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ABSTRACT   

Supercritical extracts of marigold (ME) were produced and characterized. The bioaccessibility of 1 

terpenes, especially that of pentacyclic triterpenes (PT), the particle-size distribution and 2 

antioxidant activity after the in vitro co-digestion of ME with olive oil (OO), were determined. ME 3 

produced without co-solvent was richer in taraxasterol, lupeol, α-amyrin and β-amyrin than extracts 4 

with co-solvent. All terpenes showed high bioaccessibility without OO (>75%). Significant 5 

correlations were found between the molecular properties of compounds (logP and number of 6 

rotatable bonds) and their bioaccessibility. Co-digestion with OO enhanced the bioaccessibility 7 

(around 100% for PT), which could be related to a higher abundance of low-size particles of the 8 

digestion medium. The antioxidant activity of the digested ME increased around 50%, regardless of 9 

OO. PT-rich extracts from marigold display high bioaccessibility and improved antioxidant activity 10 

after in vitro digestion, although complete bioaccessibility of PT can be reached by co-digestion 11 

with oil, without affecting antioxidant activity. 12 

 13 

Keywords: Calendula officinalis, pentacyclic triterpenes, bioaccessibility, lipid digestion, excipient 14 

foods 15 

16 
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INTRODUCTION 17 

Calendula officinalis L. (common name marigold) belongs to the order of Asterales and is a 18 

member of the family Asteraceae. This herbaceous plant, native of the Mediterranean climate areas, 19 

is traditionally cultivated in several countries for ornamental, medical and cosmetic purposes.  20 

Although it is not extensively known, some edible uses have been described for flowers and leaves. 21 

The fresh petals can be chopped and added to salads, curry or custard. The dried petals have a more 22 

intense flavor and are used as seasoning in soups, cakes, drinks and baked products. A tea can be 23 

prepared from the flowers and petals, and the leaves can be also eaten raw in salads.1–3 24 

The traditional medicinal use of the marigold is related to its great variety of phytochemicals of 25 

bioactive interest, such as terpenoids, sterols, saponins, carotenoids and phenolic compounds, 26 

mainly in flower extracts. Due to this complex composition, the extracts of marigold have been 27 

related to activities such as antioxidant, antiinflammatory, immunostimulant, anticancer, 28 

hepatoprotective, antimicrobial and wound healing.1–4 The triterpenoids as pentacyclic triterpenes 29 

(PT) have been described as one of the main responsible for the biological activities of marigold, 30 

especially as anti-inflammatory.4 The typical PT of the marigold are monohydroxy alcohols (α-31 

amyrin, β-amyrin, taraxasterol and lupeol), and dihydroxyalcohols (faradiol, arnidiol, brein or 32 

calenduladiol).  33 

Taking into account the biological interest of all these compounds, the production of extracts of 34 

marigold rich in these bioactive compounds is of current interest. Within the most popular methods 35 

for production of plant extracts, the green technology of supercritical fluid extraction (SFE) is quite 36 

popular nowadays, with special use in the extraction of compounds with low polarity that are 37 

soluble in supercritical CO2, such as the PT. The supercritical CO2 extraction assisted by co-solvents 38 

such as ethanol may also enhance the yield of extraction. In the specific case of marigold, diverse 39 

studies have reported the use of SFE,5–7 but the use of co-solvents has been scarcely explored.7 40 

Furthermore, many of them have been focused in the extraction and characterization of the essential 41 

oil rich in sesquiterpenes,8–10 although the content in PT is not always reported. 42 
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It is important to remark that most of the described bioactive compounds of marigold are 43 

compounds of a typical low polarity and high hydrophobicity, which leads to a limitation in their 44 

potential use and bioactivity. However, it seems that the available information on the behavior of 45 

PT during the gastrointestinal process, bioaccessibility and bioavalability is still scarce and 46 

contradictory. It has been suggested that the bioavailability of PT is poor due to a difficult 47 

solubilization in the aqueous media of the gastrointestinal tract, necessary for a proper absorption.11 48 

However, other studies reported that some PT of fruits and plants were effectively absorbed and 49 

deposited in their intact forms in diverse tissues in mice.12 In the specific case of the typical PT of 50 

marigold, some studies have described that lupeol is bioavailable,13 whereas other studies have 51 

suggested the opposite.14,15 Ching, Lin, Tan & Koh16 also described a low bioavailability of the 52 

amyrin in mice, whereas diverse studies have shown that this compound is orally effective, which 53 

would not be in agreement with a poor bioavailability.11,17 Concerning other PT from the marigold, 54 

such as taraxasterol or faradiol, a lack of information on bioavalability has been found.  55 

One of the factors that might be related to these inconclusive results could be the variability on the 56 

composition of the digestion medium. In this respect, for most lipophilic compounds, it has been 57 

demonstrated that their bioaccessibility can be improved by the coexistence of other lipids in the 58 

intestinal tract.18 This is because the lipid digestion leads to the release of fatty acids and 59 

monoglycerides that enhance the formation of micellar structures with bile salts and phospholipids. 60 

