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The work of Bernhard Riemann is discussed under the perspective of present day
mathematics and physics, and with a prospective view toward the future, too. Against
the (unfortunately rather widespread) trend—which predominantly dominated national
scientific societies in Europe during the last century—of strictly classifying the work of
scientists with the aim to constrain them to separated domains of knowledge, without
any possible interaction among those and often even fighting against each other (and
which, no doubt, was in part responsible for the decline of European in favor of American
science), it will be here argued, using Riemann as a model, archetypical example, that
good research transcends any classification. Its uses and applications arguably permeate
all domains, subjects and disciplines one can possibly define, to the point that it can be
considered to be universally useful. After providing a very concise review of the main
publications of Bernhard Riemann on physical problems, some connections between
Riemann’s papers and contemporary physics will be considered: (1) the uses of Riemann’s
work on the zeta function for devising applications to the regularization of quantum field
theories in curved space-time, in particular, of quantum vacuum fluctuations; (2) the
uses of the Riemann tensor in general relativity and in recent generalizations of this
theory, which aim at understanding the presently observed acceleration of the universe
expansion (the dark energy issue). Finally, it will be argued that mathematical physics,
which was yet not long ago a model paradigm for interdisciplinary activity—and had a
very important pioneering role in this sense—is now quickly being surpassed by the
extraordinarily fruitful interconnections which seem to pop up from nothing every day
and simultaneously involve several disciplines, in the classical sense, including genetics,
combinatorics, nanoelectronics, biochemistry, medicine, and even psychology, with such
intriguing issues that include, e.g., artificial life and the modelization of the process of
consciousness.
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1. INTRODUCTION
A proper discussion of Riemann’s work would no doubt need
much more space and time than the few pages at disposal here.
Thus, I am somehow afraid I will have to present very deep con-
cepts in a rather light, almost casual way. Moreover, as the abstract
indicates, the purpose of this article extends far beyond a dis-
cussion, even if detailed, of Bernhard Riemann’s contributions to
mathematics and physics, to view them under the light of what
we will consider as a new conceptual definition or specification of
the role and overextended purposes of the mathematical physics
of the twenty-first century.

Let us start with some short biographic notes (1–4). Bernhard
Riemann (1826–1866) was born in 1826 in the, at the time, king-
dom of Hannover, now Germany. His mathematical talent was
already noticed at the gymnasium, at Lüneburg, which he entered
at the age of 14. It is documented that, while being there, he mas-
tered in 6 days a ca. 900 page textbook on number theory by
Legendre. In 1846 Riemann matriculated at Göttingen University
but, very probably, Gauss who was on the Göttingen faculty
then, had not much contact with him at that point. After 1 year
there he moved to Berlin University, where Dirichlet’s teaching

influenced him specially; they later became collaborators. In 1850
Riemann returned to Göttingen, where he was to spend the rest
of his career. There, he studied mathematics under Gauss and
physics with Wilhelm Weber. To qualify as a Privatdozent (lec-
turer) Riemann had to submit a Habilitationsschrift (essay) and
give a Habilitationsvortrag (lecture). He chose for the first the
subject of Fourier series, presenting an essay in 1853, in which he
gave a criterion for a function to be (Riemann) integrable, and
then obtained a necessary condition for an integrable function
to be representable by a Fourier series. For his Vortrag Riemann
had to propose three topics and, against his preferences, Gauss
chose the one on geometry. Riemann delivered his lecture in 1854,
On the hypotheses that lie at the foundation of geometry, where he
introduced the revolutionary concept of an n-dimensional man-
ifold and its curvature tensor, and discussed the relation of his
mathematical “space” (it is said that Gauss summoned him not to
call it space, but rather Mannigfaltigkeit, that is, variety or man-
ifold) to actual space. Indeed, the only person in the audience
who could appreciate the enormous depth of Riemann’s work was
Gauss. A report of Riemann’s seminal lecture was only published
in 1868, after his death. Dirichlet, who had succeeded Gauss, died
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in 1859. Riemann was then appointed to the chair of mathe-
matics at Göttingen and was immediately elected to the Berlin
Academy of Sciences. He had, therefore, to report once more on
his research, and Riemann sent again a magnificent report On
the number of primes less than a given magnitude, where he stated
that the (Riemann) zeta function (more on it later) had infinitely
many non-trivial roots and that it seemed probable that they all
should have common real part 1/2. This is the Riemann hypoth-
esis which remains today one of the most important unsolved
problems of mathematics. Riemann died of tuberculosis in 1866,
while trying to recover from it in Selasca (Italy), surrounded by
his wife and 3-year-old daughter. He was only 39.

From his work, it is very clear that Riemann was interested
in physics. This may sound a weird statement nowadays, when
he is generally considered as a very influential pure mathemati-
cian, who gave name to so many concepts in different fields
of mathematics, as the Riemann integral, the Riemann surface,
the Cauchy–Riemann equations, the Riemann–Roch theorem,
the Riemannian manifolds, the Riemann curvature tensor and,
most notably the Riemann zeta function, with its associated
conjecture—the only one of Hilbert’s problems that after the
turn of the twentieth century has been included in the new
list of Million Dollar Problems of the twenty-first (awarded by
the Clay Foundation). To contradict this view, historians of sci-
ence tell us that during his life and until as late as 60–80 years
after his death, Riemann was counted among the list of impor-
tant physicists, whose ideas on the unification of all known
forms of energy preceded the ground-breaking work of Hilbert
and Einstein (now the standard starting point of any book on
general relativity). Even more surprising was to this author to
learn (5–7) that Riemann was not a theoretical physicist, but
rather an experimentalist, and that he made use of elaborated
experimental verifications with charged surfaces and different
materials in order to perform supplementary checks of the valid-
ity of some of his mathematical theorems (as boundary prob-
lems involving partial differential equations). Mathematics was
not, at that time, the kind of axiomatic construct of our days
and the ways of proof differed very substantially from those of
the Bourbaki school we are now used to. I am happy to have
the possibility to convey this valuable ideas with the present
paper.

Let us further recall that, as a student at Göttingen univer-
sity, Riemann worked with Weber on electromagnetism, which
happened starting around 1849. Like Riemann, Weber was also
a student of Gauss, but at that time Weber had already a fac-
ulty position. He had proposed a theory of electromagnetism and
did work which gained him a name in history, as every physicist
knows, although not through his theory in fact, that was eventu-
ally superseded by Maxwell’s one, the real landmark in classical
electromagnetism. Gauss himself is also famous for his important
work on this subject.

Riemann publications include some 15 papers, four of which
where released after his death. This does not actually include a
number of important notes, letters, books and other writings
that also form part of his written scientific production. In sec-
tion 1, a brief summary will be provided of the six papers (among
the mentioned 15) which are devoted to physical problems. In

section 2, a panoramic view will be presented of the enormous
influence that Riemann’s work on pure mathematics has had into
past and present day physics. Section 3 concentrates in more
detail on a couple of issues of the author’s speciality, namely,
for one, in the use of zeta functions as a very elegant regu-
larization tool in quantum field theory, including a description
of its uses for the calculation of quantum vacuum fluctuations,
the Casimir effect, and the seemingly related cosmological con-
stant problem. The other subject to be addressed is the very well
known applications of the Riemann curvature tensor and all his
geometrical formalism in general relativity and the, much less
known but a very hot topic nowadays, proposed modifications
(substantiated by quantum corrections) of the Einstein–Hilbert
Lagrangian with additional terms—generally a function of the
curvature scalar, the so-called f (R) theories. Only ca. 100 years
after the first formulation of general relativity, and in response
to the preceptorial demand of the observed acceleration of the
universe expansion (the crucial dark energy issue), have some
attempts at a modification of Einstein’s equations started to be
considered. But again, notably, in terms of its basic Riemannian
building blocks, in higher powers of the scalar curvature, as we
shall see. As a way of conclusion, in section 5 we will try to
extract an important lesson for the future, by arguing that, in
the very wide way of the concept of what a modern defini-
tion of a mathematical physicist could be, we could undoubtedly
count B. Riemann among the most successful of them in his-
tory. And this even if he lyes far from the ordinary stereotype
of what the model mathematical physicist has been considered
to be for decades. This is again an extraordinary lesson for the
future of this discipline as we travel deeper into the twenty-first
century.

