The glucose-methanol-choline (GMC) superfamily of enzymes is composed of FAD-containing, phylogenetically-related proteins that share a common fold.

Some fungal oxidoreductases from this superfamily play a role as auxiliary enzymes in the lignocellulose-degrading process. Most of them produce the $\text{H}_2\text{O}_2$ required: (i) by high redox potential peroxidases to act on lignin; or (ii) to trigger Fenton reactions that give rise to radical oxygen species that attack lignocellulose.

In this Thesis, $\text{H}_2\text{O}_2$-producing GMC oxidoreductases have been studied, with special emphasis on aryl-alcohol oxidase (AAO) from the fungus *Pleurotus eryngii*, from genomic, mechanistic and biotechnological points of view.
NEW GMC OXIDOREDUCTASES FROM LIGNINOLYTIC BASIDIOMYCETES: GENOMIC SCREENING, CATALYTIC MECHANISM AND BIOTECHNOLOGICAL POTENTIAL

Thesis submitted by
Juan Rogelio Carro Aramburu
for the fulfilment of the requirements for the degree of doctor (Ph.D.) in the Universidad Complutense de Madrid

Supervisors:

Dr. Ángel T. Martínez Ferrer
Profesor de Investigación
CSIC

Dra. Patricia Ferreira Neila
Profesor Contratado Doctor
Universidad de Zaragoza

Madrid, 2017
This is the whole of the story and we might have left it at that had there not been profit and pleasure in the telling

V. Nabokov

Laughter in the Dark
Acknowledgements

This work has been carried out at the IPSBB unit of the Centro de Investigaciones Biológicas belonging to the CSIC in Madrid, in different periods at the Departamento de Bioquímica y Biología Molecular y Celular of the Universidad de Zaragoza and during a three-month stay at the Georgia State University, in USA. My thesis has been financed by a Formación de Profesorado Universitario (FPU) fellowship and an Estancias Breves fellowship, both from the Spanish Ministry for Education, Culture and Sports. My teaching training was carried out at the Departamento de Bioquímica y Biología Molecular I of the Universidad Complutense de Madrid. Moreover, the work has been supported by different projects: PEROXICATS (KBBE-2010-4-265397), INDOX (KBBE-2013-7-613549), EnzOx2 (H2020-BBI-PPP-2015-720297), HIPOP (BIO2011-26694) and NOESIS (BIO2014-56388-R).

More than five years have gone by since I first set foot in CIB back in January 2012 to embark on this challenge and I’ve met wonderful people during this time. I’d like to express my most heartfelt gratitude to all those who have accompanied me these years:

Querría agradecer a Ángel el haberme dado la oportunidad de unirme a su laboratorio. He aprendido muchísimo durante estos años y no habría podido ser sin su dirección y ayuda. Gracias también por las correcciones a deshora y por el tiempo que me ha dedicado.

Gracias a Patricia por haberme acogido en Zaragoza y haberme enseñado tanto sobre cinéticas. Está claro que sin su dirección y su ayuda esta tesis no tendría nada que ver con cómo es. Gracias también por las largas horas de corrección y de sueño que te he robado.

Gracias a Mili por haberme recibido con los brazos abiertos en su grupo y haber hecho que me sintiese como en casa todas las veces que he ido a Zaragoza.

I’d like to thank Dr. Giovanni Gadda for giving me the opportunity to go to Atlanta, where I learnt a lot and met fantastic people. It was a great experience. Thank you for the time you spent helping and designing the experiments and discussing the results with me.

Gracias a Marta Martínez por haberme enseñado cómo se cristaliza una proteína. También por todo el tiempo empleado en hacer figuras y resolver la estructura de la AAO en complejo.

