Protein Kinase Cζ Interacts with a Novel Binding Region of Gαq to Act as a Functional Effector*

Received for publication, August 28, 2015, and in revised form, February 14, 2016 Published, JBC Papers in Press, February 17, 2016, DOI 10.1074/jbc.M115.684308

Guzmán Sánchez-Fernández‡§1, Sofía Cabezudo‡§1,2, Álvaro Caballero‡§5,2, Carlota García-Hoz‡§5, Gregory G. Tall†, Javier Klett†, Stephen W. Michnick**, Federico Mayor, Jr.†‡§3, and Catalina Ribas†§5,4

From the †Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Universidad Autónoma de Madrid, 28049-Madrid, Spain, ‡Instituto de Investigación Sanitaria La Princesa, 29006-Madrid, Spain, §Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany, ¶Departments of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, and **Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7 Canada

Heterotrimeric G proteins play an essential role in the initiation of G protein-coupled receptor (GPCR) signaling through specific interactions with a variety of cellular effectors. We have recently reported that GPCR activation promotes a direct interaction between Gq and protein kinase Cζ (PKCζ), leading to the stimulation of the ERK5 pathway independent of the canonical effector PLCβ. We report here that the activation-dependent Gq/PKCζ complex involves the basic PB1-type II domain of PKCζ and a novel interaction module in Gq which differs from the classical effector-binding site. Point mutations in this Gq region completely abrogate ERK5 phosphorylation, indicating that Gq/PKCζ association is required for the activation of the pathway. Indeed, PKCζ was demonstrated to directly bind ERK5 thus acting as a scaffold between Gq and ERK5 upon GPCR activation. The inhibition of these protein complexes by G protein-coupled receptor kinase 2, a known Gq modulator, led to a complete abrogation of ERK5 stimulation. Finally, we reveal that Gq/PKCζ complexes link Gq to apoptotic cell death pathways. Our data suggest that the interaction between this novel region in Gq and the effector PKCζ is a key event in Gq signaling.

G-protein-coupled receptors (GPCRs)§ are the largest and most versatile family of transmembrane receptors (1). Particularly, Gq-coupled GPCRs mediate the action of many hormones and neurotransmitters with a paramount role in health and disease. Gqα activates phospholipase C (PLCβ) isoforms, which hydrolyze PIP2, leading to protein kinase C (PKC) activation and Ca2+ mobilization (2). However, a growing body of evidence suggests that alternative effectors underlie additional, PLCβ-independent functions of Gqα. Thus, p63RhoGEF (3) directly binds to Gqα/11 linking GPCRs and RhoA activation. The competition between PLCβ and p63RhoGEF for binding to Gqα indicates the existence of alternative and mutually exclusive Gqα-initiated pathways (4). Indeed, all characterized Gqα effectors have been shown to bind to the same region, which comprises the C-terminal half of the α2 helix (Switch II) together with the α3 helix and its junction with the β5 strand (5). Additionally, the GPCR receptor kinase (GRK) 2 acts as a negative regulator of Gqα function by shielding this surface away from effectors (6).

Mitogen-activated protein kinases (MAPKs) are essential downstream targets in G protein pathways. MAPKs control key cellular functions, including proliferation, differentiation, migration and apoptosis, and participate in a number of disease states including chronic inflammation and cancer (7). Recently we have described a novel signaling axis for the activation of ERK5 MAPK by Gq-coupled GPCRs in epithelial cells that is independent of PLCβ and relies on a previously unforeseen role of Gqα as an adaptor protein through direct associations with two novel binding partners, PKCζ and MEK5 (8). Subsequently, this novel activation mechanism for ERK5 was shown to be conserved in cardiac cells and the physiological relevance of the Gq/PKCζ/ERK5 pathway in the development of cardiac hypertrophy programs was established using PKCζ-deficient mice (9). In the present work we have characterized the architecture of the Gqα/PKCζ complex in the context of the ERK5 pathway and determined that a novel interaction region underlies the ability of Gqα to trigger the PKCζ/ERK5 cascade and to promote apoptotic cell death.

Experimental Procedures

Materials—The cDNAs of Gqα, Goq-R183C, and Goqα-Q209L were kindly provided by Dr. A. Aragay (CSIC, Barce-

* This work was supported by grants from Ministerio de Educación y Ciencia (SAF2011-23800, SAF2014-55511-R), Fundación Ramón Areces, The Cardiovascular Diseases Network of Ministerio Sanidad and Consumo-Instituto Carlos III (RD12/0042/0012), Comunidad de Madrid (S-2011/BMD-2332), and Instituto de Salud Carlos III (PI12/0102, PI14/00201) (to F. M. and C. R.). This work was also supported in part by the NIGMS, National Institutes of Health Grant R01-GM088242 (to G. T.), the Canadian Institutes of Health Research (CIHR) (MOP-GMX-231013) (to S. M.), an EMBO Short Fellowship (to G. S. F.), and Fondo Europeo de Desarrollo Regional (FEDER, European Union). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