2. ON RIEMANN’S WORK ON PHYSICAL PROBLEMS
The Mathematical Papers of Georg Friedrich Bernhard Riemann
(1826–1866), is a collection which contains scientific papers of
Bernhard Riemann as transcribed and edited by David R. Wilkins
(5). These texts are based on the second edition of the Gesammelte
Mathematische Werke and, in the case of some of the papers,
the original printed text in the Journal für die reine und ange-
wandte Mathematik, Annalen der Physik und Chemie and Annali
di Matematica. Included in Ref. (5) are all papers published in
Riemann’s lifetime, papers and correspondence published after
Riemann’s death by Dirichlet and others prior to the publica-
tion of the first edition of the Gesammelte Mathematische Werke
(with the exception of the fragment Mechanik des Ohres, which
is non-mathematical in character), and one of the papers from
his Nachlass, first published in the Gesammelte Mathematische
Werke. There is also a translation by W. K. Clifford of Riemann’s
inaugural lecture on the foundations of geometry, and a bio-
graphical sketch by Richard Dedekind which was included in the
Gesammelte Mathematische Werke.

I will not go here through all these works, but restrict my atten-
tion to a subset which, although not complete as viewed by a his-
torian of science, I deem it sufficient in order to establish my point
that Riemann’s production on physics was actually a fairly good
part of his complete scientific work. I will reduced the whole sam-
ple in Ref. (5) to that of the published papers—during Riemann’s
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lifetime and posthumously—and restrict my discussion to the
papers, among them, on physical issues. The list of these pub-
lished articles reads as follows.

2.1. PAPERS PUBLISHED IN RIEMANN’S LIFETIME
1. Grundlagen für eine allgemeine Theorie der Functionen

einer veränderlichen complexen Grösse, Inauguraldissertation,
Göttingen (1851).

2. Ueber die Gesetze der Vertheilung von Spannungselectricität
in ponderabeln Körpern, wenn diese nicht als vollkommene
Leiter oder Nichtleiter, sondern als dem Enthalten von
Spannungselectricität mit endlicher Kraft widerstrebend betra-
chtet werden, Amtlicher Bericht über die 31. Versammlung
deutscher Natur-forscher und Aerzte zu Göttingen (im
September 1854).

3. Zur Theorie der Nobili’schen Farbenringe, Annalen der Physik
und Chemie, 95 (1855) 130–139.

4. Beiträge zur Theorie der durch die Gauss’sche Reihe
F(α, β, γ, x) darstellbaren Functionen, Abhandlungen der
Königlichen Gesellschaft der Wissenschaften zu Göttingen, 7
(1857) 3–32.

5. Selbstanzeige: Beiträge zur Theorie der durch die Gauss’sche
Reihe darstellbaren Functionen, Göttinger Nachrichten (1857)
6–8.

6. Theorie der Abel’schen Functionen, Journal für die reine und
angewandte Mathematik, 54 (1857) 101–155.

7. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse,
Monatsberichte der Berliner Akademie (November, 1859)
671–680.

8. Ueber die Fortpflanzung ebener Luftwellen von endlicher
Schwingungsweite, Abhandlungen der Königlichen
Gesellschaft der Wissenschaften zu Göttingen, 8 (1860)
43–65.

9. Selbstanzeige: Ueber die Fortpflanzung ebener Luftwellen von
endlicher Schwingungsweite, Göttinger Nachrichten (1859)
192–197.

10. Ein Beitrag zu den Untersuchungen über die Bewegung eines
flüssigen gleichartigen Ellipsoides, Abhandlungen der Königli-
chen Gesellschaft der Wissenschaften zu Göttingen, 9 (1860)
3–36.

11. Ueber das Verschwinden der Theta-Functionen, Journal für die
reine und angewandte Mathematik, 65 (1866) 161–172.

2.2. RIEMANN’S PAPERS PUBLISHED AFTER HIS DEATH
12. Ueber die Darstellbarkeit einer Function durch eine

trigonometrische Reihe, Habilitationsschrift, 1854,
Abhandlungen der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, 13 (1868).

13. Ueber die Hypothesen, welche der Geometrie zu Grunde
liegen, Habilitationsschrift (1854), Abhandlungen der
Königlichen Gesellschaft der Wissenschaften zu Göttingen,
13 (1868).

14. Ein Beitrag zur Elektrodynamik (1858), Annalen der Physik
und Chemie, 131 (1867) 237–243.

15. Ueber die Fläche vom kleinsten Inhalt bei gegebener
Begrenzung, Abhandlungen der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, 13 (1868).

Six among these fifteen papers (namely, those with numbers
2, 3, 8, 9, 10, 14) are the ones that I have selected because they
directly address issues of theoretical and experimental physics. I
now provide a free translation of their titles, together with a short
summary of each of them.

2.3. RIEMANN’S PAPERS “ON PHYSICS”
2. About the distribution laws of electric tension in ponderable

bodies, when these cannot be considered as absolutely conduc-
tors or non-conductors, but as opposing with a finite force to
the electric tension they contain, Official Report at the 31st
Meeting of German Scientists and Physicians at Göttingen
(September, 1854).
Riemann considers in this paper Leyden jars, where an elec-
tric charge is kept, and studies in particular how, once the
bottle has been emptied, a certain amount of charge still
remains, which gradually disappears with time. He studies
in detail the corresponding law describing this phenomenon.
Riemann deals, in particular, as the title clearly indicates,
with bodies that are neither perfect conductors nor perfect
isolators. He elaborates on previous work by Ohm, Weber,
Kirchhoff and Kohlrausch. An important point in the whole
development is the contact with the corresponding exper-
imental results. The mathematical basis of the paper are
partial differential equations, as is also the case in the ones
which follow.

3. On the theory of noble color rings, Annals of Physics and
Chemistry, 95 (1855) 130–139.
Here an experimental study of the propagation and of the
distribution of an electrical current in a conductor is pre-
sented. The rings mentioned in the title are generated when
one covers a plate of a noble metal, as platinum, gold plated
silver, or similar, with a solution of lead oxide. Then, an
electric current, produced by a battery, is connected to the
plate. In this way, so-called Newton color rings are produced.
Riemann elaborates here on previous results by Becquerel,
Du-Bois-Reymond and Beetz, improving their calculation
and discussing about the hypothesis previously considered by
these authors.

8. About the propagation of plane airwaves of finite oscillation
amplitude, Sessions of the Royal Science Society at Göttingen,
8 (1860) 43–65.
Riemann integrates in this paper the differential equations
corresponding to the movement of gases, under different
conditions of pressure and temperature. He remarks that
he can bring his calculations further away in the order of
approximation, with respect to those previously carried out
by Helmholtz, for instance, who only got to the second order
in the perturbative expansion. He refers to previous results by
Helmholtz, Regnault, Joule and Thomson, improving their
calculations, discussing the set up and improving the hypoth-
esis appearing in the works by these authors. With 22 pages,
this is quite a long paper as compared with other papers by
Riemann.

9. Self-announcement: About the propagation of plane airwaves
of finite oscillation amplitude, Göttingen Notices (1859)
192–197.
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This is a very short compendium of the main mathemati-
cal formalism that is used in the former paper, of the same
title, in order to obtain the results. In spite of its title, this
one could be considered as a mathematical article. Indeed, it
deals with the theory of propagation of a gas, but the only
physical input in the whole paper is the mathematical equa-
tion giving the behavior of gas pressure as a function of the
density (that is, its equation of state), in the absence of any
heat exchange. He develops the mathematical formalism in
detail and compares with previous results by other mathe-
matical physicists as Challis, Airy, Stokes, Petzval, Doppler
and von Ettinghausen (several of them have given names to
quite famous equations).

10. A contribution to the investigation of the movement of a uni-
form fluid ellipsoid, Sessions of the Royal Science Society at
Göttingen, 9 (1860) 3–36.
Again as clearly indicated in the title, Riemann deals here
with the movement of a uniform fluid ellipsoid, which is
considered to be constituted by isolated points that attract
themselves under the influence of gravity. This is generally
considered to be one of the finest papers by Riemann within
the class of those considered here, i.e., the ones dealing with
actual physical problems. In the paper, the equilibrium con-
figurations of the ellipsoid are identified, what has many
and important applications, e.g., to the study of the possi-
ble forms of celestial bodies as galaxies or clusters. Riemann
studies in particular the evolution of the principal axis of the
ellipsoid and the relative movement of its components. As
the one before, this is also a rather mathematical paper, since
the only physics it contains is practically reduced to the ini-
tial conditions and Newton’s law. Previous results of Dirichlet
and Dedekind on this problem are extended.

14. A contribution to Electrodynamics, Annals of Physics and
Chemistry, 131 (1867) 237–243.
This paper is generally considered to incorporate the main
results of Riemann’s physical (and philosophical) ideas on
the “unification” of gravity, electricity, magnetism, and heat.
It contains indeed his observation on how a theory of elec-
tricity and magnetism is closely related with those for the
propagation of light and heat radiation. He presents in the
paper a complete mathematical theory, with “an action that
does not differentiate” the already mentioned four cases of
“gravity, electricity, magnetism, and temperature”. The finite
velocity of propagation of the interaction (as opposed to the
predominant concept, at the epoch, of action at a distance) is
clearly presented, identifying such velocity with that of light,
which has been considered by many to be a really remarkable
achievement of Riemann’s genius. The paper, which with only
six pages is in fact quite short, relies on experimental results
by Weber and Kohlrausch, Busch, and by Bradley and Fizeau.