These micelles will include other hydrophobic compounds present in the medium and in turn, the 61 

dispersion and absorption of the compounds vehiculized by these micellar structures. In fact, this is 62 

one of the fundamentals of current interest in the development of lipid-based delivery systems or 63 

the recent term “excipient foods” (a food that increases the bioavailability of bioactive agents that 64 

are co-ingested with it), for the improvement in the bioactivity of compounds for food and 65 

nutraceuticals.19,20 On the other hand, the association of bioactive compounds with lipid 66 

components has been suggested as a strategy with other advantages of interest, such as the 67 

protection of labile compounds against the conditions of the gastrointestinal tract.21,22 68 
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The aim of the present study was the production of a supercritical extract of Calendula officinalis, 69 

in absence and presence of co-solvent, and the characterization on their terpene composition. The 70 

subsequent in vitro gastrointestinal digestion of the extract was performed, both in absence and in 71 

co-existence with olive oil, in order to evaluate the bioaccessibility and the distribution of particle 72 

sizes of the digestion medium. Furthermore, the impact of the gastrointestinal digestion process on 73 

the antioxidant activity of the extract was also evaluated. 74 

 75 

MATERIALS AND METHODS 76 

Reagents and Materials 77 

Dry Calendula officinalis flowers were purchased from a local herbalist supplier (Murcia, Spain). 78 

The flowers were ground (particle size smaller than 500 µm) in a knife mill (Grindomix GM200 79 

RETSCH). Extra virgin olive oil was purchased from a local supermarket.  80 

Thymol, β-caryophillene, valencene, cedrol, β-sitosterol, tocopherol and alkane mixture (C7-C30) 81 

were from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). The standard α-amyrin was from 82 

Extrasynthese (Genay, France).  83 

Trizma, maleic acid, Amano lipase A from Aspergillus niger, pepsin, pancreatin from porcine 84 

pancreas, bile salts, phosphatidyl choline from egg yolk and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) 85 

were from Sigma-Aldrich Chemie GmbH (Steinheim, Germany).  86 

 87 

Supercritical extraction method 88 

Extractions were carried out in a pilot-scale supercritical fluid extractor (Thar Technology, 89 

Pittsburgh, PA, USA, model SF2000) comprising a 2 L cylindrical extraction cell and two different 90 

separators (S1 and S2), each of 0.5 L capacity, with control of temperature and pressure. The 91 

extraction cell was loaded with 400 g of the milled marigold and the CO2 flow rate was set to 70 92 

g/min. The extractions were carried out using pure CO2 or CO2 with ethanol as cosolvent (10% p/p). 93 

The extraction pressure and temperature were selected at 140 bar and 40 ºC and were kept constant 94 
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for all experimental assays. The separator conditions were 40 bar and 40 ºC. The total time 95 

extraction was 180 min. Samples were stored at -20 ºC until analysis.  96 

 97 

Analysis of terpene compounds of the extracts 98 

Samples were prepared at 15 mg/mL in chloroform:methanol (2:1, v/v) and were analyzed in an 99 

Agilent 7890A system (Agilent Technologies, Santa Clara, CA, USA) comprising a split/splitless 100 

injector, an electronic pressure control, a G4513A auto-injector and a 5975C triple-axis mass 101 

spectrometer detector. The column used was an Agilent HP-5MS capillary column (30 m × 0.25 102 

mm i.d., 0.25 µm phase thickness). Helium was used as carrier gas at 2 mL/min. The injector 103 

temperature was 260 °C and the mass spectrometer ion source and interface temperatures were 230 104 

and 280 °C, respectively. The sample injections (1 µL) were performed in splitless mode. The 105 

separation method of Crabas et al.8 was used with slight modifications. The oven temperature was 106 

initially at 60 °C and increased to 250 ºC at 4 ºC/min, followed by an increase to 310 °C at 3 107 

°C/min, and held for 5 min. The mass spectra were obtained by electronic impact at 70 eV. The 108 

scan rate was 1.6 scan/s at a mass range of 30-700 amu. Identification of compounds was performed 109 

by the NIST MS Data library, the retention indexes of the compounds, the mass spectra according 110 

to literature, or according to those of pure commercial compounds whenever possible. Quantitation 111 

of compounds was performed by calibration curves obtained from commercial standards whenever 112 

possible: thymol was used for monoterpenes, caryophillene and valencene were used for 113 

hydrogenated sesquiterpenes, cedrol was used for oxygenated sesquiterpenes, sitosterol was used 114 

for phytosterols, α-amyrin was used for PT, and tocopherol was quantitated by its own commercial 115 

standard. Other compounds such as alkanes were also quantitated by their own commercial 116 

compounds.      117 

 118 

In vitro gastrointestinal digestion 119 
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The in vitro digestion model was based on Martin, Moran-Valero, Vázquez, Reglero & Torres23 120 

with brief modifications and the inclusion of a gastric phase. For gastric digestion, 30 mg of 121 

marigold extract (ME) and 10 mg of lecithin were mixed with 14 mL of a gastric solution (150 mM 122 

NaCl, 6 mM CaCl2, pH 4.5). In case of the coexistence of dietary lipids, olive oil (OO) was added at 123 

a ratio of ME to oil of 1:2 (w/w). The mixture was placed in an orbital incubator at 200 rpm and 37 124 

ºC. After 2 min of agitation to allow the dispersion of the components, the gastric digestion was 125 

initiated by the addition of a fresh extract of gastric enzymes (170 mg of gastric lipase and 15 mg of 126 

pepsin in 3 mL of gastric solution and stirred for 10 min). Reaction was continued during 45 min.  127 

For intestinal digestion, a solution to simulate biliary secretion was prepared by mixing 0.1 g of 128 

lecithin, 0.25 g of bile salts, 0.5 mL of 325 mM CaCl2 solution, 1.5 mL of 3.25 mM NaCl solution, 129 

and 10 mL of Trizma-maleate buffer 100 mM pH 7.5. This mixture was homogenized for 1 min at 130 

