Emergence and Evolutionary Analysis of the Human DDR
Network: Implications in Comparative Genomics and
Downstream Analyses

Aida Arcas, Oscar Fernández-Capetillo, Ildefonso Cases, and Ana M. Rojas
Computational Cell Biology Group, Institute for Predictive and Personalized Medicine of Cancer, Badalona, Spain
Genomic Instability Group, CNIO, Madrid, Spain
Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
Present address: Neuroscience Institute, Alicante, Spain
Present address: Bioinformatics and Genomics Platform of Andalusia, Seville, Spain
Present address: Biomedicine Institute of Seville, Seville, Spain
*Corresponding author: E-mail: arojas-ibis@us.es, arojas@ccbg.es.
Associate editor: Meredith Yeager

Abstract

The DNA damage response (DDR) is a crucial signaling network that preserves the integrity of the genome. This network is an ensemble of distinct but often overlapping subnetworks, where different components fulfill distinct functions in precise spatial and temporal scenarios. To understand how these elements have been assembled together in humans, we performed comparative genomic analyses in 47 selected species to trace back their emergence using systematic phylogenetic analyses and estimated gene ages. The emergence of the contribution of posttranslational modifications to the complex regulation of DDR was also investigated. This is the first time a systematic analysis has focused on the evolution of DDR subnetworks as a whole. Our results indicate that a DDR core, mostly constructed around metabolic activities, appeared soon after the emergence of eukaryotes, and that additional regulatory capacities appeared later through complex evolutionary process. Potential key posttranslational modifications were also in place then, with interacting pairs preferentially appearing at the same evolutionary time, although modifications often led to the subsequent acquisition of new targets afterwards. We also found extensive gene loss in essential modules of the regulatory network in fungi, plants, and arthropods, important for their validation as model organisms for DDR studies.

Key words: DDR emergence, DDR evolution, DDR posttranslational modifications.

Introduction

Cells are continuously at risk of suffering DNA damage through various exogenous and endogenous insults (Barnes and Lindahl 2004). In humans, the so-called DNA damage response (DDR; Dunham et al. 2012) is activated at DNA breaks, promoting their repair while activating cytostatic or cytotoxic responses that limit the expansion of the damaged cell (Ciccia and Elledge 2010).

Many proteins accumulate at or leave these sites in a dynamic manner, controlled in a precise spatiotemporal manner. DNA damage is initially sensed by specific factors and they are succeeded by the checkpoint factors recruited to the site that cause cell cycle arrest to evaluate the degree of damage. If the damage can be repaired, the necessary components can be brought in once the transcription machinery has left the site, otherwise the cell will undergo apoptosis and die. In conjunction, all these events are largely regulated by posttranslational modifications (reviewed in Polo and Jackson [2011]).

The DDR signaling pathway is a critical guardian of the genome and it is essential to preserve its integrity. Perturbations of this network produce genomic instability, which are inherently related to aging (Fernandez-Capetillo 2010), disease (Ciccia and Elledge 2010), and cancer (reviewed in Lukas [2011]). Thus, certain components of the DDR have been extensively screened for medical purposes. The existence of many druggable protein targets associated with DNA breaks is providing promising opportunities for the development of new therapeutic agents, such as the ATR protein (Toledo et al. 2011). The search for druggable targets often focuses on conserved modules within networks given that evolutionary conservation implies some conservation of function and as such, these targets can be easily tested in model organisms. Hence, model species like yeast or flies have been used widely to analyze the function of DDR proteins, for example, the checkpoint kinases (Kazama et al. 2008; Wakabayashi et al. 2008; Stracker et al. 2009) and ATM in plants (Kimura and Sakaguchi 2006). Nevertheless, despite the extensive use of model organisms to study DDR, there are still few comprehensive and systematic analyses of the evolutionary conservation of the network as a whole, its regulation or its particular components, with the exception of a few modules like the chromatin modifiers (On et al. 2010).
The information that can be derived from comparative analyses is not only useful to select appropriate targets to address mechanistic or functional aspects of the DDR, and of other networks but also to select the appropriate model organism that best suits specific research purposes. The correct identification of true homologs and/or functionally related proteins is also important to identify precise functional modules, yet it is frequent to find controversial assignations in the literature regarding evolutionary relationships. In particular, through the misassignation of orthology among genes that are evolutionary unrelated but functionally similar (Theissen 2002). Indeed, this is a general and long standing issue in the field of cell biology that seems difficult to overcome (Marabotti and Facchiano 2009).

To fill this gap in our understanding of DDR, to help integrate results from different species, and to guide the selection of the best model organisms for particular studies, we have compiled the first extensive set of consensus human DDR components involved in the sensory, repair, and checkpoint pathways. For the first time, we analyzed their conservation in a wide range of species using methods based on gene age, the classical phylogenetic inference of selected genes, and the emergence and potential conservation of regulatory interactions. Our results revealed a diverse and complex evolutionary history of DDR submodules and a complex pattern through which such pathways have emerged.

Results

Classification of DDR Pathways into Four Different Subnetworks

The DDR network encompasses a variety of processes and signals, including repair, sensing, and the activation/resumption of cell cycle checkpoints. To better understand the downstream analyses, we collapsed the human DDR network that contains 13 pathways into four subnetworks (fig. 1), classifying the components accordingly (supplementary table S1, Supplementary Material online). Accordingly, the global response (GR) with 50 components in the subnetwork includes the following pathways: mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER), homologous recombination (HR), single strand break repair (ssbRep), dissolution of joint DNA molecules (or Holliday junctions), interstrand-cross link (ICL) repair, and nonhomologous end joining (NHEJ). The response at replication Forks (RF) subnetwork includes nine components involved in the response to damage at the RF. The response to double strand breaks (DSB) subnetwork contains 17 components involved in sensing the damage at DSB when NHEJ fails and ATM-based repair takes over. The checkpoints (CHK) subnetwork includes 30 proteins involved in blocking DNA rereplication, cell cycle delay, cell cycle progression, and cell cycle arrest as a consequence of response to damage. Among these subnetworks, there is some degree of overlap as certain DDR components act in different pathways from different subnetworks (e.g., some components recruited to the foci upon response to DSB also promote further HR: supplementary table S1, Supplementary Material online). There are 11 overlapping components (fig. 1), of which seven are common proteins for the DSB and GR (HR pathway) subnetworks; two for the CHK (block to rereplication pathway) and GR (NER pathway) subnetworks; one component belongs to the GR subnetwork (BER and NHEJ pathways) and the RF subnetwork; and another one belongs to the GR (HR pathway) and RF subnetwork (supplementary table S1, Supplementary Material online).

Global Analyses of the DDR network

Phylogenetic Profile of DDR Proteins

After careful inspection of the available literature, we manually selected 118 human proteins (supplementary table S2, Supplementary Material online), and we used these to search for homologs in 46 species that cover a significant range of the evolutionary tree that would help us pinpoint the evolutionary age of each particular protein (supplementary table S1, Supplementary Material online). The presence or absence of homologs in each of the 47 species was used to construct a phylogenetic profile (fig. 2) for each of them. Six distinguishable blocks were identified, the first of which included ten proteins conserved in all three kingdoms and they were mainly involved in the GR subnetwork pathways (blue dots on names in fig. 2): mismatch—MLH1, MSH3, and MSH6; dissolution of Holliday junctions—TOP3A, BLM, and FANCM; and PCNA represents the CHK subnetwork. No components of the RF subnetwork were found. The second block included 46 proteins conserved within all eukaryotes with a few absences in some organisms. These proteins represent components of all the subnetworks (GR, DSB, RF, and CHK), although the majority of these components were still from the GR subnetwork. The same applies to the third block, which included 25 proteins that appeared before the Viridiplantae split not identified in early eukaryotes. The fourth block included 19 proteins that are mostly from the CHK subnetwork. The fifth block included eight proteins from basal metazoans (Trichoplax adhaerens and/or Nematostella vectensis) and finally the sixth block included ten proteins with a relevant role in the DSB subnetwork that were only found in Chordata. These last two blocks included components from all subnetworks.

There were other proteins that appeared to be incorrectly situated, and that appeared to be shuffled between blocks. For instance, BRCA2 and CDT1 (block IV) are present in plants and thus, it would be expected to find them in block III. However, as they are also present in most animals, the automatic clustering grouped them in block IV. In addition, many proteins were found as single instances in a single age group (black triangles, fig. 2), such as RNF8 in Naegleria gruberi, or UBE2T in the bacterium Pirellula staleyi. In some cases, different components act on more than one pathway (black arrows at the right of the names, fig. 2).

