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In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain.
Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique
in current neuroscience to address questions regarding brain cell structure, development
and function, blood flow regulation and metabolism. This technique evolved from laser
scanning confocal microscopy (LSCM), which impacted the field with a major improvement
in image resolution of live tissues in the 1980s compared to widefield microscopy. While
nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain
studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful
in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to
perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical
disruption employing LSCM. We describe the surgical procedure and experimental setup
that allowed us to record intracellular calcium variations in astrocytes evoked by sensory
stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as
well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be
carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain
studies in vivo.
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INTRODUCTION
The combination of fluorescence techniques with two-photon
laser scanning microscopy (2PLSM) has become the tool of choice
for in vivo brain imaging because high-resolution images can be
obtained at relatively high depth (>500 μm) from the tissue sur-
face (Theer et al., 2003; Helmchen and Denk, 2005). It employs
ultrashort infrared laser pulses for fluorophore excitation that
yield low light scattering by the tissue sample or living brain. In
addition, the non-linear nature of 2PLSM excitation grants that
detected photons come from fluorophore emission exclusively at
the focal plane (Svoboda and Yasuda, 2006). In contrast, laser
scanning confocal microscopy (LSCM) employs single-photon
excitation, which is more sensitive to scattering (Centonze and
White, 1998). It relies on a pinhole to reject fluorescence from
out-of-focus locations to create high-resolution contrast images
of relatively superficial areas (<100 μm from the surface). Inter-
estingly, due to the use of shorter light wavelengths the resolution
obtained with LSCM is better as the point spread function (e.g.,
pattern of diffracted light from a subresolution point-source which
gives a measure of the smallest objects that can be resolved) is
smaller (∼300 nm in xy axis; ∼900 nm in z axis; Abbe, 1873, 1874;
Cole et al., 2011).

Although the commercial availability of two-photon laser
scanning microscopes has led to their widespread use, their

overall cost may still be prohibitive for some laboratories to
perform brain studies in vivo. However, single-photon LSCM
is more widely available and has also been technologically
improved (e.g., being employed in neurosurgery for intraoperative
diagnosis and applied for in vivo research in moving animals;
Jung et al., 2004; Kedrin et al., 2008; Eschbacher et al., 2012;
Ritsma et al., 2012).

Astrocytes and their thin processes maintain close structural
and functional interactions with neurons and synapses (Ventura
and Harris, 1999; Bushong et al., 2002). They respond to synaptic
activity (Perea and Araque, 2005) and influence synaptic trans-
mission (Fiacco and McCarthy, 2004; Perea and Araque, 2007;
Di Castro et al., 2011; Panatier et al., 2011) and plasticity (Hen-
neberger et al., 2010; Takata et al., 2011; Navarrete et al., 2012).
Also, they enwrap blood vessels with specialized processes termed
endfeet, which play relevant roles in controlling local metabolic
and energetic demands through the so-called neuro-glio-vascular
coupling (Zonta et al., 2003; Mulligan and MacVicar, 2004; Metea
and Newman, 2006; Takano et al., 2006; Gordon et al., 2008;
Attwell et al., 2010). Monitoring in vivo these structural and func-
tional relationships between astrocytes and neurons may provide
relevant information about their actual conditions and proper-
ties in intact or minimally perturbed preparations. While 2PLSM
has been successfully applied to address these issues (Hirase et al.,
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2004; Takano et al., 2006; Wang et al., 2006; Schummers et al., 2008;
Takata et al., 2011), LSCM may also be useful for these purposes
(Mishra et al., 2011; Navarrete et al., 2012; Srienc et al., 2012).

In this article we show that the combination of an optimized
surgical procedure with intravital staining of astrocytes and LSCM
represents a suitable approach for imaging in vivo the subcel-
lular structure of astrocytes and neurons, monitoring calcium
transients in the astrocytic soma and processes, and visualizing
blood vessel dynamics. We additionally provide a detailed descrip-
tion of the methodology used to carry out in vivo imaging in the
mouse brain cortex using LSCM.