3500 rpm (Ultra-Turrax IKA T18). Then, the biliary secretion was added to the gastric digestion 131 

and shaken in the orbital incubator for 2 min at 200 rpm and 37 ºC. The simulation of intestinal 132 

digestion was started by the addition of fresh pancreatin extract (0.5 g of pancreatin in 3 mL of 133 

Trizma-maleate buffer, stirred for 10 min and centrifuged at 1600 x g for 15 min). Reaction was 134 

continued during 60 min. The in vitro digestion of each sample was performed at least in triplicate. 135 

 136 

Determination of bioaccessibility 137 

At the end of digestion the medium was submitted to centrifugation at 4000 rpm for 40 min (5810R 138 

Eppendorf Iberica, Madrid, Spain). After centrifugation, an upper aqueous phase and a minor 139 

precipitated phase were obtained. The aqueous phase was filtered in order to isolate the aqueous 140 

solution containing the micellar structures (micellar phase, MP) from visible and non-solubilized 141 

particles of the ME. The components of the ME included in the MP were extracted and analyzed by 142 

GC-MS following the same procedure previously described. 143 

The bioaccessibility of each compound was determined as the fraction of each compound that was 144 

considered available for intestinal absorption, that is, included within the aqueous MP, as: 145 
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% bioaccessibility = (mg of compound in MP/mg of compound in digestion media) x 100 146 

 147 

Extraction of compounds from the digestion media 148 

At the end of digestion or after isolation of the MP, the components of the ME were extracted with 149 

hexane:methyl tert-butyl ether (50:50, v/v) at a ratio of 3:1 (v/v) of solvent to sample. The mixture 150 

was stirred for 1 min and centrifuged for 10 min at 4000 rpm (ScanSpeed mini, Micro Centrifuge). 151 

A second extraction was performed whith chloroform:methanol (2:1, v/v) at a ratio 3:1 (v/v) of 152 

solvent to sample. The two organic phases obtained were mixed and the solvent was removed by 153 

rotary evaporator. The obtained extract was solubilized in chloroform:methanol (2:1, v/v) at 15 154 

mg/mL and analyzed by GC-MS following the same procedure previously described. 155 

 156 

Particle size distribution after in vitro digestion 157 

The particles size distribution of the isolated MP from the in vitro digestion of ME in absence and 158 

presence of OO was measured. Furthermore, the particles size distribution was also determined for 159 

two control samples: 1) the MP isolated after in vitro digestion in absence of ME and in absence of 160 

OO, and 2) the MP isolated after in vitro digestion in absence of ME and in presence of OO. By this 161 

procedure, it was possible to determine the particles size distribution of the digestion medium itself, 162 

in order to distinguish the differences due to the presence of the experimental components.  163 

The particle size distributions were analyzed by mean of laser diffraction technique. A Mastersizer 164 

2000 instrument (Malvern Instruments Ltd., Malvern, Worcestershire, UK), equipped with a 165 

dispersion unit of solid particles in liquids (Hydro 2000MU) working at 2000 rpm, was used. 166 

Trizma-maleate buffer 100 mM pH 7.5 was used as dispersant. Assuming a volume distribution, the 167 

largest particle size D90 and the volume mean diameter D43 were the reported parameters. Analyses 168 

were performed in quintuplicate. 169 

 170 

Antioxidant activity of compounds by DPPH assay during in vitro digestion 171 
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The antioxidant activity of the digestion media was measured before in vitro digestion and after 172 

gastric and intestinal digestion by the DPPH test. The procedure of Martin, Moran-Valero, Casado, 173 

Reglero & Torres24 was used with brief modifications. The digestion medium was diluted in 174 

methanol:chloroform (5:1 v/v) up to 0.8 mg of ME/mL. An aliquot (500 µL) was added to 1500 µL 175 

of DPPH in methanol (0.06 mM). Samples were centrifuged at 12000 rpm for 5 min (miniSpin plus, 176 

Eppendorf). Then, reaction was completed after 60 min at room temperature and darkness, and 177 

absorbance was measured at 517 nm. Control experiments of the digestion medium in absence of 178 

the tested compounds (ME and OO) were also performed following the same procedure. The 179 

remaining DPPH concentration in the reaction medium was estimated by proper calibration curves 180 

of DPPH.   181 

Antioxidant activity was expressed as percentage of inhibition of DPPH as: 182 

% inhibition DPPH = 100 – [(µg DPPH/mLsample / µg DPPH/mLcontrol) x 100] 183 

 184 

Statistical analysis 185 

Statistical analyses were performed by means of the general linear model procedure of the SPSS 186 

17.0 statistical package (SPSS Inc., Chicago, IL, USA) by one-way analysis of variance. 187 

Differences were considered significant at p≤0.05. Post-hoc Tukey’s tests were performed in order 188 

to establish significant differences. Pearson’s correlation tests were used to study the 189 

bioaccessibility of compounds as related to their molecular properties. 190 

 191 

RESULTS AND DISCUSSION 192 

Characterization of supercritical extracts of Calendula officinalis 193 

The presence or absence of co-solvent in the supercritical extraction of Calendula officinalis led to 194 

some differences regarding yield and composition of the extract. The extraction yield of ME by CO2 195 

in absence of co-solvent was 2.1%, whereas that value was up to 7.5% in case of ethanol-CO2 196 

extraction. The identified compounds of both extracts are detailed in Table 1. More than 94% of the 197 
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volatile compounds were identified for both extracts. According to the area percentage, the major 198 

abundance corresponded to alkanes (HC), followed by sesquiterpenes (S) and oxygenated 199 

triterpenes (OT), in case of extraction without co-solvent. In case of ethanol-CO2 extraction, a slight 200 

qualitative difference was found, mainly due to a lower proportion of HC and a higher proportion of 201 

