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ABSTRACT

Aims. We present new gravity and limb-darkening coefficients for a wide range of effective temperatures, gravities, metallicities,
and microturbulent velocities. These coefficients can be used in many different fields of stellar physics as synthetic light curves of
eclipsing binaries and planetary transits, stellar diameters, line profiles in rotating stars, and others.
Methods. The limb-darkening coefficients were computed specifically for the photometric system of the space mission tess and
were performed by adopting the least-square method. In addition, the linear and bi-parametric coefficients, by adopting the flux
conservation method, are also available. On the other hand, to take into account the effects of tidal and rotational distortions, we
computed the passband gravity-darkening coefficients y(λ) using a general differential equation in which we consider the effects of
convection and of the partial derivative (∂ln I(λ)/∂ln g)Teff

.
Results. To generate the limb-darkening coefficients we adopt two stellar atmosphere models: atlas (plane-parallel) and phoenix
(spherical, quasi-spherical, and r-method). The specific intensity distribution was fitted using five approaches: linear, quadratic, square
root, logarithmic, and a more general one with four terms. These grids cover together 19 metallicities ranging from 10−5 up to
10+1 solar abundances, 0 ≤ log g ≤ 6.0 and 1500 K ≤ Teff ≤ 50 000 K. The calculations of the gravity-darkening coefficients were
performed for all plane-parallel ATLAS models.
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1. Introduction

The limb-darkening coefficients (LDC) are a fundamental tool
in several areas of stellar physics, as for example: eclipsing bi-
naries, measurement of stellar diameters, line profiles in rotat-
ing stars, gravitational micro-lensing, optical interferometry, or
more recently, extra-solar planets’ transits. Despite the advances
in the semi-empirical derivations of LDC, there is still a serious
scarcity of this kind of data. Because of this, we are not yet able
to perform a robust and consistent inter-comparison between ob-
servational and theoretical LDC. However, in the past few years
an important effort has been carried out in this direction. For de-
tails of these comparisons related to eclipsing binaries and plan-
etary transits see for example Claret (2008, 2009), Southworth
(2008, 2012), Sing (2010), Howarth (2011), Claret & Bloemen
(2011), Csizmadia et al. (2013), and Müller et al. (2013).

One of the most important sources of the semi-empirical data
of LDC are the space missions such as Kepler, CoRoT, and Mi-
crovariability and Oscillations in STars (MOST) which are pro-
viding extensive observational material of high quality which
is enabling a more comprehensive comparison. Complementing
this set of space missions, next year the satellite Transiting Ex-
oplanet Survey Satellite (TESS) is scheduled to launch and the
data collected by all these instruments will enable the researchers
to extend even further the comparison of semi-empirical data

? Tables 2–29 are only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A30

with the theoretical LDC in some favourable cases. These com-
parisons are crucial since they may provide some clues to the
stellar atmosphere modellers which could help to improve the
theoretical models. As a small contribution to this effort, we
present in this paper the theoretical calculations of the limb and
gravity-darkening coefficients (GDC) for the photometric system
of the satellite TESS.

The paper is organized as follows. In Sect. 2 we describe
briefly the objectives and main characteristics of the TESS mis-
sion. Section 3 is devoted to introducing the numerical methods
and the stellar atmosphere models used to compute the LDC and
GDC, while in Sect. 4 we discuss the results.

2. A brief summary of the space mission TESS

Following the successful steps by the Kepler mission, TESS is a
new exo-planet finder to be launched by NASA in 2017 that will
perform an all-sky survey. It is expected that this instrument will
explore about 200 000 stars in the solar neighbourhood, search-
ing for exo-planets through the planetary transit technique. The
stars which are planned to be observed with TESS are brighter,
on average, than those observed by Kepler and the spectral types
to be surveyed range from F5 to M5. On the other hand, the
sky area to be covered is 400 times larger than that covered by
Kepler. The mentioned characteristics, among others, will per-
mit the identification of a wide range of planets from the size of
Earth to gas giants, in diverse orbital configurations. Therefore,
it will be possible to investigate some fundamental planetary
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properties such as mass, radius, orbital dynamics, and details on
the atmosphere (for more information on the mission, see Ricker
et al. 2015; Sullivan et al. 2015, and references given therein).

Within this context the calculations of the LDC are important
since they will allow the synthesis of light curves to be compared
with the observational data coming from TESS. As mentioned in
the Introduction, these inter-comparisons may supply new and
more accurate data for the semi-empirical LDC, providing a cru-
cial test to the stellar atmosphere models.