† Both authors contributed equally to this work.
‡ Recipients of FPU fellowships from the Spanish Ministry of Education.
§ To whom correspondence may be addressed: Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, 28049 Madrid, Spain. Tel.: +34-91-964626; Fax: +34-91-964420; E-mail: fmayor@cbm.csic.es.
¶ To whom correspondence may be addressed: Centro de Biología Molecular “Severo Ochoa,” Universidad Autónoma de Madrid, 28049 Madrid, Spain. Tel.: +34-91-964640; Fax: +34-91-964420; E-mail: cribas@cbm.csic.es.
1 The abbreviations used are: GPCR, G-protein-coupled receptors; PKC, protein kinase C; PI, propidium iodide; PCA, protein-fragment complementar-
2 a, amino acids; PLC, phospholipase C; GTPγS, guanosine 5′-O-γ-thio)triphosphate.
A Novel Binding Region in Gαq

A. PKCζ preferentially binds the GTPγS loaded form of Gαq. 20 nm of purified His-PKCζ was incubated with purified Gαq or Gαq loaded with GTPγS as detailed under “Experimental Procedures.” B and C, Gαq/PKCζ complex selectivity in living cells. Representative bright field and YFP images at 40× magnification are shown. Bar length, 25 μm. Fluorometric analysis was performed, and data (mean ± S.E. of three independent experiments) were normalized with respect to control (***, p < 0.001, two tailed t test).

lona, Spain). The constitutively active Gαq mutant protein that lacks the ability to interact with PLCβ (Gαq Q209L/R256A/T257A) was provided by Dr. Richard Lin (Stony Brook University, New York). The cDNAs encoding HA-PKCζ, GST-MEK5, and HA-ERK5 have been previously described (8). The cDNAs encoding Gαq/Gα1l chimeras (Gαq-ctGαq, Gαq ctGαi) were a kind gift from Dr. C. H. Berlot (Weis Center for Research). GRK2 wt and GRK2-D110A were a gift from Dr. J. L. Benovic (Thomas Jefferson University, Philadelphia, PA), GRK2-Y261F and W263D were a gift from Dr. T. Kozasa (University of Illinois at Chicago), the RH domain and RGS2/4 were from Dr. A. de Blasi (University of Rome “Sapienza”, Italy), and the PKCζ-PB1 domain was described previously (8). Recombinant GST-ERK5 was obtained from Sigma-Aldrich. Recombinant His6-PKCζ was provided by Dr. Moscat (Sanford-Burnham Medical Research Institute, La Jolla, CA). and by Dr. James Hastie (Division of Signal Transduction Therapy, School of Life Sciences, MSI/WTB/JBC Complex, University of Dundee, Scotland). PKCζ-targeting and scrambled shRNA were from Sigma-Aldrich.

CHO cells overexpressing the muscarinic M3 acetylcholine receptor, designated CHO-M3 cells, were a kind gift from Dr. A. B. Tobin (University of Leicester, UK). COS-7, HeLa, and HEK293 cells were from the American Type Culture Collection (ATCC, Manassas, VA). Culture medium and Lipofectamine were from Life Technologies Inc. (Gaithersburg, MD). The affinity-purified mouse monoclonal antibody against Gαq was from Abnoba (Walnut, CA). The polyclonal antibodies against Gαq (C-19), GRK2 (C-15), ERK1 and ERK2 and GST were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Monoclonal antibodies against HA tag and Glu-Glu (EE) tag were from Covance. The anti-phospho-ERK5 antibody (p-Thr218/p-Tyr220) was purchased from Invitrogen (Carlsbad, CA). Anti-ERK5 and anti-phospho ERK1/2 antibodies, anti-PKCζ, and anti-cleaved caspase-3 (Asp175) were from Cell Signaling (Beverly, MA). Anti-α-tubulin was from Sigma. The anti-GRK2 antibody that recognizes the N terminus of GRK2 was generated in our laboratory. Protein-G Sepharose was obtained from Invitrogen. Carbachol was from Sigma. All other reagents were of the highest commercially available grades.

Cell Line Culture and Treatments—CHO cells were maintained in αMEM and HeLa, COS-7, and HEK293 cells were maintained in DMEM supplemented with 10% (v/v) bovine serum (Sigma-Aldrich, St. Louis, MO) at 37 °C in a humidified 5% CO2 atmosphere. The desired cell type was stimulated with carbachol at 37 °C in serum-free medium, at the specified doses and during the indicated time periods. The cells were serum-starved before ligand addition to minimize basal kinase activity. When required, cells (70–80% confluent monolayers in 60-mm dishes) were transiently transfected with the desired combinations of cDNA constructs using the Lipofectamine/Plus method (Invitrogen), following manufacturer’s instructions. Empty vector was added to keep the total amount of DNA per dish constant. Assays were performed 24 h after
transfection. Transient expression of the desired proteins was confirmed by immunoblot analysis of whole-cell lysates using specific antisera.

Cloning and Mutagenesis—Venus-YFP expression constructs for the protein complementation assay (PCA) were obtained by sub-cloning Gnaq (mouse, accession number NM_002072) and Prkcz (rat, accession number NM_022507.1) into the 5′- and 3′-ends of the Venus YFP PCA fragments, referred to here as N-terminal fragment (1–158 aa; F[1]) and the C-terminal fragment (159–239 aa; F[2]), respectively, as previously described (10). PKCζ binding-deficient mutants, Gnaq binding-deficient mutants and Gnaq constitutively active mutants were prepared using the QuickChange® site-directed mutagenesis kit (Stratagene) following manufacturer’s instructions.