2.4. ADDITIONAL CONSIDERATIONS
1. Once again, those above are not all the works on physical issues

Riemann actually wrote, but just the ones extracted from a
uniform sample, namely his published articles.

2. A good example of a work not in the list is the well-
known book by H. Weber and B. Riemann, Die partiellen

Differential-Gleichungen der mathematischen Physik nach
Riemanns Vorlesungen, 6. unveranderte Aufl., 2 vols (Vieweg,
Braunschweig, 1919), that was used for many years as a text-
book in different universities, together with several other
papers by Riemann.

3. An interesting biography of Riemann is the book by
Monastyrsky (6). A lot of emphasis is made there on the
importance of the contribution to physics of paper 14 of the
list above. In particular, it is underlined how Riemann was
searching for “. . . a completely self-contained mathematical the-
ory . . . , which would lead from the elementary laws up to the
actions in an actually given filled space, without making a differ-
ence between gravity, electricity, magnetism or the equilibrium of
temperature.”

4. In the celebrated biography of David Hilbert by Constance
Reid (8) we can read that Hilbert sustained the opinion
(referring to what is nowadays known as the Einstein–Hilbert
action) that “. . . the invariance of the action integral unifies elec-
tromagnetism with gravity . . . ”, yielding in this way a solution
to a problem that, as he recognizes, “. . . was already posed by
Riemann: the connection between gravitation and light.” Hilbert
goes on to observe that, since then, many investigators had
tried to arrive at a deeper understanding of this connection by
merging the gravitational and electromagnetic potentials into
a unity. The one example Hilbert mentions explicitly is Weyl’s
unification of the two fields in a “unified world metric,” as he
calls it, by means of Weyl’s notion of gauge invariance.

5. Remarkably enough, in what is probably one the most exhaus-
tive biographies of Riemann ever written, Laugwitz (9) forgets
almost completely about Riemann’s work on physical issues.
This is, in my view, to push to an extreme the opinion that I
defended in the introduction, which was a lot more moderate
and faceted.

3. IMPORTANCE FOR PHYSICS OF RIEMANN’S
MATHEMATICAL PAPERS

It is the opinion of this author, also shared by others (see, e.g.,
Ref. (9)), that the influence in Physics of Riemann’s purely math-
ematical papers exceeds by far, in its manifest importance, that of
the above mentioned contributions on actual physical problems;
even if the interest of the last attains already, as we have seen, a
fairly high level.

I would need more space and time than I have at disposal in
order to describe all such intertwining influences. In the follow-
ing, and to start, a rather short list of items will provide some basic
ideas about those influences. Then we will elaborate on some of
them in more detail, not only because of their importance, but
also because of the fact that they have to do with the author’s own
scientific expertise and published works.

3.1. ON THE CONCEPT OF SPACE
One reason why the discovery of non-Euclidean geometry took
so long to happen may be due to the fact that there was univer-
sal belief that Euclidean geometry was special, the only possibility
because it described the space we live in. In way it was mathemat-
ics completely attached to our physical world. Thus, stemming
from this uncritical acceptance of the view that the geometry of
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space is Euclidean was the conviction that there was no other pos-
sible geometry. Philosophers like Emmanuel Kant argued that the
Euclidean nature of space was indeed “a fact of nature”, and the
weight of their authority was very powerful. From our present
perspective, we know of course that the question of the geome-
try of space is in fact entirely different from the question of the
possible existence of geometries which are non-Euclidean. Gauss
was the first who clearly understood the difference between these
two issues. In Gauss’ Nachlass one can find his computations of
the sums of the angles of each of the triangles that occurred in
his triangulation of the Hanover region. His conclusion was that
the sum was always two right angles, within the limits of obser-
vational errors. Recently this same experiment has been carried
out at much larger, cosmic scales, trying to ascertain what the
topology of space and the universe is like (10, 11).

In spite of the negative result of the Hanover triangulations,
quite early in his scientific career Gauss was convinced of the
possibility of constructing non-Euclidean geometries, and in fact
came up with a “theory of parallels,” but because of the fact that
the general belief in Euclidean geometry was so deeply ingrained,
Gauss decided not to publish his researches on the “theory of
parallels” and the construction of non-Euclidean geometries, for
fear that there would arise criticisms of such investigations by
people who did not understand those things (“the outcry of the
Boeotians”, as he put it).

Riemann, who studied under Gauss, took this entire circle
of ideas to a much higher and completely different level. In his
famous inaugural lecture of 1854, written under the advice (or,
better, as a compulsory choice) of Gauss himself, he touched,
in an extraordinarily brilliant way, upon all of the aspects that
his thesis advisor had considered. He pointed out, to start, the
very crucial idea that a space does not have, to start with, any
structure except that it is a continuum in which points are spec-
ified by the values of n coordinates, n being the dimension of
the space. On such a space one can then impose many geomet-
rical structures. His great insight was that a geometry should
be built from these infinitesimal parts. He treated in depth
geometries where the distance between pairs of infinitely near
points is pythagorean, formulated also central questions about
such geometries, and discovered the set of functions—the sec-
tional curvatures—whose vanishing characterized the geometries
which are Euclidean, namely those whose distance function is
pythagorean not only for infinitely near points, but even for
points which are a finite but small distance apart.

If the space is the one we live in, he formulated the prin-
ciple that its geometrical structure could only be determined
empirically. In fact he stated explicitly that the question of the
geometry of physical space does not make sense independently of
physical phenomena, i.e., that space has no geometrical structure
until we take into account the physical properties of matter in it,
and that this structure can be determined by measurement only.
Indeed, he went so far as to say that “the physical matter deter-
mines the geometrical structure of space”. This ground-breaking
idea took definite form some half a century later with Einstein’s
equations.

Indeed, it is also important to remark that Riemann’s ideas
constituted a profound departure from the perceptions that had

prevailed until his time. Isaac Newton had asserted that space
by itself is an “absolute entity endowed with Euclidean geometric
structure”, and had built his entire theory of motion and celestial
gravitation on that premise. Riemann went completely away from
this point of view. Thus, for Riemann, space derived its properties
from the matter that occupied it, and he asserted that the only ques-
tion that could be studied was whether the physics of the world
made its geometry Euclidean. It followed from this idea that only
a mixture of geometry and physics could be tested against experi-
ence. For instance, measurements of the distance between remote
points clearly depended on the assumption that a light ray would
travel along shortest paths. This merging of geometry and physics,
which is a central and dominating theme of modern physics, since
Einstein’s work, may be thus traced back to Riemann’s inaugural
lecture (12–14).

3.2. LINEAR ALGEBRA, THE CONCEPT OF n−DIMENSIONAL SPACE
(A LINEAR, OR TRIVIAL “VARIETY”)

It has been often reported that linear algebra was a “trivial matter”
for Riemann. However, in Laugwitz’s book (9) (p. 242) we can
read that the early developments of Riemannian geometry were
“prolix and opaque” because “the development of linear algebra
failed for a long time to keep pace with the progress of analysis.”
This may be true, in fact: although nowadays n-dimensional lin-
ear spaces and their algebraic properties are considered to be one
of the simplest theories in Mathematics, and its uses in classical
and quantum physics are so basic and widespread (including infi-
nite dimensional spaces, topological spaces, Banach and Hilbert
spaces, etc.), that even the most basic issues of modern physics
would not be possible to formulate without such concepts. One
cannot simply translate this view to Riemann’s epoch. But it
was already clear that these abstract linear spaces had noth-
ing to do with the space we live in, and were not even called
“spaces” by Riemann or Gauss, but rather “varieties” or “mani-
folds”. Anyway, this concept was such a breakthrough for math-
ematics and mathematical physics that one may say it changed
the world more radically than the Copernican perception, its
importance being only paralleled by that of the development of
infinitesimal calculus by Newton and Leibniz. All descriptions
of the universe and of physical reality at any scale—be at the
fundamental, effective, or phenomenological level—all thinkable
developments of mathematical physics make use of the concept
of n-dimensional space or manifold, as they do of differen-
tial equations. These concepts are nowadays so deeply engraved
in our minds, as something that it is naturally just there, that
we only barely appreciate their extreme, invaluable, paramount
importance1.