3. Numerical methods and the grids of stellar
atmosphere models

The LDC laws adopted here are written down to facilitate
the identification of the coefficients contained in the respective
tables:
the linear law

I(µ)
I(1)

= 1 − u(1 − µ), (1)

the quadratic law

I(µ)
I(1)

= 1 − a(1 − µ) − b(1 − µ)2, (2)

the square root law

I(µ)
I(1)

= 1 − c(1 − µ) − d(1 −
√
µ), (3)

the logarithmic law

I(µ)
I(1)

= 1 − e(1 − µ) − fµ ln(µ), (4)

and a four terms law introduced by us some time ago:

I(µ)
I(1)

= 1 −
4∑

k=1

ak(1 − µ
k
2 ). (5)

In the above equations I(1) is the specific intensity at the cen-
tre of the disk and u, a, b, c, d, e, f , and ak are the correspond-
ing LDC. The µ’s are given by cos(γ), where γ is the angle
between the line of sight and the outward surface normal. The
model atmosphere intensities were convolved with the transmis-
sion curve for TESS, provided by D. Latham (priv. comm.). As
in the previous papers in this series, we have used the ATLAS
(plane-parallel geometry), PHOENIX-COND with spherical ge-
ometry (Husser et al. 2013), and PHOENIX-DRIFT also with
spherical geometry (Witte et al. 2009). These grids cover to-
gether 19 metallicities ranging from 10−5 up to 10+1 solar abun-
dance, 0 ≤ log g ≤ 6.0 and 1500 K ≤ Teff ≤ 50 000 K. The val-
ues of the microturbulent velocities (Vξ) are 0, 1, 2, 4, 8 km s−1.

The LDC were computed adopting the least square method
(LSM) that allows a very good description of I(µ) at any part
of the disk, for any log g, effective temperature, metallicity, and
microturbulent velocity, mainly if Eq. (5) is adopted. Indeed, it
is desirable to handle an approach such as Eq. (5) that presents
the following characteristics: (a) a single law which is valid for
the whole HR (Hertzsprung-Russell) diagram; (b) is capable of
reproducing well the intensity distribution and which as a conse-
quence conserves the flux within a very small tolerance; (c) can
be applicable to different pass-bands, monochromatic quanti-
ties, chemical compositions, effective temperatures, gravities,
and microturbulent velocities. For the case of LSM, we adopted

equally spaced µ points to prevent too large weights being ap-
plied to the limb. For completeness, we also computed the LDC
adopting the flux conservation method (FCM), for bi-parametric
laws and for the linear approximation; to differentiate, we used
the suffixes LSM and FCM in the tables.

The dispersion of the specific intensities associated to the
FCM can be as large as 1000 times those provided by the LSM
when Eq. (5) is adopted. This is a serious restriction to the FCM
since a good match is necessary to compute the loss and gain of
light during the eclipses. Moreover, if a non-linear law is used, an
extra condition must be introduced, in addition to the flux con-
servation. This extra condition is often arbitrary. On the other
hand, the inter-comparison between the LDC computed with
both numerical methods can serve as a tool to estimate the theo-
retical error bars. We refer interested readers to Claret (2000) for
a more detailed discussion on this subject.

Due to the different input physics and numerical resolutions,
the PHOENIX models are divided into two sets: 1500 K ≤ Teff ≤

3000 K (DRIFT) and another with 2300 K ≤ Teff ≤ 12 000 K
(COND). Still concerning the PHOENIX models, we have in-
troduced in past papers the concept of quasi-spherical models
for main sequence stars. For this kind of stars spherical models
are constituted by a core (µ > 0.1) that behaves like a plane-
parallel structure, and by an envelope that delivers the spheri-
cal part of the intensities (µ . 0.1. When we compare the in-
tensity distribution of a spherical model with one adopting the
plane-parallel geometry but with the same input physics (log g,
metallicity, Teff , Vξ), we detect a similar intensity distribution
for both models, except in the drop-off region (µ . 0.1). We
define a quasi-spherical model as the model computed adopt-
ing the spherical symmetry but whose LDC are computed only
for the core, that is, without considering the points inside the
drop-off region. This concept allows us to compare the LDC for
PHOENIX and ATLAS models (see below). It can be also used
in situations where the effects of sphericity are not important.