Co-immunoprecipitation Assays—24–48 h after transfection, cells were scraped and washed twice with ice-cold phosphate-buffered saline, solubilized in RIPA buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.5% (w/v) sodium deoxycholate, 1% (w/v) Triton X-100, 0.1% SDS, protease inhibitors), and clarified by centrifugation. Immunoprecipitation was performed with agarose-conjugated anti-HA antibodies (Santa Cruz Biotechnology, F-7) or, alternatively, with 1 mg/ml bovine serum albumin and anti-Gnaq (Santa Cruz Biotechnology, C19) followed by re-incubation with protein G-Sepharose. All blots were developed using the chemoluminescence method and quantified by laser-scanner densitometry.

Pull-down Assays—To analyze MEK5/PKCζ binding, lysates from cells expressing GST-MEK5 (or GST alone as a negative control) were subjected to GST pull-down assays with glutathione-Sepharose 4B as previously reported (8). In the analysis of PKCζ-ERK5 binding, purified GST-ERK5 or GST were incubated overnight at 100 mM with 20 mM His-PKCζ at 4 °C in binding buffer (50 mM Tris-HCl, pH 7.9, 0.01% Lubrol, 0.6 mM, EDTA, and 70 mM NaCl) supplemented with a protease inhibitor mixture. Fusion proteins were incubated for 2 h at 4 °C with glutathione-Sepharose 4B beads and washed 8–10 times with the same buffer. To explore whether PKCζ binds to Gnaq in a GTP-dependent manner, 20 mM of purified His6-PKCζ was incubated with Ni-NTA resin (ProBond) for 2 h at 4 °C in His-Binding Buffer (20 mM Tris-HCl, pH 7.9, 100 mM NaCl, 10 mM imidazole). The mixture was then incubated with 50 mM of purified Gnaq or Gnaq loaded with GTPγS overnight at 4 °C in the same buffer. Recombinant protein complexes were washed 8–10 times with His-Binding Buffer supplemented with 30 mM imidazole.

Preparation of Gnaq-GTPγS—Recombinant Gnaq was purified as described (11). Gnaq-GDP (10 μM) was incubated in a 1 ml reaction with 20 μM purified Ric-8A (12) and 100 μM GTPγS in 20 mM Hapes, pH 8.0, 100 mM NaCl, 0.05% Genapol C-100, 10 mM MgCl2, 1 mM EDTA, 2 mM DTT for 1 h at 25 °C. The reaction was gel filtered over Superdex 75/200 columns arranged in series to separate Gnaq from Ric-8A. The monomeric Gnaq-GTPγS fractions were pooled, concentrated in a 10,000 MWCO Amicon Ultracentrifugal device, and stored as 20-μM aliquots at −80 °C.

Determination of ERK5 MAPK Stimulation—Lysates were resolved by 8% SDS-PAGE and subjected to immunoblot anal-
ysis as previously described (8). The activation state of ERK5 was measured by laser-scanner densitometry and expressed as the amount of phospho-ERK5 normalized to the amount of the total ERK5 protein. In CHO and HeLa cell lines HA-tagged ERK5 was transfected and immunoprecipitated with anti-HA agarose beads (Santa Cruz). Immunoprecipitates were washed in lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% (w/v) Nonident P-40, 0.25% (w/v) sodium deoxycholate, 1 mM EGTA, 1 mM NaF, supplemented with 1 mM sodium orthovanadate plus a mixture of protease and phosphatase inhibitors) at 4 °C.

Protein-fragment Complementation Assays (PCA)—Protein-protein complexes can be recapitulated in living cells, by fusing protein pairs to complementary N- and C-terminal fragments of a reporter (enzyme or fluorescent protein). If the proteins interact the fragments of the reporter protein will be brought into proximity where they can spontaneously fold together and reconstitute enzymatic activity or fluorescence (10). Venus YFP-based PCA: Cells were co-transfected with the Venus YFP PCA expression vectors coding for prey-F[1] and/or bait-F[2]. Twenty-four hours after transfection, cells were subjected to fluorometric analysis and fluorescence microscopy. For the fluorometric analysis, cells were trypsinized and resuspended in PBS, transferred to 96-well black microtiter plates (Dynex; VWR Scientific, Mississauga, Ontario), and measured in a fluorometer (integration time 10 s, excitation wavelength 470 nm, emission wavelength 528 nm) (Spectra MAX GEMINI XS; Molecular Devices, Sunnyvale, CA). Background fluorescence was subtracted from fluorometric values of all of the samples. Fluorescence microscopy was performed using a Nikon Eclipse TE2000U inverted microscope with 40× objective and YFP filter cube (41028, Chroma Technologies). Images were captured with a CoolSnap CCD camera (Photometrics) using Metamorph software (Molecular Devices). When comparing different PCA pairs, identical microscopy settings were utilized, and the expression of each construct was assessed by Western blot to ensure that the differences observed in the fluorescence images was a due to a lack of interaction and not to insufficient expression of one of the reporters.