3.3. RIEMANN’S INTEGRAL
Riemann may have arrived at his notion of an “integral” in answer
to the question of whether the Fourier coefficients, cn, of a given
function tend to 0 (as n goes to infinity). Yet Laugwitz (9) char-
acterizes Riemann’s introduction of his integral as ad hoc and

1Often, after having attended some conference by a string theorist or brane
cosmologist I have approached the speaker with a request to mention
Riemann and his key contributions.
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remarks that “History would have been different if he had asked
himself this other mathematical question: what kind of integral
implies the equality

lim

∫ b

a
fn =

∫ b

a
f ,

where fn is a monotonically increasing sequence of integrable
functions that converge pointwise to the limit f ?”

It is of course true that Lebesgue’s integral is the ultimate, nat-
ural extension of Riemann’s one and a most fundamental tool in
measure theory. But it is not less certain that, concerning the sub-
ject at discussion here, Riemann’s integral is a lot more intuitive
for a physicist, in the sense that even Egyptians or Babylonians
could have arrived to such concept (although lacking, of course
the rigorization of the concept of limit, that would have had to
wait to the formulation of infinitesimal calculus). This I know first
hand since I have been teaching both kind of integrals to physicists
during many years, and also a non-rigorous concept of limit even
to school children. The Riemann integral is indeed a physically
fashionable object, in particular the incremental version before
the limit is taken, before an “increment” is transformed into a
“differential”, which is a far more elusive concept indeed! (again,
I know this quite well from my own students).

3.4. COMPLEX VARIABLES, CAUCHY–RIEMANN EQUATIONS
Riemann’s Thesis discusses the theory of complex variables and,
in particular, what we now call Riemann surfaces. It therefore
introduced topological methods into complex function theory.
The work elaborates on Cauchy’s foundations of the theory of
complex variables built up over many years and also on Puiseux’s
ideas of branch points. However, Riemann’s Thesis is a strik-
ingly original piece of work which examined geometric properties
of analytic functions, conformal mappings and the connectiv-
ity of surfaces. Riemann’s work was always based on intuitive
reasoning which would fall at instances a little below the rigor
required to make the conclusions watertight. However, the bril-
liant ideas which his works contain are so much clearer because
his papers are not overly filled with lengthy computations (1),
and this is why they were so frequently used in lecture courses
(in special in Italy) afterwards. Again, one recognizes the physi-
cist’s approach in many of his discussions, but more important
than this is the enormous use that both classical and quan-
tum physics have made of the complex calculus that Riemann
(among others) contributed to expand and popularize in a very
efficient way.

3.5. RIEMANN SURFACE, SPHERE, MANIFOLD
In principle, those are very abstract concepts, but which have
been applied, e.g., by engineers to the study of aerodynamics and
hydrodynamics. At a different level, theoretical physicists have
more recently drawn upon them very heavily in their formula-
tions of string theory.

String theory is the modern version of a would be Theory of
Everything (TOE). It suggests replacing pointlike particles with
infinitesimal vibrating strings as the basic units of the physical
world. Some years ago, when string theory was overwhelmingly

dominating the landscape in theoretical physics2, there have been
jokes about the typical theoretical physicist always carrying Farkas
and Kra’s book (Riemann Surfaces) everywhere (15). Edward
Witten, from the Institute for Advanced Study at Princeton, has
been, and continues to be, one of the main architects of string
theory. He has given frequent talks on Riemann’s work, when
discussing some of the relations between physics and mathemat-
ics in the 20th and twenty-first centuries, to which the reader is
addressed for material that complements a lot, from a different,
much more ambitious perspective, what I discuss here.

3.6. ANALYTIC CONTINUATION, COMPLEX POWER SERIES
Most of Riemann’s predecessors concentrated on the power series
expansion rather than on the function that it represents. By shift-
ing emphasis to the latter, Riemann could eliminate superfluous
information, determining a complex function from its singulari-
ties. Riemann’s work used simple concepts in place of the lengthy
and sometimes obscure computations typical of his predecessors
and contemporaries. The steady decrease in the amount of atten-
tion Riemann seems to have paid to power series between 1856
and 1861 indicates how his thought matured, shifting further
away from computation. Even when using his good compu-
tational abilities, Riemann still focused upon concepts rather
than the computation itself. Since relations obtained from series
expansions of functions retain their validity outside their regions
of convergence, he asked himself what actually continues func-
tions from region to region? For example, Riemann constructed
a function that has simple zeros at z = 0, 1, 2, . . . and is finite
for all finite z (see Laugwitz (9)). The road to his function g(z)
was heuristic, but this was of no consequence to Riemann. All he
wanted was to find some function with the prescribed zeros. By
contrast, Weierstrass always aimed to obtain formula representa-
tions of given functions. The Riemann approach to this issue is
one of the main starting points in a large part of my own work, as
will be commented later in more detail.

3.7. CURVATURE TENSOR: DIFFERENTIAL GEOMETRY
In his general theory of relativity, Einstein used Riemann’s con-
cept of curved space as the basis for his elegant explanation of
gravitation. Massive objects put a dimple in space in their vicin-
ity. So when other physical objects, including photons, which
do not have any mass, wander into the object’s vicinity, they
encounter this curved space. Such curvature determines the path
the objects follow, in a way that was formerly attributed to the
force of attraction that we call gravity.

In much the same way that Riemann conceived the curv-
ing and twisting space in innovative ways, he also described a
set of abstract surfaces that were created by cutting and pasting
together normal surfaces in ways that cannot be employed with
real surfaces, but can be thought of abstractly. You can do a lot
of mathematics on those abstract surfaces. And this has actually

2There is in fact a fashionable string theory landscape which contains an enor-
mous amount (maybe 10500 or 101000) of possible vacuum solutions of the
corresponding theory. Choosing one among them seems quite hopeless, for
the moment, and it is one of the main problems of M theories (M stands for
“Mother”, or “Mysterious”).
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been an amazingly important idea for many parts of mathemat-
ics, and also for physics. In particular, general relativity, quantum
field theory in curved spaces, string theories, gravitation, and
modern cosmology, would had been impossible without those
basic concepts introduced by Riemann.

3.8. THE RIEMANN ZETA FUNCTION
This is known to be of extreme importance in analytic number
theory. But also, through its analytical continuation (the so called
functional equation, or reflection formula, of the zeta function),
and extrapolating the concept of the zeta function to the class of
pseudodifferential operators (the spectral values of the operator
replace the natural numbers in the zeta function definition), as
a regularization tool in quantum field theory (notably in curved
space-time), for dynamical systems (classical and quantum), the
concept of chaos (also present nowadays in the issue of the dis-
tribution of non-trivial zeros, or Riemann conjecture), etc. The
interconnections between pure mathematics and physical uses is
becoming here more on more profound, as years advance into the
new century.

4. SELECTED HOT SUBJECTS: ON THE CONCEPT OF SPACE,
ZETA REGULARIZATION, AND MODIFIED GRAVITY
THEORIES

4.1. THE CONCEPT OF SPACE
4.1.1. Historical evolution of the concept of space
A very short summary of the evolution of the concept of space,
from the very remote times of its inception, could be as follows.

1. The introduction of the concept of space goes back at least
to the pre-Socratic philosophers, who already had coined this
notion, together with some other very important ones, as those
of substance, number, power, infinity, movement, being, atom,
and of course time, among others.

2. The Pythagorean school should be mentioned as another
important step, in its attempt at bringing all these concepts,
in particular the one of space to the domain of numbers (“all
things are numbers”). Just recall the importance of Pythagoras
theorem, that has so much to do with space and with Gauss’
search to check if the space we live in was or not Euclidean.

3. Euclid’s “Elements”, this goes without saying as one of he most
important pieces of work in the History of Mankind. It was so
influential, for generations, that departing from the concept of
Euclidean space was absolutely impossible for many centuries
to come.

4. Indeed, still for Isaac Newton “space is, by itself, an absolute
entity embedded with a Euclidean geometrical structure”. For
him space and time provide a fixed, immutable and eternal
background, a “stage”, with respect to which all things move.
Like actors on that stage, particles move, exert forces onto each
other and generally act out the drama of dynamics, while the
stage itself does never change.

5. On the side of the philosophers, for Immanuel Kant “that space
is Euclidean is a property of nature itself ”.

6. The works of Nikolai Lobachevsky and János Bolyai ended a
millennium-year struggle with Euclid’s axiom of the parallels
and provided inspiration to Gauss, who was arguably the first

who clearly understood the difference between the question
of the geometry of space and that of the possible existence of
geometries which are non-Euclidean.

7. Now Bernhard Riemann came to clearly say, as we already
remarked before, that: “many spaces are possible; it is the physi-
cal matter that determines the geometrical structure of space”.

8. And Albert Einstein gave a precise mathematical formulation
of this concept, with the important help of Marcel Grossmann
and making use of Riemann’s manifolds and tensors: space-
time is curved by matter, as prescribed by Einstein’s equations
(in terms of the Riemann curvature tensor).

