Hepatitis C virus (HCV) interacts with cellular components and modulates their activities for its own benefit. These interactions have been postulated as a target for antiviral treatment, and some candidate molecules are currently in clinical trials. The multifunctional cellular kinase Akt/protein kinase B (PKB) must be activated to increase the efficacy of HCV entry but is rapidly inactivated as the viral replication cycle progresses. Viral components have been postulated to be responsible for Akt/PKB inactivation, but the underlying mechanism remained elusive. In this study, we show that HCV polymerase NS5B interacts with Akt/PKB. In the presence of transiently expressed NS5B or in replicon- or virus-infected cells, NS5B changes the cellular localization of Akt/PKB from the cytoplasm to the perinuclear region. Sequestration of Akt/PKB by NS5B could explain its exclusion from its functional cellular kinase Akt/protein kinase B (PKB) family of serine/threonine protein kinases are involved in several signaling pathways that can impact the outcome of viral infections. Akt/PKB resides in the cytosol in an inactive conformation. Initial stimulation of the cell causes activation of a cell surface receptor and subsequently phosphorylation of phosphatidylinositol 3-kinase (PI3K). Activated PI3K is responsible of the phosphatidylinositol(3,4,5)-trisphosphate second messenger. Akt interacts with these phosphoinositides and is recruited to the membrane, where it can be fully activated by PDK1 and other kinases. The Akt/PKB pathway is involved in processes as disparate as nuclear targeting enhanced virus-induced cytopathology with no effect on virus production (8). These multiple effects of Akt/PKB can modulate cap- versus internal ribosome entry site (IRES)-dependent translation as well as infected-cell survival, which may facilitate virus persistence. Thus, not surprisingly, several viral proteins can modulate PI3K/Akt-dependent signaling pathways (9–12).

We are interested in the viral and cellular factors that may modify the replicative fitness of HCV, thereby permitting HCV persistence, a hallmark of the infection by this virus in vivo. No unified picture has been derived from previous descriptions of the interaction of HCV and Akt/PKB-dependent pathways. An early and transient activation of the PI3K/Akt/mTOR pathway by the HCV E2 glycoprotein resulted in enhancement of HCV entry into the cell (13). This activation took place 15 min postinfection (p.i.), but at 24 h p.i. the levels of activated Akt/PKB were no longer significant. Since inactivation of PI3K/Akt required infectious virus, the involvement of HCV gene products in the viral and cellular factors that may modify the replicative fitness of HCV, thereby permitting HCV persistence, a hallmark of the infection by this virus in vivo. No unified picture has been derived from previous descriptions of the interaction of HCV and Akt/PKB-dependent pathways. An early and transient activation of the PI3K/Akt/mTOR pathway by the HCV E2 glycoprotein resulted in enhancement of HCV entry into the cell (13). This activation took place 15 min postinfection (p.i.), but at 24 h p.i. the levels of activated Akt/PKB were no longer significant. Since inactivation of PI3K/Akt required infectious virus, the involvement of HCV gene prod-
ucts in the inactivation was postulated (13). Chemical Akt/PKB inhibition with Akt-II and Akt-V inhibitors as well as genetic inhibition with small interfering RNAs (siRNAs) resulted in a reduction of infectivity (13). Furthermore, such inactivation and the downstream inhibition of the PI3/Akt/mTOR pathway resulted in HCV-induced autophagy (14), which may contribute to membrane rearrangements to accommodate replication complexes (15, 16). Similar results have been recently observed using mTOR inhibitors (17). How the transition of Akt/PKB from an early-activated plasma membrane-bound form to a cytoplasm location takes place is not known.

In the present report, we describe a new functional activity of the HCV polymerase NS5B that consists of interaction with Akt/PKB, resulting in translocation of this key kinase from the cytoplasm to the perinuclear region, where the two proteins colocalize. This Akt/PKB relocalization may be an additional mechanism of temporal modulation of its cytoplasmic activity and recruitment to assist in replicative functions. Akt/PKB relocalization by virtue of its interaction with NS5B could have additional consequences for HCV, from limitation of cell entry to phosphorylation of viral components of the replicative complexes. Several Akt/PKB inhibitors are currently in clinical trials, and this signaling pathway could be also targeted for treatment of HCV infection.