MATERIALS AND METHODS
MATERIALS
Reagents

• HEPES-buffered saline (in mM: NaCl 140, KCl 5, MgCl2 1,
CaCl2 2, EDTA 1, HEPES potassium 8.6, glucose 10)

• 0.9% (w/v) NaCl (saline)
• Urethane (Sigma, Madrid, Spain). Dissolve in saline.
• Fluo-4 AM (Life Technologies, Barcelona, Spain). Dissolve

50 μg in 4 μl pluronic [(Life Technologies, 20% in dimethyl
sulfoxide (DMSO)]. Add 46 μl of HEPES-buffered saline
to obtain a 1 μg/μl final concentration. Vortex to achieve
dissolution.

• Sulforhodamine 101 (SR101; Sigma, Madrid, Spain). Dis-
solve in saline according to the weight of the animal
(100 mg/kg).

• Fortex dental cement (Facident, Barcelona, Spain).
• Low melting point agarose (1% in saline; Sigma, Madrid,

Spain).

Equipment
• Stereotaxic device (ASI Instruments, Warren, MI, USA)
• Mouse Adaptor (Stoelting Co, IL, USA)
• Aluminum cranial frame
• Electronic control for heat pad (Cibertec, Madrid, Spain)
• Heat pad (RS Amidata, Madrid, Spain)
• Rectal probe (Technomed Europe, Maastricht, The Nether-

lands, Cat No. TP/YSI402)
• Drill Volvere Vmax NE120 (Nakanishi Inc., Kanuma, Japan)
• Burrs (FST, Heidelberg, Germany, Cat No. 19007-14/07)
• Stainless Steel Mounting Screws 00-96 X 1/16 (Plastic One,

VA, USA)
• Drill holder (Plastic One, VA, USA, Cat No. DH 1)
• Drill bit (Plastic One, VA, USA, Cat No. D #60)
• Screwdriver (Plastic One, VA, USA, Cat No. SD 96)
• Surgical blade
• Set of surgical forceps (FST, Heidelberg, Germany)
• Scissors [Vannas and common type; FST (Fine Science

Tools), Heidelberg, Germany]
• Spatula
• Cotton
• Glass coverslips (5–6 mm diameter, 0.15 mm thickness;

Menzel, Braunschweig, Germany)
• Syringe (10 ml)

Microscope
• Olympus FV300 laser scanning confocal system coupled

to an Olympus BX61WI upright microscope (Olympus,
Tokyo, Japan)

• Lasers: Ar 488 and HeNe 543 (2.5 and 0.5 mW, respec-
tively at the objective back focal plane; CVI Melles Griot,
Cambridge, UK)

• Fluoview software for acquisition (Olympus, Tokyo, Japan)
• Water immersion Olympus LUMPLFL 60XW/IR objective

(0.9NA; Olympus, Tokyo, Japan)
• Scientifica Movable Top Plate (Scientifica, Uckfield, UK)
• PMI-100 pressure injector (Dagan, MN, USA)
• Axon Digidata 1322A (Molecular Devices, CA, USA)
• pClamp software (Molecular Devices, CA, USA)

MICE
We employed Thy-1 GFP-M transgenic mice (The Jackson Lab-
oratory, ME, USA), which express green fluorescent protein
(GFP) under the Thy1 promoter (Feng et al., 2000), to visu-
alize dendrites projecting from layer V pyramidal neurons. All
the procedures for handling and sacrificing animals followed the
European Commission guidelines (86/609/CEE).

EQUIPMENT SETUP
Cranial frame
The custom-designed frames consisted of a heavy aluminum base
plate (7 cm × 13 cm × 1 cm) and one light aluminum cranial
frame (2 × 3.5 cm) for the cranial window. The latter has a central
circular hole (10 mm diameter) and four holes in the corners to
fit four M4 screws that will fix this plate to the heavy aluminum
base plate (Figure 1A). The imaging chamber consisted of a cir-
cular plastic ring glued to the frame and centered in the cranial
window. This frame provides stability for preparation and avoids
the mechanical interference by respiration-induced movements
caused by chest motion during breathing. The frame was attached
onto the skull with two stainless steel screws and dental cement
(see Figure 1A). The heavy aluminum base plate with the ani-
mal and the cranial frame fixed to it was attached to a Scientifica
electrophysiology movable top plate and the height of the stage
was adjusted in order to place it below the microscope scan head
(Figure 1B). We removed the condenser and its holder to avoid
mechanical interference with the stage when moving to search for
regions of interest. Our assembly proved to be very convenient in
its use during experiments due to its ample working area, stability,
and smooth micromanipulator movement.