9. To finish, an embracing reflection by Eugene Wigner, a much
celebrated mathematical physicist which can, in particular, be
extended to the whole development of the concept of space
above, is that of “the unreasonable effectiveness of Mathematics
in the Natural Sciences”, when in fact we understand now that
they are absolutely independent endeavors.

4.1.2. On the topology and curvature of our universe
Let us now connect, briefly, these philosophical ideas about space
with recent precise determinations of the topology and geometri-
cal curvature of the universe we live in—what can be considered
as the modern version of the pioneering attempts by Gauss,
already mentioned. The Friedmann-Robertson-Walker (FRW)
model, which constitutes the only family of solutions to the
Einstein’s equations compatible with the assumptions of homo-
geneity and isotropy of space, is the generally accepted model of
our cosmos, nowadays. But, as the reader surely knows, the FRW
is a family with a free parameter, k, the curvature, that could be
positive, negative or zero (the flat or Euclidean case). This cur-
vature, equivalently the curvature radius, R, is not fixed by the
theory and must be determined by cosmological observations.
Moreover, the FRW model, and Einstein’s equations themselves,
are differential, they can only provide local properties, not global
ones, so they cannot tell about the overall topology of our world:
is it closed or open? is it finite or infinite? Those questions are very
appealing to the human being. All this discussion will only con-
cern three dimensional space curvature and topology, time not
being for the moment involved.

To repeat, serious attempts to measure the possible curvature
of the space we live in go back to Gauss, who measured the sum
of the three angles of a big triangle with vertices on the picks of
three far away mountains—Brocken, Inselberg, and Hohenhagen.
He was actually looking for evidence that the geometry of space
could be non-Euclidean. The idea was brilliant, but condemned to
failure: one needs a much bigger triangle to try to find the possi-
ble non-zero curvature of space. Now cosmologist have recently
measured the curvature radius, R, by using the largest triangle
available, namely one with us at one vertex and with the other two
on the hot opaque surface of the ionized hydrogen that delimits
our visible universe and emits the cosmic microwave background
radiation (CMB, some 3.8 × 105 years after the Big Bang) (16).
The CMB maps exhibit hot and cold spots. It can be shown that
the characteristic spot angular size corresponds to the first peak of
the temperature power spectrum, which is reached for an angu-
lar size of 0.5◦ (approximately the one subtended by the Moon) if
space is flat. If it has a positive curvature, spots should be larger
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(with a corresponding displacement of the position of the peak),
and correspondingly smaller for negative curvature.

The joint analysis of the considerable amount of data obtained
during the last years by balloon experiments (BOOMERanG,
MAXIMA) (17), combined also with galaxy clustering data, have
produced a lower bound for |R| > 20 h−1 Gpc, that is, twice
as large as the radius of the observable universe, of about
RU � 9 h−1 Gpc.

Again, general relativity does not prescribe the topology of the
universe, or its being finite or not. The universe could perfectly be
flat and finite. The simplest non-trivial model from the theoret-
ical viewpoint is the toroidal topology (that of a tyre or a donut,
but in one dimension more). Traces for the toroidal topology (and
more elaborated ones, as negatively curved but compact spaces)
have been carefully investigated, and some circles in the sky with
near identical temperature patterns were identified (11). And yet
more papers appear, from time to time, proposing a new topol-
ogy (18). For the most recent results constraining the possible
topologies of the universe at large scale, see (10, 11). However,
to summarize all these efforts and the observational situation,
and once the numerical data are interpreted without bias (what
sometimes was not the case, and led to erroneous conclusions),
it seems at present that available data still point toward a very
large (we may call it infinite) flat space. The high precision data
that are accumulating from the PLANCK mission (21) seem to
show a richer structure for the CMB spots and could bring sur-
prises in the next couple of years when the data analysis will be
completed.

4.2. ON ZETA-FUNCTION REGULARIZATION AND ITS USES IN
QUANTUM FIELD THEORY

What would be the sum of the following series?

s = 1 + 1 + 1 + · · · + 1 + · · · (1)

The obvious answer is s = ∞, since everybody recognizes in this
last expression the definition itself of the concept of infinity. Now,
this is ok in principle but it is, at the same time, of little or no
use in modern Physics: since the appearance of quantum field
theory (QFT) calculations are plagued with divergent series, and
it is stupid to just say that all of them are divergent. One gets
non-false but also no useful information in this way. And it is
the fact that we actually do not observe these many infinities (or
divergences) in laboratory observations. This was discovered in
the 30’s and 40’s: something very important was missing from the
formulation of quantum field theory processes. Either all these
theoretical approaches to physics were nuts (as Dirac and Einstein
proclaimed at some point) or one should be able to give direct
sense to the resulting divergent series (what actually was the case,
in the end).

Within the mathematical community, there was the longstand-
ing suspicion that one could indeed give sense to divergent series.
And this has now been shown, in a way, to be true in Physics,
and with enormous success, as will be explained later. But it were
the mathematicians—many years before—who first realized such
possibility. To wit, Leonard Euler (1707–1783) was convinced that
“To every series one could assign a number” (19, 20) (that is, in a

reasonable, consistent, and possibly useful way, of course). Euler
was unable to prove this statement in full, but he devised a tech-
nique (Euler’s summation criterion) in order to “sum” a large
family of divergent series. His statement was, however, contro-
verted by some other great mathematicians, as Abel, who said that
“The divergent series are the invention of the devil, and it is a shame
to base on them any demonstration whatsoever” (22). There is a
classical treatise due to G.H. Hardy and entitled simply Divergent
Series (23) that can be highly recommended to the reader.

Actually, regularization and renormalization procedures are
essential in present-day Physics. Among the different techniques
at hand in order to implement these processes, zeta function
regularization is one of the most beautiful, particularly for a
mathematical physicist. Use of this method yields, for instance,
the vacuum energy corresponding to a quantum physical system,
which could, e.g., contribute to the cosmic force leading to the
present acceleration of the expansion of our universe. The zeta
function method is unchallenged at the one-loop level, where it is
rigorously defined and where many calculations of QFT basically
reduce to the computation of determinants of elliptic pseudod-
ifferential operators (�DOs) (24). It is thus no surprise that the
preferred definition of determinant for such operators is obtained
through the corresponding zeta function (see, e.g., (25–31)).

4.2.1. The zeta function as a summation method
The method of zeta regularization evolved from the consideration
of the Riemann zeta function as a “series summation method”.
The zeta function, on its turn, was actually introduced by Euler,
from considerations of the harmonic series

1 + 1

2
+ 1

3
+ 1

4
+ · · · + 1

n
+ · · · , (2)

which is logarithmically divergent, and of the fact that, putting a
real exponent s over each term,

1 + 1

2s
+ 1

3s
+ 1

4s
+ · · · + 1

ns
+ · · · , (3)

then for s > 1 the series is convergent, while for s ≤ 1 it is
divergent. Euler called this expression, as a function of s, the
ζ-function, ζ(s), and found the following important relation

ζ(s) =
∞∑

n = 1

1

ns
=

∏
p prime

(
1 − 1

ps

)−1

, (4)

which is crucial for the applications of this function in number
theory. By allowing the variable s to be complex, Riemann saw
the relevance of this function (that now bears his name) for the
proof of the prime number theorem3, and formulated thereby the
Riemann hypothesis, which is one of the most important problems
(if not the most important one) in the history of Mathematics.
More of that in the excellent reviews (32, 33).

3Which states that the number �(x) of primes which are less than or equal to
a given natural number x behaves as x/ log x, as x → ∞. It was finally proven,
using Riemann’s work, by Hadamard and de la Vallé-Poussin.
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For the Riemann ζ(s), the corresponding complex series con-
verges absolutely on the open half of the complex plane to the
right of the abscissa of convergence Re s = 1, while it diverges on
the other side, but it turns out that it can be analytically contin-
ued to that part of the plane, being then everywhere analytic and
finite except for the only, simple pole at s = 14.