xCELLigence Measurements—The xCELLigence system RTCA SP instrument (Roche Applied Science) monitors changes in the cell index (a measure of cell attachment to the plate), which has been shown to effectively correlate to proliferation, adhesion, and viability changes (13, 14). To assess long-term viability cells were seeded in 96-well gold electrode sensor plate (E-plates) pre-coated with fibronectin (10 μM) and monitored every 15 min for at least 3 days in minimal medium (3% FBS) until an irreversible decrease (inflection point) in the cell index was recorded. Cell death was expressed as the time between the start of the experiment and the inflection point. The first 16 h after the cells were plated were excluded from each analysis as they correspond to the cell adhesion phase. In no case was cell death due to excessive confluence as confirmed by plate inspection with a microscope.

Propidium Iodide Incorporation—Cells were transiently transfected with the desired combinations of cDNA constructs and with GFP for the selection of the transfected population. Cells were cultured in 0.1% FBS DMEM for 48 h. If required, cells were treated with the PLCβ inhibitor U73122 (10 μM) or with the ERK5 inhibitor XMD8–92 (1 μM) 24 h before staining. Cells were washed twice with PBS and resuspended in Staining Buffer (PBS 1×, 1% BSA, 0.01% NaN3, 1% FBS) with propidium iodide (PI) 1 μg/ml. Analysis was carried out in a BD FacsCalibur flow cytometer (BD-Bioscience) and GFP-positive and propidium iodide-positive cells were quantified using CellQuest Software (BD-Bioscience) and analyzed with the FlowJo Software. Within the GFP-positive population the percentage of PI-positive cells was calculated as a measure of cell death due to heterologous expression.

Annexin V/7-AAD Binding—To quantitatively measure apoptosis, the PE Annexin V Apoptosis Detection kit I (BD Bioscience) was utilized. Transfection and serum starving were carried out as in PI assays, after which cells were re-suspended in
Annexin V-binding buffer (0.1 M Hepes/NaOH (pH 7.4), 1.4 M NaCl, 25 mM CaCl₂) at a final concentration of 1 × 10⁵ cells. Samples were incubated with 2.5 μl of PE Annexin V and 5 μl of 7-AAD for 15 min at RT in the dark. Subsequently, 400 μl of binding buffer was added, and samples were analyzed by flow cytometry within 1 h on a BD FacsCalibur flow cytometer (BD-Bioscience). To determine the apoptotic stage of the different GFP-positive cell populations, 7-AAD- and Annexin V-positive cells were determined with the CellQuest Software (BD-Bioscience). To determine the apoptotic stage of the different PB1-type I domains and the βα4-α3 loop of Gαq, acidic residues in this region of Gαq were mutated to alanine. B, mutations in the (228–252) region of Gαq interfere with PKCζ binding. COS-7 cells were transfected with HA-PKCζ and the indicated Gαq mutants. Cell lysates and HA-PKCζ immunoprecipitates were analyzed as in previous figures. Data (mean ± S.E. of three independent experiments) were normalized with respect to PKCζ. Glutamic acids 234 and 245 (E234/E245) of Gαq. Glutamic acids 234 and 245 (E234/E245) of Gαq align with conserved glutamic acids from PB1-type I proteins that form two clusters (A1 and A2) that are crucial for their function as a protein-protein interaction domain. Sequence alignment of different PB1-type I domains and the βα4-α3 loop of Gαq were performed with Multalin software. Sequence IDs: GNAQ mouse (NP_032165), MEK5 mouse (Q62862), Sqstm1 mouse (p62, NM_011018), PKCζ (NM_001039079), PKCδ (NM_008857).

Results

Gαq/PKCζ Complex Formation in Vitro and in Living Cells—The activation of the ERK5 pathway by Gαq-GPCRs appears to correlate with the formation of a transient complex between Gαq and PKCζ (8). Such interaction was suggested to be direct since these purified proteins are able to associate in vitro. A pull-down assay performed with purified proteins indicated that PKCζ preferentially binds the GTPγS-loaded form of Gαq (Fig. 1A). Further, the formation of a Gαq/PKCζ complex in living cells was assessed through a Protein-Fragment Complexation Assay (PCA) (Fig. 1B). A clear association between PKCζ and Gαq was observed, as compared with a known high-affinity interaction (GCN4 leucine “zipper” dimerization) (Fig. 1C). The Gαq/PKCζ complex displays high specificity, since no association was detected between Gαq and another member of the PKC family, PKCβ, nor between PKCζ and another member of the Gα family (Goα1) (Fig. 1C).