MATERIALS AND METHODS

Reagents, expression plasmids, and inhibitors. Plasmid pDest14-NS5BΔ21-FP encoding HCV NS5B fused to citrine and plasmid pSET-citrine, which encodes citrine, as well as vectors to overexpress Akt/PKB tagged with the hemagglutinin (HA) epitope (pCEL) and NS5B tagged with citrine (pCDNA-Dest40-NS5B-citrine), have been described previously (18, 19). Recombinant Akt/PKB was purchased from Biaffin (Biaffin GmbH & Co), Akt/PKB inhibitor MK2206 from Selleckchem, Lipofectamine 2000 from Invitrogen, and G418 from Lonza. Huh7.5 cells and HCV subgenomic replicon pJ389/NS3-3/LucUb/Neo-ET were kindly provided by R. Bartenschlager (University of Heidelberg, Heidelberg, Germany) (20). The following antibodies were used: anti-HA (BAbCo), anti-green fluorescent protein (anti-GFP; Covance), anti-NS5B (ab55866; Abcam), anti-Akt and anti-p-Akt(S473) (Cell Signaling Technology), and anti-tubulin (Santa Cruz Technology). Alexa Fluor 488- and 546-conjugated antibodies (Invitrogen) were used as fluorescent secondary antibodies.

HCV NS5BΔ21-FP and GFP purification. Point mutants in NS5BΔ21 fused to citrine were generated by site-directed mutagenesis according to the manufacturer’s instructions (QuickChange site-directed mutagenesis; Agilent Technologies). Synthetic oligonucleotides used for point mutant generation are described in Table S1 in the supplemental material, and chromatograms from sequencing results are shown in Fig. S1B in the supplemental material. Wild-type NS5BΔ21 and mutants of NS5BΔ21 fused to citrine as well as recombinant citrine were overexpressed and purified as described previously (19, 21). Briefly, *Escherichia coli* Rosetta cells (Novagen) were transformed with construct pDest14-NS5BΔ21-FP, encoding the NS5B-FP fusion protein, or with pSET-citrine, encoding recombinant citrine protein. Cells expressing the protein of interest were collected, and the protein was purified by affinity chromatography. SDS-PAGE and Coomassie blue staining were performed to evaluate the purification steps. Fractions showing the purest and most concentrated protein were pooled, dialyzed against dialysis buffer (20 mM Tris–HCl [pH 7.0], 1 M NaCl, 10% glycerol), and stored at 4°C. SDS-PAGE and Coomassie blue staining were used to monitor all purification steps. Final purified proteins were quantified by densitometry. Only proteins with at least 95% purity as judged by SDS-PAGE and Coomassie blue staining were used for further experiments.

In vitro kinase assay. HCV NS5B-FP, NS5B-FP point mutants, or citrine protein (1.6 μg) was incubated in hot kinase buffer (20 mM HEPES [pH 7.4], 10 mM MgCl₂, 10 mM MnCl₂, 1 μCi of [γ−32P]ATP, 1 mM dithiothreitol [DTT]) in the presence of 0.5 μg of recombinant Akt/PKB (Biaffin GmbH & Co). The products were separated on an SDS-PAGE gel. After electrophoresis, the gel was dried and radiolabeled products were detected by autoradiography. Alternatively, dried gels were exposed to phosphorimager screens and scanned with Typhoon9600 (Molecular Dynamics).

In vitro RNA-dependent RNA polymerase (RdRP) replication assays. RNA polymerase assays were performed using the symmetric substrate LE-19 (sequence 5′ UGUUAUAAUAAUGUAUAC 3′), which is capable of de novo initiation (DN), primer extension (PE), and template switching (TS) as previously described (19). Except when indicated otherwise, 200 nM NS5B was preincubated for 30 min in a reaction mixture containing 20 mM MOPS (morpholinepropanesulfonic acid) (pH 7.3) and 5 mM MnCl₂ in the presence or absence of Akt (0.5 μg of recombinant Akt/PKB [Biaffin GmbH & Co]), and supplemented or not with ATP (500 μM), as indicated in the figure legend. Reactions were started by adding 500 μM GTP, 100 μM ATP and UTP, and 1 μCi [γ−32P]CTP (3,000 Ci/mmol; PerkinElmer Life Sciences). Reactions were stopped with EDTA/formamide loading buffer at different time points as indicated. Products were separated using denaturing polyacrylamide (23% phosphoacetonic acid [PA], 7 M urea) gel electrophoresis. Gels were exposed to phosphorimager screens and scanned with Typhoon (Molecular Dynamics). Quantification was obtained by running samples on parallel gels and determining band volumes using ImageQuant software (GE Healthcare).