Asimismo, me gustaría agradecer a todo mi grupo del CIB por lo bien que me he sentido durante estos cinco años. Hemos sido casi como una familia, a pesar del continuo recambio de gente. Gracias a María Jesús por toda la ayuda y los consejos a lo largo de estos años. Gracias a Ali por siempre tener una sonrisa y buena disposición, y por las cañas a las que nos invitas por cualquier motivo. A Susana por los buenos momentos compartidos, por la fiesta del congreso que no
dejó indiferente a nadie. A Javi por la ayuda y el entretenimiento que nos proporcionas. A Marta por ayudarme con todo y las charlas que me ayudan a desconectar de la tesis. Agradezco a Aitor el haberme enseñado gran parte de las cosas que sé y que han hecho posible esta tesis, por la paciencia y la ayuda cuando estabas en las mismas difíciles circunstancias que yo ahora. Ana, gracias por la ayuda durante estos años, por las risas y por los viajazos que nos hemos pegado. A Andrés, por ser el gaditano con menos salero y más mala leche que se ha visto. A Bea, por tantos años de ayuda y de risas, dentro y fuera del CIB. A Cris, por ser tan así que me hace reír mucho con sus crueldades. Gracias a Davi porque nunca he encontrado a nadie con quien los chistes a dos voces salgan tan mal, hemos pasado grandes momentos juntos. Gracias a David por la compañía y las risas que nos hemos pegado. A Elena por la ayuda, los consejos en el labo y la UPO. A Felice por ser como es, ya tú sabes, y por las risas que nos provoca. Gracias a Fran por estar siempre tan dispuesto a ayudar y con una gran sonrisa en la boca. A Isa P. por la amabilidad, la ayuda y ser la cordura del labo en tantas ocasiones. A Isa V. por darme a conocer nuevos tratamientos para un vientre plano y por haber desarrollado conmigo un nuevo lenguaje cerdil. Gracias a Iván por ser un gran liante y un gran compañero de piso, además de por tu fe ciega durante años en mis capacidades matutinas. A Jesús por su arte con el Photoshop y lo majo que has sido siempre. A Jorge por haberme quitado tantas horas de sueño, por las cañitas y lo demás que no recuerdo. Gracias a Juan por la amabilidad y la tranquilidad que infunde. A Laura por haber hecho, y seguir haciendo, los chistes más insultantes sobre mi persona que se hayan hecho. No hay rencor, esas cosas se dirimen en los tribunales. A Lola por haber sido mi compañera de mesa tantos años, por el entretenimiento, las galletas y las birrillas en su piscina. A Manolito, por haber ido a la par conmigo en todos los pasos para llegar a esta tesis y por ese salero del sur (de Galicia) que tanta gracia me hace. A María, por las charlas, la ayuda y el desahogo que nos proporcionamos. A Mario, tan majete y tan responsable, por haber traído juventud al laboratorio. A Mariu, por todos los momentos compartidos, las risas y los masajes de la casa rural. Neumara, obligado por enseñarnos cómo se baila la samba y hacernos reír todos los días. A Rosa por todo el tiempo que compartimos, las risas nocturnas para pillar el bicimadrid y por apreciar tanto mis yogures. A Sonia por haberme mostrado ese Madrid nocturno que aún desconocía y ser una lianta de las importantes. Gracias a Vero por haber sido tan encantadora, colaboradora y dulce durante estos años. Si me dejo a alguien perdonadme, que somos unos cuantos y cada hoja imprimida se paga cara.

Me gustaría también dar las gracias a toda la gente del laboratorio de Zaragoza, que siempre me han hecho sentir como en casa: Ana Sánchez, Isaías, Raquel, María Sebastián, Silvia, Ernesto, María Conde, Sandra, Juanjo... Ha sido genial compartir tiempo con vosotros, un desahogo frente a las malas rachas del stopped flow.
I’d like to thank all the people at Dr. Gadda’s lab, who made me feel at home even if I was so far away. I had a great time with you. Gracias a Chris por haberme entretenido tantas veces en Atlanta, por haberme llevado a tomar cervezas y margaritas, porque poder hablar en tu idioma es un alivio. I thank Dan Su for all his help inside and outside the lab during my months there. Thanks, Daniel, for all the hours you spent teaching me how to use the stopped flow and all the time we spent talking about a thousand different things. Gracias a Elías por haberme llevado a tomar cervezas, por haber hecho que lo pasase tan bien. Thank you, Jakob, for all your help and laughs.

Grazas a Raquel por tódolos anos baixo o mesmo teito ou fóra del. Grazas por entreterme calquera día da semana, facer que non colla po e non deixar que me deite cedo. Tamén por suxeitarme pola noitiña cando me dá o sono e aturarme cos problemas. Non podería ter atopado a ninguén tan coma min.