The PB1 Domain of PKCζ Is Essential for Gαq Association—PB1 domains are known protein-protein interaction domains, and this module alone accounts for the majority of the reported interactions of PKCζ (15). PKCζ-PB1 domain overexpression was shown to interfere with the formation of Gαq/PKCζ complexes in cells, as assessed through co-immunoprecipitation assays (Fig. 2A). Indeed, the PKCζ-PB1 domain alone is able to co-immunoprecipitate with Gαq (Fig. 2B), thus suggesting that PKCζ might interact with Gαq through this module.
The PB1 domain of PKCζ is composed of a PB1-type I (acidic) and a PB1-type II (basic) domain (16). Since the PB1-type II domain of PKCζ has previously been involved in ERK5 activation by the EGF receptor and in MEK5 binding (17), a strategy was designed to mutate key amino acids in this region (Fig. 2C). In particular, lysine 19 (K19) seems to be an invariably crucial residue in all PB1-PB1 interactions in combination with other predominantly basic residues located nearby within the three-dimensional structure (18, 19). Remarkably, different point mutations in the PB1-type II region and specially that in Lys-19 decreased the interaction with Gq in co-immunoprecipitation experiments (Fig. 2D). This residue was also found to be essential for PKCζ-MEK5 binding (Fig. 2E), as predicted by other PB1-PB1 structures (19). Interestingly, another mutation within this domain (PKCζ-H21A) enhanced the ability of PKCζ to associate with Gq (Fig. 2F). Taken together, these data indicate that the PB1 domain type II of PKCζ is crucial for binding Gq.
A Novel Region in Goq Is Required for the Interaction with PKCζ—Since members of the Gα family cannot interact with PKCζ (Fig. 1C and Ref. 8), we utilized two different chimeras in which the C terminus (aa 222–353) of either Goq or Goα1 had been substituted by that of Goα1 and Goq, respectively (20), to delineate relevant regions for PKCζ association. A Goq chimera with the C terminus of Goα1 was unable to interact with PKCζ when expressed in cells (Fig. 3A), thus suggesting that the interaction determinants are predominantly located in the C terminus of Goq. This C-terminal stretch includes the classical effector-binding region (21). To assess whether this region is responsible for binding PKCζ, we used different Goq mutants unable to interact with other effectors such as PLCβ and p63RhoGEF (Goq-R256A/T257A, (22, 23)) or GRK2 (Goq-Y261F and Goq-W263D (24)). Surprisingly, neither mutant affected PKCζ binding but on the contrary all co-immunoprecipitated with the kinase to a greater extent than wild-type Goq (Fig. 3, B and C). These data suggest that the absence of competitors on the surface of Goq favors the interaction with PKCζ. This may indicate that PKCζ is interacting with other region close to the classical effector site. We noted that the adjacent β4–α3 loop in Goq displays a relatively high sequence similarity with the PB1-type I domain of MEK5, a module known to interact with the PB1-type II domain of PKCζ (Fig. 4A). A double mutation (E234/E245-AA) in the homologous residues of Goq in this potential interaction module significantly impaired its association with PKCζ (Fig. 4B). Interestingly, these amino acids were found to be homologous to highly conserved residues in several PB1-type I domain-harboring proteins as part of two major functional clusters (A1 and A2) (Fig. 4C) (18). Overall, these data indicate that a region of Goq, distinct from the classical effector-binding site, is involved in the interaction with PKCζ.

An Efficient Goq/PKCζ Association Is Required for the Activation of the ERK5 Pathway—We previously suggested that PKCζ is required for Gq-coupled GPCR activation of ERK5 (8, 9). To confirm this, we silenced PKCζ in CHO-M3 cells (Fig. 5A) and stimulated the cells with carbachol to reach maximum activation in the absence of PKCζ (Fig. 5B), whereas ERK1/2 phosphorylation was seemingly unaffected (Fig. 5C). To establish whether this effect depends on the formation of a Goq/PKCζ complex, we assessed the activation of ERK5 by the PKCζ-binding deficient mutant (Goq-E234/E245-AA; Goq-E229A hereafter) in response to carbachol stimulation. Notably, overexpression of wild-type Goq clearly enhanced ERK5 activation by GPCRs as reported (25), whereas the Goq-E229A mutant did not (Fig. 5D). In the same experimental setting the promotion of ERK1/2 activation was similar upon either wild-type Goq or Goq-E229A expression (Fig. 5E). Consistently, the direct activation of ERK1/2 by constitutively active Goq (R183C) was not affected by the E229A mutation as opposed to the activation of ERK5, which was impaired (Fig. 5, F
A Novel Binding Region in Gaq

![Diagram]

FIGURE 7. GRK2 is a negative regulator of the Gaq/PKCζ complex. A, GRK2 overexpression impairs Gaq/PKCζ association through its RH domain. COS-7 cells were transfected with HA-PKCζ and Gaq along with GRK2 wild-type, GRK2 K220R (kinase-inactive mutant) or the GRK2 RH domain. Cell lysates and Gaq immunoprecipitates were analyzed by Western blot. B, Gaq association-deficient GRK2 mutant does not interfere with the Gaq/PKCζ complex. COS-7 cells were transfected with Gaq, HA-PKCζ, GRK2 wt, and the GRK2 D110A mutant, which has impaired ability to bind to Gaq (25) and lysates and HA-PKCζ immunoprecipitates analyzed as in previous figures. C, GRK2 overexpression impairs Gaq/PKCζ association in living cells. HEK293 cells were transfected with Venus YFP PCA plasmids: Control (PKCζ-Venus YFP[F1]+pcDNA3), Gaq+PKCζ+pcDNA3 (Gaq-Venus YFP[F1]+PKCζ-Venus YFP[F2]+pcDNA3), Gaq+PKCζ+GRK2 (Gaq-Venus YFP[F1]+PKCζ-Venus YFP[F2]+GRK2). Data (mean ± S.E. of three independent experiments) were normalized with respect to control (**, p < 0.005, two tailed t test). Bar length, 25 μm. D and E, RGS2/4 overexpression does not alter the formation of the Gaq/PKCζ complex. COS-7 cells were transfected with combinations of plasmids encoding HA-PKCζ, Gaq, and RGS2 or RGS4. Either Gaq (D) or HA-PKCζ (E) immunoprecipitates and total lysates were analyzed as above. In all panels, blots shown are representative of 2–3 independent experiments.