In vitro transcription, electroporation, and colony formation. After digestion with Scal, replica DNA was extracted with phenol–chloroform. In vitro transcription was performed with 1 μg of digested DNA and the Megascript T7 kit (Ambion) according to the manufacturer’s instructions. The RNA obtained was purified with the Megaclear kit (Ambion), quantified, and stored at −80°C until use. Huh7.5 cells were electroporated with transcribed RNA from the replica using the Electrobuffer kit (Cell projects, Iberlabo, Madrid, Spain), in accordance with the manufacturer’s instructions. Briefly, exponentially growing cells were harvested and washed with electroporation medium. Four micrograms of replica RNA and 6 μg of carrier Huh7.5 RNA were mixed with the electroporation medium and added to 4 × 10⁵ cells. The cell suspension was pulsed once with Gene Pulser II settings, 975 μF and 270 V; Bio-Rad). After electroporation, 2 × 10⁵ cells (and 1/10 and 1/20 dilutions) were seeded on petri dishes in Dulbecco’s modified Eagle’s medium (DMEM; Sigma–Aldrich Química, Madrid, Spain) with 10% fetal bovine serum (HyClone, Fisher Scientific, Madrid, Spain), supplemented with 1 M HEPES (Sigma), 1% glutamine, nonessential amino acids, antibiotics (penicillin, streptomycin), and sodium pyruvate. Cells were kept at 5% CO₂ and 37°C. Twenty-four hours later, the DMEM culture medium was replaced with fresh medium containing G418 (Labcinics, del Barcelona, Spain), after which the medium was refreshed twice per week for 2 weeks.

Cell culture virus infection. The origin of the Huh-7.5 cell line, procedures for cell growth in DMEM, the virus used in the experiments rescued from plasmid Jc1FLAG2/p7-nsGluc2A (a chimera of J6 and JFH-1 from genotype 2a), and the procedures used to prepare the initial virus stock HCVp0, to titrate viral infectious particles, and to quantify viral RNA have been previously described (23, 24). To perform infections for immunofluorescence and RNA quantification assays, 1 × 10⁶ Huh7.5 cells were infected with HCVp0 at a multiplicity of infection (MOI) of 0.5% tissue culture infective dose (TCID₅₀)/cell. After 5 h of virus adsorption, supernatants were replaced with fresh medium with or without the inhibitor MK-2206. The infected cells were further incubated at 37°C for 2 h and 43 h. To perform infections with HCVp0 for coimmunoprecipitation assays, 4 × 10⁶ Huh7.5 cells were infected with HCVp0 at an MOI of 0.5 TCID₅₀/cell. After 5 h of virus adsorption, supernatants were replaced with 10 ml of fresh medium. The infected cells were further incu-
bated at 37°C for 72 h. The absence of contamination was checked by maintaining and titrating mock-infected cells and their supernatants in parallel with the infected cultures. No infectivity in the mock-infected cultures was detected in any of the experiments.

Coimmunoprecipitation. HuH7.5 cells from either transfection or infection experiments were collected 48 h posttransfection or postinfection in HNTG lysis buffer (25 mM HEPES [pH 7.5], 0.3 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholic acid, 20 mM B-glycerophosphate) containing protease and phosphatase inhibitors (2 μg/ml leupeptin, 2 μg/ml aprotinin, 1 mM phenylmethylsulfonyl fluoride [PMSF], and 0.1 mM Na3VO4). Cell lysates were centrifuged at 12,000 × g for 1 min at 4°C. Supernatants were recovered, mixed with 1 μg of primary antibody, and incubated for 2 h at 4°C. After this, reaction mixtures were incubated for 3 h with protein G (GammaBind Sepharose; Amersham) and washed once in HNTG lysis buffer. Protein G agarose-bound immune complexes were collected by centrifugation at 12,000 × g for 1 min and washed once with lysis buffer, and proteins were detected by Western blotting.

Western blot analysis. Protein quantification was performed using the bicinchoninic (BCA) protein assay kit (Pierce, Madrid, Spain) according to the manufacturer’s instructions. Samples were separated on 10% SDS-PAGE gels and transferred onto Immobilon-P membranes (Millipore). Membranes were probed with primary antibodies as indicated in the corresponding figures. The proteins were visualized using suitable horseradish peroxidase (HRP)-conjugated secondary antibodies (Santa Cruz Biotechnology). Antibody detection was achieved by enhanced chemiluminescence (Amersham, GE Health Care) in an LAS-3000 system (FujiFilm, Japan). Tubulin was used as a loading control.