Gracias a mi familia. A mi madre por aguantarme y preocuparme por mí. A mi padre por ser tan atento y preocupado aunque yo sea un toxo. A Pilar por todos estos años, la ayuda y los consejos. A mis hermanos, Antonio y Jaime, por hacerme reír y portarse tan bien conmigo.
Abbreviations

AAO, aryl-alcohol oxidase
$A_D$, Arrhenius pre-exponential factor for D
ADP, adenosine diphosphate
$A_H$, Arrhenius pre-exponential factor for H
$A_H/A_D$, isotope effect on Arrhenius pre-exponential factors
$\text{app} k_{\text{ox}}$, apparent second-order rate constant for oxidation
BSTFA, bis(trimethylsilyl) trifluoroacetamide
CDH, cellobiose dehydrogenase
CHD, choline dehydrogenase
CHO, cholesterol oxidase
ChoOx, choline oxidase
CPO, chloroperoxidase
D, deuterium
DAD, donor-acceptor distance
DFF, 2,5-diformylfuran
$D_2k_{\text{red}}$, isotope effect of dideuterated substrate on $k_{\text{red}}$
$D(\text{app} k_{\text{ox}})D_2O$, deuterated substrate isotope effect on $\text{app} k_{\text{ox}}$ in deuterated solvent
$D(\text{app} k_{\text{ox}})H_2O$, deuterated substrate isotope effect on $\text{app} k_{\text{ox}}$
$D,D_2O(\text{app} k_{\text{ox}})$, multiple isotope effect on $\text{app} k_{\text{ox}}$
$D_2O(\text{app} k_{\text{ox}})D$, deuterated solvent isotope effect on $\text{app} k_{\text{ox}}$ in deuterated substrate
$D_2O(\text{app} k_{\text{ox}})H$, deuterated solvent isotope effect on $\text{app} k_{\text{ox}}$
$Dk_{\text{cat}}$, deuterium isotope effect on $k_{\text{cat}}$
$Dk_{d}$, deuterium isotope effect on $K_d$
$D(k_{\text{cat}}/K_m)$, deuterium isotope effect on $k_{\text{cat}}/K_m$
$Dk_{\text{red}}$, deuterium isotope effect on $k_{\text{red}}$
$D_2k_{\text{red}D}$, secondary isotope effect on $Dk_{\text{red}}$
DT, deuteride transfer
$E_a$, energy of activation
$E_{aD}$, energy of activation for DT
$E_{ah}$, energy of activation for HT
FAD, flavin adenine dinucleotide
FDCA, 2,5-furandicarboxylic acid
FFCA, 5-formylfurancarboxylic acid
GC-MS, gas chromatography coupled to mass spectrometry
GLX, glyoxal oxidase
GMC, glucose-methanol-choline oxidase/dehydrogenase superfamily
GOX, glucose oxidase
HMF, 5-hydroxymethylfurfural
HMFCA, 5-hydroxymethylfurancarboxylic acid
HNL, hydroxynitrile lyase
HRP, horseradish peroxidase
HT, hydride transfer
$k_{\text{cat}}$, catalytic constant
$k_{\text{cat}}/K_{\text{m}}$, catalytic efficiency
$K_{d}$, dissociation constant
$k_{\text{dis}}$, dissociation rate constant
$k_{\text{for}}$, formation rate constant
KIE, kinetic isotope effect
$K_{\text{m}}$, Michaelis constant
$K_{\text{m(ал)}}$, Michaelis constant for the alcohol substrate
$K_{\text{m(ox)}}$, Michaelis constant for $O_{2}$
$k_{\text{obs}}$, observed rate constant
$k_{\text{rev}}$, reverse constant
$k_{\text{red}}$, reduction rate constant
LiP, lignin peroxidase
MnP, manganese peroxidase
MOX, methanol oxidase
P2O, pyranose 2-oxidase
PBT, poly(butylene-terephthalate)
PDA, photodiode array
PDH, pyranose dehydrogenase
PEF, poly(ethylene-2,5-furandicarboxylate)
PET, poly(ethylene-terephthalate)
pL, pH or PD
PPT, poly(propylene-terephthalate)
TMSi, trimethylsilyl
TST, transition state theory
UPO, unspecific peroxygenase
VP, versatile peroxidase
Table of Contents

List of Figures ................................................................................................................. xi
List of Tables .................................................................................................................... xix
Abstract ......................................................................................................................... xxiii
Resumen ............................................................................................................................ xxv