PROCEDURE
Presurgical preparation

1. Weigh the animal (4–12 weeks old).
2. Inject SR101 (100 mg/kg) intraperitoneally. Let the animal

rest in the cage with food and water for 1 h.
3. Observe intense coloration of ears and paws after 30 min.
4. Anesthetize with an intraperitoneal injection of urethane

(1.8 mg/kg).
5. After 5 min, check an effective anesthetized state monitor-

ing for awareness signs such as whisker twitching, palpebral
reflex, and respiration rate when pinching the tail or ears.
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FIGURE 1 | Experimental setup for in vivo imaging with LSCM. After
performing a cranial window on a Thy-1 GFP-M mouse, the cranial frame (A)

is secured onto the skull with dental cement. Two cranial screws, eventually
embedded in cement, provide additional grip of the frame to the skull. A
plastic ring delimits the area of the skull where cement is applied. Four

screws secure the cranial frame to the heavy aluminum base plate (B).
During imaging, the animal head remained firmly secured to the base plate
under the microscope objective. The mouse rested on the heat pad for
temperature control and breathing was checked to be rhythmic and
effortless.

6. Connect the heating pad to the thermostat and set to 37◦C.
7. Shave the coronal area of the head and put the animal on the

heating pad.
8. Gently insert the tip of the rectal probe (use lubricant) to

continuously monitor the animal temperature (37◦C) and
tape it to the tail.

9. Mount the animal onto the stereotaxic apparatus. Hold the
animal head 1" high and slide one of the ear bars slowly
into the ear canal until a little resistance is encountered and
secure the screw. Then proceed with the other bar until the
head rests on both (ear bar coordinates = 4 mm).

10. Lower the tooth bar and insert it gently into the animal
mouth (tooth bar coordinates = 0 mm), so the head is
horizontal and the animal breathes easily.

Surgical procedure
11. Clean the surgical area with a cotton pad soaked in saline.
12. With a surgical blade, make a rostrocaudal incision from the

midline between the eyes to the back of the head and retract
the skin to both sides using forceps.

13. After exposing the skull, use a spatula to gently scrape out the
periosteum and adjoining connective tissue. In some cases,
the right temporalis muscle was separated from the bone.

14. Locate the area of interest. In our case, the somatosensory
area situated −1 mm posterior to the bregma and 3 mm
lateral from midline.

15. Insert two supporting screws. Mark the skull surface where
the screws are going to be located (one in the midline of
occipital bone and one in the contralateral frontal bone).
Start performing a hole with the electrical drill and, before
complete perforation, change to a manual drill and slowly
continue until the dura is reached.

16. Bottom of the hole looks pinkish. Partially screw the
supporting screws.

17. Make a circular groove (4 mm diameter) on the skull surface
circling the area of interest with the appropriate drill bit (FST

Cat No. 19007-14) at constant speed (1300 rpm). Slowly drill
in a circular fashion, stopping from time to time to wet the
area with a drop of saline.

18. Gently lift up and remove the circular bone fragment with
the forceps and without touching the brain surface.

19. With a Dumont 5 forceps, grab the meninges at the most
caudal part and lift them 1–2 mm and employ the Vannas
scissors to perform a cut following the circle of the cranial
window.

20. Fluo-4 AM bulk loading. Drop 5–10 μl of Fluo-4 AM
(1 μg/μl) forming a meniscus on the cranial window.
If this is not possible, ensure that the exposed surface
is always covered by a thin liquid layer of the mixture.
Wait for 30 min. Skip this step if calcium imaging is not
intended.

21. Rinse with two drops of saline and cover the surface with
soaked cotton. Skip this step if calcium imaging is not
intended.

22. Maintain a glass coverslip 1 cm above the cranial window in
preparation for the next two steps.

23. Remove the soaked cotton and use a plastic Pasteur
pipette to put a drop of agarose (1% in HEPES-buffered
solution) on the cranial window. Test for adequate
temperature.