The Emergence of the DDR Proteins

We assigned evolutionary ages to the genes of the DDR network and quantified the number of genes that emerged at each evolutionary age. According to the phylogenetic
Fig. 1. Pathway mapping into the human DDR network. DDR components are classified into four main subnetworks: 1) the GR subnetwork that includes the pathways MMR, BER, NER, HR repair, ssbRep, dissolution of joint DNA molecules (Holliday), ICL, and NHEJ; 2) response at RF subnetwork which includes proteins involved in the sensing and repair of damage at the RF; 3) the CHK subnetwork, and 4) response at DSB subnetwork including sensing the damage at DSB when the NHEJ pathway fails and ATM-based repair takes over. This subnetwork overlaps with the HR pathway, and the CHK subnetwork, which includes proteins involved in blocking DNA rereplication, cell cycle delay, cell cycle progression, and related cell cycle arrest as a consequence of response to damage. Interactions of these components are manually extracted from the literature and depicted in this illustration by numbers in brackets that correspond to the PubMed identifiers (supplementary text, Supplementary Material online).
FIG. 2. Phylogenetic profile of DDR proteins. (Top) A three-code name corresponds to the species (the full species names are available in supplementary table S2, Supplementary Material online), where blue indicates frequently used model species and # indicates completely sequenced genomes. The color bars over the names indicate the species included in the particular age groups. (Right) The names correspond to human DDR genes retrieved from the literature. Blue names indicate the absence of these genes in model species. The numbers associated with the names are family identifiers and the
profile ordered by evolutionary timing (fig. 3A), around 10% of the human proteins could be traced to the Prokaryota group that included archaea and bacteria. Although the RF component UBR5 was identified in one bacterial species, the earliest hit occurred in animals, indicative of either a genomic artifact or lateral gene transfer. Further screening in 41 additional prokaryotic genomes (data not shown) confirmed this observation, so we can safely assume that components of the RF pathway were not present in prokaryotes.

By the time the Eukaryota split occurred, there had been a large expansion of genes, whereby most of the DDR components seem to have been acquired (~70%), most of which

Fig. 3. Emergence of DDR proteins. The plots indicate the cumulative frequency of the proteins (Y axis) in each age group (X axis) and they were generated with the ggplot2 R library (Wickham 2009). (A) Emergence of total components. The red line represents the path according to the hierarchical clustering of the phylogenetic profile, while the blue and green plots are the paths estimated by Dollo and Wagner parsimony, respectively. (B) Emergence of proteins according to functional tiers. The plot illustrates the emergence of different classes according to the different functional classifications (supplementary table S1, Supplementary Material online), as obtained by hierarchical clustering.
belonged to the GR subnetwork (fig. 2, blue dots on names). The remaining subnetworks also emerged at this stage.

From this point on, the incorporation of novel components seemed less remarkable with the exception of the incorporation of many CHK components at Opisthokonta (fig. 2, green dots). This incorporation of genes had been fully established by the time the Vertebrata group appeared, more than 90% of the sensors, transducers, and effectors had appeared, whereas only 80% of the mediators could be detected. Indeed, up to 13% of this latter class of proteins is vertebrate specific (fig. 3).

Two other more sophisticated methods to infer gene age, Wagner and Dollo parsimony (Csuros 2010), agreed well with the simple clustering data (fig. 3A), although there were some differences in the relative numbers as was expected given that both methods account differently for gene loss or gain (fig. 3A). Gene age enrichment analyses of our human data set was performed using different reference databases, and both these parsimony-based methods (Dollo and Wagner) also showed a significantly enrichment in genes originated with the eukaryotic lineage and a significant underrepresentation in mammalian-specific genes (table 1).

Emergence of the DDR Proteins According to Functional Criteria

Using a four-tier functional classification (see Materials and Methods), the most populated classes in *Homo sapiens* were the effectors (48 proteins), followed by the mediators (40 proteins), the sensors (32 proteins), and finally, the transducers (24 proteins). This functional classification overlaps to some extent with that reported in different studies, as the same protein may share different functions (supplementary table S1, Supplementary Material online). We plotted the emergence of the different functions along the evolutionary scale and as might be expected, the ancestral core (block I in the profile, fig. 2) contained all four functional classes, with transducers and sensors being the most abundant. From here, each of the classes followed different patterns. Effectors and sensors accumulated early, with 69% and 79% of them having homologs in early eukaryotes, whereas this figure was less than 55% for mediators and transducers. By the time Metazoa emerged, more than 90% of the sensors, transducers, and effectors had appeared, whereas only 80% of the mediators could be detected. Indeed, up to 13% of this latter class of proteins is vertebrate specific (fig. 3B).

The distribution of these functional tiers in the different subnetworks is variable (supplementary table S1, Supplementary Material online). In terms of nonoverlapping components (those that act exclusively in one pathway), effectors dominate in the GR and CHK subnetworks, while mediators dominate in the DSB and RF subnetworks. With the exception of the GR subnetwork, sensors are generally poorly represented. Transducers are widely represented in both DSB and CHK subnetworks, while they are depleted in the GR and RF subnetworks. For the ten DDR components that are associated with more than one subnetwork (fig. 2, black arrows), all four functions can also be found.

Evolutionary Conservation of DDR Subnetworks

The evolutionary conservation of the DDR subnetworks (fig. 2) has been mapped (fig. 4) to the human network.

The GR Subnetwork and Its Pathways

Nonhomologous End Joining. This is the error-prone repair pathway that is most deleterious because it does not use information from the undamaged DNA template. In this process, the XRCC5/6 heterodimer binds to DNA ends to protect them from resection, and then, PRKDC is recruited and activated by autophosphorylation, bridging the two proximal ends (Lees-Miller and Meek 2003). If end processing is required, the XRCC5/6-PNKDC complex binds to DLCRE1C, activating its endonuclease activity (Kurosawa and Adachi 2010). Finally, the end-ligation step is mediated by the

Table 1. Age Enrichment for the Human DDR Using Different Algorithms.

<table>
<thead>
<tr>
<th>DBa</th>
<th>A<sup>b</sup></th>
<th>N<sup>c</sup></th>
<th>O<sup>d</sup></th>
<th>U<sup>e</sup></th>
<th>AVGl</th>
<th>AVGb<sup>g</sup></th>
<th>M<sup>h</sup></th>
<th>Mb<sup>i</sup></th>
<th>Mann–Whitney U<sup>j</sup> Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaccard</td>
<td>W</td>
<td>12</td>
<td>E***</td>
<td>B***</td>
<td>1,372.9</td>
<td>1,138.9</td>
<td>1,628</td>
<td>910</td>
<td>U = 9.5e + 05 (P = 0.000147)</td>
</tr>
<tr>
<td>Multiparanoid</td>
<td>W</td>
<td>12</td>
<td>E***/O**</td>
<td>H**</td>
<td>1,103.7</td>
<td>797.8</td>
<td>910</td>
<td>454.6</td>
<td>U = 8.6e + 05 (P = 2.4e–07)</td>
</tr>
<tr>
<td>Panther7</td>
<td>W</td>
<td>38</td>
<td>E***/O***</td>
<td>—</td>
<td>1,224.7</td>
<td>681.4</td>
<td>910</td>
<td>454.6</td>
<td>U = 6.7e + 05 (P = 2.2e–16)</td>
</tr>
<tr>
<td>OthoMCL</td>
<td>W</td>
<td>12</td>
<td>E***/O***</td>
<td>H**</td>
<td>1,079.1</td>
<td>639.6</td>
<td>910</td>
<td>454.6</td>
<td>U = 7.3e + 05 (P = 2.19e–13)</td>
</tr>
<tr>
<td>Nens</td>
<td>W</td>
<td>12</td>
<td>E***/O*</td>
<td>H*</td>
<td>1,296.5</td>
<td>947.8</td>
<td>1,368</td>
<td>454.6</td>
<td>U = 8.6e + 05 (P = 1.49e–07)</td>
</tr>
<tr>
<td>Jaccard</td>
<td>D</td>
<td>12</td>
<td>E***</td>
<td>B***</td>
<td>1,556.2</td>
<td>1,289.1</td>
<td>1,628</td>
<td>910</td>
<td>U = 9e + 05 (P = 4.78e–06)</td>
</tr>
<tr>
<td>Multiparanoid</td>
<td>D</td>
<td>12</td>
<td>E***</td>
<td>M**</td>
<td>1,360.7</td>
<td>959.5</td>
<td>1,628</td>
<td>454.6</td>
<td>U = 7.7e + 05 (P = 5.76e–11)</td>
</tr>
<tr>
<td>Panther7</td>
<td>D</td>
<td>38</td>
<td>E***</td>
<td>Eu***</td>
<td>1,764.3</td>
<td>1,154.5</td>
<td>1,628</td>
<td>910</td>
<td>U = 6.5e + 05 (P = 0)</td>
</tr>
<tr>
<td>OthoMCL</td>
<td>D</td>
<td>12</td>
<td>E***/O**</td>
<td>M**</td>
<td>1,345.5</td>
<td>817.9</td>
<td>1,628</td>
<td>454.6</td>
<td>U = 6.5e + 05 (P = 0)</td>
</tr>
<tr>
<td>Nens</td>
<td>D</td>
<td>12</td>
<td>E***</td>
<td>M**/H*</td>
<td>1,532.6</td>
<td>1,107.8</td>
<td>1,628</td>
<td>910</td>
<td>U = 7.8e + 05 (P = 6.12e–11)</td>
</tr>
</tbody>
</table>

^aDatabase is HUMAN_PPPODv4 clustered with the corresponding method.

