\rangle)_{\langle i\rangle}^\dagger\rangle
\]

with the largest overlap with the vector \(|\Psi_j^{(0)}\rangle\) in the pole approximation, one constructs the density matrix

\[
\rho_{B|i}^{\beta} = \sum_{k\langle i\rangle^{(m-1)}\rangle_{\langle i\rangle}^\dagger} c_{k\langle i\rangle^{(m-1)}\rangle_{\langle i\rangle}^\dagger} c_{k\langle i\rangle^{(m-1)}\rangle_{\langle i\rangle}^\dagger}^\dagger
\]

and keeps \(N_{\text{opt}}\) eigenvectors \(|\alpha\rangle\) with the largest absolute values of eigenvalues. The procedure continues by adding the \((m - 1)st\) pair of shells, etc., until the first pair of \(p\) shells in \(B\) is reached, ending the first sweep. Then the procedure is reversed again, continuing sweeping within the \(B\) subspace until convergence is reached.
FIG. 1 (color online). GSM + DMRG results for the real (top panel) and imaginary (bottom panel) parts of the g.s. \((J^\pi = 3/2^-)\) energy of \(^7\)He plotted as a function of the number of DMRG steps. The number of states kept during the sweeping phase is \(N_{\text{opt}} = 20\) (dotted lines), 22 (dashed lines), and 24 (solid lines).

In the examples presented in this work, the number of SP shells included in \(A\) and \(B\) are \(N_r = 2\) and \(N_r = 60\) (30 shells in each continuum: \(\{p_{1/2}\}, \{p_{3/2}\}\)), respectively. In the warm-up phase, \(N_{\text{opt}} = 8\); i.e., we keep one vector for each family \(\{n; f\}\). Figure 1 shows the convergence properties of the ground state (g.s.) \(J^\pi = 3/2^-\) resonance energy in \(^7\)He plotted as a function of the number of DMRG steps \(N_{\text{step}}\). Converged results, manifested by a plateau, are found after \(N_{\text{step}} \approx 30\) steps. Then, with increasing \(N_{\text{step}}\), one enters the unstable region (40 \(\leq N \leq 70\)). A second plateau, corresponding to practically the same energy \(E_0\) as the first plateau (and fairly independent of \(N_{\text{opt}}\)), appears at \(N_{\text{step}} \approx 90\). The “plateau-unstable” sequence repeats periodically. It is worth noting that the deviation from \(\text{Re}(E_0)\) can be both positive and negative. This is because the GSM Hamiltonian matrix is not Hermitian but complex symmetric; hence, the usual reasoning based on the Ritz variational principle does not apply.

The behavior of the DMRG procedure, as can be seen in Fig. 1 and Table I, shows a gradual reduction of the energy variation around the plateau with an increasing number of sweeps. Most importantly, the variation decreases quickly with the number of states \(N_{\text{opt}}\) kept in the sweeping phase. The relative precision of the DMRG procedure is extremely high: \(\sim 10^{-6}\) for \(N_{\text{opt}} = 24\) and \(N_{\text{sw}} = 4\).

Figure 2 illustrates the convergence of the DMRG procedure for the first excited state in \(^7\)He, which is calculated to be a broad resonance with \(\Gamma = 3.37\) MeV. Here, 7 vectors are kept in the warm-up phase. The full convergence is attained in about 2 sweeps; i.e., the procedure is somewhat slower than for the narrow g.s. resonance \((\Gamma = 0.14\) MeV). Still, the resulting plateau is excellent. Again, as in Fig. 1, \(E_0\) is practically independent of \(N_{\text{opt}}\). These two examples demonstrate that the proposed DMRG algorithm is extremely efficient in optimizing SP nonresonant space.

A major problem in studies of OQS is to maintain the completeness of the many-body basis containing contributions from discretized nonresonant SP continua. In this respect, the Berggren ensemble is not different. The accuracy of GSM calculations relies upon the independence of calculated observables such as energies, transition probabilities, and cross sections on the number of SP shells in the complex nonresonant continuum. To illustrate this point, we show in Fig. 3 the g.s. energy of \(^7\)He as a function of the total number of SP shells \(N_{\text{sh}}\). One can see that the dependence of \(\text{Re}(E)\) and \(\text{Im}(E)\) on \(N_{\text{sh}}\) is not monotonic, showing oscillations which disappear only if a sufficiently dense

<table>
<thead>
<tr>
<th>(N_{\text{opt}})</th>
<th>(\Delta E/E_{(N_{\text{sw}} = 2)})</th>
<th>(\Delta E/E_{(N_{\text{sw}} = 4)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>(9.4 \times 10^{-4})</td>
<td>(7.5 \times 10^{-4})</td>
</tr>
<tr>
<td>22</td>
<td>(8.0 \times 10^{-5})</td>
<td>(4.9 \times 10^{-5})</td>
</tr>
<tr>
<td>24</td>
<td>(3.0 \times 10^{-5})</td>
<td>(4.7 \times 10^{-6})</td>
</tr>
<tr>
<td>26</td>
<td>(2.1 \times 10^{-5})</td>
<td>(2.6 \times 10^{-6})</td>
</tr>
</tbody>
</table>

FIG. 2 (color online). Similar to Fig. 1 except for the first excited state \((J^\pi = 1/2^-)\) in \(^7\)He.
The rank of the biggest matrix to be diagonalized in the range of the warm-up (sweeping) phase.

In the example shown in Fig. 3, it changes from $d = 941$ to $d = 1001$, whereas the dimension of the GSM matrix in the J-coupling scheme varies as $D \sim N_{sh}^3$, from $D = 6149$ for $N_{sh} = 26$, to $D = 332 171$ for $N_{sh} = 98$. Hence, the gain factor $D(N_c)/d(N_c) \sim N_{sh}^3$ quickly grows with increasing N_c (or the size of block B). Our results indicate that (i) the complex energy E_0 at the DMRG plateau very weakly depends on N_{opt}, and (ii) the precision of calculated complex energies weakly depends on N_{sh}, provided that N_{sh} is sufficiently large. This means that the convergence features of the GSM + DMRG procedure can be tested by varying N_{sh} and N_{opt}. Once those parameters are optimized in “small-scale” GSM + DMRG calculations, the final calculations can be performed in the large model space to obtain fully converged results.

In summary, this study describes the first application of the DMRG method to unbound many-fermion systems described by a complex-symmetric eigenvalue problem. The encouraging features of the proposed GSM + DMRG approach make it the tool of choice for studies of the continuum effects in multiparticle QOS such as open microwave resonators, multielectron open quantum dots, atomic nuclei, and atomic clusters close to the particle drip line.

This work was supported by the U.S. Department of Energy under Contracts No. DE-FG02-96ER40963 (University of Tennessee), No. DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and No. DE-FG05-87ER40361 (Joint Institute for Heavy Ion Research), and by the Spanish DGI under Grant No. BFM2003-05316-c02-02.

[18] This selection rule for many-body resonant states is unique to GSM + DMRG: in standard DMRG approaches, the lowest-energy eigenvalue in the superblock Hamiltonian is selected.
[20] p^b is block diagonal in j_b and complex symmetric. Hence, its eigenvalues are complex.