Before discussing the results of the LDC for TESS, it is con-
venient to investigate an alternative to the usual quasi-spherical
models. Based on the work by Wittkowski et al. (2004), Es-
pinoza & Jordan (2015) used r =

√
(1 − µ2), instead of µ. They

derive the LDC by searching for the maximum of the derivative
of the specific intensity with respect to r and shifting the pro-
file to this point (hereafter referred as r-method). These authors
have found large differences when comparing the quadratic LDC
(Kepler) computed using the r-method with the quadratic LDC
using quasi-spherical models by Claret et al. (2012), mainly
for cooler models as seen in their Fig. 6. However, this com-
parison was not performed for the same PHOENIX models:
Claret, Hauschildt, & Witte used the PHOENIX-DRIFT mod-
els for effective temperatures lower than 3000 K, while Es-
pinoza & Jordan adopted the PHOENIX-COND ones (Espinoza,
priv. comm.). This important point was not considered by the
mentioned authors in that comparison. The differences between
PHOENIX-DRIFT and PHOENIX-COND models are large, as
discussed in Claret et al. (Sect. 2). Moreover, the LDC computed
for larger effective temperatures by Claret et al. are also not com-
pletely suitable for direct comparison in Fig. 6 by Espinoza &
Jordan, because they also come from different stellar atmosphere
models from those adopted by these authors.

To try to clarify this point we compute quadratic LDC (Ke-
pler) for PHOENIX-COND models adopting the usual quasi-
spherical (µ > 0.1) and the r-method. This allows us to compare
the LDC varying only the numerical methods for PHOENIX
models while adopting the same input physics. Figure 1 shows
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A. Claret: Limb-darkening coefficients

Fig. 1. Quadratic LDC for PHOENIX-COND models. Quasi-spherical
models are represented by a continuous line and crosses and the r
method by a dashed line and asterisks. The LDC for the PHOENIX-
DRIFT models from Claret et al. (2012) are denoted by a dashed-dotted
line and the symbol x. In the last case and for the sake of clarity, only
models with Teff < 4400 K are shown. The third panel shows the root
square of the merit function χ. All calculations were performed for
log g = 4.5, log[A/H] = 0.0, Vξ = 2 km s−1. Kepler photometric system.
LSM calculations.

such a comparison for the LDC as a function of the effective tem-
perature, where crosses and asterisks represent the calculations
adopting the usual quasi-spherical and r-method, respectively.
The PHOENIX-DRIFT (x) models are also shown for com-
parison. The differences between the LDC for the PHOENIX-
DRIFT and PHOENIX-COND models are very similar and are
of the same order as those found by Espinoza & Jordan in
their Fig. 6. However, the total magnitude of these differences
in this case (log g = 4.5) is not fully assessed due to the dif-
ferent adopted methods (quasi-spherical and r) as Espinoza &
Jordan argued; these differences are mainly related to the com-
parison between two different versions of PHOENIX models.
A direct comparison between the LDC for PHOENIX-COND
models adopting the usual quasi-spherical and r methods shows
that both procedures provide very similar LDC (Fig. 1) present-
ing only small differences in the region 3.43 < log Teff < 3.65.
These differences are probably related in part to the goodness of
the fitting since in this interval the r-method provides the worse
fittings (see third panel).

On the other hand, numerical experiments show that the
goodness of fittings also depends on the local gravity (drop-off),
being in general higher for the usual quasi-spherical method in
the case of large log g. The opposite occurs for the r-method,
at least for Kepler quadratic LDC. For the general case of bi-
parametric laws, the differences between the LDC obtained us-
ing the usual quasi-spherical and r methods increase for small
values of log g; these differences are, however, very small for
main sequence models, that is for log g ≥ 4.0. In the case of
the linear law, the mentioned differences are small and almost
independent of logg. To try to minimize this problem, we rede-
fine a quasi-spherical model as before but instead of considering
the points µ > 0.1 we apply a simple algorithm to the normal-
ized specific intensities to properly consider the exclusion of the
drop-off region. We consider for LDC calculations the µ points
between 1.0 and the point where the normalized intensity decays
to 0.1. This method has the advantage of preserving the original
core points of the PHOENIX models to effects of comparison

Fig. 2. Theoretical linear LDC for ATLAS models (continuous line)
and PHOENIX-COND quasi-spherical ones (dashed line): log g = 4.5,
log[A/H] = 0.0, Vξ = 2 km s−1; TESS photometric system; LSM
calculations.

with the other procedures. This new definition does not affect
seriously the previous LDC calculations, particularly for main
sequence models. Figure 1 confirms this point. Hereafter (in-
cluding Table A.1) the quasi-spherical models refer to the new
definition.