FIG 1 (A) Structure of NS5B. HCV replicase NS5B from strain HC-J4 genotype 1b (47) is depicted in ribbons showing the fingers (blue), palm (red), and thumb (green) domains. Sites that can potentially be phosphorylated by Akt/PKB are depicted as yellow spheres. (B) HCV NS5B surface showing the Akt/PKB phosphorylation sites (yellow) as well as loops Δ1 and Δ2. Color codes are as described for panel A. Ser453, Thr53, Thr520, Ser84, Ser506, Ser46, and Ser513 displayed percentages of relative surface accessibility of 14.5%, 21.7%, 24.5%, 36.2%, 39.7%, 43.5%, and 78.9%, respectively. (C) SDS-PAGE (10%) analysis of proteins NS5B, Akt/PKB, NS5B-FP, and citrine. Molar mass markers are depicted on the right. (D) In vitro kinase assay. Reaction products were resolved in a 10% SDS-PAGE gel. Concentration of inhibitor MK-2206 is in nanomolar values. MW, molecular weight (in thousands). (E) In vitro kinase assay products resolved in a 12% SDS-PAGE gel, with the assay performed as described for panel D but using recombinant citrine as the substrate for Akt/PKB. In panels D and E, the presence or absence of the different components of the reactions is shown below the gel. (F) In vitro kinase assay (as described for panel D) using the indicated NS5B-FP point mutants as the substrate. Positions of protein markers are indicated on the left (panels D to F).
Real-time RT-PCR for RNA quantification. Akt/PKB mRNA was quantified by quantitative real-time PCR (qRT-PCR) using an ABIPrism 7500 FAST Sequence detection system (Applied Biosystems). cDNA was amplified using the SYBR1 Green PCR master mix (Applied Biosystems) in the presence of specific oligonucleotides Akt_sense (5′-ACATCTGTCCTGGCACAC-3′; sense orientation) and Akt_antisense (5′-GCCAGTGCTTGTTGCTTG-3′; antisense orientation). The conditions for RT-PCR amplification and RNA quantification were as previously described (25). Primers for qPCR were designed using Primer Express software, which was provided with the 7000 Sequence detection system (Applied Biosystems). Oligonucleotides were purchased from Thermo Scientific (Madrid, Spain). HCV RNA real-time quantitative RT-PCR was carried out using the Light Cycler RNA Master SYBR green I kit (Roche) according to the manufacturer’s instructions. The 5′-untranslated (5′-UTR) noncoding region of the HCV genome was amplified using oligonucleotides HCV-5UTR-F2 (5′-TGAGGAACTACTGTCTTCACGCAGAAAG; sense orientation), and HCV-5UTR-R2 (5′-TGCTCATGGTGCACGGTCTACGAG; antisense orientation). Quantification was performed relative to a standard curve obtained with known amounts of HCV RNA, synthesized by in vitro transcription of plasmid GNN DNA.
The specificity of the qRT-PCRs was monitored by determining the denaturation curves of the amplified DNAs. Negative controls (without template RNA and/or with RNA from mock-infected cells) were run in parallel with each amplification reaction to ascertain the absence of contamination with undesired templates.

Immunofluorescence assays. The immunocytochemistry protocol was the same for transfected and HCVp0-infected Huh7.5 cells. Briefly, at the desired time points, cells situated on coverslips that were previously treated with poly-L-lysine (Sigma) were fixed in 4% paraformaldehyde. De novo RNA synthesis in the presence of active Akt. (A) RNA-dependent RNA polymerase activity (in arbitrary units) using LE19 RNA as a template under different conditions. HCV NS5B was incubated in MOPS (20 mM) buffer and MnCl₂ (5 mM) (black), supplemented with Akt (gray) or Akt plus ATP (white) for 30 min at room temperature. After incubation, the reaction was started by adding nucleotides, LE19 RNA, and α-32P-CTP. Aliquots were stopped at 15 min and 30 min and resolved in denaturing polyacrylamide gels. De novo (DN), primer extension (PE), and template switching (TS) products are indicated. Preincubation conditions as well as the times at which the RNA synthesis reaction was stopped are indicated below the products are indicated. Preincubation conditions as well as the times at which the RNA synthesis reaction was stopped are indicated below the image. (C) In vitro phosphorylation of NS5B by recombinant Akt under the reaction conditions used for panels A and B. NS5B-FP was used instead of NS5B to differentiate between HCV polymerase and Akt, as in Fig. 1. Buffer conditions were the same as those used for RNA synthesis. Positions of protein markers are indicated on the left.