OT. However, the major difference due to co-solvent was that the chromatographic areas for all the 202 

compounds were lower than the CO2 extraction without co-solvent (Table 1). Taking into account 203 

the higher yield of the ethanol-CO2 extraction, this result would suggest that the detected 204 

compounds could be diluted with other extracted compounds but non-detected by GC-MS under the 205 

used conditions.  206 

In any case, the general composition of both ME was in agreement with previous similar studies 207 

about supercritical extracts from this plant. Thus, α-cadinol, τ-cadinol, ɣ-cadinene and δ-cadinene 208 

are typical volatile compounds described for marigold.8,10,25 Furthermore, in the current study, the 209 

main detected PT were taraxasterol, lupeol, α-amyrin and β-amyrin, as well as diverse non-210 

identified sterols. The identification of PT from supercritical extracts of marigold has not been 211 

usually described in most previous studies, but most of them were focused on the typical terpenes of 212 

the essential oil of the extracts. 213 

It is important to remark that the relative abundances of the compounds in Table 1 cannot be 214 

considered to determine the major compounds of the extracts, due to their differences on 215 

chromatographic responses. Therefore, taking into account the importance of characterizing the 216 

extract due to its bioactive compounds of interest, especially PT, a proper quantitation as possible 217 

was performed for some of the compounds with the available commercial standards. As shown in 218 

Table 2, in absence of co-solvent, close to 15% of the chemical composition of the extract was 219 

quantitated, being the OT the most abundant family of compounds. In the specific case of bioactive 220 

PT (taraxasterol, lupeol, α-amyrin and β-amyrin), these compounds were close to 3% of the extract. 221 

Furthermore, up to 5% of the extract was also quantitated as non-identified sterols.    222 
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Regarding the ethanol-CO2 extract, due to the dilution effect with other extracted but non-identified 223 

compounds, the total amount of quantitated compounds by GC-MS was lower than 5%, but 224 

similarly to the CO2 extract, the major compounds were the OT (4%) and the bioactive PT were 225 

around 1.5% (Table 2).  226 

As summary, both supercritical ME might be considered of interest due to their content on bioactive 227 

PT, although the extraction of marigold in absence of co-solvent resulted in the preferred procedure. 228 

Therefore, taking into account the interest of the bioactive PT, the following studies were performed 229 

with the ME produced in absence of co-solvent. 230 

 231 

Bioaccessibility of supercritical extract of Calendula officinalis 232 

After in vitro digestion of the ME, the bioaccessibility of the major quantitated compounds of the 233 

extract was determined. Due to the complex composition of the extract, as well as the increased 234 

complexity of the chromatographic analyses due to the co-elution of other compounds from the 235 

digestion medium itself, a selection of compounds for the study of bioaccessibility was performed. 236 

Such selection was based on the preferential characterization of the bioactive compounds of interest 237 

(PT), as well as the consideration of other representative compounds of each chemical family of the 238 

extract (SH, OS and HC) that were present in the extract at concentration ≥ 0.1% at least. The 239 

selected compounds and their values of bioaccessibility are shown in Table 3. 240 

According to Table 3, the bioaccessible fraction of the compounds was quite variable, since 241 

percentages higher than 80% were found for some compounds, whereas other compounds showed 242 

values lower than 50%. In general, it seemed that the bioaccessibility of the family of compounds 243 

decreased in the following order: SH (84%) > OS (81%) > OT (77%) > HC (42%). Thus, it could be 244 

considered that most terpenes, included the PT, showed a high bioaccessibility, since more than 245 

75% of the amount of terpenes were found within the bioaccessible MP, including the bioactive PT 246 

(Table 3). The available information about the bioaccessibility of terpenes in general is scarce, and 247 

bioaccessibility values of PT in particular has not been found in the scientific literature, whereas 248 
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contradictory results have been reported about the bioavalability of compounds such as lupeol or 249 

amyrins.11, 13–17 According to the obtained results, the present study showed that the studied PT of a 250 

supercritical extract of ME might have high bioaccessibility.    251 

Diverse reasons might be considered to explain the observed results. In general, the bioaccessibility 252 

of compounds in the aqueous medium of the intestinal lumen is determined by their solubility. 26,27  253 

This solubility is not a problem for those compounds with a good hydrosolubility or 254 

hydrophilic/lipophilic balance that ensure its dispersion in the medium, either directly, or indirectly, 255 

by inclusion in vesicles, emulsion droplets, lamellar or micellar structures of bile salts and 256 

phospholipids naturally present in the intestinal tract.  In fact, absorption of lipophilic products 257 

takes place supported by these structures of the MP, which enhances the transport of such products 258 

to enterocytes through the unstirred water layer close to the microvillous membrane, where they are 259 

absorbed.26,27 According to this theory, most of terpenes might show a proper dispersion in the 260 

aqueous media after in vitro digestion. On the contrary, alkanes might not be so effectively 261 

dispersed within the medium and hence their lower bioaccessibility.  262 

In order to understand whether the obtained results were related to the lipophilicity of the 263 

compounds, the logP value of each individual substance listed in Figure 1 was considered (Food 264 