Despite the problems with the comparison of LDC per-
formed by Espinoza & Jordan discussed previously and the
similarities between the results from the new quasi-spherical
and r methods mainly for main sequence models, the LDC for
PHOENIX-DRIFT and PHOENIX-COND models are available
by adopting both methods (Table A.1). We also provide the re-
spective merit function to guide the readers when selecting the
more suitable LDC. The LDC adopting PHOENIX models for
other chemical compositions can be provided to the interested
readers upon request.

4. Discussion of the results

4.1. Limb-darkening

As discussed extensively in the earlier papers on limb-darkening,
the linear law is not a suitable approximation for most of the
specific intensity distributions. This non-linearity is even more
conspicuous in the case of spherical models due to the drop-off
caused by the decreased matter-radiation interaction for µ . 0.1.
Although this law presents this problem, it can still be useful
for comparing models with different geometries and/or input
physics. For example, in Fig. 2 we plot the linear LDC(TESS) for
PHOENIX-COND (quasi-spherical) and ATLAS models, with
log[A/H] = 0.0, Vξ = 2 km s−1 and log g = 4.5. The continuous
line denotes the ATLAS models while the dashed line indicates
the LDC for PHOENIX-COND models. The agreement can be
considered as good, except in the onset of convection, because
both sets of models were computed with different mixing-length
parameters. Also, for lower effective temperatures the agree-
ment is not so good, due to the different input physics for cooler
models.

It is worth noticing the high values of the linear LDC (larger
than 1.0) for the PHOENIX-DRIFT models at lowest effective
temperatures, since it implies a negative relative intensity at the
limb. This is a consequence of the not so good fit provided by
Eq. (1). In Fig. 3 we show the behaviour of a PHOENIX model

A30, page 3 of 6

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629705&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629705&pdf_id=2


A&A 600, A30 (2017)

Fig. 3. Specific intensity distribution for a [1500 K, 4.5] PHOENIX-
DRIFT quasi-spherical symmetric model. Continuous line represents
the model intensities (left label), while the dashed line denotes the de-
viations [model-fit] by adopting Eq. (5) and the dashed-dotted one rep-
resents the deviations by adopting Eq. (1) (right label): log[A/H] = 0.0,
Vξ = 2 km s−1; TESS photometric system; LSM calculations.

Fig. 4. Theoretical linear LDC for ATLAS models. Continuous line de-
notes TESS while dashed line represents the Kepler photometric sys-
tem; log g = 4.5, log[A/H] = 0.0, Vξ = 2 km s−1; LSM calculations.

with Teff = 1500 K, log[A/H] = 0.0, Vξ = 2 km s−1, and
log g = 4.5. The model intensity is represented by a continu-
ous line while the dashed one denotes the deviation of the in-
tensity [model-fitted] using Eq. (5) and the dashed-dotted line
represents the deviation using Eq. (1). As a consequence of this,
we recommend using the approach given by Eq. (5) or at least a
bi-parametric law for the lowest effective temperatures.

A point that can be of special interest for observers is the
behaviour of the LDC for the photometric systems of Kepler
and TESS. Again we use the linear coefficient for the sake of
clarity in the comparison. As the effective wavelengths are very
different (≈630 and ≈800 nm, respectively) the corresponding
LDC follow the general trend with the effective wavelength be-
ing smaller for higher λeff . The differences shown in Fig. 4 could
be detected within the expected accuracy of semi-empirical
LDC. Therefore, it will be very useful in the future if ob-
servers compare their respective semi-empirical LDC obtained
with both instruments for similar target stars. It would also be

Fig. 5. Effects of metallicity and evolutionary status on the theoret-
ical linear LDC for ATLAS models; TESS photometric system. Up-
per panel: continuous line denotes models with log[A/H] = 0.0 while
dashed line indicates log[A/H] = −0.5 and dashed-dotted line those
with log[A/H] = −1.0; log g = 4.5 and Vξ = 2 km s−1 for all mod-
els. Lower panel: continuous line denotes models with log g = 4.5 and
dashed line represents models with log g = 3.0; log [A/H] = 0.0 and
Vξ = 2 km s−1 for all models. LSM calculations for both panels.

very interesting to compare the empirical LDC with those gener-
ated using the two atmospheres’ models adopted here, given that
both cover the spectral range of TESS.