FIG 3 RNA synthesis in the presence of active Akt. (A) RNA-dependent RNA polymerase activity (in arbitrary units) using LE19 RNA as a template under different conditions. HCV NS5B was incubated in MOPS (20 mM) buffer and MnCl₂ (5 mM) (black), supplemented with Akt (gray) or Akt plus ATP (white) for 30 min at room temperature. After incubation, the reaction was started by adding nucleotides, LE19 RNA, and α-32P-CTP. Aliquots were stopped at 15 min and 30 min and resolved in denaturing polyacrylamide gels. De novo (DN), primer extension (PE), and template switching (TS) products are indicated. Preincubation conditions as well as the times at which the RNA synthesis reaction was stopped are indicated below the products are indicated. Preincubation conditions as well as the times at which the RNA synthesis reaction was stopped are indicated below the image. (C) In vitro phosphorylation of NS5B by recombinant Akt under the reaction conditions used for panels A and B. NS5B-FP was used instead of NS5B to differentiate between HCV polymerase and Akt, as in Fig. 1. Buffer conditions were the same as those used for RNA synthesis. Positions of protein markers are indicated on the left.

The specificity of the qRT-PCRs was monitored by determining the denaturation curves of the amplified DNAs. Negative controls (without template RNA and/or with RNA from mock-infected cells) were run in parallel with each amplification reaction to ascertain the absence of contamination with undesired templates.

Immunofluorescence assays. The immunocytochemistry protocol was the same for transfected and HCVp0-infected Huh7.5 cells. Briefly, at the desired time points, cells situated on coverslips that were previously treated with poly-L-lysine (Sigma) were fixed in 4% paraformaldehyde for 10 min, washed in phosphate-buffered saline (PBS), and blocked with 5% bovine serum albumin (BSA; Sigma). Samples were incubated overnight in 0.5% BSA with primary antibodies (1:1,100) in various combinations, as indicated in the corresponding figures. After washing with PBS, samples were incubated with fluorescent secondary antibodies. Nuclei were visualized with 4,6-diamidino-2-phenylindole (DAPI; Invitrogen). Images of the samples were taken using a Zeiss LSM-710 confocal microscope.

Statistical analyses. Statistical comparisons among groups were performed with Student’s t tests. Significant differences (P ≤ 0.05) between data sets are indicated. Those with P values of ≤ 0.01 were considered highly significant.

RESULTS

In vitro phosphorylation of NS5B by Akt/PKB. Akt/PKB phosphorylates Ser and Thr residues within the minimal consensus sequence ArgXArgXX(Ser/Thr)h, where X is any amino acid and h is a bulky hydrophobic amino acid (22, 26). We scanned the HCV polypeptide amino acid sequence using Scansite software (27) and observed an accumulation of exposed putative Akt-driven phosphorylation sites in NS5B (Fig. 1A and B). Relative residue surface accessibility was investigated using the NetSirfP program (28) and the “accessible surface area and accessibility calculation for protein” tool (Center for Informational Biology, Ochanomizu University; http://cib.cf.ocha.ac.jp/bitool/ASA/). Nine NS5B residues were recognized as possible targets of Akt/PKB (Fig. 1A). Amino
mutants lost their ability to be phosphorylated by Akt (Fig. 1F).

To the phosphorylation, proteins have a similar molar mass of about 65 kDa (Fig. 1C). For this reason, NS5B and Akt/PKB self-phosphorylation because the two proteins have a similar molar mass of about 65 kDa (19). The assay revealed phosphorylation of both proteins, but phosphorylation of NS5B-FP was dependent on the presence of Akt/PKB (Fig. 1D). Akt/PKB inhibitor MK-2206 inhibited NS5B phosphorylation in a concentration-dependent manner (Fig. 1D). No phosphorylation of recombinant citrine (27 kDa) (Fig. 1C) by Akt/PKB was observed (Fig. 1E). We concluded that Akt/PKB phosphorylates HCV NS5B in vitro.

Ser or Thr residues at positions 53, 84, 227, and 543 were totally conserved among genotypes 1 to 7 (see Fig. S1A in the supplemental material). Thr at position 389 was almost totally conserved for genotypes 1, 2, 3, and 7, and Ser at position 506 was conserved only for genotype 1 (see Fig. S1A in the supplemental material). These six positions with different levels of conservation among genotypes were mutated to Ala in the context of the NS5B-FP fusion protein (see Fig. S1B in the supplemental material). We also constructed and purified the double mutant T53A/S506A, because both positions are involved in NS5B-NS5B interactions and modifications in their side chains might affect protein-protein contacts (29). The resulting proteins were overexpressed, and purified proteins were subjected to the in vitro kinase assay as described above. None of these mutants lost their ability to be phosphorylated by Akt (Fig. 1F). This result indicates that Akt phosphorylates more than one residue or that Akt phosphorylates NS5B in noncanonical or nonconserved sequences.