Database FooDB, www.foodb.ca). As it is illustrated in Figure 1, a negative correlation was found 265 

between the logP value of the compounds and their bioaccessibility (r = -0.771, P < 0.001). 266 

Therefore, the higher lipophilicity of the compounds, the worse the bioaccessibility is. Thus, logP 267 

values lower than 8 might be preferred for a high bioaccessibility (closer to 80%). All PT identified 268 

in ME showed logP values around 6.    269 

Another molecular property that has been popularly related to the bioavailability of drugs is the 270 

molecular flexibility, due to the number of rotatable bonds (NRB) described by Veber, Johnson, 271 

Cheng, Smith, Ward & Kopple28. A low NRB value has been suggested as one strong criterion for 272 

drug candidates with proper bioavailability, although the exact reason for such relation has not been 273 

established. According to Figure 2, a strong negative correlation was found between the NRB value 274 
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of the studied compounds (Molinspiration Cheminformatics, Bratislava, Slovak Republic) and their 275 

bioaccessibility (r = -0.860, P < 0.001). Therefore, the higher the molecular flexibility, the worse 276 

the bioaccessibility is. Thus, NRB values of 0 or 1 might be desirable for a high bioaccessibility of 277 

the studied compounds. This was considered an interesting result, since previous information on the 278 

relation between the molecular flexibility and bioaccessibility of compounds has not been 279 

described, but only the relation of NRB with bioavailability.  280 

Therefore, according to the obtained results, the compounds of bioactive interest of the ME showed 281 

high bioaccessibilities that might be related to their favorable molecular properties. At any case, 282 

further studies at this respect would be necessary in order to understand whether such proper 283 

bioaccessibility might lead to a positive bioavailability and bioactivity.  284 

 285 

Bioaccessibility of Calendula officinalis supercritical extract co-digested with olive oil 286 

Despite that the studied compounds showed a proper bioaccessibility, it was considered interesting 287 

the study of the role of the coexistence of lipids (olive oil, OO) during the digestion process in order 288 

to evaluate whether it would be possible to reach a complete bioaccessibility of the bioactive 289 

compounds of interest. Preliminary studies were performed in order to find the best ratio ME to oil 290 

that allowed the best bioaccessibility for most compounds (data not shown). This ratio was 291 

established as 1:2 (w/w) and the corresponding results are shown in Figure 3. In general, a higher 292 

bioaccessibility due to the OO factor was found (P<0.001). The different chemical families 293 

increased around 20% their bioaccessibility, and most compounds of interest reached values of 294 

bioaccessibility closer to 100%.  295 

During lipid digestion, the major hydrolysis products as fatty acids and monoglycerides are 296 

released. These compounds lead to the formation of micellar structures with bile salts and 297 

phospholipids, which is necessary for the proper absorption of fats by enterocytes. 27 This increase 298 

in the micellar surface compared to the absence of oil increases the available structures for inclusion 299 

of other hydrophobic compounds present in the aqueous media and hence, their bioaccessibility is 300 
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enhanced.18-20 This mechanism would be related to the results obtained in the present study. 301 

Therefore, the current study showed that despite the bioaccessibility of bioactive compounds such 302 

as PT from a supercritical extract of marigold was high; the co-digestion with particularly low 303 

levels of a typical dietary fat would be enough to reach a complete bioaccessibility of such 304 

compounds. In this respect, according to the term of “excipient food” recently described by 305 

McClements et al.,19 as a food that increases the bioavailability of bioactive agents that are co-306 

ingested with it, olive oil might be a potential candidate as “excipient food” to enhance the 307 

bioaccessibility of compounds of ME in general, and of bioactive PT in particular. As far as we 308 

know, previous studies about the effect of coexistence of oils on the gastrointestinal digestion 309 

behavior and bioaccessibility of PT have not been described in the scientific literature.  310 

 311 

Particle size distribution after in vitro digestion 312 

The particle size distribution of the isolated MP was characterized in order to deepen the 313 

understanding of the hypothesis that a better bioaccessibility of the compounds was due to an 314 

enhanced dispersion by digested lipids. Previously, we considered necessary to understand the 315 

typical particles size distribution of the own MP in absence of any of the experimental compounds, 316 

that is, in absence of ME and OO. As shown in Figure 4.a, there were two major peaks, one in the 317 

range of 0.2 µm, and a second one in the range of 1 µm. Furthermore, another abundant volume of 318 

particles was found within a wide range of sizes between 4 and 240 µm. This distribution led to a 319 

MP characterized by particles most of them lower than 25 µm (D90) and a volume mean diameter 320 

around 11 µm (D43). It is complicated to determine the precise components of the medium 321 

responsible of such distribution, but it might probably be related to the particles formed by 322 

phospholipids, bile salts, either individually or in combination as micelles or vesicles.29 323 