and G). These results indicate that this mutant retains the ability to modulate the activity of other Gaq effector proteins and support the specificity of the Gaq/PKCζ axis in promoting ERK5 activation.

PKCζ Scaffolds an Activation-dependent Gaq/ERK5 Complex—Interestingly, Gaq was found to co-immunoprecipitate with the activated form of ERK5 and this was clearly decreased by the EEAA mutation (Fig. 6A). The formation of Gaq/ERK5 complexes was greatly favored by activating mutations in the Ga subunit (R183C or Q209L) (Fig. 6B), which supports the formation of the complexes upon GPCR stimulation. We hypothesized that PKCζ could be organizing a multimolecular Gaq/ERK5 complex upon G protein activation. Both the co-expression of the PKCζ-PB1 domain or the down-regulation of PKCζ expression led to a decreased formation of Gaq/ERK5 complexes (Fig. 6, C and D). To address whether PKCζ could exert a scaffold role through a direct interaction with ERK5, we performed pull-down experiments with purified proteins and found that PKCζ and ERK5 are direct binding partners (Fig. 6E). Although other authors have suggested the occurrence of this complex (26), we provide the first concluding evidence for a direct association. Collectively, our findings suggest that PKCζ orchestrates a ternary complex with Gaq and ERK5 that underlies the activation of the signaling cascade.

GRK2 Negatively Regulates the Gaq/PKCζ Complex and Receptor-induced ERK5 Activation—GRK2 is a negative regulator of Gaq signaling both through receptor desensitization mechanisms and direct inhibition of Gaq-effector interactions (27). Consistently, we observed that overexpression of wild-type GRK2 completely abolished Gaq association to PKCζ (Fig. 7A). Such effect was independent of GRK2 kinase activity and mimicked by its RH domain, a region reported to specifically interact with Gaq (28). Also, a GRK2 mutant (D110A) which is unable to interact with Gaq (28) barely interfered with formation of the Gaq/PKCζ complex (Fig. 7B). The negative regulation exerted by GRK2 was also detected in a natural cell milieu, as assessed through the Venus-YFP PCA (Fig. 7C). On the contrary, as observed for other Gaq effectors (29), PKCζ was not displaced by the Gaq regulators RGS2 or 4 (Fig. 7, D and E).

In agreement with the ability to inhibit Gaq/PKCζ interaction, enhanced GRK2 levels in CHO-M3 cells abolished carbachol-induced ERK5 activation (Fig. 8A). ERK5 activation was reduced to ~50% upon expression of the RH domain of GRK2 (Fig. 8B), whereas a kinase-inactive GRK2-K220R mutant did not disrupt ERK1/2 signaling as compared with wild-type GRK2 (Fig. 8C). This suggests that direct Gaq binding plays a role in the attenuation of ERK5 signaling by GRK2 in addition...
to kinase-dependent GPCR desensitization. Consistently, the duration and amplitude of carbachol-induced ERK5 activation (Fig. 8D), as well as the assembly of Gaq/ERK5 multimolecular complexes (Fig. 8E) were markedly enhanced when expressing a GRK2 binding-deficient mutant of Gaq (Gaq-Y261F).

Gaq Is Involved in Apoptotic Cell Death Promotion via PKCζ—The description of PKCζ as an effector protein for Gaq suggested that it might underlie specific cellular functions promoted by the G protein. Since cell death promotion is a well-established Gaq-initiated process (21) and references therein), we compared cell viability in CHO cells expressing Gaq wt or the Gaq-EEAA mutant upon long-term growth in low serum (3% FBS). Cell death took place earlier in Gaq-overexpressing cells compared with control and Gaq-EEAA populations, both of which initiated this process in a similar timeframe (Fig. 9A). The clear increase in cell death promoted by a constitutively active Gaq mutant (Gaq-R183C) was attenuated when introducing the EEAA mutation (which reduces the interaction with PKCζ) and, contrarily, it was enhanced by the Y261F mutation (that potentiates the PKCζ interaction) (Fig. 9B), consistent with a role for the Gaq/PKCζ signaling axis in triggering this process. Such impaired ability of the Gaq-EEAA mutant to promote cell death was also observed in HeLa cells (data not shown). Moreover, cell death upon constitutively active Gaq overexpression in CHO cells was neither affected by a mutation that impairs PLCβ activation (R256/T257-AA Ref. 22) (Fig. 9C) nor by PLCβ pharmacological inhibition (Fig. 9D). On the other hand, either ERK5 inhibition or co-expression of the PB1 domain of PKCζ showed an inhibitory effect on Gaq-induced cell death (Fig. 9D), suggesting that this Gaq-initiated process is, at least in part, dependent on PKCζ-mediated activation of ERK5. The phenotype observed was determined to be apoptotic cell death, as both annexin V staining and caspase 3 cleavage were enhanced upon Gaq-R183C overexpression and abrogated by the EEAA mutation (Fig. 9, E and F). Taken together, these data reveal that the novel binding region of Gaq is involved in the promotion of apoptotic cell death via PKCζ.