1. Introduction .................................................................................................................. 1
  1.1. Introduction to the GMC superfamily. ................................................................. 3
  1.2. Introduction to AAO ............................................................................................ 4
  1.3. GMC and lignocellulose decay ............................................................................ 6
      1.3.1. The AAO family in ligninolytic fungi ......................................................... 9
      1.3.2. White-rot decay .......................................................................................... 11
      1.3.3. Brown-rot decay ....................................................................................... 12
  1.4. AAO catalytic mechanism in detail ..................................................................... 13
      1.4.1. Involvement of quantum-mechanical tunneling in AAO catalysis .......... 14
      1.4.2. Reduction of $O_2$ by AAO and related oxidases .................................... 16
  1.5. Biotechnological application of GMC oxidoreductases ................................. 18
      1.5.1. Paper pulp industry: Biopulping and biobleaching ................................. 18
      1.5.2. Flavour synthesis ....................................................................................... 18
      1.5.3. Deracemization of chiral secondary alcohols ......................................... 20
      1.5.4. Oxidation of furfurals .............................................................................. 21
  1.6. Summary ............................................................................................................... 23

Structure and Objectives ............................................................................................... 25

2. Materials and Methods .............................................................................................. 27
  2.1. Reagents ............................................................................................................... 29
  2.2. Genome screening and evolutionary studies .................................................... 29
      2.2.1. Genome sequencing .................................................................................. 29
      2.2.2. Genome screening for GMC gene families in Polyporales .................. 29
      2.2.3. Sequence analysis .................................................................................... 30
      2.2.4. GMC evolutionary history ...................................................................... 31
      2.2.5. Reconciliation analyses .......................................................................... 31
  2.3. AAO purification and mutagenesis .................................................................... 31
      2.3.1. Enzyme production and purification ....................................................... 31
      2.3.2. Site-directed mutagenesis ..................................................................... 32
      2.3.3. Estimation of the molar extinction coefficient ........................................ 33
  2.4. Kinetics and affinity studies ............................................................................... 34
      2.4.1. Stopped-flow measurements ................................................................... 34
      2.4.2. Rate constants for AAO-$p$-anisic acid complex formation and dissociation .... 37
      2.4.3. Steady-state kinetics ............................................................................... 37
      2.4.4. Studies on the temperature dependence of AAO catalysis .................... 38
      2.4.5. Spectral characterization of the AAO-$p$-anisic acid complex ............... 39

...
2.5. Crystallization of wild-type AAO in complex with p-anisic acid ..........39

2.6. Reactions of AAO and AAO/UPO enzymatic cascades with furfurals . 41
2.6.1. Reactions .................................................................................41
2.6.2. Gas chromatography-mass spectrometry analyses .........................41
2.6.3. AAO and UPO activities before/after incubation with furfurals ..........42

2.7. NMR studies of aldehyde hydration .............................................42

3. GMC genes in 10 Polyporales genomes ............................................43

3.1. Results .........................................................................................45
3.1.1. GMC gene families in ten Polyporales genomes ............................45
3.1.2. Evolutionary history of GMC oxidoreductases from Polyporales genomes 46
3.1.3. Evolutionary history of GMC oxidoreductases in the Polyporales genomes 49
3.1.4. GMC gene duplication and loss during diversification of Polyporales ......51

3.2. Discussion ...................................................................................53
3.2.1. Aryl-alcohol oxidase ..................................................................53
3.2.2. Glucose oxidase .......................................................................54
3.2.3. Pyranose 2-oxidase ..................................................................54
3.2.4. Methanol oxidase .....................................................................55
3.2.5. Pyranose and cellobiose dehydrogenases ....................................55
3.2.6. Final evolutionary/ecological remarks .......................................56

4. An active site Phe contributes to product release in AAO catalysis 59

4.1. Results .........................................................................................62
4.1.1. Spectral properties and steady-state kinetics of AAO and its Phe397 variants ......62
4.1.2. AAO redox state during turnover ...............................................64
4.1.3. Rapid kinetics of the two AAO half reactions ..................................66
4.1.4. Studies on AAO-p-anisic acid complex formation and dissociation ..........69

4.2. Discussion ...................................................................................72
4.2.1. Conservation of active-site Phe397 within the AAO family ..................72
4.2.2. Phe397 is critical for substrate diffusion to the active site ..................73
4.2.3. Phe397 also plays a role in AAO reoxidation .................................74
4.2.4. Phe397 involvement in substrate diffusion and product release ..........75
4.2.5. Final remarks .............................................................................76