Effect of Akt/PKB inhibition on HCV replication. To confirm the implication of Akt/PKB in the replicative cycle of HCV, experiments were performed using our in vivo experimental system (23). Previous studies have established that some Akt/PKB inhibitors such as Akt-II and Akt-V, as well as siRNAs targeting Akt, impair HCV replication (13, 14). MK-2206 is a highly selective inhibitor of Akt currently in clinical trials (https://clinicaltrials.gov). MK-2206 has a 50% inhibitory concentration (IC50) in the low nanomolar range, and it does not show inhibitory activities against 250 other protein kinases. For these reasons and because this inhibitor was not used in HCV propagation experiments before, MK-2206 was tested in HCVp0-infected Huh7.5 cells, as described in Materials and Methods. Viral RNA from MK-2206-treated and untreated cells was quantified at different postinfection time points (Fig. 2). Viral infectivity in the cell culture supernatant showed little variation at 7 h p.i. However, it decreased in an inhibitor dose-dependent manner at 48 h p.i. (Fig. 2A). Intra-cellular viral RNA slightly increased with elevated inhibitor concentrations at 7 h p.i., whereas it remained invariant at 48 h p.i. (Fig. 2B). We compared the values obtained at 48 h and 7 h as a measure of how the infection was being developed in both treated and untreated cells for each experimental condition. Both HCV infectivity and HCV RNA ratios showed statistically significant decreases in an inhibitor dose-dependent manner (Fig. 2C and D). Cellular viability was not significantly altered (Fig. 2E).

Effect of NS5B phosphorylation on polymerase activity. NS5B is phosphorylated by Akt (Fig. 1C and D), and Akt inhibition induced a decrease in HCV infectivity (Fig. 2). To analyze the effect of NS5B phosphorylation on RNA-dependent RNA polymerase activity, HCV NS5B was preincubated at room temperature with recombinant Akt or with Akt in combination with ATP as described in Materials and Methods. After this, the RNA synthesis reaction was started by adding nucleotides and radiolabeled stopp and stopped after 15 or 30 min (Fig. 3A and B). Akt is able to phosphorylate NS5B under these conditions, which suggests that Akt might affect the polymerase activity of NS5B.
conditions (Fig. 3C). The presence of Akt and especially Akt plus ATP inhibited the RNA polymerase activity of NS5B. This effect was strongest upon 30 min of reaction. All reactions carried out by HCV NS5B, that is, de novo initiation (DN), primer extension (PE), and template switching (TS), were affected (Fig. 3A and B). Therefore, the presence of Akt in the reaction mixture, and especially NS5B phosphorylation by Akt, decreased polymerase activity.

Interaction of Akt/PKB with NS5B. Next, we tested a possible in vivo interaction between NS5B and Akt/PKB. A lysate from cells transiently cotransfected with plasmids encoding Akt/PKB (tagged with an HA epitope in the plasmid pcFEL) and NS5B-FP (pcDNA-Dest40-NS5B-citrine) was immunoprecipitated with anti-GFP (to precipitate NS5B-FP) and blotted with anti-HA (to visualize Akt/PKB). A band of a molar mass compatible with Akt/PKB was obtained (Fig. 4A). To confirm this result, cell lysate was immunoprecipitated with anti-NS5B (Fig. 4B). Therefore, NS5B also interacts with Akt/PKB in infected cells.

Next, we examined if the interaction of NS5B with Akt/PKB induced changes in cellular Akt/PKB at the level of mRNA or protein and also in the phosphorylation status of Akt/PKB. Transfection of Huh7.5 cells with a plasmid encoding NS5B-FP (pcDNA-Dest40-NS5B-citrine) did not change Akt/PKB protein levels, Akt/PKB activation, or Akt/PKB mRNA levels (Fig. 5). Thus, NS5B interacts with Akt/PKB without affecting Akt/PKB mRNA or protein.

Intracellular localization of Akt/PKB and NS5B. To identify the intracellular site of the interaction between Akt/PKB and HCV NS5B, Huh7.5 cells were transfected with plasmids encoding Akt/PKB (pcFEL) and NS5B-FP (pcDNA-Dest40-NS5B-citrine), and the expressed proteins were localized by confocal microscopy. In resting, unstimulated Huh7.5 cells, Akt/PKB was uniformly distributed in the cytoplasm, as previously described (30), and the NS5B distribution was perinuclear, also as expected from previous results (31) (Fig. 6A, Akt-HA and NS5B-FP panels). In contrast, in Huh7.5 cells cotransfected with plasmids expressing the two proteins, the subcellular localization of Akt/PKB changed dramatically, and it colocalized with NS5B in the perinuclear region (Fig. 6A). The subcellular Akt/PKB distribution depended on the expression of HCV NS5B (compare solid and dashed arrows), and the perinuclear location was observed in 95% of the analyzed cells ($n = 150$) (Fig. 6B). The same perinuclear colocalization of Akt/PKB and HCV NS5B occurred in Huh7.5 cells stably expressing HCV nonstructural proteins from the pl389/NS3-3’/LucUbino-ET subgenomic replicon (Fig. 7), with perinuclear colocalization in 87% of the analyzed cells ($n = 150$) (Fig. 7B).