24. Lower the coverslip until it touches the agarose and the bor-
ders of the cranial window. Maintain pressure for 2–5 min.
After, remove agarose excess from the sides of the window
and dry the skull surface.

25. Apply cement to the borders of the coverslip (1–2 mm)
and the skull surface with a thin spatula. This will fix the
coverslip to the skull and also prevent saline leaks into the
cranial window which would result in movement during
imaging.

26. Let dry (∼10 min) and check for solidness.
27. Make sure the skull is dry, specially the area where the plate

is going to be cemented.
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28. Put the cranial frame on the skull, placing the cranial window
in the middle of the central plate aperture (see Figure 1A).

29. Extend cement over the skull surface and the borders of
the plate aperture. Also embed the screws and the cement
surrounding the coverslip.

30. Let dry (∼20 min) and check for solidness.
31. Loosen the ear bars and screw the cranial frame to the heavy

aluminum base.
32. Move the base plate with the animal and the thermal blanket

to the imaging stage.
33. Fix the base plate on the imaging stage and put 2 ml of saline

on the coverslip.
34. Lower the objective and start imaging.

After experimentation the animal was sacrificed by cervical
dislocation and the base plate carefully removed. The frame was
wiped with acetone.

PROCEDURES-POINTS TO CONSIDER
Movement
Like in 2PLSM techniques, in the experimental approach with
LSCM the control of movement is critical to obtain a high qual-
ity image of the brain during data acquisition. There are two
well-established main sources of movement: a large amplitude
respiration-induced movement caused by chest motion dur-
ing breathing and regular small amplitude pulsatile movement
synchronized to the heart beat. To avoid respiration-induced
movements, we have used a custom-designed frame that provides
stability for experimental preparation. In addition, the vascular
pulsatile movement was abolished by filling the craniotomy with
agarose and attaching a coverslip to the skull with dental cement.
If the sealing of the cranial window with dental cement leaks, or
is deteriorated by any cause, it will notably reduce the stability of
the preparation.

Surgical care
The optical clarity of the cranial window depends on the quality
of the surgery and the technique is highly operator-dependent.
Therefore, the outcomes are sometimes unpredictable. Preventing
cerebral edema and reducing inflammation during the surgery is
critical for successful experimentation. It may be appropriate to
use dexamethasone by an intramuscular injection to the quadri-
ceps reducing the cortical stress response during the surgery and
prevent cerebral edema. During trepanation, excessive pressure
should not be applied when drilling because this might punc-
ture the skull and damage the dura. Check the thickness of the
skull during craniotomy by pushing very gently on the cranial
bone with a fine forceps. If the peripheral bone moves when
lightly touched, it is ready to be removed. The next critical
step arrives at the time of insertion of the forceps tip into the
trabecular bone. Keep the tip in a horizontal position and try
to avoid direct perforation of the thinned bone with the for-
ceps, which could damage the dura. Best results are obtained
when the skull bone is gently tugged laterally until the thinned
bone tears at the bottom of the groove. In our experiments, we
obtained better results removing the dura. With a sharp forceps,
grab the dura at the most caudal part, lift them and employ the

Vannas scissors to cut following the circle of the cranial win-
dow. As the dura is attached to the inner table of the cranium,
some superficial capillaries might tear during removal of the
cranial bone. Small focal bleeding typically disappears sponta-
neously or can be controlled by gently applying cotton soaked
with saline over the exposed surface and waiting 2–5 min for
hemostasis.

Stimulation paradigm
The left whiskers of the animal’s snout were stimulated with 100 ms
puffs of air produced at 5 Hz by a pressure injector (Dagan, MN,
USA) controlled by an Axon Digidata 1322A and pClamp software
(Molecular Devices, CA, USA). Air was ejected at 1 bar pressure
via capillary glass, attached to plastic tubing, positioned ∼1 cm
lateral and anterior to the animal’s nose to stimulate the whole left
whisker pad. Pattern of stimulation was 5 Hz frequency (pulse
width 100 ms) for 30 s. At the same time, tail pinching was
performed at 2 Hz with steel forceps, providing a pairing pro-
tocol for astrocyte stimulation similar to that employed to induce
cholinergic cortical plasticity (Takata et al., 2011).