5. Protein motions promote hydride tunneling in AAO catalysis ......77

5.1. Results .........................................................................................79
5.1.1. Crystallographic structure of native AAO in complex with p-anisic acid ........79
5.1.2. Temperature dependence of KIEs on native AAO catalysis .................81
5.1.3. Temperature dependence of the HT reaction in Tyr92 variants .............85

5.2. Discussion ...................................................................................89
5.2.1. AAO structure fosters HT ..........................................................89
5.2.2. Involvement of environmentally modulated tunneling in AAO HT transfer .................................................................................90
5.2.3. Contribution of Tyr92 to the environmentally modulated tunneling. ..........91
5.2.4. Final remarks .............................................................................92

6. Non-concerted hydrogen and proton transfers from AAO to dioxygen ................................................................. 93

6.1. Results .........................................................................................95
6.1.1. Preparing reduced AAO ................................................................95
List of Figures

**Figure 1.1.** First structure proposed for angiosperm lignin showing its syringyl (S), guaiacyl (G) and p-hydroxyphenyl (H) phenylpropanoid units with different inter-unit linkages. Some minor structures are shown in brackets. From Nimz (1974). .......................................................... 7

**Figure 1.2.** Scheme of the natural role of AAO in decay of plant cell-wall producing H₂O₂ for: i) activation of lignin-degrading peroxidases; and ii) formation of cellulose-depolymerising hydroxyl radical (also causing lignin oxidation). Taken from Carro et al. (2016). .......................................................... 10

**Figure 1.3.** Substrate migration studies revealed several positions of AAO active-site residues. Taken from Hernández-Ortega et al. (2011a). ...................... 14

**Figure 1.4.** Proposed *P. eryngii* AAO catalytic cycle. ....................... 15

**Figure 1.5.** Catalytic efficiencies of *P. eryngii* and *B. adusta* AAOs in bioconversion of some flavours and aromas. A. Oxidation of vanillyl alcohol into vanillin. B. Oxidation of benzyl alcohol into benzaldehyde. C. Oxidation of *p*-methoxybenyl alcohol into *p*-anisaldehyde. From Carro et al. (2016) .......... 19

**Figure 1.6.** Chiral HPLC chromatograms showing the deracemization of 1-(*p*-methoxyphenyl)-ethanol by *P. eryngii* AAO. A. Chromatogram of the untreated racemate. B. Chromatogram after 24-h reaction with AAO, where only the peak of the (*R*) isomer is detected (the peak of the *p*-methoxyacetophenone, formed from oxidation of the (*S*) isomer, eluted in a different region of the chromatogram). From Carro et al. (2016) .......................................................... 21

**Figure 1.7.** Oxidative pathways from HMF (1) to FDCA (5). FFCA (4) formation can take place through two alternative intermediate compounds: DFF (2) or HMFCA (3). .......................................................... 22

**Figure 1.8.** Scheme depicting the physiological role of AAO in lignocellulose degradation and its potential applications in the cellulose and other chemical sectors. ............................................................................... 23

**Figure 3.1.** Ribbon models for the molecular structures of representative members of the five GMC oxidoreductase families found in 10 Polyporales genomes (flavin and heme cofactors as yellow and red sticks, respectively). A. AAO of *B. adusta* (JGI protein ID 245059) indicating the position of 4 β-sheets, individual β-strands, and 19 α-helices. B. MOX (monomer) of *F. pinicola* (JGI protein ID 156775). C. GOX (monomer) of *P. chrysosporium* (JGI protein ID 131961). D. CDH of *G. subvermispora* (JGI protein ID 84792) (flavin domain in the left and heme domain in the right). E. P2O (monomer) of *B. adusta* (JGI protein ID 34622). The molecular models were built using crystal structures of related proteins as templates.............................................. 47
Figure 3.2. Detail of active-site residues in the molecular models for the five Polyporales GMCs shown in Figure 3.1. A. B. adusta AAO. B. F. pinicola MOX. C. P. chrysosporium GOX. D. G. subvermispora CDH. E. B. adusta P2O. Residue numbering corresponds to the putative mature proteins. FAD and the selected residues are shown in sticks in CPK yellow and grey colors respectively. The Asn390-Thr402 loop of AAO is shown in orange.