To exclude that perinuclear colocalization could be a mere side effect of overexpression of the relevant proteins, immunocytochemistry was performed with Huh7.5 cells either uninfected or infected with HCVp0 (Fig. 8). Uninfected cells showed Akt/PKB homogeneously distributed in the cytoplasm and the absence of NS5B, as expected (Fig. 8A, Akt-C and NS5B-C panels). However, in HCVp0-infected cells Akt/PKB and HCV NS5B colocalized in the perinuclear region (Fig. 8A). Akt/PKB relocalization from the cytoplasm to the perinuclear region was related to expression of NS5B (Fig. 8A, compare solid and dashed arrows). The perinuclear colocalization was observed in 82% of the analyzed cells ($n = 150$) (Fig. 8B). Therefore, the NS5B-Akt/PKB interaction resulted in the subcellular relocalization of Akt/PKB from cytoplasmic to perinuclear regions, independently of the system used for the intracellular expression of these proteins.

DISCUSSION

The results reported here show interaction between the cellular kinase Akt/PKB and NS5B, resulting in colocalization of the
two proteins in the perinuclear region of the infected cell. This places Akt/PKB among other host factors that are relevant for the HCV infection cycle in terms of their interaction with HCV NS5B, for example, the cellular proteins human vesicle-associated membrane-associated protein of 33 kDa (hVAP-33), PRK2, estrogen receptor, and the retinoblastoma tumor suppressor protein (pRb), among others (32–34). Interventions targeting virus-host interactions could be relevant for antiviral drug development.

It has been previously shown that HCV infection inhibits the PI3K/Akt/mTOR pathway and that inhibition of Akt/PKB results in a reduction of HCV replication and a large decrease in the number of HCV-infected cells (13, 14). Our results with the Akt/PKB inhibitor MK-2206 are consistent with these previous observations and show a delay of the infection and a decrease in the amount of progeny virus (Fig. 2C and D). Probably due to differences in the MOI at which the experiments were performed (0.5 in this study, 10 in other studies), the effect was not as pronounced as in previous studies; nevertheless, the inhibition pointed at a possible participation of NS5B in the effect of Akt/PKB. We have also shown that Akt/PKB can phosphorylate in vitro the HCV NS5B protein. In vitro kinase assay results obtained with NS5B carrying point mutations at positions susceptible to be phosphorylated by Akt/PKB have not been conclusive to map phosphorylation sites. However, incubation of NS5B with Akt alone or with Akt plus ATP to carry out NS5B phosphorylation resulted in a pronounced decrease of RNA polymerase activity (Fig. 3). This result is consistent with the increase in the amount of intracellular HCV RNA detected in cells treated with an Akt inhibitor at a short time after infection (7 h p.i.) (Fig. 2). RNA synthesis defects in HCV NS5B mutants that mimic phosphorylation at Ser residues have been previously reported (35). In any case, further experiments with proteins carrying different combinations of mutated residues as well as with deletion mutants should be performed to precisely map the residues that are phosphorylated by Akt/PKB and its subsequent effects on polymerase activity and subcellular localization.

Changes in subcellular protein localization are relevant for regulatory processes. Actually, Akt/PKB can form complexes with other proteins that do not have to be substrates for its kinase activity but rather can act as modulators of Akt/PKB biological activity and function (36, 37). Our results show for the first time that HCV NS5B interacts with Akt/PKB (Fig. 4; see also Fig. S2 in the supplemental material). Moreover, Akt/PKB is relocated to the perinuclear region of infected cells, where it colocalizes with...
NS5B (Fig. 6 to 8), suggesting a possible function of Akt/PKB in the replication complex (15, 38–40). HCV NS5A is a component of the HCV replication complexes and is phosphorylated and hyperphosphorylated by cellular kinases, including Akt/PKB (12) and casein kinase Iα (41). Analogous to our observations, there is evidence that simian virus 40 (SV40) T antigen may contribute to a change in the subcellular localization of Akt/PKB from the nucleus to the cytoplasm, as judged from a comparison of the intracellular location of Akt/PKB in transformed and nontransformed HEK-293 cells (42).