RESULTS
IN VIVO IMAGING OF ASTROCYTES, NEURONS, AND BLOOD VESSELS
USING LSCM
To image astrocyte morphology in vivo, we performed a cranial
window on anesthetized mice (Figures 1 and 2A) and took advan-
tage of the fluorescent dye SR101 following a slightly modified
intravital method recently reported (Appaix et al., 2012; see Meth-
ods). A single intraperitoneal injection of SR101 (100 mg/kg),
usually before surgery, was administered to the animal. SR101
proved to be a good contrast agent which allowed us to dis-
cern clearly the brain blood vessels, from minutes to several
hours after injection. Clear astrocyte staining was observed 40–
60 min after injection. Astrocytes have been shown to selectively
take up SR101 in vivo (Nimmerjahn et al., 2004; Appaix et al.,
2012). Although the mechanism of uptake is still unknown, there
is evidence showing that metabolites such as glucose and sul-
forhodamine spread efficiently across astroglial networks through
gap junctions present in the astrocytic membrane (Rouach et al.,
2008). SR101 taken from blood vessels by astrocytic endfeet were
observed to spread with time throughout the astrocytic syncytium,
reaching a maximum staining in about 1–2 h. Astrocytic somata
were clearly identified as star-like cells, forming non-overlapping
domains (Bushong et al., 2002) projecting several branches into
the neuropil and contacting blood vessels and neuronal dendrites
(Figure 2).

For simultaneous visualization of neurons, we used Thy-1
GFP-M mice, in which a subset of projecting neurons selectively
expresses the GFP (Feng et al., 2000; Figures 2A,B). Both SR101
in astrocytes and GFP expressed in dendrites mainly from layer
V pyramidal neurons provided a very strong signal-to-noise ratio
which allowed us to maintain confocality (pinhole Airy units = 1)
at low laser power below the intact brain surface (usually ∼50 μm).

Therefore, following the methodology described in detail
below, astrocytes, neurons, and blood vessels located near the
brain surface can be monitored in vivo with high spatial resolution
(∼300 nm) using LSCM.
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FIGURE 2 | In vivo imaging of astrocytes, dendritic spines, and blood

vessels using LSCM. Schematic representation of an in vivo brain imaging
experiment through a cranial window in a Thy-1 GFP-M mouse after intravital
staining of astrocytes with SR101 (A). At 60× magnification, astrocytic
somata were clearly identified by intravital staining one hour after SR101
injection in single plane confocal images ∼50 μm below the brain surface (B,
left panel). GFP-expressing dendrites from layer V pyramidal neurons showed
also distinct staining (B, central panel). Astrocytes were bulk loaded
employing Fluo-4 AM and thus, also show fluorescence in the 488

channel (B, central and right panel). Large blood vessels project black
shadows on the background since they are a major source of light scattering
(Haiss et al., 2009). Astrocytes were observed projecting branches into the
neuropil, contacting dendrites and their spines, and blood vessels through
endfeet. Images taken at higher magnification in another area (C) show
details of astrocytic somata and processes (C, second panel) contacting
dendritic spines (C, third panel) and blood vessels (C, fourth panel).
Scale bars: 50 μm in B; 20 μm (first panel) and 5 μm (second to fourth
panels) in (C).

IN VIVO IMAGING OF ASTROCYTIC PROCESSES AND DENDRITIC
SPINES
Using the previous configuration at higher magnifications, we
were able to image with subcellular resolution astrocytic pro-
cesses and dendritic spines, i.e., two partners of the Tripartite
Synapse (Araque et al., 1999; Perea et al., 2009). In spite of main-
taining the laser power at relatively low levels (∼0.5 mW for each
laser line) to prevent photobleaching and photodamage, we were
able to obtain high contrast images up to ∼100 μm below the
brain surface. In confocal microscopy, images beyond that depth
are seriously limited by the increased and inherent light scatter-
ing (loss of ballistic photons and rejection of scattered ones by
the pinhole). We typically obtained our images ∼50 μm below
the brain surface, which coincides with depths reported by many
laboratories employing 2PLSM for in vivo recordings of astro-
cyte and neuronal dendrite morphology along with blood vessel
integrity and dynamics (Schaffer et al., 2006; Takano et al., 2006,
2007; Mostany et al., 2010; Sigler and Murphy, 2010). Therefore,
while 2PLSM allows deeper imaging, LSCM can be suitably used
to monitor thin astrocytic processes and dendritic spines to extract
relevant pathophysiological data (Figures 2B,C).