Discussion

Emerging evidence indicates that activated Gaq subunits can interact with several effector proteins to trigger signaling pathways different from the canonical PLCβ cascade. Previously, we reported a direct, activation-dependent association between Gaq and PKCζ in the context of Gaq-coupled GPCR-mediated activation of ERK5 (8). These data suggested a genuine G protein-effector interaction although a causal relationship between the formation of a Gaq/PKCζ complex and Gaq-dependent functional outputs remained to be established. Herein we provide conclusive evidence showing that PKCζ acts as a Gaq effector through the engagement of a novel binding region in the α subunit leading to ERK5 activation and apoptotic cell death.

First, we show that the basic PB1-type II domain of PKCζ, governed by the Lys-19 residue, is critical for the association with Gaq. This region was found to mediate protein-protein interactions of PKCζ that are involved in NFκB activation or
Our conclusion that PKC\(_\zeta\) in the vicinity of the classical effector-binding region, supports the claim (3) that proteins associate with a subset of amino acids that are distinct from the binding determinants of other G\(q\) binding partners (PLC\(\beta\), GRK2, and p63RhoGEF). All effectors of G\(q\) subunits invariably associate with the extended region comprising the C-terminal half of the \(\alpha2\) helix, together with the \(\alpha3\) helix and its junction with the \(\beta5\) strand, although the subsets of crucial amino acids for these associations vary with the specific effector (31). Interestingly, residues 221–245 of G\(q\), which include the PKC\(\zeta\)-association region, are different from the classical effector-binding residues, with partially overlapping boundary regions that show permitting and inhibitory potential (8). Second, we describe a novel binding region in G\(q\) that includes the PKC\(\zeta\)-interaction, which is different from the classical effector-binding residues, shows surprising sequence similarities to PKC\(\zeta\)-mediated ERK5 stimulation (8). Overall, the fact that the PKC\(\zeta\)-association region is involved in apoptotic cell death. CHO-M3 cells were transfected with GFP and either pcDNA3 empty vector, G\(q\) wild-type, or the G\(q\)-E234/E245-AA (Gq-EEAA) mutant. GFP-positive cells were sorted, seeded onto 96-well sensor plates and monitored with the X-Celligence system for over 140 h. Cell death entry time was determined as the inflection point at which the whole cell index shifts to negative values (see “Experimental Procedures”). Data were the mean ± S.E. of five independent experiments (**, \(p < 0.005\), two-tailed test). B, constitutively active G\(q\) mutants with diminished (EEAA) or enhanced (Y261F) PKC\(\zeta\) association ability decrease and increase cell death, respectively. CHO-M3 cells were transfected and cultured in 0.1% FBS for 48 h. The proportion of transfected (GFP-positive cells) that show propidium iodide-positive staining was determined through flow cytometry (mean ± S.E. of three independent experiments) (**, \(p < 0.05\); ***, \(p < 0.001\), two-tailed t test with respect to G\(q\)-R183C). C, G\(q\)-induced apoptosis. Assays were carried out as above. GFP-positive cells that show annexin V staining were measured by flow cytometry and the data are expressed as fold over empty vector-transfected cells (mean ± S.E. of five independent experiments) (**, \(p < 0.05\); ***, \(p < 0.001\), two-tailed t test over pcDNA3). Cleaved caspase-3 was detected with a specific antibody (mean ± S.E. of three independent experiments) (**, \(p < 0.005\); two-tailed t test with respect to G\(q\)-R183C). Representative Western blots to confirm the expression of the different plasmids in the experiments are shown.
mutation in Gαq abrogated both direct and receptor-induced ERK5 phosphorylation, whereas ERK1/2 activation remained unaffected. Importantly, we demonstrate that Gαq and ERK5 are found together in an activation-dependent multimolecular complex orchestrated through PKCζ scaffolding, which directly binds ERK5 and enables the stimulation of the pathway. This scaffold role was supported by the finding that Gq-coupled GPCRs do not promote phosphorylation-dependent activation of PKCζ (8). Instead we observed (data not shown) that carbachol induces dimerization of the kinase at a coincident time-course to the Gαq-PKCζ interaction. This could be relevant since dimerization not only is a common scaffold protein mechanism but, in the case of PB1-PB1 associations, it has recently been shown to promote PKCζ activation independent of phosphorylation (33). Indeed, Par6 interaction with PKCζ induces its allosteric activation through the displacement of the PKCζ pseudo-substrate region from the active site (33). Interestingly, Gαq-mediated activation of effectors PLCβ (34) or p63RhoGEF (23) involves the allosteric relief of an auto-inhibitory loop buried within the active region. Thus, it is possible that a PB1-domain-dependent relief of pseudo-substrate auto-inhibition in PKCζ could be induced upon Gαq binding or upon GPCR-induced dimerization. It is tempting to suggest that PB1-driven PKCζ scaffolding might be a cellular mechanism for imposing spatial and temporal specificity during Gαq-initiated signaling.