^bAlgorithm: W is Wagner and D is Dollo.

^cN: Number of species in species tree.

^dO is Overrepresented (E: Eukaryota and O: Opisthokonta).

^eU is Underrepresented (M: Mammals, H: Human, E: Euteleostomi, and B: Bilateria).

^fAVG_l: average age input set.

^gAVG_b: average age background set.

^hM: median background. Fisher's exact test was used to calculate the significance of the differences for each age group: *P < 0.05; **P < 0.01; ***P < 0.001. For details of the algorithms and databases please check http://lighthouse.ucsf.edu/ProteinHistorian (last accessed January 28, 2014).
Evolutionary conservation of DDR components in the human DDR network. The colors (from reddish in the older genes to blue in the newer ones) represent the conservation measured as the presence in at least one species of the age group, as in figure 2. Small circles: green, ubiquitination; red, P; yellow, acetylation; and blue, sumoylation. The dotted boxes indicate protein complexes and the numbers in brackets correspond to the PubMed identifiers as in figure 1 (supplementary text, Supplementary Material online).
LIG4-XRCC4 complex, which associates with NHEJ1 (Hentges et al. 2006). The NHEJ pathway is further regulated by acetylation/deacetylation, whereby PRKDC can associate to KAT8 (acetylase: Sharma et al. 2010), which can in turn be deactivated by the SIRT1 deacetylase (Peng et al. 2012).

None of these components were detected in prokaryotes, with XRCC5/6, PRKDC, DCLRE1C, and KAT8 were identified after the eukaryote explosion. Sequential incorporation commenced with XRCC4 before the plants split, the deacetylase SIRT1 that emerged in Unikonta, and NHEJ1 that appeared even later, at the Opisthokonta split. The NHEJ pathway was completed before the split of animals and fungi.

Base Excision Repair. Small chemical alterations like alkylation, deamination, abasic or AP sites, single strand breaks, and oxidation of DNA bases can be corrected by excision of the damaged base, the incorporation of the correct nucleotide(s) and strand ligation (Ciccia and Elledge 2010). None of the core components of BER, such as PARP1, PARP2, and XRCC1 were identified in prokaryotes, although they had all emerged in early eukaryotes. Regulation of this complex by XRCC1 and PARP1 emerged in early eukaryotes. Regulation of this complex by NR4A2 appeared later, before bilaterians emerged, yet the pathway was completed in early eukaryotes.

Nucleotide Excision Repair. The NER system recognizes bulky and helix-distorting base pair lesions. Its global genome version scans the entire genome, where the XPC-RAD23B complex detects the lesions that open DNA and recruiting transcription factor IIH (TFIIH). In the transcription-coupled mode, the damage is sensed by the stalled RNA polymerase II, and by ERCC8 and ERCC6 (Fousteri and Mullenders 2008). Both these routes create short stretches of ssDNA that is stabilized by XPA and the HR component RPA (discussed in the HR section). Subsequently, ERCC3 and ERCC2 (the two helicase subunits of TFIIH) bind to and extend the ssDNA, before the endonucleases ERCC4-ERCC1 and ERCC5 cleave the 5′ and 3′ sides of the lesion, that is then filled in by PCNA, RPA, and DNA polymerases. The gap is finally sealed by DNA ligases I/III.

The helicase ERCC3 was the only component detected at the ancestral core. However, by early eukaryotes the complete pathway had already been assembled, with ERCC1, ERCC2, ERCC4, ERCC5, and XPA, as components of the global pathway, with RAD23B and XPC, and also with the elements involved in the NER coupled to transcription ERCC6 and ERCC8.

Dissolution of Joint DNA Molecules, Single Strand Breaks Repair, and ICL Repair. The joining of DNA molecules (also known as Holliday junctions) are mobile junctions between several DNA strands, and complexes of RM11/TOP3A/BLM (Raynard et al. 2006) or RM11/TOP3A/RMI2 (Singh et al. 2008) must be assembled to dissociate these structures. Of these, BLM and TOP3A (also TOP2A, not included in this study) constitute the ancestral core and they were identified in prokaryotes. The other components appeared later, where RM11 (before the Viridiplantae split) and RMI2 (in animals) completed the assembly of the complexes.

Other proteins important for Holliday junctions’ dissolution are the structure-specific endonucleases EME1/MUS81 and SLX1A/SLX4 (Fekairi et al. 2009). Moreover, the exonuclease DCLRE1B interacts with many proteins (fig. 1), in particular with the EME1/MUS81 complex. These complexes were at least partially evident in early eukaryotes (MUS81 and SLX1A), as well as DCLRE1B. However, EME1 and the regulatory unit of SLX4 appeared later in animals. Thus, our results indicate that this pathway has been assembling during the evolution. This repair pathway has been frequently associated with proteins involved in repairing single-stranded DNA, which are the TDP1/2 components. All of which were identified in early eukaryotes stage.

ICL is another form of damage (Bae et al. 2008) and the elements involved in ICL repair have been present since prokaryotes, which contain both UBE2T and FANCN. By contrast, FANC2D emerged later at early eukaryotes.

Homologous Recombination. This is the error-free repair system that commences with the MRN-complex (MRE11A–RAD50–NBN) recognizing and binding to breaks, holding together and stabilizing the DNA ends (Williams et al. 2007), and serving as a scaffold to promote end resection. The components involved in this process are the RBBP8 endonuclease, the BLM helicase, the DNA2 helicase/endonuclease and EXO1. Subsequently, RPA binds to the overhanging ends and this protein is then replaced by RAD51 (mediated by BRCA2 and PALB2), which promotes the search for the homologous duplex DNA in the undamaged sister chromatid, and facilitates strand invasion into the homologous template. Given the overlapping with the DSB repair subnetwork, the central MRN complex is presented later. Although EXO1, RPA, RAD51, and BRCA2 were all identified in early eukaryotes, RBBP8 appeared later in bilaterians and PALB2 much later, before vertebrates emerged.

At the telomeres, HR is performed by a complex including SMC5/6 and NSMCE2 (Potts and Yu 2007), and it is also mediated by the exonuclease DCLRE1B (discussed earlier; Ye et al. 2010), all proteins that were identified in early eukaryotes. However, this complex may be regulated via TERF2 (Kim et al. 2009), a recent form of modulation as TERF2 can only be identified in vertebrates.

Mismatch Repair. This route eliminates mismatches that arise during DNA replication. In eukaryotes, these events are recognized by the MutS heterodimers (MSH2/MSH6), which binds base–base mismatches and small insertion–deletion loops, and the MutSβ heterodimers (MSH2/MSH3) that bind larger ones. The heterodimer MutSβ (MLH1/PMS2) is recruited by the MSH2 protein to form a ternary complex with one of the MutS complexes and it promotes repair via its endonucleolytic activity, leading to excision repair of the mismatch (Kadyrov et al. 2006). Additional proteins involved in this process may include EXO1, RPA (an HR component), PCNA (a checkpoint component), and DNA polymerases α and β (Li 2008). The oldest members of this pathway are MSH3, MSH6, and MLH1, one of the subunits in each of the complexes (fig. 1), and these were detected in prokaryotes. In early eukaryotes, the MSH2 subunit emerged that is
responsible for recruiting MutL to the mismatches, and once PMS2 emerged, the MMR pathway was complete and it has remained unchanged since.

The Response at RF Subnetwork
In this subnetwork, ATR is activated when ssDNA is generated at stalled RF or due to the processing of DSB ends. There, the HR replication protein A (RPA) binds to the newly created ssDNA overhangs and it recruits SMARCAL1, an ATP-dependent annealing helicase involved in the replication stress response (Bansbach et al. 2009). Only SMARCAL1 and RPA (described earlier, in HR) have been identified at early eukaryotes.

Additional checkpoint components are recruited to these sites (discussed later in the CHK subnetwork), and additional regulation is exerted by the E3-ubiquitin ligase UBR5, the transcription factor MTA2 and NR4A2. These latter components were acquired at different steps and while MTA2 and UBR5 appeared in Metazoa, NR4A2 emerged later in Bilateria to complete the regulatory elements of this assembly. The evolutionary conservation of the remaining components (from the CHK pathway) is explained in corresponding sections.

The Checkpoints Subnetwork (CHK) and Its Pathways
These pathways emerged to estimate the degree of damage in replication and the cell cycle, producing a block in replication, cell cycle progression/delay, or cell cycle arrest. Checkpoints are important to drive the cell through the cell cycle and this is mediated by the CDC25 family of dual-specificity phosphatases (especially at the G1/S transition), which are inactivated by ATM/CHEK2 and ATR/CHEK1 (Reinhardt and Yaffe 2009). When the DDR network is triggered, PLK1 is inhibited, thereby blocking cell-cycle progression at the G2/M transition. In the normal G2/M transition, PLK1 inhibits CHEK2 and TPS3BP1 (van Vugt et al. 2010).