IN VIVO IMAGING OF ASTROCYTE CALCIUM DYNAMICS
Beyond obtaining structural images, we also aimed to monitor
astrocyte intracellular calcium levels, which represent the basis of

the astrocyte calcium excitability (Perea and Araque, 2005). Hence,
we employed intravital astrocyte staining with SR101 (to iden-
tify astrocytes) along with Fluo-4-AM bulk loading (see Methods)
of the barrel cortex in Thy-1 GFP-M mice (to identify dendritic
spines; Figure 3A). Sensory stimuli of whiskers and tail (see
Methods) induced intracellular calcium transients at the astrocytic
somata (Figures 3B,C). These calcium elevations were recorded
∼50 μm below the intact brain surface, which would correspond
to layer I of the primary somatosensory cortex. These results are
in close agreement with previous in vivo studies using 2PLSM
in this cortical layer that documented calcium elevations in the
soma of astrocytes (Takano et al., 2006, 2007; Takata and Hirase,
2008; Takata et al., 2011) as well as changes in blood vessel diam-
eter upon electrical and sensory stimulation (Takano et al., 2006,
2007). Sensory stimulation-evoked calcium elevations have also
been recorded in the hippocampal astrocytes after decortication
with LSCM (Navarrete et al., 2012).

Interestingly, we further observed sensory stimulation-evoked
astrocyte calcium elevations not only in the soma but also in pro-
cesses located in close apposition to identified dendritic spines
(i.e., GFP-expressing dendrites projecting from layer V neu-
rons), where most excitatory terminals establish synaptic contacts
(Figures 3D,E).

Taken together, these results support the suitability of LSCM
to study physiological calcium signaling in astrocytes in vivo,
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FIGURE 3 | In vivo imaging of astrocyte calcium dynamics. Intravitally
stained astrocytes (A, left panel) were bulk loaded with the calcium indicator
Fluo-4 AM (A, central panel), showed as areas of colocalization between
SR101 and Fluo-4 AM in the merged image of a single confocal plane (A, right
panel). Astrocyte basal calcium levels (B, left panel) increased upon sensory
stimulation (see arrows in B, right panel). Time lapse recordings of cytosolic

calcium in astrocytes reveal a strong elevation shortly after (∼4 s) the onset of
the 30 s sensory stimulus (black bar) and a slow recovery after cessation (C).
Sensory stimulation evoked calcium increases not only at astrocytic somata
but also at discrete regions such as distal astrocytic processes (see arrows in
D, right panel). Panel (E) shows time lapse recordings from those regions.
Scale bars: 20 μm in (A) and (B); 10 μm in (D); 30 s, 100% �F in (C) and (E).

and reveal the existence of localized subcellular microdomains in
astrocytes that respond to sensory stimulation in the live animal.

IN VIVO IMAGING OF BLOOD VESSEL DYNAMICS
Blood flow regulation in the brain is crucial for the ade-
quate metabolic and oxygen supply to neurons in specific brain
regions, and astrocytes are recognized to be involved in the
control of functional hyperemia, i.e., changes in microves-
sel diameter and associated blood flow. Studies in brain slices

(Zonta et al., 2003; Mulligan and MacVicar, 2004; Gordon et al.,
2008) as well as in vivo (Takano et al., 2006; Petzold et al.,
2008; Mishra et al., 2011; Srienc et al., 2012) have led to the
disentanglement of the complex mechanisms that rule blood
microcirculation, in which astrocyte calcium signal play a promi-
nent role mediating neuron-glia-vascular coupling (Attwell et al.,
2010).