When OO was digested, the particle size distribution of the MP changed (Figure 4.b). The typical 324 

modes at 0.2 and 1 µm were also present, but the area of the mode at 0.2 µm was higher, whereas 325 

the modes at 1 and 4-240 µm were much lower. Thus, the MP was characterized by particles most 326 
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of them lower than 2 µm (D90) and a volume mean diameter around 7 µm (D43). The obtained 327 

results would suggest that the hydrolysis products of OO, mainly fatty acids and monoglycerides, 328 

contributed to an increase in the number of particles of lower size within the MP. These observed 329 

results were quite useful since they could confirm that the in vitro digestion model led to a 330 

physiological and favorable situation to enhance the dispersion of other lipophilic compounds in the 331 

aqueous media.  332 

When the ME was digested in absence of OO, the typical modes of the medium at 0.2 and 1 µm 333 

were present again; however, a relevant decrease was produced at the expense of an increase in the 334 

abundance of bigger particles (Figure 4.c). In fact, three new modes of particles appeared in the 335 

range of 6 µm, 65 µm and 500 µm. Thus, in presence of ME, the MP was characterized by bigger 336 

particles, because the 10% of particles were even higher than 190 µm (D90) and the volume mean 337 

diameter was around 47 µm (D43). This distribution was quite different compared to the control 338 

samples (Figure 4.a and 4.b). Therefore, it could be thought that the obtained results might be 339 

mainly related to particles of the ME dispersed in the aqueous media, either in isolation or by 340 

interacting with components of the medium.  341 

When the ME was digested in co-existence with OO, the basic modes of the medium at 0.2 and 1 342 

µm increased again and the big particle sizes previously observed for the ME sample decreased at 343 

the expense of the formation of a wide mode in the range of 15-200 µm (Figure 4.d). Thus, in 344 

presence of OO, the MP from the digestion of ME was characterized by lower particles than in 345 

absence of OO, being most of them lower than 28 µm (D90) and a volume mean diameter around 9 346 

µm (D43). Those values were closer to those obtained for the control sample of MP in absence of 347 

ME and OO (Figure 4.a). This might confirm our proposed theory that hydrolysis products of lipids 348 

could enhance the dispersion of hydrophobic compounds of ME, by increasing the number of lower 349 

size particles.                          350 

Therefore, the study of the distribution of particle sizes after in vitro digestion of ME showed that 351 

the co-digestion of the extract with low levels of a typical dietary fat might enhance the dispersion 352 
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of the marigold components within the aqueous phase of the intestinal medium and, in turn, would 353 

enhance its bioaccessibility (Table 3). As far to our knowledge, previous studies on the particle size 354 

distribution of the aqueous medium after digestion of ME, either with or without oils, have not been 355 

described in the scientific literature. In any case, further studies would be necessary in order to 356 

confirm the observed evidences, taking into account that the diluting and stirring conditions 357 

commonly used for particle size measurement might lead to the formation of artefacts.  358 

 359 

Antioxidant activity of Calendula officinalis supercritical extract during in vitro digestion  360 

The modification of the antioxidant activity of diverse compounds, either negatively or positively, 361 

after the process and conditions of gastrointestinal digestion has been previously described. In case 362 

of a detrimental effect after digestion, the association of bioactive compounds with lipid 363 

components has been reported as a strategy to protect those labile compounds from the conditions 364 

of the gastrointestinal tract.21,22 Therefore, taking into account that some components of marigold 365 

have been described as antioxidants, it was considered interesting the study of the impact of the 366 

digestion process on such activity, either in absence or in presence of olive oil. 367 

As shown in Figure 5, the ability of the ME to inhibit the DPPH radical significantly increased with 368 

the course of the gastrointestinal digestion (P=0.006). Such increase was especially significant after 369 

intestinal digestion for both treatments. Furthermore, the final inhibitory activity that was observed 370 

after intestinal digestion was quite similar between treatments, regardless of the presence or absence 371 

of OO. Thus, the inhibitory activity of ME increased after gastrointestinal digestion around 50% 372 

and 40% for the treatments in absence and presence of OO, respectively. The improvement of the 373 

antioxidant activity of compounds during the gastrointestinal process has been previously described, 374 

especially for polyphenols, due to their release during the hydrolysis processes from other complex 375 

molecules.30 As far as we know, previous information about the antioxidant activity of compounds 376 

from ME as affected by gastrointestinal digestion has not been described.   377 
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Therefore, the observed results showed that the antioxidant effect of ME was not negatively 378 

affected, but rather enhanced by the in vitro gastrointestinal process. Additionally, it seemed that 379 

the better dispersion of the extract that was found in presence of OO was not related to these results, 380 

at least in the case of intestinal digestion, since during gastric digestion the antioxidant activity was 381 

significantly higher in presence of OO. Other in vitro and in vivo studies would be necessary in 382 

order to evaluate whether these preliminary results would be related to enhanced antioxidant 383 

activities of a digested ME. 384 

As a summary, the present study showed that supercritical extraction in absence of co-solvent is the 385 

preferred procedure for producing a marigold extract rich in bioactive compounds such as 386 

pentacyclic triterpenes. Although that such bioactive compounds show a good bioaccessibility, it 387 

can be even improved by the co-digestion with particularly low levels of a typical dietary fat such 388 

as olive oil, thanks to a better dispersion of the extract in the aqueous media during gastrointestinal 389 

digestion. Additionally, the gastrointestinal process enhances the antioxidant activity of the extract, 390 

regardless of the co-digestion with olive oil. The obtained results are of interest either to obtaining a 391 

deeper knowledge on the potential of the marigold plant as a possible bioactive ingredient of foods, 392 

as well as to contributing to the general knowledge on the gastrointestinal digestion of bioactive 393 

compounds such as pentacyclic triterpenes, together with other typical compounds of supercritical 394 

extracts of plants in general, such as sesquiterpenes or alkanes.  395 

 396 

ABBREVIATIONS USED 397 

ME Marigold extract 

PT Pentacyclic triterpenes 

OO Olive oil  

SFE Supercritical fluid extraction 

MP Micellar phase 

HC Alkanes 
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S Sesquiterpenes 