Block of DNA Rereplication. DDR participates in the inhibition of DNA replication where DNA is damaged, partly by targeting the CDT1 protein for ubiquitin-mediated destruction (Arias and Walter 2007). Blocking DNA rereplication is mediated by PCNA (already present in Archaea), whereas all the remaining components were identified in early eukaryotes, DTL, CDT1, CUL4A, and DDB1; the latter two participating in the NER pathway coupled to transcription.

Cell Cycle Delay and Progression. ATR activation depends on RAD17 loading of the 9-1-1 complex onto DNA (RAD9-RAD1-HUS1), where the interaction of ATR with ATRIP regulates the checkpoint response (Cimprich and Cortez 2008). Further recruitment of TOPBP1, CLSPN, TIMELESS, and TIPIN, promote ATR phosphorylation, as well as the activation of CHEK1, and other kinases like TAOK1 and MAPKAPK2 (Reinhardt and Yaffe 2009), which in turn control certain checkpoints (Allen et al. 2011).

Only TAOK1 and PLK1 homologs were identified in the ancestral core, in *Plantomycetes* species (see Discussion), and they are involved in cell cycle delay and progression, respectively. However, in early eukaryotes, the checkpoint network expanded remarkably with the introduction of genes regulating the cell cycle. Thus, HUS1, RAD1, RAD9 (the three that form the 9-1-1 complex), ATR, RAD17, TOPBP1, CDC25A, RBX1, CUL1, SKP1, and YWHAE emerged as components of this subnetwork. ATRIP emerged later, before the Viridiplantae split. However, the essential regulators triggering this activation, CHEK1 and CLSPN, appeared even later, before the split of fungi and animals, with the subsequent recruitment of additional members, for instance BTRC. At the same time, alternative routes to reinforce cell cycle delay emerged through the appearance of CDC25C and MAPKAPK2. This pathway was then completely assembled before the split of fungi and animals.

Cell Cycle Arrest. The control of cell cycle arrest is mediated by ATM, which appeared later at plants, although the activator of the pathway is CHEK2, which appeared a bit later and was identified in amoebas. ATM-activated CHEK2 regulates P53, which induces cell-cycle arrest, senescence or apoptosis in response to DNA damage (Ahn et al. 2004). ATM also phosphorylates FBXO31, which triggers the ubiquitination and subsequent degradation of cyclin D1 by the proteasome, resulting in G1 arrest after DNA damage (Santra et al. 2009).

A much later connection with cell cycle arrest pathways involving P53 was established with the emergence of MDM2, FBXO31, and HNRNPK in Metazoa, and TRIM28 in bilaterians. These new components were connected to the oldest elements of the pathway, MAPK3 and CUL1, which were already present in early eukaryotes, or to the newest members, MDMX and SOX4 that emerged in Vertebrata or Chordata, respectively. This pathway is little conserved, as observed in figure 4.

The Response of the DSB Subnetwork
This subnetwork is more tightly regulated than any other network, so the evolutionary conservation will be explained sequentially. The first step marks the damaged DSB sites, whereby the HR MRN-complex (MRE11A-RAD50-NNB) is recruited to the breaks, which in turns recruits the checkpoint ATM that becomes acetylated by KATS5 (Sun et al. 2005). This process triggers ATM autophosphorylation (Lee et al. 2010) and the phosphorylation of H2AFX (Rogakou et al. 1998). Although the activator KATS5 was identified in early eukaryotes, as well as H2AFX, the three components of the MRN-complex appeared at different evolutionary times. Although RAD50 was detected in prokaryotes, MRE11A appeared in eukaryotes, and NBN appeared even later before the emergence of plants.

In the next phase, the phosphorylation of H2AFX produces a higher affinity for MDC1 an essential mediator that orchestrates the further recruitment of additional factors (E3-ubiquitin ligases RFN8, RFN168, UBE2N, HERC2, and RAD18), triggering a complex cascade of histone ubiquitination at the DSB-flanking region. An important element in the assembly of these proteins is the SUMO E3-ligase PIAS4, an enzyme that acts on RFN168 (Galanty et al. 2009) to provoke the restructuring of chromatin (Panier and Durocher 2009). There is little evolutionary conservation to this part of the pathway. Although E3-ubiquitinases are mostly of a distant origin (UBE2N is detected in prokaryotes, and both RFN8 and
RAD18 are identified in early eukaryotes), their mediator at appropriate sites, MDC1, appeared very recently with the Vertebrata. The emergence of this gene is coupled to the later incorporation of E3-ubiquitin-ligases like HERC2 (from animals), and much later RNF168 in Chordata. PIAS4, which regulates RNF168, also appeared later in Vertebrata.

These ubiquitinated histones are essential hot-spots for recruiting different complexes involved in chromatin remodeling, and to promote HR repair. One such interaction is that between RAD18 and the HR component RAD50, while the other is that between PAXIP1 and TP53BP1 (also involved in end resection: Bunting et al. 2010), both inducing chromatin remodeling. RAD51 was identified in prokaryotes (see above in the HR pathway), and while RAD18 and PAXIP1 first appeared in early eukaryotes, TP53BP1 was identified much later in animals.

Many components of this pathway assemble with others that promote HR repair. For instance, USP11 is a deubiquitination enzyme that interacts with BRCA2 (Schoenfeld et al. 2004) and with RAD51/TP53BP1 to promote HR (Wiltshire et al. 2010). USP11 appeared in early eukaryotes, as did BRCA2 (discussed earlier in the HR pathway).

A very important module of the DSB response that promotes HR repair, is the BRCA1-complex, which contains the HR components BRCC36 (a deubiquitination enzyme), BRCC45, BRCA1, and the BARD1 E3 ligase (Sobhian et al. 2007; Feng et al. 2009), as well as the other components like UIMC1 (that binds to ubiquitylated histones), and the proteins FAM175A and BABAM1. As described earlier, the role of SUMO E3-ligases is important. Moreover, in this module PIAS1 interacts with UIMC1 and BRCA1 (Morris et al. 2009). This entire module is scarcely conserved and for instance, while the HR components BRCC36, BRCA1 and BRCC45 are present in early eukaryotes, as well as PIAS1, BABAM1, and BARD1 appeared later, before the split of plants. Moreover, the linker to ubiquitylated histones UIMC1, and FAM175A appeared much later before vertebrates.

All together, these data indicate that this subnetwork was assembled in a modular way during evolution, reusing available components to produce a cross-talk between different pathways.

Mapping Absences in the DDR Network
Despite the overall conservation and the high level of conservation in distant eukaryotes, about 50 proteins were not found in model organisms. The lineages showing the largest number of absences were fungi and invertebrates (fig. 2). For example, 30 and 21 components were not found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively, and 29 and 26 components were absent from the nematode Caenorhabditis elegans and the arthropod Drosophila melanogaster, respectively (fig. 5).

Absences in the Global Repair Subnetwork
In the NHEJ pathway, NHEJ1 was missing exclusively in C. elegans while it was conserved in the remaining species. XRCC4 (that binds to DNA and LIG4) was missing in all fungi, nematodes, and arthropods, while it was present in basal animals. An important observation was that the BER pathway was entirely lost in model fungi (e.g., S. cerevisiae). Partial losses were observed for different lineages and for instance, PARP1 had been lost in all the fungal species analyzed here, while PARP2 was missing in all fungi except Batrachochytrium dendrobatidis (Bde, in draft state). PARP2 was also absent in C. elegans and arthropods. XRCC1 was also missing from all fungi and C. elegans.

The NER pathway accounted for many absences, although most of these were partial. For instance, ERCC6 was lost in D. melanogaster and RPA3 (a subunit of RPA) in C. elegans. Similarly, while ERCC8 was lost in D. melanogaster, C. elegans, and S. cerevisiae, it was present in Sc. pombe and other worms. In addition, XPA was missing in plants.

SLX1A and SLX4 are important for the dissolution of joint DNA molecules and while the former is old, yet missing in plants, the latter was acquired in animals although it had been lost in nematodes and arthropods.

Absences in the RF
Among the components of the complexes at the RF, SMARCAL1 was lost in model fungi and MTA2 in D. melanogaster.

Absences in the Checkpoint Subnetwork
The entire block to rereplication pathway is lost in S. cerevisiae, while CDT1 is the only missing component of this pathway in Sc. pombe. Regarding the checkpoints triggered at the forks, ATRIP is lost in C. elegans while TOPBP1 in S. cerevisiae. In terms of cell cycle progression/delay, the checkpoint regulation component BTRC was lost in S. cerevisiae and PLK1 is missing in plants. S. cerevisiae has CDC25C, which is missing in Sc. pombe. Conversely, CDC25A is lost in S. cerevisiae while it is present in Sc. pombe. Regarding cell cycle arrest pathways related to DRR, TRIM28, and FBX031 were lost in model invertebrates while being represented in Annelida (C. teleta).