Let us sketch Riemann’s second proof of the analytic continu-
ation and derivation of the functional equation of the ζ function.
He started from the (Euler) representation of the Gamma func-
tion (for Re s > 0)

�(s) =
∫ ∞

0
dt ts − 1e−t, (5)

which, by making the change of variables t → n2πt, yields

n−2sπ−s�(s) =
∫ ∞

0
dt ts − 1e−n2πt, (6)

and summing now over n from 1 to ∞ and interchanging sum
and integral (what is allowed by the uniform convergence of the
series), we get

π−s�(s)ζ(2s) = 1

2

∫ ∞

0
dt ts − 1 [θ(it) − 1], (7)

where θ is Jacobi’s theta function. Now, using the functional equa-
tion for the θ function, which is obtained, by use of the Fourier
transform, as a very fundamental formula on the same level as
the Poison summation formula (see a very detailed description of
the connection between all these expressions in (44)), after some
simple manipulations Riemann obtained that

π−s�(s)ζ(2s) = − 1

2(1/2 − s)
− 1

2s

+ 1

2

∫ ∞

1
dt ts − 1 (t1/2 − 2s + 1) [θ(it) − 1],(8)

which shows that the expression on the left is analytic except for
the simple poles at s = 0 and s = 1/2 (the pole at 0 comes from
the Gamma function). Moreover, this formula is clearly symmet-
ric under the change of variables s → 1/2 − s, so that, changing
from 2s to s one sees that the function

ξ(s) = 1

2
s(s − 1)π−s/2�(s/2)ζ(s) (9)

satisfies the very beautiful functional equation

ξ(s) = ξ(1 − s) (10)

(also called by physicists, for obvious reasons, reflection formula).
In terms of the Riemann zeta function, the functional equation
that we have is, for Re s < 1,

ζ(s) = 2(2π)s−1 cos(π(1 − s)/2))�(1 − s)ζ(1 − s). (11)

4Where it yields the harmonic series: there is no way out for this divergence.

These expressions, obtained by Riemann, provide the explicit
analytic continuation of the zeta function to the rest of the com-
plex plane beyond the abscissa of convergence of the initial series
expression. They will be employed, in the examples below, to
explain the use of the zeta function as an infinite series summa-
tion procedure. This does not mean, however, that the functional
equation is the best suited expression to perform the analytic con-
tinuation, nor is the initial series well suited to obtain values of
the zeta function in the original convergence domain, because
of its very slow convergence speed. Indeed, in practice these
formulas above are of very little use for accurate calculations,
since they are given in terms of power series expansions (as the
Riemann zeta itself), which are very slowly convergent near the
corresponding abscissa of convergence. Fortunately, much better
expressions exist which converge exponentially fast, are every-
where valid on the complex plane, and explicitly display the poles
with the corresponding residua of the zeta function, as the cele-
brated Chowla–Selberg (53, 54) formula and many other (55, 56).
Finding these valuable formulas, a speciality of the present author,
yields enormous power (and elegance) to the method of zeta
function regularization.

In more general cases, namely corresponding to the
Hamiltonians which are relevant in physical applications (34–45),
the situation is in essence quite similar, albeit in practice it can
be rather more cumbersome. A mathematical theorem exists,
which assures that, under very general conditions, the zeta
function corresponding to a Hamiltonian operator will be also
meromorphic, with just a discrete number of possible poles,
which are usually simple (at most double) and extend to the
negative side of the real axis5.

The above picture hints toward the use of the zeta function
as a summation method to help solve the problem we had at
the beginning of this section. Let us consider two very simple
examples.

1. We interpret our starting series

s1 = 1 + 1 + 1 + · · · + 1 + · · · (12)

as a particular case of the Riemann zeta function, e.g., for the
value s = 0. This value is on the left hand side of the abscissa
of convergence, where the series as such diverges but where the
analytic continuation of the zeta function provides a perfectly
finite value:

s1 = ζ(0) = −1

2
. (13)

So this is the value to be attributed to the series 1 + 1 + 1 +
1 + · · · .

2. The series

s2 = 1 + 2 + 3 + 4 + · · · + n + · · · (14)

5Although there are some exceptions to this general behavior, they corre-
spond to rather twisted situations, and are outside the scope of this brief
presentation.
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corresponds to the exponent s = −1, so that

s2 = ζ(−1) = − 1

12
. (15)

A comment is here in order. The fact that positive series, as
the ones above, can yield a negative result may seem nonsense.
However, it turns out that the most precise experiments ever
carried out in Physics do support such results: models of regular-
ization in QED built upon these techniques lead to final numbers
which are in agreement with the experimental values up to the
9th figure. Actually, the latest experimental results for the elec-
tron g-factor is, to my knowledge, the Harvard 2008 result (46).
This measures ge to a relative accuracy of about 10−12 (a little
better if one only consider 1 − σ errors). The latest theoretical
calculation is the recently completed 10th order calculation by
the Kinoshita group (47). A comparison of their results with the
experimental value does not by itself provide a check between the-
ory and experiment, since it only serves to determine a value of
the fine structure constant, α. For a true verification one needs
an independent determination of α, which is provided through
the Rubidium measurement (h̄/mRh) (48), which yields α with an
accuracy of 6.6 × 10−10, which sets the limit of how well QED can
currently be tested, namely, (ge(exp) − ge(theory))/ge(exp) ≈ 0.8 ×
10−12, to 1 − σ accuracy. However, since the 2 in the g-factor
comes essentially for free, both theoretically and experimentally,
it is probably more prudent to consider the relative accuracy of
the anomalies, namely, (ae(exp) − ae(theory))/ae(exp) ≈ 10−9. This
is actually the number often used by the authority in the field,
Kinoshita 6. In recent experimental proofs of the Casimir
effect (49) the agreement is also quite remarkable (given the
difficulties of the experimental setup) (50–52).

4.2.2. Zeta regularization in physics
As advanced already, the regularization and renormalization pro-
cedures are essential issues of contemporary physics—without
which it would simply not exist, at least in the form we now
know it (57, 58). Among the different methods, zeta function
regularization—which is obtained by analytic continuation in the
complex plane of the zeta function of the relevant physical oper-
ator in each case—is no doubt the most beautiful of all. Use of
this method yields, for instance, the vacuum energy correspond-
ing to a quantum physical system (with constraints of any kind,
in principle). Assume the corresponding Hamiltonian operator,
H, has a spectral decomposition of the form (think, as simplest
case, in a quantum harmonic oscillator): {λi,ϕi}i ∈ I , where I is
a set of indices (which can be discrete, continuous, mixed, multi-
ple, . . . ). Then, the quantum vacuum energy is obtained as follows
(34–45):

E/μ =
∑
i ∈ I

〈ϕi, (H/μ)ϕi〉 = TrζH/μ =
∑
i ∈ I

λi/μ

=
∑
i ∈ I

(λi/μ)−s

∣∣∣∣∣
s = −1

= ζH/μ(−1),

(16)

6Thanks are given to a reviewer for valuable information on this point.

where ζA is the zeta function corresponding to the operator A,
and the equalities are in the sense of analytic continuation (since,
generically, the Hamiltonian operator will not be of the trace
class). It must be pointed out that this ζ-trace is actually no trace
in the usual sense. To start with, while a trace is a linear functional
this one is highly non-linear, as is clear to see from the central step
in the calculation, namely

∑
i ∈ I

(λi + ρi)
−s �=

∑
i ∈ I

(λi)
−s +

∑
i ∈ I

(ρi)
−s, (17)

as often explained by the author (59). Some colleagues are
unaware of this obvious fact, which has lead to important mis-
takes and erroneous conclusions in the literature. Note that
the formal sum over the eigenvalues is usually ill defined, and
that the last step in (16) involves analytic continuation, inher-
ent with the definition of the zeta function itself. Also, the
unavoidable regularization parameter with dimensions of mass,
μ, appears in the process, in order to render the eigenval-
ues of the resulting operator dimensionless, so that the cor-
responding zeta function can indeed be defined. We shall not
discuss these very important details here, which are just at
the starting point of the whole renormalization procedure.
The mathematically simple-looking relations above involve very
deep physical concepts (no wonder that understanding them
took several decades in the recent history of quantum field
theory).

4.2.3. The Casimir energy
In fact things do not turn out to be so simple. To start with, one
cannot assign a meaning to the absolute value of the zero-point
energy, and any physical effect is an energy difference between
two situations, such as a quantum field in curved space as com-
pared with the same field in flat space, or one satisfying BCs on
some surface as compared with the same in its absence, etc. This
difference is the so-called Casimir energy:

EC = EBC
0 − E0 = 1

2

(
tr HBC − tr H

)
. (18)

But here a problem appears. Imposing mathematical boundary
conditions (BCs) on physical quantum fields turns out to be
a highly non-trivial act. This was discussed in much detail in
a paper by Deutsch and Candelas some years ago (60). These
authors quantized electromagnetic and scalar fields in the region
near an arbitrary smooth boundary, and calculated the renor-
malized vacuum expectation value of the stress-energy tensor,
to find out that the energy density diverges as the boundary is
approached. Therefore, regularization and renormalization did
not seem to cure the problem with infinities in this case and an
infinite physical energy was obtained if the mathematical BCs
were to be fulfilled. However, the authors argued that surfaces
have non-zero depth, and its value could be taken as a handy
(dimensional) cutoff in order to regularize the infinities. Just 2
years after Deutsch and Candelas’ work, Kurt Symanzik carried
out a rigorous analysis of QFT in the presence of boundaries
(61). Prescribing the value of the quantum field on a boundary
means using the Schrödinger representation, and Symanzik was
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able to show rigorously that such representation exists to all
orders in the perturbative expansion. He showed also that the
field operator being diagonalized in a smooth hypersurface dif-
fers from the usual renormalized one by a factor that diverges
logarithmically when the distance to the hypersurface goes to
zero. This requires a precise limiting procedure and point split-
ting to be applied. In any case, the issue was proven to be perfectly
meaningful within the domains of renormalized QFT. In this
case the BCs and the hypersurfaces themselves were treated at
a pure mathematical level (zero depth) by using (Dirac) delta
functions.