Akt/PKB activation in Huh7.5 cells occurs at the cytosolic face of the plasma membrane where activators (PI3P) and kinases (PDK1 and mTORC2) are located (Fig. 9A). Transient, E2 glycoprotein-mediated Akt/PKB activation has been previously related to HCV entry into the cell (13). Related to viral entry, some authors have described a superinfection exclusion mechanism by which cells currently infected with HCV are resistant to a secondary infection with the same or a closely related virus (43–45). These authors suggest that the first virus prevents secondary infections because it sequesters a limiting host factor (44, 45). Our results suggest that HCV NS5B might be the HCV protein that mediates Akt/PKB relocalization to fulfill a function in the replication complexes. Relocalization of Akt/PKB by HCV NS5B might also prevent further Akt/PKB activation in the plasma membrane governed by the E2 glycoprotein from new virions. In any case, further experiments are needed to resolve the possible role played by Akt/PKB and HCV NS5B in the superinfection exclusion process seen for HCV as well as to map the NS5B and Akt/PKB contact surface.

Based on our results, we propose a model (Fig. 9B) in which the E2 glycoprotein activates Akt/PKB, allowing HCV entry (13, 14) and, following virus uncoating and translation, viral polymerase NS5B sequesters and relocates Akt/PKB to the perinuclear region (this study), where interactions with other HCV proteins (such as NS5A) can occur. This relocalization might affect entry of new HCV particles into the cell (superinfection exclusion) as well as Akt/PKB signaling.

FIG 9 (A) Model of Akt activation. Upon interaction of some cellular receptors with specific ligands, the phosphatidylinositol 4,5 bisphosphate 3 kinase (PI3K) synthesizes phosphatidylinositol 3-phosphate (PIP3), which in turn binds Akt/PKB to relocate it to the plasma membrane. At this location, Akt/PKB is phosphorylated by phosphoinositide-dependent kinase 1 (PDK1) and the mammalian target of rapamycin complex 2 (mTORC2) to become activated. Activated Akt/PKB can activate or deactivate its myriad substrates with effects on protein synthesis, cell survival and proliferation, and glucose metabolism among others (4). (B) Effects of HCV infection on Akt/PKB. Upon interaction of the HCV E2 surface glycoprotein with specific receptors (including CD81 and Claudin-1), Akt/PKB is activated, promoting HCV entry into the cell. Once HCV uncoats and translates its positive RNA genome, viral proteins are produced, including the viral polymerase (NS5B). HCV NS5B interacts with Akt/PKB, inducing its subcellular relocalization to the perinuclear region (this study), where interactions with other HCV proteins (such as NS5A) can occur. This relocalization might affect entry of new HCV particles into the cell (superinfection exclusion) as well as Akt/PKB signaling.

Valero et al.

3548 aac.asm.org June 2016 Volume 60 Number 6 Antimicrobial Agents and Chemotherapy
mTOR pathway during the HCV life cycle (Fig. 8B). A deeper knowledge of the NSS5-Akt/PKB molecular interaction could be used to design small-molecule inhibitors directed to interfere with this critical connection, by analogy to the proposed new Bcl-2 inhibitors for cancer treatment (46). Furthermore, Akt/PKB inhibitors currently undergoing clinical trials could be useful for HCV infection treatment, as it has been recently showed for those inhibiting mTORC1 (17). Taken together, these results highlight the importance of the PI3K/Akt/mTOR pathway in HCV infection.

ACKNOWLEDGMENTS

The Huh7.5 cell line and plasmid pL389:NS3-3’/LucUbiNeo-ET were kindly supplied by R. Bartenschlager (University of Heidelberg). Sandra Franco is acknowledged for her help with replicon experiments. Piet de Groot is acknowledged for critical reading of the manuscript.

FUNDING INFORMATION

This work was supported by grants of the European Research Council (ERC-2011-SG-281191-VIRMLT to Antonio Mas), the Ministerio de Ciencia e Innovación (BFU2010-18767 to Antonio Mas, BFU2011-23604 to Esteban Domingo, and SAF2012-30862 and SAF2015-62215-R to Ricardo Sánchez-Prieto), and the Consejería de Educación de Castilla-La Mancha (PPPI10-0243-6857 to Antonio Mas, and PPPI10-0141-0404 to Ricardo Sánchez-Prieto). Fundación Leticia Castillejo is also acknowledged. Work at CBMSO was supported also by [Fundación name]. CIBERehd is funded by Instituto de Salud Carlos III. Celia Perales is supported by the Miguel Servet program (Instituto de Salud Carlos III). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

Downloaded from aac.asm.org on July 1, 2016 by Red de Bibliotecas del CSIC