Absences in the DBS Subnetwork and the HR Pathway
As many components are related to both processes (fig. 1), we present them here together. At the break sites, the components of the BRCA1-complex BABAM1, BRCC3, BRE, BARD1, and even BRCA1 were lost in model fungi (S. cerevisiae and Sc. pombe) and model invertebrates (C. elegans and D. melanogaster), although they were present in other species of the same lineages (fig. 2). From the MRN-complex, the NBN (“N” in figs. 1 and 5) was lost in C. elegans and model fungi. Other proteins recruited to such complexes, like RNF8 and TP53BP1, were lost in model invertebrates while they were present in basal animals (N. vectensis), and HERC2 was lost from C. elegans. RAD18 is lost in Arabidopsis thaliana and model invertebrates, while its interacting PAXIP1 is lost in A. thaliana and S. cerevisiae. TRIP12 is lost in C. elegans.

Phylogenetic Analyses of the DDR Proteins
Intrigued by these patterns of gain/loses, we conducted phylogenetic analyses of the genes having at least one component identified in early eukaryotes. We performed a total of 63 phylogenetic analyses, of which 48 were single gene trees and 15 were multigene trees containing 37 genes
FIG. 5. Mapping of gene absences in the DDR subnetworks. The figure illustrates the absence of DDR proteins in model organisms as mapped in figure 1. The absences were detected in plants, fungi, and invertebrates, and in combinations of these. For clarity, partial losses are not depicted (i.e., lost in *Saccharomyces cerevisiae* but present in *S. pombe*). For more detailed information regarding partial losses see figure 2. The numbers in brackets correspond to the PubMed identifiers as in fig. 1 (see supplementary text, Supplementary Material online).
(supplementary table S1, Supplementary Material online). None of the multigene trees contained genes from the RF subnetwork. Of these 85 genes, 42 are from the GR subnetwork, 20 from the CHK subnetwork, 9 from the DSB subnetwork, and 7 were also from the RF subnetwork, as well as 7 for overlapping classes.

Surprisingly, most of the trees did not support the species tree (fig. 6A) and only 13 strictly followed the species tree after still accommodating minor artifacts (like wrong sequences due to poor predictions, fragments, etc.). Only genes from the GR, CHK, and DSB subpathways were present in this class. There were 23 trees that followed the species trees with only minor variations, allowing for the misplacement of either one group/species and/or observed artifacts (i.e., C. elegans in RAD50; fig. 6B). The subnetworks in this class were GR, CHK, and DSB. The remaining trees displayed disagreements, whereby 29 trees had misplacements of up to 2 groups/species (medium) and 21 had large misplacements of species/groups. Although all the pathways were represented, two gene trees were considered to be unreliable (RBX1 and HUS1).

Large simultaneous misplacements of more than one group involved plants and fungi in 15 cases out of 50, with the majority of the proteins showing this displacement from the GR subnetwork with all its pathways represented (supplementary fig. S2, Supplementary Material online). Within the 15 multigene trees, only in the PIAS1/4 and CDC25A/C families did all their genes follow the species trees. Although certain members of the family followed the species tree (ERCC3), others did not (FANCM, fig. 6C). In four multigene trees, none of the genes from the same family followed the species tree (MSH2/3/6, UBE2T/2N, ATM/R/PRKDC, and KAT5/KAT8: supplementary fig. 2 for MSH2/3/6, ATM/ATR/PRKDC), whereas in the remaining trees at least one member of the family followed the species tree, either strictly or with only minor variations.

The most variable organism was C. elegans, with 12 small (fig. 6B), 5 medium, and 16 large displacements. The basal animals T. adhaerens and N. vectensis were also frequently misplaced in 24 trees simultaneously.

In some cases, proteins from the same complex showed the same topology, which was not consistent with the species tree. For instance, XRCC5 and XRCC6 (supplementary fig. S3A and B, Supplementary Material online) are both components of the NHEJ pathway for which C. elegans groups with arthropods rather than with other worms. Another case is RAD17 and TOPBP1, both present at the fork (supplementary fig. S3C and D, Supplementary Material online). The PMS2 and MLH1 gene family represented another example, producing proteins that dimerize to form MutLα in the MMR pathway and for which the sequences from C. elegans group close to distant eukaryotes (supplementary fig. S3E, Supplementary Material online).

In 5 of the 16 multigene trees, phylogenies helped to identify the incorrect orthology assignations, as was the case of KAT8 and KAT5 that belong to the same family. Most of the Eukaryota and plant KAT8, found as a bidirectional hit, are more likely to be KAT5 proteins (fig. 2; supplementary fig. S2D, Supplementary Material online). Similarly, the DCLRE1C/B family also showed some inconsistencies produced by automatic orthology assignation, whereby DCLRE1B of Physcomitrella patens, Fungi and Monosiga brevicollis are rather DCLRE1A proteins (related homologs: supplementary fig. S2E, Supplementary Material online). Other examples include the S. cerevisae PIAS4 that is likely to be PIAS1 and Trypanosoma brucei PARP1 that might be PARP2. In 52 out of 65 trees, all the Chordata members followed the species tree. The exceptions were mainly due to Ciona intestinalis and Branchiostoma floridae grouping with more ancient groups, and misplaced incomplete sequences from Ornithorhynchus anatinus and Monodelphis domestica.

Emergence of the Posttranslational Modifications of DDR Proteins

Finally, we set out to investigate the emergence of regulatory interactions among DDR components in a global manner, in particular those mediated by posttranscriptional modifications. Among the human DDR proteins in our data set, 53 were known targets of 24 modifiers, and targets and modifiers were represented in all the subnetworks. With the exception of the MMR pathway, all of them had at least one modifier, with the CHK subnetwork containing the largest number of modifiers (11 out of 24). Some modifiers produce self-modifications (ATM, KAT8, PRKDC, TRIM28, and UBE2T), as well as serving as targets of different modifiers. For instance, CHEK2 is the target of ATM and a modifier of BRCA1. In total, there were 94 Target-Modifier pairs, 99 if we included self-modifications (fig. 7A). Regarding interaction types, the vast majority of posttranslational modifications involved phosphorylation (72 pairs), followed by ubiquitination (13 pairs), sumoylation (6 pairs), and acetylation (2 pairs: table 2). The most modified protein in the data set was BRCA1, which becomes phosphorylated, sumoylated and ubiquitinated. H2AX is also heavily and widely modified, although some specific residues that were ubiquitinated could not be identified precisely.

To study the evolutionary origin of these interactions, we compared the relative ages of each member of the pair. In 29 cases, both target and modifier were in the same age group, whereas in 33 pairs the target is younger than the modifier and in 32 the opposite was true. Interestingly, in only 12 pairs where both the target and modifier of the same age, were homologs of the target and/or the modifier used to date the proteins when they were present in the same distant species. When we compared our observations with those obtained from 1,000 sets of randomized pairs, we observed that our DDR data set contains a larger number of pairs belonging to the same age group, and fewer pairs of different ages than expected (fig. 7B). We also found that interactions in which the modifier was older than the target tended to have greater differences in age than those in which the modifier belong to a more recent age group (fig. 7C). This fact could be attributed to most of the modifiers being of early origin, thereby limiting the distance to earlier targets. To check this possibility, we compared the distribution of interaction distances with that
FIG. 6. Summary of the phylogenetic analysis. (A) Summary of the findings. The plot indicates the agreement of DDR component gene trees with the species tree (depicted in supplementary fig. S1, Supplementary Material online). The degree of support is given by the number of groups involved in the misplacements that deviate from the species tree. For details about the individual trees, refer to supplementary table S1, Supplementary Material online. (B) Example of “Almost” indicates minor variations for RAD50, either a misplacement of either one group/species and/or observed artifacts. (C) Example of a “Strict” tree for ERCC3 indicates that only minor variations are allowed (i.e., a potential HGT by a prokaryote). Example of “Medium” (FANCM) indicates misplacement of more than two species/groups.
Analyses of posttranslational modifications in DDR proteins. (A) Arc-plot showing the interaction repertoire in function of the different ages (color circles). Colored edges over the circles indicate paired connections where the targets are younger than the modifiers or the connections are of the same age. Colored edges below the circles indicate pairs where the target is older than the modifier. Modification targets are named in gray, while the modifiers are in red. The diameter of the circles indicates the number of connections. Colored dots below the names indicate the subnetworks assigned to a particular component as in figure 1. The plot was generated with the R package (arc diagram, http://www.gastonsanchez.com/software.html, last accessed January 28, 2014). Dots below the names indicate subnetworks. (B) Distribution of interaction ages. Blue bars indicate number of modifier-target pairs in our data set according to the relative age of the modifier. Gray dots represent the average of the 1,000 randomized replicas and the bars the standard deviations. (C) Distribution of interaction pairs where the targets and modifiers are of different ages. Age difference was settled in three evolutionary jumps, where the age difference is more or less than 3 age groups. The black dots show 1,000 randomized replicas. There are fewer “small” (<3 groups) jumps than expected.
Table 2. Age Assignment of Interactions Associated with Posttranslational Modifications.