Ten years ago a new approach to the problem was postulated
(62–65). BCs on a field, φ, are enforced on a surface, S, by intro-
ducing a scalar potential, σ, of Gaussian shape living on and near
the surface. When the Gaussian becomes a delta function, the BCs
(Dirichlet here) are enforced: the delta-shaped potential kills all
the modes of φ at the surface. For the rest, the quantum system
undergoes a full-fledged QFT renormalization, as in the case of
Symanzik’s approach. The results obtained confirm those of (60)
in the several models studied albeit they do not seem to agree with
those of (61). They are also in clear contradiction with the ones
quoted in the usual textbooks and review articles dealing with the
Casimir effect (66–69), where no infinite energy density when
approaching the Casimir plates has been reported. This issue
is also of importance at the cosmological level, in braneworld
models.

4.3. PRESENT DAY COSMOLOGY FROM MODIFIED EINSTEINIAN
GRAVITY

4.3.1. Uses of the Riemann tensor in cosmology
As was mentioned before, Riemann’s revolutionary ideas about
the concept of physical space where given a definite form by Albert
Einstein when he formulated the Theory of General Relativity,
with the help of his, more mathematically minded, classmate and
friend Marcel Grossmann 7. The community of relativists cele-
brates Grossmann’s contributions to physics by organizing the
very important Marcel Grossman meetings, every 3 years (MG13
took place in Rio, in 2012). Let us summarize the main points of
the so called “curved-space-time physics” (excellent references are
the books by Robert Wald (70, 71)):

1. Space-time, the set of all events, is a four-dimensional mani-
fold endowed with a metric (M, g).

2. The metric is physically measurable by rods and clocks.
3. The metric of space-time can be put in the Lorentz form

momentarily at any particular event by an appropriate choice
of coordinates.

4. Freely-falling particles, unaffected by other forces, move on
time-like geodesics of the space-time.

5. Any physical law that can be expressed in tensor notation in
special relativity has exactly the same form in a locally-inertial
frame of a curved space-time.

7Who later became a Professor of Mathematics at the Federal Polytechnic
Institute in Zurich, today the ETH Zurich, specializing in descriptive
geometry.

We cannot go into much detail in the standard theory of General
Relativity, since we here aim at putting our emphasis on the
very recent developments concerning its application to modern
cosmology. Let us just recall Einstein’s equations

Rμν − 1

2
gμνR = 8πGTμν, (19)

where on the lhs we have the curvature, the geometry of space-
time, under the form of contractions of the Riemann curvature
tensor:

Rμνρ
σ = �σ

μρ,ν − �σ
νρ,μ + �α

μρ�
σ
αν − �α

νρ�
σ
αμ, (20)

the �’s being, as usual, Christoffel symbols of the Riemannian
connection, and

Rμρ = Rμσρ
σ, R = Rμ

μ. (21)

Einstein observed that the solution of these equations, subject to
the constraints of the cosmological principle, led to a universe that
was not static. He was disappointed because at that time (1915–
1920) the expansion of the Universe had not yet been discovered
(Hubble, 1925–1930, see (72)) and the universe was considered
to be in a stationary state. This led Einstein to introduce (against
his actual will) a constant term in his equations (known now
as the cosmological constant, �), that was perfectly compatible
with all of the principles of his gravity theory (but otherwise
unnecessary):

Rμν − 1

2
gμνR = 8πGTμν − �gμν. (22)

When a few years later Hubble discovered that the universe was in
fact expanding, Einstein said the introduction of the cosmological
constant had been the greatest blunder of his life. He was right to
be upset since, had he possessed sufficient confidence in his orig-
inal equations, he could have predicted (in order for his theory
to describe the Universe) that the Universe had to be expanding,
and this well before there was any experimental evidence of this
expansion!8.

An important historical issue (also for what will follow) was
the derivation of Einstein’s equations from a variational principle,
starting from what is now called the Einstein–Hilbert action9:

S =
∫

d4x
√−g (LG + Lm − λ) , (23)

where λ = �/8πG. Here the first two terms within the brack-
ets are the Lagrangians corresponding to gravity and matter, and
the last one is the cosmological constant term. By variation in the

8What would have been an enormous accomplishment. This explains why
Einstein was so angry.
9In fact Hilbert preceded Einstein by 1 day in the submission of his results for
publication, in 1915.
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Euler–Lagrange sense, one obtains

δSm =
∫

d4x
√−g

(
∂Lm

∂gμν
− 1

2
gμνLm

)
δgμν, (24)

Tμν = −2
∂Lm

∂gμν
+ gμνLm, (25)

wherefrom Einstein’s equations follow.

4.3.2. Cosmological constant and the quantum vacuum energy
However, this was not the end of the story. Any attempt at a
unification of all fundamental interactions—already envisaged by
Riemann, as reported, and to which Einstein devoted an impor-
tant part of his life—that is, a physical theory describing the
gravitational interactions of matter and energy as described by
quantum theory, has failed. In most theories aiming at this,
gravity itself is quantized and since it describes gravitation as
the curvature of space-time by matter and energy, a quantiza-
tion of gravity implies some sort of quantization of space-time
itself. But all existing physical theories rely on a classical space-
time background and this presents profound methodological and
ontological challenges.

Not to forget is the fact that new theories must always con-
tain the successful previous ones, that have proven already to be
perfectly valid in their corresponding domains of applicability.
Thus, special relativity reduces to classical Newtonian mechan-
ics when the velocities v involved are v � c, and corrections to
the classical formulas start with terms of the form v/c and higher
powers (post-Newtonian, post-post-Newtonian approaches, and
so on). In this sense, some successful semi-classical approaches
to quantum gravity have been constructed. Summing up, even
if we do not have a quantum theory of gravity, it is by now
clear that quantum corrections to the Einstein equations corre-
sponding to the fluctuations of the quantum vacuum will show
out as an additional term in the energy-momentum tensor Tμν,
side by side with Einstein’s cosmological constant contribution,
namely

Rμν − 1

2
gμνR = 8πG(Tμν − Egμν) − �gμν, (26)

where E denotes this vacuum energy density. More precisely,
the combination of this two terms (including all fundamental
physical constants) reads

� c2

8πG
+ 1

Vol

h̄ c

2

∑
i

ωi, (27)

ωi being the energy modes (spectrum) of the Hamiltonian
operator of the quantum theory. This fact will remain true in
any quantum theory of gravitation, as far as vacuum fluctua-
tions behave as an ordinary form of energy (e.g., they satisfy
the equivalence principle), what seems indeed to be the case,
although it has not been proven in a rigorous, gauge invariant
way (73). Also to be noted is that those quantum corrections
appear in the form of additional terms in higher powers of the
curvature.

The dramatic consequence of this issue (already pointed out
by Zel’dovich in the 1960’s) is that we cannot get rid any more of
the cosmological constant as Einstein finally did. It will pop up,
under this new form, as fluctuations of the quantum vacuum, that
are allowed by the fundamental Heisenberg’s uncertainty princi-
ple (unless, of course, all quantum vacuum fluctuations add up
to zero, which is very difficult to realize; this is known as the
cosmological constant problem).

4.3.3. The acceleration of the cosmic expansion
Astrophysical observations clearly indicate that huge amounts
of “dark matter” and “dark energy” are needed to explain the
observed large scale structures (rotation curves of galaxies and
clusters) and cosmic accelerating expansion of our entire uni-
verse. Up to now, no experimental evidence has been found, at
the fundamental level, to convincingly explain such weird com-
ponents. In particular, concerning the problem of the accelerating
expansion, the only possibility to solve it within the domains of
Einsteinian gravity is, again, through the cosmological constant
term, that with the convenient sign provides the negative pres-
sure contribution needed to produce the observed acceleration.
However, this is not easy to do (74–76). First, when computed
with care, the contribution of the vacuum energy density is many
orders of magnitude larger than the value needed to explain
the small acceleration rate of the universe expansion 10. This is
called the “new” problem of the cosmological constant, and is
even worse than the older one. Second, it is not even clear (very
specific models must be involved) whether the sign of the con-
tribution of the vacuum fluctuations is the correct one in order
to obtain expansion (and not contraction!). In a few words,
there are models where these two problems could be understood,
but always with the help of some tailored hypothesis, and the
general consensus is that the problem is far from having been
solved yet.