SH Sesquiterpenes hydrocarbons 

OT Oxygenated triterpenes 

OS Oxygenated sesquiterpenes 

NRB Number of rotatable bonds 
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Figure Captions 496 

 497 

Figure 1. Correlation between lipophilicity (logP) of compounds from supercritical marigold 498 

extract and their bioaccessibility (%) 499 

 500 

Figure 2. Correlation between molecular flexibility (NRB) of compounds from supercritical 501 

marigold extract and their bioaccessibility (%) 502 

 503 

Figure 3. Bioaccessibility (%) of compounds from supercritical marigold extract as affected by 504 

olive oil during in vitro digestion. Bars within the same compound are significantly different if p ≤ 505 

0.05 (*), p ≤ 0.01 (**) or p ≤ 0.001 (***). 506 

 507 

Figure 4. Volume particle size distribution of the digestion media after in vitro digestion. Isolated 508 

aqueous micellar phase after in vitro digestion of a) without marigold and without olive oil, b) 509 

without marigold and with olive oil, c) with marigold and without olive oil, and d) with marigold 510 

and with olive oil.    511 

 512 

Figure 5. Evolution of the antioxidant activity of supercritical marigold extract throughout in vitro 513 

digestion. Different letters within the same treatment are significantly different. Bars within the same color 514 

are significantly higher if p ≤ 0.05 (*) or p ≤ 0.001 (***). 515 

 516 

 517 

 518 

 519 
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Table 1. GC-MS Characterization of Supercritical Extracts of Calendula Officinalis 

RI Compound CO2 Ethanol-CO2 

  Area % Area % 

1295 Thymol 1535567 0.74 414731 0.91 

1304 Carvacrol 613051 0.30 185772 0.41 

1351 α-Cubebene 416655 0.20 105666 0.23 

1378 α-Copaene 968862 0.47 272124 0.60 

1391 β-Cubebene  625195 0.30 113123 0.25 

1430 β-Gurjunene 481604 0.23 69838 0.15 

1442 β-Humulene 95765 0.05 96099 0.21 

1464 Alloaromadendrene 898623 0.43 163108 0.36 

1478 ɣ-Muurolene 901727 0.43 248135 0.55 

1487 β-Ionone 617759 0.30 119421 0.26 

1490 β-Selinene 363937 0.18 33297 0.07 

1497 (+)-Ledene 2385902 1.15 495858 1.09 

1502 α-Muurolene 1756737 0.85 464359 1.02 

1516 ɣ-Cadinene 5778816 2.78 2006429 4.42 

1525 δ-Cadinene 6024229 2.90 1726232 3.80 

1528 Dihydroactinidiolide 2694113 1.30 795656 1.75 

1535 Cadina-1(2),4-diene 1330919 0.64 115862 0.25 

1539 α-Cadinene 1086998 0.52 249607 0.55 

1544 α-Calacorene 408864 0.20 61864 0.14 

1593 Viridifloror 3118592 1.50 389411 0.86 

1610 1-10-di-epi-cubenol 805223 0.39 212891 0.47 

1616 δ-Cadinol 749509 0.36 151504 0.33 

1629 Cubenol 824483 0.40 190310 0.42 

1645 τ-Cadinol 10030609 4.83 2369705 5.22 

1648 n.i. oxygenated sesquiterpene 1062037 0.51 264170 0.58 

1652 β-Eudesmol 2101899 1.01 430441 0.95 

1658 α-Cadinol 12114169 5.83 2456127 5.41 

1670 n.i. a 1095520 0.53 218458 0.48 

1711 3-Hydroxy-5,6-epoxy-β-ionone 1793930 0.86 n.d. b n.d. 

1740 1-cyclohexanone, 2-methyl-2-(3-

methyl-2-oxobutyl) 

10426982 5.02 2808684 6.18 

1779 9,10- 16481274 7.93 5541526 12.20 
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dimethyltricyclo[4.2.1.1.(2,5)]decane-

9,10-diol 

1840 n.i. 857747 0.41 n.d. n.d. 

1846 Hexahydrofarnesyl acetone 4377593 2.11 n.d. n.d. 

1901 Nonadecane 4110435 1.98 862927 1.90 

1970 Verticiol 2312239 1.11 547645 1.21 

1996 Palmitic acid, ethyl ester 315697 0.15 111172 0.24 

2001 Eicosane 980904 0.47 163966 0.36 

2101 Heneicosane 6802339 3.27 1116421 2.46 

2201 Docosane 630054 0.30 104863 0.23 

2302 Tricosane 8930569 4.30 1385382 3.05 

2402 Tetracosane 1111476 0.54 148787 0.33 

2503 Pentacosane 13651831 6.57 1894387 4.17 

2601 Hexacosane 980678 0.47 89782 0.20 

2708 Heptacosane 18232039 8.78 1943518 4.28 

2797 Octacosane 2050351 0.99 242332 0.53 

2892 Nonacosane 19427953 9.35 2277964 5.01 

2978 Triacontane 2191196 1.05 n.d. n.d. 

- Hentriacontane 11165954 5.38 1739227 3.83 

- α-Tocopherol 827910 0.40 442105 0.97 

- Dotriacontane 180722 0.09 n.d. n.d. 

- n.i. sterol 175177 0.08 n.d. n.d. 