<table>
<thead>
<tr>
<th>Target Gene</th>
<th>Target Network</th>
<th>Modifier Gene</th>
<th>Modifier Network</th>
<th>PTM(^b)</th>
<th>Target Age(^c)</th>
<th>Modifier Age(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>ATM</td>
<td>CHK</td>
<td>KAT5</td>
<td>GNR</td>
<td>DSB</td>
<td>A</td>
<td>V</td>
</tr>
<tr>
<td>BRCA1</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>BRCA1</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>BRCA1</td>
<td>GR</td>
<td>CHEK2</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>U</td>
</tr>
<tr>
<td>BRCA1</td>
<td>GR</td>
<td>Pias1</td>
<td>DSB</td>
<td>S</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>BRCA1</td>
<td>GR</td>
<td>UBE2T</td>
<td>DSB</td>
<td>U</td>
<td>E</td>
<td>Pr</td>
</tr>
<tr>
<td>BRCA2</td>
<td>GR</td>
<td>CHEK1</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>O</td>
</tr>
<tr>
<td>BRCA2</td>
<td>GR</td>
<td>CHEK2</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>U</td>
</tr>
<tr>
<td>BRCA2</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>CDKN1</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>CHEK1</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>O</td>
<td>E</td>
</tr>
<tr>
<td>CHEK2</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>CLSPN</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>CLSPN</td>
<td>CHK</td>
<td>ATR</td>
<td>CHK</td>
<td>P</td>
<td>O</td>
<td>E</td>
</tr>
<tr>
<td>CLSPN</td>
<td>CHK</td>
<td>PLK1</td>
<td>CHK</td>
<td>P</td>
<td>O</td>
<td>Pr</td>
</tr>
<tr>
<td>CLSPN</td>
<td>CHK</td>
<td>CUL1</td>
<td>CHK</td>
<td>U</td>
<td>O</td>
<td>E</td>
</tr>
<tr>
<td>DCLRE1B</td>
<td>GR</td>
<td>ATR</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>DCLRE1B</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>DCR1C</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>DCR1C</td>
<td>GR</td>
<td>PRKDC</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>EXO1</td>
<td>GR</td>
<td>ATR</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>FAM175A</td>
<td>DSB</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>Vr</td>
<td>V</td>
</tr>
<tr>
<td>FAM175A</td>
<td>DSB</td>
<td>ATR</td>
<td>CHK</td>
<td>P</td>
<td>Vr</td>
<td>E</td>
</tr>
<tr>
<td>FANCD2</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>FANCL</td>
<td>GR</td>
<td>UBE2T</td>
<td>GR</td>
<td>U</td>
<td>E</td>
<td>Pr</td>
</tr>
<tr>
<td>FBX031</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>M</td>
<td>V</td>
</tr>
<tr>
<td>H2AFX</td>
<td>DSB</td>
<td>PRKDC</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>H2AFX</td>
<td>DSB</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>H2AFX</td>
<td>DSB</td>
<td>UBE2N</td>
<td>CHK</td>
<td>U</td>
<td>E</td>
<td>Pr</td>
</tr>
<tr>
<td>H2AFX</td>
<td>DSB</td>
<td>RNF168</td>
<td>DSB</td>
<td>U</td>
<td>E</td>
<td>Ch</td>
</tr>
<tr>
<td>H2AFX</td>
<td>DSB</td>
<td>RNF8</td>
<td>DSB</td>
<td>U</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>H2AFX</td>
<td>DSB</td>
<td>KAT5</td>
<td>GNR</td>
<td>DSB</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>HERC2</td>
<td>DSB</td>
<td>ATM</td>
<td>DSB</td>
<td>P</td>
<td>M</td>
<td>V</td>
</tr>
<tr>
<td>HNRPK</td>
<td>CHK</td>
<td>MDM2</td>
<td>CHK</td>
<td>U</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>MDM2</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>M</td>
<td>V</td>
</tr>
<tr>
<td>MDM4</td>
<td>CHK</td>
<td>CHEK1</td>
<td>CHK</td>
<td>P</td>
<td>Vr</td>
<td>O</td>
</tr>
<tr>
<td>MDM4</td>
<td>CHK</td>
<td>CHEK2</td>
<td>CHK</td>
<td>P</td>
<td>Vr</td>
<td>U</td>
</tr>
<tr>
<td>MDM4</td>
<td>CHK</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>Vr</td>
<td>V</td>
</tr>
<tr>
<td>MAPK3</td>
<td>CHK</td>
<td>MAPKAPK2</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>O</td>
</tr>
<tr>
<td>Cdc25A</td>
<td>CHK</td>
<td>CHEK1</td>
<td>CHK</td>
<td>P</td>
<td>U</td>
<td>O</td>
</tr>
<tr>
<td>Cdc25A</td>
<td>CHK</td>
<td>CHEK2</td>
<td>CHK</td>
<td>P</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Cdc25C</td>
<td>CHK</td>
<td>CHEK1</td>
<td>CHK</td>
<td>P</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Cdc25C</td>
<td>CHK</td>
<td>CHEK2</td>
<td>CHK</td>
<td>P</td>
<td>O</td>
<td>U</td>
</tr>
<tr>
<td>Cdc25C</td>
<td>CHK</td>
<td>MAPKAPK2</td>
<td>CHK</td>
<td>P</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>MSH2</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>MSH2</td>
<td>GR</td>
<td>ATR</td>
<td>CHK</td>
<td>P</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>MSH3</td>
<td>GR</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>Pr</td>
<td>V</td>
</tr>
<tr>
<td>MSH3</td>
<td>GR</td>
<td>ATR</td>
<td>CHK</td>
<td>P</td>
<td>Pr</td>
<td>E</td>
</tr>
<tr>
<td>MSH6</td>
<td>GR</td>
<td>ATR</td>
<td>CHK</td>
<td>P</td>
<td>Pr</td>
<td>E</td>
</tr>
<tr>
<td>KAT8</td>
<td>GR</td>
<td>KAT8</td>
<td>GR</td>
<td>A</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>NBN</td>
<td>GR</td>
<td>DSB</td>
<td>ATM</td>
<td>CHK</td>
<td>P</td>
<td>V</td>
</tr>
</tbody>
</table>
of a random set in which pairs were randomized, keeping the number of pairs in which the modifier was younger, older or the same age than the target constant. We found that in the observed set, the group of pairs in which the modifier is older than the target contained longer interactions than in the randomized set.

Discussion

To date, a systematic functional and evolutionary analysis of the DDR network in humans has yet to be performed. In this study, we first assigned ages to genes and although no one optimal method has been established to define the age of a
particular gene (Wolf et al. 2009; Capra et al. 2012), this concept proved to be reasonably accurate (Wolf et al. 2009). Indeed, discrepancies in the ages assigned to the genes probably reflect how different methods deal with gene gain and loss (Capra et al. 2012). These differences could also have been amplified due to the incompleteness of some genomes and by any potential lateral gene transfer.

Overall, our results indicate that while the origin of around 10% of the current human DDR components is traceable to the Prokarya, the largest expansion of DDR components seems to have occurred during the appearance of the Eukarya, where the network grew by ~50–70%. We also show that the metabolic components of the network were dominant in the ancestral repertoire, with ~70–80% of sensors and effectors present in distant eukaryotes, indicating that the ancestral network was enriched at both ends of any transduction pathway. Consistent with this, most of the oldest DDR components belong to the GR subnetwork, where effectors and sensors are the most represented functions. We also identified a strong conservation of complexes located at the RF, which also include a substantial fraction of Checkpoints components that were established early on in evolution, the oldest mostly being effectors. Additional regulatory layers came with the sequential incorporation of transducer and mediator functions that were particularly dominant in the DSB and RF subnetworks, and with the later emergence of regulators of existing pathways. For instance, SIRT1 appeared in Unikonta and it is known to regulate both the NER (Ming et al. 2010) and the NHEJ (Sharma et al. 2010) pathways, which were already assembled at this age. Together, these results suggest the early emergence of the sensory and metabolic component of the DDR network, and the later appearance of the integrative regulatory element.

We did not identify the NHEJ pathway components in any of the prokaryotes analyzed, consistent with the lack of a canonical NHEJ pathway reported previously (Pitcher et al. 2007; Shuman and Glickman 2007). Indeed, alternative systems exist in pathogenic bacteria that are implicated in chromosomal translocation, such as A-E. Only structure-based methods can recover distant relationships between the XRCC5/6 components and prokaryotic proteins, suggesting that these systems were in place early on in evolution (Chayot et al. 2010) and that maybe, much of the signaling sequence has been lost.