This has led to consider completely different approaches (see,
for instance, (77, 78)). One of the most successful is the so-called
f (R) gravity, which is a deviation from Einstein’s GR in the way we
are going to see (note that the R stands here for the Riemann ten-
sor contraction or Ricci curvature). This is an alternative theory
of gravity in which dark energy and dark matter could be effects—
illusions, in a sense—created by the curvature of space-time (the
same bending of space and time as in General Relativity, caused
by extremely massive objects, like galaxies, but now a bit modi-
fied). This theory does not require the existence of dark energy
and dark matter. The problem then could be completely reversed
considering dark matter and dark energy as “shortcomings” of
General Relativity and claiming for a more “correct” theory of
gravity as derived phenomenologically by matching the largest
number of observational data available. As a result, accelerating
behavior of cosmic fluid and rotation curves of spiral galax-
ies have been reported to be well fitted by means of “curvature
effects” (79).

To make the story short, realistic modified gravity models
are being constructed which ultimately lead to the unification of

10It is of the order of 10123, one of the largest discrepancies between theory
and observation in the history of Physics.
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the inflationary epoch with the late-time accelerating epoch of
the universe history, under rather simple and natural conditions
(80–82). But this is only a first step. Now those models should
be studied in further quantitative detail (83–93), to match very
precisely all the different stages in the evolution of the universe,
by comparing their predictions with the highly precise cosmolog-
ical data that no doubt will be delivered by ongoing and future
sky observations. It is expected that this can be done rather soon,
having in mind the possibility to slightly modify the early universe
features of the theories here discussed (83–93), while still preserv-
ing all of their nice universal properties. Anyway some formidable
tasks remain, in that context, as the study of the formation and
evolution of cosmological perturbations, in particular the massive
ones.

4.3.4. Non-local models for the universe
We are now trying to address some of the severe problems faced
up by the modifications to Einsteinian gravity discussed above,
and which can be summarized as follows (94): (1) a lack of simple
guidelines, gedanken experiments, reasons of elegance and simplic-
ity, as those of Einstein in constructing GR using the Riemannian
formalism (a masterpiece impossible to imitate here); (2) the
presence of a mass scale to be set much smaller than any mass
found in nature, < 10−33 eV, and which moreover should be pro-
tected from interactions with the rest of physics; (3) a well-known
fine tuning problem in time, since the modifications to gravity
happen to be important only now, not at any time in the past; (4)
the non-trivial to satisfy constraint that modified gravity mod-
els should comply with the successes of GR in the Solar System
domain.

One class of modified gravity models that overcomes most
of these problems contains non-local interactions (95). The idea
is to consider terms that are functionals of �−1R, with � the
d’Alembertian and R the Ricci scalar. At cosmological scales,�−1R grows very slowly: as (t/teq)1/2 in the radiation dominated
era and logarithmically in the matter dominated era. Also, in a
natural way, these terms are irrelevant at early times and begin
to affect the dynamics of the Universe only after the matter-
radiation transition, what solves some of the worst fine tuning
problems. Moreover, since �−1R is dimensionless, the functional
which multiplies R has no new mass parameter. And further-
more, because �−1R is extremely small in the Solar System, these
models easily pass local tests of gravity.

There is, on the other hand, sufficient theoretical motivation
for these models since, in string theory, R �−1R is precisely the
term generated by quantum corrections (away from the crit-
ical dimension) as first pointed out by Polyakov. And a very
nice feature we discovered (96–99) is that it may be possible to
rewrite these models in terms of local ones with one or more
auxiliary scalar field. Also, non-local interactions could as well
describe the early epoch of inflation, and they have been used
by Park and Dodelson (94) to discuss structure formation in a
non-locally modified gravity. Very recently we have investigated
(100) if we could find similar power-law solutions in modified
gravity theories (in particular, the above non-local theories), as
those of type H = n/t corresponding to models for GR with
a perfect fluid, and see how much they will deviate from the

ones for GR. Recasting original non-local action into its local
form, we obtained power-law solutions, with and without a
cosmological constant, both in the Jordan and in the Einstein
frames, and showed that the power-law solutions obtained in
the Jordan frame do satisfy the original non-local equations,
and the complete set of solutions were found in this frame. In
Einstein’s one, we obtained the power-law solutions either by
solving the equations of motion, or by performing a conformal
transformation of the solutions obtained in Jordan’s. For this
purpose, we extended the correspondence to include the matter
sector.

Those are clear advances of these theories, all of them based
on the very rich and useful Riemannian formalism and which, no
doubt, will continue to be basic for the theories to appear dur-
ing the rest of this century. As next steps to be undertaken we
can mention respective analysis of the stability of the solutions
encountered and, moreover, of the cosmological perturbations
corresponding to these models, so that they can be physically
differentiated, at last, from the by now standard �CDM model.

5. FINAL CONCLUSIONS
Let us finish this short overview of Riemann’s work and its impor-
tant uses in modern Physics—a clear example of the extraordi-
narily fruitful interrelation between the worlds of Physics and
Mathematics—with a touching sentence that appears in a letter
written by Albert Einstein and addressed to Arnold Sommerfeld,
of the year 1912—this means, some 60 years after the cele-
brated Habilitationschrifft of Bernhard Riemann—where Einstein
comments on the efforts he is doing in trying to understand
Riemannian Geometry:

“Aber eines ist sicher, dass ich mich im Leben noch nicht
annähend so geplagt habe und dass ich große Hochachtung vor der
Mathematik eingeflößt bekommen habe, die ich bis jetzt in ihren
subtileren Teilen in meiner Einfalt für puren Luxus gehalten habe!”

What means, in a free English translation: “But one thing is
sure, namely that never before in my life had I invested such an
effort, and that I never had such a high opinion of Mathematics,
which I considered till very recently, in my boldness, and for what
respects its most subtle parts, as a mere luxury!”

In order to seek inspiration for the challenging future of math-
ematical physics, for what we can expect from it and for how
things will probably evolve from now on, I have thrown here
a view toward the past, not in a comprehensive, rigorously his-
torical fashion, but just using the work of a single, albeit very
remarkable scientist, Bernhard Riemann. Of course I could have
chosen other icons, that are by general agreement much more
archetypical examples for a mathematical physicist. But the point
I wanted to make here is precisely that Riemann may define a
much better paradigm for the future of mathematical physics than
the more standard, well established type. I am fully against the still
rather widespread trend, that predominantly dominated national
scientific societies in Europe during the last century, of classify-
ing the work of scientists with the aim to strictly constraint them
to separated domains of knowledge, without any feasible interac-
tion among them and often even fighting against each other, and
which, I am pretty sure, was in part responsible for the decline
of European in favor of American science, which still continues.
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I wanted to convey the idea of Riemann being a perfect, archetyp-
ical example of the mathematical physicist of the future, to stress
thereby that good research transcends any classification. To start
with, Riemann just published a dozen works during his life, but
the usefulness and applications of such masterpieces permeate
all domains, subjects and disciplines one can possibly define, to
the point that they can be considered to be universally useful. I
have just highlighted in the previous section two important appli-
cations of his work to fundamental problems in quantum field
theory and present day cosmology, but the number of those is
unbelievably large. It is in this sense that I consider Riemann to be
a more modern mathematical-physicist than others, his research
transcending the stereotyped classification and adapting more to
the new paradigm, as I will now explain in a bit more detail.

For, actually, the second step in my reasoning is even more
dramatic. After recognizing the very important role that math-
ematical physics has been playing in the last century as a model
paradigm for interdisciplinary activity, in demolishing the strict,
impenetrable borders existing in “the establishment” between
these two domains of knowledge (and for which many of us,
mathematical-physicists, had to pay a—sometimes very high—
personal price); after rendering tribute, I repeat, to its very

important pioneering role in this sense, with respect to other
interdisciplinary activities which appeared latter, it is now time
to recognize that mathematical physics is quickly being surpassed
by other extraordinarily fruitful and competitive interconnec-
tions which seem to pop up from nothing every day and which
simultaneously involve several disciplines (in the classical sense),
including, aside from the mentioned two, genetics, combina-
torics, nanoelectronics, biochemistry, medicine, and even psy-
chology, to name only a few, with such intriguing issues that
include, e.g., artificial life and the modelization of the process of
consciousness. We should be very attentive to all these new devel-
opments which represent crucial new challenges for mathematical
physics and were it could play a very fundamental role for the
nearby future of scientific development.
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