After observing that we could reliably monitor astrocytes
and astrocytic-related structures along with subcellular calcium
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FIGURE 4 | In vivo imaging of blood vessel dynamics. Shortly after
(∼20 min) a single intraperitoneal injection, SR101 distinctly evidenced
cortical blood vessels intermingled with neuronal dendrites (A, left panel,
50 μm z-stack projection). Erythrocytes were clearly observed circulating
as dark bodies inside blood vessels of different diameters (5–50 μm; A,
central and right panels). Astrocytic somata and endfeet were observed

enwrapping blood vessels (B, upper and lower panel, respectively) and
showed calcium elevations upon sensory stimulation (B, central and right
panels). The distinct staining of blood vessels allowed us to monitor
changes in diameter throughout the stimulation protocol (C). Scale
bars: 50, 5, and 20 μm for left, central, and right panels in (A); 5 μm in (B);
10 μm in (C).

transients, we aimed to image blood vessel dynamics in vivo
with LSCM after intraperitoneal injection of SR101. Indeed,
when monitoring the barrel cortex, we were able to observe
pial blood arteries penetrating into the brain accompanied by
a net of dendrites arising from layer V neurons (Feng et al.,
2000; Figure 4A). We observed blood vessels of several diam-
eters (range 5–50 μm) and negatively contrasted erythrocytes,
which were not stained with SR101 but observed as dark cell
bodies over the background (Figure 4A). This was especially
evident in the first minutes to 2–3 h after the intraperitoneal
injection of SR101, when most of the dye was cleared from the
blood. Also, as mentioned above, we observed characteristic astro-
cytic structures adjacent to and enwrapping blood vessels with
their soma or endfeet which showed calcium increases upon sen-
sory stimulation (Figure 4B). We then monitored blood vessel
diameter in response to sensory stimulation. After imaging basal
conditions (30–45 s), we observed that delivery of whisker-tail
stimulus (see above) for 30 s induced a change in inner and outer
diameter a few seconds (∼4 s) after the onset of the stimulus
(Figure 4C).

These results, which are in agreement with previous reports
using LSCM (Villringer et al., 1989) or 2PLSM (Kleinfeld et al.,

1998; Takano et al., 2006), indicate that the combination of SR101
injection and LSCM is suitable to probe functional changes in
blood vessel diameters and blood flow dynamics. Furthermore,
erythrocytes were observed circulating inside blood vessels and
although we did not study erythrocyte velocity, this could be easily
achieved employing the line scan mode of LSCM (Dirnagl et al.,
1991; Kleinfeld et al., 1998).

DISCUSSION
In the present article we show the suitability of LSCM to moni-
tor and assess important characteristics of astrocyte structure and
function in vivo, i.e., astrocyte morphology, subcellular structural
interactions between astrocytic processes and dendritic spines, cal-
cium dynamics in astrocytic soma and processes, and changes in
blood vessel diameter and blood flow dynamics. Additionally, we
provide a guide that details the experimental steps used to attain
these in vivo recordings.

While our study focused on somatosensory cortex, where
cells could be directly imaged from the brain surface due to
their relatively superficial location, deep imaging of the cortex
without removing superficial layers can only be achieved using
2PLSM. Nevertheless, our procedure may be extended to study
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different brain structures including the hippocampus, where spe-
cial surgical procedures have been employed to remove the cortical
overlying area and obtain in vivo recordings from neurons and
astrocytes (Mizrahi et al., 2004; Navarrete et al., 2012).

The classical view of astrocytic function attributed to them a
simple supportive role to maintain the homeostatic conditions for
the proper function of neurons. However, a novel view of astro-
cyte function in brain physiology has emerged, i.e., the tripartite
synapse concept, where astrocytes actively interact with neurons
and are integral elements of synaptic physiology. This concept
implies an active role of astrocytes in brain function, which
would hence result from the concerted activity of astrocytes and
neurons.