- n.i. sterol 728069 0.35 540417 1.19 

- n.i. sterol 2017797 0.97 710705 1.56 

- β-Amyrenone 578061 0.28 262928 0.58 

- β-Amyrin 2940308 1.42 1433928 3.16 

- n.i. sterol 595111 0.29 287959 0.63 

- α-Amyrin + Lupeol 4327976 2.08 2095993 4.61 

- n.i. oxygenated triterpene 643359 0.31 226066 0.50 

- Taraxasterol 6422306 3.09 3910398 8.61 

- n.i. 565285 0.27 128466 0.28 

      

 Oxygenated monoterpenes  2.3  3.1 

 Sesquiterpenes hydrocarbons  11.6  14.0 

 Oxygenated sesquiterpenes  14.3  13.7 
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 Oxygenated diterpenes  1.1  1.2 

 Oxygenated triterpenes  7.3  17.9 

 Alkanes  43.5  26.3 

 Other compounds  16.1  18.6 

 Total identified compounds  96.3  94.8 

a n.i. = non identified; b n.d. = non detected 
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Table 2. Quantitative Composition (mg/g) of Supercritical Extract of Calendula Officinalis 

Compound CO2 Ethanol-CO2 

Thymol 0.60 0.16 

Carvacrol 0.24 0.07 

α-Cubebene 0.18 0.05 

α-Copaene 0.42 0.12 

β-Cubebene  0.27 0.05 

β-Gurjunene 0.21 0.03 

β-Humulene 0.04 0.04 

Alloaromadendrene 0.39 0.07 

ɣ-Muurolene 0.39 0.11 

β-Selinene 0.18 0.02 

(+)-Ledene 1.19 0.25 

α-Muurolene 0.88 0.23 

ɣ-Cadinene 2.89 1.00 

δ-Cadinene 3.02 0.86 

Cadina-1(2),4-diene 0.67 0.06 

α-Cadinene 0.54 0.13 

α-Calacorene 0.20 0.03 

Viridifloror 1.11 0.14 

1-10-di-epi-cubenol 0.29 0.08 

δ-Cadinol 0.27 0.05 

Cubenol 0.29 0.07 

τ-Cadinol 3.56 0.84 

n.i. a Oxygenated sesquiterpene 0.38 0.09 

β-Eudesmol 0.75 0.15 

α-Cadinol 4.30 0.87 

Nonadecane 1.02 0.21 

Eicosane 0.25 0.04 

Heneicosane 1.81 0.30 

Docosane 0.18 0.03 

Tricosane 2.62 0.41 

Tetracosane 0.34 0.05 
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Pentacosane 4.64 0.64 

Hexacosane 0.38 0.03 

Heptacosane 8.55 0.91 

Octacosane 1.19 0.14 

Nonacosane 14.27 1.67 

Triacontane 2.13 n.d. b 

Hentriacontane 10.83 1.69 

α-Tocopherol 1.29 0.69 

Dotriacontane 0.18 n.d. 

n.i. sterol 2.65 n.d. 

n.i. sterol 11.00 8.16 

n.i. sterol 30.48 10.74 

β-Amyrenone 1.20 0.54 

β-Amyrin 6.08 2.97 

n.i. sterol 8.99 4.35 

α-Amyrin + Lupeol 8.96 4.34 

n.i. oxygenated triterpene 1.33 0.47 

Taraxasterol 13.29 8.09 

   

Oxygenated monoterpenes 0.8 0.2 

Sesquiterpenes hydrocarbons 11.5 3.1 

Oxygenated sesquiterpenes 10.9 2.3 

Oxygenated triterpenes 85.5 40.4 

Alkanes 48.6 6.1 

Total quantitated compounds 156.9 52.1 

a n.i. = non identified; b n.d. = non detected 
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Table 3. Bioaccessibility (%) of Supercritical Extract of Calendula Officinalis 

Compound Chemical group a Bioaccessibility 

ɣ-Cadinene SH 79.3 ± 9.7 

δ-Cadinene SH 87.9 ± 11.8 

τ-Cadinol OS 75.1 ± 3.4 

ɑ-Cadinol OS 87.1 ± 3.7 

Nonadecane HC 48.1 ± 2.0 

Tricosane HC 57.2 ± 11.0 

Pentacosane HC 48.3 ± 2.8 

Heptacosane HC 13.8 ± 2.4 

α-Tocopherol OT 71.1 ± 6.5 

β-Amyrin OT 79.8 ± 4.8 

α-Amyrin + Lupeol OT 82.1 ± 8.8 

Taraxasterol OT 75.5 ± 2.1 

   

Sesquiterpenes hydrocarbons  83.6 ± 10.8 

Oxygenated sesquiterpenes  81.1 ± 3.6 

Oxygenated triterpenes  77.1 ± 2.9 

Alkanes  41.8 ± 3.5 

a SH = sesquiterpene hydrocarbon, OS = oxygenated sesquiterpene, HC = alkanes, OT = oxygenated triterpene 
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Bars within the same compound are significantly different if p ≤ 0.05 (*), p ≤ 0.01 (**) or p ≤ 0.001 (***). 
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Figure 4.  
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c) d) 
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and with olive oil, c) with marigold and without olive oil, and d) with marigold and with olive oil 
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Figure 5.  
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Different letters within the same treatment are significantly different. Bars within the same color are significantly 

higher if p ≤ 0.05 (*) or p ≤ 0.001 (***).  
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