The poor conservation of the DSB subnetwork components that respond to ATM is remarkable. For instance, the central MRN complex (MRE11A-RAD50-NBN1) was assembled at different evolutionary steps and moreover, this network was built as an ensemble of distinct and available components (components involved in the HR repair pathway were incorporated to the foci). This overlap could be explained by the existence of an end-resection mechanisms that converts dsDNA into ssDNA enabling switching from error-prone to error-free repair (Cimprich and Cortez 2008), and where additional proteins from the DSB subnetwork participate, such as TP53BP1 (Bunting et al. 2010). Components regulating important activities of the P53 protein, such as the induction of cell-cycle arrest, senescence, or apoptosis, were recently incorporated in evolution, indicating that this subtle regulation of the cell cycle to overcome genome instability is very recent in evolution.

Although many checkpoint components generally appeared in early eukaryotes, those acting as linkers to trigger responses controlling cell cycle progression/delay appeared later on in evolution (like CHEK1/2). Thus, the assembly of the integrate control of the cell cycle toward progression or delay appeared before the split of animals and fungi, suggesting that plants use different routes. Conversely, the control of DNA rereplication is conserved, since in early eukaryotes it appears that this form of control maybe primordial, as supported by its presence in the NER pathway coupled to transcription.

Although true gene loss can only be assessed accurately in well-annotated and complete genomes, the frequency of gene loss in key parts of the subnetworks observed in complete genomes is generally quite remarkable, particularly in fungi and invertebrates. As these components were present in ancestral relatives like annelids (segmented worms), radiates such as N. vectensis (Cnidaria) and even Placozoa (T. adhaerens–Tad–the most primitive animal), we believe that these absences are generally due to gene loss. For model fungi, the entire BER pathway is lost in both species, while the control of DNA rereplication is only lost in its entirety in S. cerevisiae. Similarly, five components of the BRCA1-complex that promotes HR repair are also missing in model fungi and model invertebrates, while they are present in early eukaryotes. This indicates the possibility that this module has been lost independently at least twice: one in the line leading to fungi and other in that leading to invertebrates.

In cases of partial loss in a given pathway, it is possible that evolutionary unrelated genes will serve as functional analogs to perform the same function. This is consistent with results reported previously, showing that nematodes have lost several modules of regulatory networks (Srivastava et al. 2008) or fungi have incorporated novel lineage-specific proteins during their evolution (Wolf 2009, Fiedler 2009).

There were few gene duplication events in our data set, which alleviates the limitations of pairwise based methods to correctly detect orthologs using automatic approaches. Still, pairwise analysis may be affected when the sequence signal is lost, particularly in the presence of different protein domain arrangements, and/or the differential gene loss among orthologs that occurs in ancestral genomes. Specifically, it is difficult to identify horizontal gene transfer or to detect the most likely ortholog. Nevertheless, phylogeny helps in both cases as reported for eukaryotic-like transducers (Arcas et al. 2013) and for the KAT8/S family, respectively.

The major discrepancies between gene trees and species trees are probably due to difficulties to establish the true Tree of Life, and the existence of different evolutionary paces for different genes. Both these issues have a strong impact in alignment uncertainty, which has been reported to produce different phylogenetic trees (Wong et al. 2008). In this context, the most divergent genes are usually the most difficult to analyze. The ancestral origin of the vast majority of genes here could reflect extensive horizontal gene transfer, a process that
has gained importance in eukaryotic organisms where it can be enhanced by particular lifestyles (Keeling and Palmer 2008).

In our data set, the recurrent inconsistency of C. elegans is particularly remarkable and it is unlikely to be an effect of long-branch attraction. Similar discrepancies have already been reported supporting alternative classifications for Nematoda and Arthropoda in the Ecdysozoa group (Aguinaldo et al. 1997) and for T. adhaerens (Srivastava et al. 2008) to lie closer to cnidarians. We have observed cases where genes from the same complexes may have been transferred in blocks (as in the case of some NHEJ components, supplementary fig. S3, Supplementary Material online), as trees show the same inconsistent topologies. Thus, our observations raise the question as to whether or not these well-established model organisms are useful to perform comparative studies of DDR outside the context of additional basal organisms.

The regulation of DDR by posttranslational modifications is still poorly understood (Polo and Jackson 2011). Our global approach suggests that a potential ancestral regulatory network was already in place before the Eukaryota split, to which additions were made at different steps. Like previous reports on protein–protein interactions (Capra et al. 2012), we found that posttranslational modifications appeared at the same ages more often than would be expected if they were independent of age. Therefore, these gene pairs are likely to be coevolving.

In contrast to other studies, where proteins with regulatory activity are significantly younger than those showing catalytic activity (Capra et al. 2012), DDR transducers constitute ~80% of the DDR functional tiers at Opisthokonta, suggesting that a functional network of posttranslational modifications had already been established. Although less than expected, we also observed large evolutionary jumps in the ages of each member of the pair, suggesting that the ability to modify and/or to be modified is quite flexible, reflecting remarkable plasticity in the regulatory network. Thus, a more promiscuous primordial repertoire would have exploded from a well-established interaction set, enabling the further acquisition of precise specificity in coevolving pairs.

To summarize, we have compiled the most complete network of human DDR pathways including regulatory aspects, and studied its emergence within a global evolutionary framework. The vast majority of these components have an ancient origin and while it is not surprising that the metabolic components of the network were predominant at early evolutionary times, so were the regulatory activities, even though they have subsequently expanded steadily during evolution. Repair based on the NHEJ pathway is probably the oldest part of the network, where similarities in prokaryotes can only be detected using sensitive structure-based methods, and where both canonical and noncanonical pathways are present. The newest acquisition is the response to DSB mediated by ATM, which seems to have grown by assembling existing components (i.e., the BRCA1-module) and including posttranslational modifications that affect protein complexes coupled to the regulation of the cell cycle. Entire pathways have been lost in some model organisms, and remarkable gene loss was observed in invertebrates. Moreover, gene loss in regulatory modules could have influenced the regulation of DDR in entire lineages (i.e., Nematoda vs. Annelida), where additional compensatory systems may have taken over.

Materials and Methods

Data Sets and Genome Sources

We examined the literature manually to compile a comprehensive list of DDR components from H. sapiens, retrieving 118 proteins (supplementary table S1, Supplementary Material online). To account for longer divergence times, we included three additional organisms in which DDR has been studied extensively: Ath (A. thaliana) with 122 proteins; Sce (S. cerevisiae) with 91 proteins; and Eco (Escherichia coli) with 46 proteins (supplementary table S1, Supplementary Material online). To trace the DDR orthologs in the four organisms during evolution, we used the proteomes of 43 additional selected species available in the databases (supplementary table S2, Supplementary Material online). These include complete and incomplete proteomes, and they contain both predicted and confirmed peptide sequences. These data sets include 8 Eubacteria, 3 Archaea, and 36 Eukaryota. The organisms were grouped on the basis of previously defined phylogenetic studies (Roger and Simpson 2009) (see supplementary fig. S1, Supplementary Material online, for the phylogenetic trees of these species). When a particular proteome was available in different databases, the coverage was compared and the version containing the highest number of human DDR orthologs was chosen.

Identification of Orthologs/Homologs

Each seed data set was used as a query list against 47 genomes to find orthologs using InParanoid (Remm et al. 2001) in its pairwise mode (supplementary table S3, Supplementary Material online). We first ran the program using the default parameters and then, slightly modifying the parameters to account for the large divergence times and to alleviate for the effects of using draft genomes. Accordingly, we made the confidence cutoff more stringent for in-paralog inclusion (from 0.05 to 0.25), we decreased the threshold for sequence overlap to obtain hits sharing common domains in distantly related organisms (from 0.5 to 0.4) and we slightly lowered the threshold of segment match coverage to obtain hits that share common domains (from 0.25 to 0.20). These modifications firstly aimed to avoid obtaining too many in-paralogs with very weak similarity to the main ortholog in distantly related organisms, and secondly, to avoid hits that share common domains in sequences that lie in unconserved regions, thereby always forcing the matched area to be longer than 40% of the longer sequence. In all cases, the threshold e-value was –e 0.01. Different matrices were used in pairwise comparisons to account for different evolutionary distances: Blossum45 to compare prokaryotes, Blossom62 to compare eukaryotes, and Blossum80 to compare metazoans.
Given the few prokaryotic species included in these analyses, we extended the initial set to additional 41 prokaryotic species (supplementary table S2, Supplementary Material online). As the results in this extended set faithfully replicated the smaller set, we represent only the smaller set in the figures for clarity.

In the absence of clear homologs for *H. sapiens*, three additional seed organisms were used to extend the orthologous data sets when transitive matches were found (i.e., if a bidirectional hit of a human protein X \([X_{Hsa}]\) was found in *S. cerevisiae* \([X_{Sce}]\) but not in *Na. gruberi*, the existence of a bidirectional hit for \(X_{Sce}\) in *Na. gruberi* may point to a distant homolog of human \([X_{Hsa}]\). To confirm these relationships, protein domain architectures and length were checked. A whole list of proteins with orthologs in the 47 species is shown in supplementary table S3, Supplementary Material online.