According to this new concept, astrocyte calcium signal is a
key element because it is the second messenger that serves as
substrate of astrocyte excitability underlying its responsiveness
to neurotransmitter release during synaptic activity. It stimulates
the release of gliotransmitters that regulate synaptic transmision
and plasticity (for reviews see Araque et al., 1999; Volterra and
Meldolesi, 2005; Perea et al., 2009). While most of the reports
supporting this new concept originally derived from studies per-
formed in cell cultures (Araque and Perea, 2004) and slices (Perea
et al., 2009), more recent work are also based on in vivo stud-
ies. Indeed, astrocyte calcium elevations evoked by electrical
or sensory stimulation have been reported in the hippocampus
(Navarrete et al., 2012), somatosensory barrel cortex (Wang et al.,
2006; Takata et al., 2011), and visual cortex (Schummers et al.,
2008; Chen et al., 2012) in vivo. Present results show that astro-
cytes located in the layer I of the primary somatosensory cortex
also respond to sensory stimuli, further supporting the astrocyte
responsiveness to synaptic activity evoked by sensory inputs in
vivo.

Interestingly, while previous in vivo astrocytic calcium tran-
sients were recorded at the soma (Hirase et al., 2004; Wang et al.,
2006; Schummers et al., 2008; Takata et al., 2011; Chen et al., 2012;
Navarrete et al., 2012), strong evidence obtained in slices indicate
that the physiologically relevant calcium signal may occur at dis-
crete regions -microdomains- of the astrocytic processes (Grosche
et al., 1999; Perea and Araque, 2005; Di Castro et al., 2011; Panatier
et al., 2011). Our present results indicate that astrocyte calcium
elevations evoked by sensory stimuli in vivo also take place at
regions of the fine processes closely associated with dendritic
spines, i.e., where most synapses are established with excitatory
terminals.

A recent report has questioned the validity of the tripartite
synapse concept in adult animals based on the absence of mGluR5
expression in adult astrocytes and mGluR5-mediated astrocyte
calcium elevations (Sun et al., 2013). However, the reported
absence of mGluR5-mediated calcium responses in adults dis-
cards this particular mechanism of astrocytic activation, but the

calcium responsiveness of astrocytes through different signaling
mechanisms and to different synaptically released neurotrans-
mitters [e.g., glutamate, acetylcholine (ACh), endocannabinoids,
adenosine triphosphate (ATP), norepinephrine, etc.] is strongly
supported by numerous evidence obtained in slices and in vivo
(Wang et al., 2006; Navarrete and Araque, 2008, 2010; Schummers
et al., 2008; Di Castro et al., 2011; Panatier et al., 2011; Takata et al.,
2011; Chen et al., 2012; Min and Nevian, 2012; Navarrete et al.,
2012; for a review see Perea et al., 2009). On the other hand, the
tripartite synapse concept based on the ability of astrocytes to
release gliotransmitters that regulate synaptic transmission and
plasticity is also supported by abundant evidence obtained by
numerous laboratories (Perea and Araque, 2007; Fellin et al., 2009;
Henneberger et al., 2010; Navarrete and Araque, 2010; Di Castro
et al., 2011; Panatier et al., 2011; Min and Nevian, 2012). Regard-
less the underlying molecular mechanisms, our present results
obtained in adult animals in vivo add further support of the
idea that astrocytes respond with calcium elevations to sensory
stimuli.

Simultaneous imaging of astrocyte calcium and blood vessels
in slices as well as in vivo has provided relevant information to
decipher the complex mechanisms controlling cerebral blood flow
microcirculation (Zonta et al., 2003; Mulligan and MacVicar, 2004;
Takano et al., 2006; Gordon et al., 2008; Petzold et al., 2008; Sri-
enc et al., 2012; for a review see Attwell et al., 2010). Notably,
Eric Newman’s lab has developed an intact in vivo prepara-
tion in which the retina of anesthetized, paralyzed rats can be
directly imaged with LSCM and laser speckle flowmetry to mon-
itor retinal glial cell responses and retinal blood flow (Mishra
et al., 2011; Srienc et al., 2012). Using this intact preparation
they were able to demonstrate that light stimulation evoked glial
calcium waves that led to the dilation of neighboring retinal
arterioles, indicating that glial cells respond to sensory stimuli
and subsequently regulate blood flow in vivo. In agreement with
these reports, our results show that sensory stimulation leads
to calcium elevations in astrocytic somata and endfeet enwrap-
ping blood vessels along with changes in blood vessel diameter
in the somatosensory cortex. Furthermore, they confirm the
suitability of our method to study blood flow microcirculation
in vivo, prompting further studies regarding blood flow con-
trol in healthy as well as pathological conditions in the live
animal.
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