Other points of interest are the metallicity and evolutionary
effects on the LDC. In Fig. 5 we can see a comparison between
models computed with the solar abundance and less metallic
ones (upper panel, log [A/H] = −0.5 and –1.0). The differences
are more pronounced for models located after the onset of con-
vection, that is, for log Teff < 3.9. The influence of the evolu-
tionary status is shown in the lower panel. The corresponding
differences are large for the extreme ranges of effective temper-
atures and could be detected observationally.

4.2. Gravity-darkening

In a binary system the tides tend to elongate the stars along the
line that joins them, while rotation tends to flatten them at the
poles. The deviations from the spherical symmetry can be writ-
ten as a function of the rotational rate and of the mass ratio. In
addition to the geometrical perturbations due to the proximity
effects, there is also an associated thermodynamic change. In
1924, von Zeipel established that the flux distribution in a dis-
torted star is not uniform and is proportional to gβ1 , where g is the
local gravity and β1 is the gravity-darkening exponent (GDE),
usually taken as 1.0 for radiative envelopes. This β1 is valid only
for stars in strict radiative equilibrium and when the diffusion
equation is used as a transfer equation. Recently, Claret (2015,
2016) showed that, under determined physical conditions, the
theorem by von Zeipel is no longer valid.

The GDE is a bolometric quantity but observations are gen-
erally performed in photometric bands. In 1959 Kopal intro-
duced the concept of gravity-darkening coefficients (GDC, y(λ))
which connect both the bolometric and pass-band quantities.
This concept is very useful to compute the light distribution of
distorted configurations. If we expand in a series the ratio be-
tween the monochromatic and total radiation, we obtain the cor-
responding y(λ). For simplicity, it was assumed that the distorted
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Fig. 6. Theoretical gravity-darkening coefficients for TESS, ATLAS
models. The continuous line represents the calculations for log [A/H] =
0.00 and dashed line is for log [A/H] = −2.5, log g = 4.5, log[A/H] =
0.0, Vξ = 2 km s−1.

configurations radiate as a black-body, which is not a good
approximation. Often the following expression by Martynov
(1973) is adopted to compute the GDC:

y(λ,Teff , log [A/H], log g,Vξ) =
1
4

(
∂ln I(λ)
∂ln Teff

)
g

· (6)

In the above equation, λ denotes the wavelength and I the inten-
sity at a given wavelength (or pass-band) at the centre of the stel-
lar disc. This equation was improved later by Claret & Bloemen
(2011) to take into account the term (∂ln I(λ)/∂ln g)Teff

and the
effects of convection on β1. Moreover, instead of the black-body
approach we use the same ATLAS atmosphere models used to
compute the LDC. Therefore, the general equation which will
be adopted here to compute y(λ) is:

y(λ,Teff , log [A/H], log g,Vξ) =(
dln Teff

dln g

) (
∂ln I(λ)
∂ln Teff

)
g

+

(
∂ln I(λ)
∂ln g

)
Teff

· (7)

The effects of the convection on y(λ) are important for cooler
models and (dln Teff/dln g) was computed considering the bolo-
metric GDE previously calculated (see Claret 2004). For the
models located in the main-sequence, the contribution of the par-
tial derivative at constant effective temperature is not important,
but it is not negligible for cool giants stars. Of course, Eq. (7)

reduces to Eq. (6) if β1 = 1.0 and the partial derivative at con-
stant effective temperature are assumed to be zero.

The results for the TESS photometric system are shown in
Fig. 6 for log [A/H] = 0.0 and –2.5. The effects of metallic-
ity on y(λ) are not very large, except for two regions centred in
log Teff = 3.7 and 4.5. The drop-off in y(λ) around log Teff = 3.9
is due to the effects of convection on β1. These computations
supersede the old values of y(λ) based on the black-body ap-
proximation. Due to the narrowness of the basic physics input
(log Teff , log g, log [A/H], Vξ) of the PHOENIX grids, we have
computed y(λ) only for the ATLAS models. However, the calcu-
lations adopting PHOENIX models can be provided to interested
readers upon request. Finally, Table A.1 summarizes the kind of
data available at the Centre de Données Astronomiques de Stras-
bourg (CDS) or directly from the author.
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