Figure 3.3. Maximum likelihood tree of the 95 GMC sequences from 10 Polyporales genomes (different color labels), prepared with RaxML (with gaps treated as deletions). The AAO, MOX, P2O and CDH clusters (and the a and b subclusters mentioned in the text) are shown, together with a few GOX sequences related to AAOs. Numbers at nodes indicate bootstrap values. Those sequences modeled in Figures 3.1 and 3.2 are indicated by arrows. See Table 3.1 for abbreviations of the fungal species.

Figure 3.4. Estimated range of GMC gene copies at the ancestral nodes (and extant species) of the represented phylogeny of Polyporales taken from Binder et al. (2013) after reconciliation with the gene phylogeny (Figure 3.3) using Notung. Branches and numbers after gene expansion and contraction are in blue and red color, respectively. For reconciliation of the individual GMC families, see Figure 3.5.

Figure 3.5. Estimated range of individual AAO (A), MOX (B), GOX (C), CDH (D) and P2O (E) gene copies, and total GMC from sum of family gene numbers (F), at the ancestral nodes of the represented phylogeny of Polyporales taken from Binder et al. (2013) after reconciliation with the gene phylogeny. Branches and numbers after gene expansion and contraction are in blue and red color, respectively.

Figure 4.1. Characteristic loop and aromatic residues delimiting the FAD access in AAO. A. Channel opening in AAO surface. B. Semitransparent surface showing aromatic residues (Tyr92, Phe397 and Phe501) and loop (green) limiting the access to FAD and catalytic histidine (His502), with one product (p-anisic acid) molecule at the active site. From AAO:anisic acid structure (Carro et al. 2017), see Figure 5.2 and Chapter 5 for description of the complex structure.

Figure 4.2. Spectra of native AAO (solid line) and its F397Y (dotted line), F397A (short dash line), F397W (dash-dot line) and F397L (long dash line) AAO variants recorded between 300 and 600 nm in 50 mM sodium phosphate pH 6.0 at 25ºC.

Figure 4.3. Linearized Hanes-Woolf plots of the bi-substrate kinetics of F397Y (A), F397A (B), F397W (C) and F397L (D) AAO variants measured by varying the concentrations of p-methoxybenzyl alcohol and O₂ in 50 mM sodium phosphate pH 6.0 at 12ºC. Filled circles, 0.06 mM O₂; open circles, 0.16 mM O₂; filled triangles, 0.34 mM O₂; open triangles, 0.71 mM O₂; and squares, 1.60 mM O₂.
Figure 4.4. Redox state during turnover of native AAO and its Phe397 variants. AAO (green), F397W (orange), F397L (blue), F397A (black) and F397Y (red) (~10 μM) were mixed with an excess of p-methoxybenzyl alcohol in 50 mM sodium phosphate (pH 6) at 25ºC under aerobic conditions. Lines show the time course of absorbance changes at the maxima of the flavin band I (between 459 and 463 nm, depending on the variant). ...............................................64

Figure 4.5. Spectral time-course of Phe397 variants during turn-over with p-methoxybenzyl alcohol. A. F397Y at 0.001, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 50, 100, 200 s. B. F397W at 0.001, 0.05, 2, 5, 10, 20, 200, 1000 s. C. F397A at 0.001, 0.005, 0.05, 0.1, 0.2, 0.5, 1, 200 and 500 s. D. F397L at 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 50, 100 and 500 s. Dashed lines correspond to the oxidized enzymes before mixing. Assays performed under air atmosphere in 50 mM phosphate pH 6.0 at 25ºC with an excess of substrate. ..............................65

Figure 4.6. Time course of the reduction of Phe397 variants (~10 μM) with 37 μM of p-methoxybenzyl alcohol at 12ºC. A. F397Y after 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05 and 0.1 s. B. F397W after 0.001, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.2 and 0.5 s. C. F397A at 0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15 and 0.3 s. D. F397L after 0.001, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.2 and 0.4 s. Dashed lines correspond to the oxidized enzymes before mixing. Data were globally fitted to a single-step model described from initial species A to final species B (shown in insets). Estimated $k_{obs}$ is provided in each panel. .................................................................66