Classifications of DDR Network Genes Used in This Study

By Age Groups

We have defined 11 age groups in the represented species tree (which contains 47 species: supplementary fig. S1, Supplementary Material online), whereby: age group 1 includes homologs present in at least one representative of the main three suprakingdoms (across the 47 proteomes); age group 2 contains genes present in most Eukaryota (eight basal organisms, except organisms showing precise and particular lifestyles, like endosymbionts), but that are absent in Prokaryota; age group 3 includes proteins found in Viridiplantae (four organisms) but that are missing in older eukaryotes; age group 4 includes one Unikonta (Amoebozoa) representative; age group 5 points to the conservation in Opisthokonta (before the split of Fungi and Metazoa with five fungi and *M. brevicollis*); age group 6 is from the Metazoa (Placozoa representing *T. adhaerens* representing the most primitive animals); while age group 7 spans from Radiata and includes one cnidarian species (*N. vectensis*) to represent the different body plan symmetry; age group 8 is from the Bilateria (including flat worms and the Ecdyszoa group—Annelida and Arthropoda); age group 9 includes the Chordata, age group 10 includes Vertebrata; and finally, age group 11 begins with Mammalia. We next classified each human gene to the age group of the genomes are in a draft stage (supplementary table S2, Supplementary Material online), we have not attempted to use probabilistic methods for ancestral reconstruction. To further represent the pace of growth according to the relative contribution of each age group on DDR components, we plotted the aggregated frequencies (normalized by group size) for each three methods: hierarchical clustering, Dollo parsimony, and Wagner parsimony (fig. 3). The figures were generated with R library ggplot2 (Wickham 2009).

Phylogenetic Profiles

Phylogenetic profiles (Pellegrini et al. 1999) were constructed with the hits identified using pairwise InParanoid. These profiles were then clustered by hierarchical clustering with Cluster 3.0 (Eisen et al. 1998), using the Euclidean distance for the similarity metric and average linkage as the clustering method, which has proven successful elsewhere (Eisen and Hanawalt 1999). The proteins were sorted according to the species tree and blocks of stable proteins were obtained (fig. 2). The profiles were then used for gene content-based analyses, where each protein was considered as an independent hit to build the presence/absence matrix. Sequence similarities within the data set were not taken into account. To analyze the evolution of gene content in a given species, we used the Count package that contains different algorithms (Csuros 2010). In particular we used Wagner and Dollo parsimony to analyze the profiles of the sequences. The Dollo parsimony assumes a single appearance event per family (because gaining a gene is more rare than losing it), while Wagner parsimony allows multiple gain and loss events. As some of the genomes are in a draft stage (supplementary table S2, Supplementary Material online), we have not attempted to use probabilistic methods for ancestral reconstruction. To further represent the pace of growth according to the relative contribution of each age group on DDR components, we plotted the aggregated frequencies (normalized by group size) for each three methods: hierarchical clustering, Dollo parsimony, and Wagner parsimony (fig. 3). The figures were generated with R library ggplot2 (Wickham 2009).

Mapping Evolution and Absences in the Human Network

Using the different pathways present in man (fig. 1), we mapped the age information extracted in previous sections and data sets. In all cases, P values were corrected with the Bonferroni test (table 1).

By Function

We used a broad classification widely used in the DDR field, as described previously (Petrini and Stracker 2003; Polo and Jackson 2011) and supported by the literature (supplementary table S1 [Supplementary Material online] and references therein): Effectors, Sensors, Transducers, and Mediators. These categories can be defined as follows: sensors typically detect alterations at the damage sites; effectors facilitate the interactions among components; transducers trigger signaling events (typically posttranslational modifications); and effectors perform physical actions (i.e., unwinding DNA, catalysis or attaching a molecule, etc.; Jackson and Bartek 2009). In this scheme, sensors and effectors represent the extremes of a given directed pathway, while alternative functions will be performed by the remaining classes, such as recruiting proteins (mediators) or triggering signals (transducers). In such settings, the same protein could fulfill more than one function (as described in the literature) and there are proteins involved in more than one repair pathway (supplementary table S1, Supplementary Material online).
to illustrate the evolutionary conservation of the components into the human network (fig. 4). In addition, reusing the same framework, we also mapped absences of DDR components in the lineages of model organisms (fig. 5).

Phylogenetic Analyses

Homologous genes were aligned using the L-INS-I model in mafft (Katoh et al. 2005). The alignments were checked manually to identify potentially conflictive regions and only very large insertions occurring in a few sequences were excluded from any further analyses (probably prediction errors). In cases of minor domain variations (i.e., additional domains in particular lineages), only common domains were used to infer phylogenies (e.g., kinase domains in kinases). Once checked, the alignments were used as the input for probabilistic-based phylogeny studies (Ronquist and Huelsenbeck 2003) using MrBayes 3.1.2 with mpi parallel implementation. Only proteins with hits identified in prokaryotes or early eukaryotes (fig. 2) were analyzed. First, we classified trees as single-gene or multigene (evolutionarily related). In a first approach, multigene families in-paralogs and paralogs extracted from Ensembl COMPARA (Flicek et al. 2013) were included in the phylogenetic analyses to ensure correct ortholog selection. For genes with minor domain variations (i.e., acquisition of a domain in the N-terminal or C-terminal regions within a particular lineage), only the common domains were used in the multiple alignments to infer their phylogenies. In a second approach, phylogenies were only run with the orthologous sequences. With some exceptions, we checked the COMPARA alignments available where the agreement was generally consistent. For instance, although COMPARA assigns the PAX11 and MDC1 genes to the same family, there is no detectable sequence similarity between the two sequences except for a common BRCT protein domain. Given the promiscuity and the short length of the domain, we did not consider them as members of the same family. Jobs were run in our in-house cluster and in the Amazon’s Elastic Compute Cloud (EC2) using StarCluster utilities (http://star.mit.edu/cluster/index.html, last accessed January 28, 2014) for at least 5 million generations, and using mixed models of evolution. We discarded the initial 25% of the trees generated and further ensured that statistical convergence was reached. Consensus trees were generated from thousands of trees and clade probabilities were extracted directly from the samples. Gene trees were visualized with iTOL (Letunic and Bork 2007) and they were used to compare the species tree. To analyze the consensus trees, we manually estimated agreement with the species tree (fig. 6A). To assess the level of disagreement, we established the following criteria for misplacements, defining misplacement as the deviation from the expected topology (as depicted in supplementary fig. S1, Supplementary Material online) and in function of the number of groups involved in the misplacement (supplementary table S1, Supplementary Material online). Important groups here are Ecdysozoa (that includes the Nematoda, C. elegans, and Arthropoda: A), fungi (F) and plants (Pl), and basal metazoaos (Basals, T. adhaerens and M. brevicollis). Small indicates either the presence of artifacts (wrongly predicted sequences, contaminations, etc.) and/or single species/group misplacement. Medium indicates misplacements involving two species/groups and/or artifacts, while Large indicates misplacements involving three or more species/groups and/or artifacts. We considered a tree to be well supported if the probability values for a cluster were more than 80% at deep branches.

Analysis of Posttranslational Modifications

We extracted target-modifier pairs, and their sites, from the literature for H. sapiens (supplementary table S4, Supplementary Material online). Targets are proteins that are posttranslational modified in our DDR data set, while modifiers are the proteins in the same data set that perform the modification. The posttranslational modifications identified here involve phosphorylation, sumoylation, ubiquitination, and acetylation, as well as deubiquitination and deacetylation, as confirmed in some proteins by experimental data (supplementary table S4, Supplementary Material online). We next assigned ages to particular interactions, recording the ages of the individual proteins forming a pair (fig. 7A and table 2). To determine if our observations regarding the age of the interacting pairs show any trends, we compared our observations with 1,000 random modification networks by shuffling the interacting pairs. For each random network, the relative age of the modifier with respect to the target was established and the frequency of the three possible outcomes was determined (younger, same age or older than the Modifier). Gray dots represent the average of the 1,000 replicas and the bars are the standard deviations. Self-modifications were excluded from these calculations (fig. 7B and C). To analyze if modifiers exert their action upon targets with a precise age, we compared our observations with randomized distributions reflecting different evolutionary jumps, where a jump reflects the interaction in which the members of the pair are of the same or different ages, regardless of the direction (fig. 7C). A plot indicating these interactions was generated with the R package (arc-diagram, http://www.gastonsanchez.com/software.html, last accessed January 28, 2014).

Supplementary Material

Supplementary information, figures S1–S3, and tables S1–S4 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/)

Acknowledgments

This work was supported by the Spanish Ministry of Science (SAF2011-23753), the Association for International Cancer Research (12-0229), the Howard Hughes Medical Institute, and the European Research Council (ERC-210520) to O.F.-C., and by the Spanish Ministry of Science and Innovation (PS09/02111) to A.M.R. and I.C.

References