The regulation of Gαq/effector complexes by GRK2 is a well-established process for dampening downstream signaling. We show that GRK2 impedes the association of PKCζ with Gαq in living cells, and abrogates ERK5 activation due to G protein sequestering and receptor desensitization, as reported for other Gαq/effector complexes (35). Coincidently, we show that the impairment of the GRK2/Gαq interaction with a specific association-deficient Gαq mutant (Y261F) greatly enhances Gαq interaction with PKCζ and its presence in ERK5 complexes, thus promoting ERK5 activation. These findings strengthen the role of PKCζ as a novel Gαq effector and suggest that Gαq signaling toward the PKCζ/ERK5 pathway could be effectively modified in pathophysiological contexts where GRK2 expression and/or functionality is altered (36).

Finally, we put forward the assembly of Gαq/PKCζ complexes as an important process for the promotion of apoptotic cell death by Gαq. The increase in cell death promoted by the presence of constitutively-active Gαq was abolished by the EEA1 mutation (which blocks the assembly of Gαq/PKCζ complexes), so cells expressing the Gαq-EEAA mutant displayed a higher viability than those expressing Gαq wild-type. On the contrary, the presence of the GRK2/association deficient Gαq mutation Y261F (leading to increased complex formation) potentiated cell death. This process is conserved in HeLa cells, and was characterized as apoptosis-mediated cell death, consistent with the reported role for Gαq in the promotion of apoptosis (37). In line with the notion that PKCζ is as a key effector in this process, the overexpression of the PKCζ-PB1 domain decreased Gαq-promoted cell death, whereas neither PLCβ inhibitors nor Gαq mutants that cannot activate PLCβ have an effect. These results are in agreement with previous reports showing that caspase activation and apoptosis promoted by activated Gαq is not blocked by inhibitors of IP3- or PKC-dependent signaling (38). Also, the role of PKCζ as a pro-apoptotic protein appears to have a crucial effect on the repression of tumorigenesis in ovarian (39) and prostate cancer (40). Interestingly, pharmacological blockade of Gαq partly inhibited cell death promotion downstream of the Gαq/PKCζ axis. Although ERK5 is a well-known pro-survival factor in several contexts (41), it has also been shown to positively regulate apoptosis of medulloblastoma cells (42) and thymocytes (43). However, we cannot rule out that, alongside ERK5, other yet unidentified pathways downstream the Gαq/PKCζ axis would play a role in this process.

In sum, we propose the following mechanistic model for the Gαq/PKCζ axis (Fig. 10): Ligand binding to the receptor causes Gαq activation (step 1) which, in turn, promotes the interaction between the PB1 domain type II of PKCζ and the novel effector-binding region of Gαq-GTP (step 2). This would lead to PKCζ allosteric activation, dimer/oligomerization and to the exposure of its kinase domain to interact with ERK5, which is recruited into a multimolecular complex together with Gαq (step 3). Next, MEK5 would be attracted into an intermediate signaling complex through a direct interaction with Gαq (8) which would rapidly progress into MEK5 displacing Gαq from its binding site on PKCζ (step 4). Subsequently, the interaction between MEK5 and PKCζ would favor the auto phosphorylation of MEK5, which will, in turn, phosphorylate and activate ERK5 (step 5) (17). Additionally, GRK2 and RGS proteins would act as negative modulators of this cascade by sequestering Gαq away from PKCζ (step 2’), or by binding to Gαq in complex with PKCζ to promote GTPase activity and deactivation of the Gα subunit (step 3’), respectively. Finally, we postulate that the promotion of apoptotic cell death may depend both on ERK5 and other yet uncharacterized targets downstream the Gαq/PKCζ complex. This model may serve as a theoretical framework for subsequent studies of this signaling axis and contribute to revise the functional consequences of Gαq activation.

FIGURE 10. Mechanistic model for the activation of the Gαq/PKCζ/ERK5 axis by Gαq-coupled GPCRs. Proposed sequential formation of protein complexes involved in the Gαq-ERK5 pathway. See text for detailed information.
A Novel Binding Region in Gαq

Author Contributions—G. S. F., S. C., C. G. H., F. M., and C. R. designed experiments. G. S. F., S. C., C. G. H., J. K., and C. G. H. performed experiments. S. W. M. designed the PCA approach. G. S. F., F. M., and C. R. wrote the manuscript.

Acknowledgments—We thank Durga Sivanesan for extraordinary help, and Susana Rojo, Almudena Santos, and Paula Ramos for helpful technical assistance.

References

Downloaded from http://www.jbc.org/ at CTRO BIOLOGIA on July 1, 2016
is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ. Res. 87, 1180–1187