Figure 4.7. Time course of the oxidation of Phe397 variants (~5–10 μM) at 12ºC. A. F397Y oxidation spectra with 26 μM O₂ measured at 0.002, 0.01, 0.02, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1 and 3 s. B. F397W oxidized with 60 μM O₂ recorded at 0.002, 0.003, 0.005, 0.1, 0.15, 0.2, 0.025, 0.03, 0.04, 0.05 and 0.5 s. C. F397A after mixing with 26 μM O₂ at 0.002, 0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1, 1.5, 2, 3, 4 and 5 s. D. F397L oxidized with 26 μM O₂ recorded at 0.003, 0.006, 0.009, 0.012, 0.015, 0.025, 0.03, 0.5, 0.7, 1, 2 and 3 s. Dashed lines correspond to the reduced enzymes before mixing. Insets show the course of the reactions monitored at the maximum of flavin band I superimposed with their fits in red. Residuals of each fit are displayed at the bottom of the insets. The estimated $k_{obs}$ for each phase is provided. .............................................................................68

Figure 4.8. LigPlot+ diagram (Laskowski and Swindells 2011) showing the interactions among the active-site residues and the FAD cofactor with the ligand, p-anisic acid, in the crystallographic structure of the complex. Green dashed lines represent H bonds between donor and acceptor atoms accompanied by their bonding distances. Red lines in semicircles represent hydrophobic interactions among the represented residues and the different atoms of p-anisic acid. .............69

Figure 4.9. Differential absorption spectra upon titration of native AAO and Phe397 variants with increasing concentrations of p-anisic acid. A, AAO, and B-D, F397Y, F397W and F397A variants, respectively. .........................................................70
Figure 4.10. Spectral changes upon formation of the AAO: p-anisic acid complex. A. Native AAO, mixed with 0.5 mM of the ligand at 0.003, 0.01, 0.02, 0.03, 0.04, 0.05, 0.065, 0.085, 0.1, 0.13, 0.15, 0.2 and 0.4 s. B. F397Y, mixed with 0.65 mM of p-anisic acid measured after 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3 and 4 s, and C. F397W mixed with p-anisic acid 1 mM recorded at 0.005, 0.02, 0.04, 0.05, 0.07, 0.1, 0.2, 0.4, 0.5, 0.7, 1, 2 and 5 s. Global analysis of the spectral evolution best fit a single-step model. Insets show the obtained species. D. $k_{\text{obs}}$ dependence on p-anisic acid concentration for each variant. Solid line was obtained by linear regression analysis of the data to equation 6: $y_0$ and slope represent the rate constants for dissociation ($k_{\text{dis}}$) and formation ($k_{\text{for}}$) of the AAO-p-anisic acid complexes, respectively, for native AAO (filled circles), and its F397Y (open circles) and F397W (inverted triangles) variants. Assays performed in 50 mM phosphate pH 6.0 at 12°C. ........................ 71

Figure 4.11. Sequence logo for 70 putative AAO sequences from various basidiomycetes corresponding to positions 390–403 of mature P. eryngii AAO generated using WebLogo (Crooks et al. 2004). Sequences were taken either from genomes available at the Joint Genome Institute (www.jgi.doe.gov) or from GenBank (the numbers of sequences are indicated in the parentheses) and belong to the following fungal species: Bjerkandera adusta (11), Dichomitus squalens (9), Fomitiporia mediterranea (1), Fomitopsis pinicola (1), Ganoderma sp. (7), Gelatoporia subvermispora (4), Gloeophyllum trabeum (2), Laccaria bicolor (1), Phanerochaete chrysosporium (3), Phlebia brevispora (3), P. eryngii (1), Pleurotus pulmonarius (1), Punctularia strigosozonata (6), Rhodonia placenta (2), Stereum hirsutum (15) and Trametes versicolor (3). The height indicates the relative frequency of each amino acid.............................................. 73

Figure 5.1. Reductive half-reaction of AAO. Hydrogen in position pro-R of the alcohol α-carbon is abstracted as a H– by the N5 locus of FAD concomitantly to the abstraction of the hydroxyl proton by His502. This results in the reduction of the cofactor to hydroquinone, an aldehyde product and the protonation of His502. ........................................................................................................... 79

Figure 5.2. Crystal structures of AAO:p-anisic acid complex. A. Cartoon superposition of the crystallographic structures of p-anisic acid complex (orange) and ligand-free AAO (pdb 3FIM) (blue). B. Detail of the active site superimposed in AAO:p-anisic acid complex and in ligand-free AAO. The H-bonds between the carboxylic O atoms of the p-anisic acid and the N atoms of the isoalloxazine ring and His546 and His502 residues are drawn in black lines and distances in Å. FAD, p-anisic acid and residues are drawn as CPK colored sticks with C atoms in wheat (complex) and blue (ligand-free AAO). ........................................................................................................... 80

Figure 5.3. Temperature dependences of steady-state kinetic parameters for native AAO. A. Arrhenius plots of $k_{\text{cat}}$ with [α-$^1$H$_2$]-p-methoxybenzyl alcohol (filled circles) and [α-$^2$H$_2$]-p-methoxybenzyl alcohol (open circles). B. Temperature dependence of the KIE of $k_{\text{cat}}$ ($^Dk_{\text{cat}}$) with [α-$^2$H$_2$]-p-methoxybenzyl alan.
alcohol. C. Arrhenius plots of $k_{cat}/K_m$ with $[\alpha^{-1}H_2]$-p-methoxybenzyl alcohol (filled triangles) and $[\alpha^{-2}H_2]$-p-methoxybenzyl alcohol (open triangles). D. Temperature dependence of the KIE of catalytic efficiency $^D(k_{cat}/K_m)$. Means and standard deviations. .................................81

Figure 5.4. Temperature dependences of HT reaction $k_{red}$ for native AAO A. Arrhenius plots of $k_{red}$ with $\alpha$-protiated (filled circles), (R)-$[\alpha^{-2}H]$ (open circles) and $[\alpha^{-2}H_2]$-p-methoxybenzyl alcohols (inverted triangles). B. Temperature dependence of the KIE of $k_{red}$ with (R)-$[\alpha^{-2}H]$ (open circles) and $[\alpha^{-2}H_2]$-p-methoxybenzyl alcohols (inverted triangles). Means and standard deviations. 84

Figure 5.5. Reduction spectra of Tyr92 variants (~10 μM) with $[\alpha^{-2}H_2]$-p-methoxybenzyl alcohol at 12°C. A. Native AAO with 31 μM of substrate at times: 0.004, 0.015, 0.02, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.2 and 0.3 s. B. Y92F with 37 μM of substrate after: 0.001, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1 0.13 and 0.15 s. C. Y92L with 37 μM of substrate at times: 0.001, 0.02, 0.03, 0.05, 0.07, 0.1 0.15, 0.2, 0.3, 0.4, 0.6 and 0.8 s. D. Y92W with 312 μM of substrate after: 0.16, 0.5, 1, 3, 5, 7, 10, 15, 20, 30 and 60 s. Dashed lines represent the unbound enzyme spectra. Insets show initial and final species determined after global fitting of the reduction spectra. ........................................................................86

Figure 5.6. Temperature dependences of of HT reaction $k_{red}$ for Tyr92 variants: A. Arrhenius plots for the reduction of Y92F with $\alpha$-protiated $p$-methoxybenzyl alcohol (filled triangles) and $[\alpha^{-2}H_2]$-p-methoxybenzyl alcohol (open triangles). B. Arrhenius plots for the reduction of Y92L with $\alpha$-protiated $p$-methoxybenzyl alcohol (filled squares) and $[\alpha^{-2}H_2]$-p-methoxybenzyl alcohol (open squares). C. Arrhenius plots for the reduction of Y92W with $\alpha$-protiated $p$-methoxybenzyl alcohol (filled diamonds) and $[\alpha^{-2}H_2]$-p-methoxybenzyl alcohol (open diamonds). D. Temperature dependence of $^Dk_{red}$ for Y92F (triangles), Y92L (squares) and Y92W (diamonds). Means and standard deviations. .................................87

Figure 6.1. Time-resolved absorbance spectroscopy of the reoxidation of reduced AAO, which was premixed with $p$-methoxybenzyl alcohol (1:1 concentration) and allowed to age for 1 s, at varying $O_2$ concentrations. Traces at 463 nm show the biphasic behavior of the reaction (first and second phase separation is shown by a dashed line). Fits to exponential equations are shown. Inset shows spectra of the initial (reduced, black) and final (oxidized, red) flavin species. ........................................................................96

Figure 6.2. Plots of the $O_2$ dependence of the $k_{obs}$ of the two phases of the reoxidation. A. $k_{obs1}$ vs $O_2$ concentration showing its linear dependence. B. $k_{obs2}$ vs $O_2$ concentration showing its independence. Values are shown as means and vertical lines are standard deviations. Average of the mean values in B is $17 \pm 1 s^{-1}$. ........................................................................97

Figure 6.3. pH (filled circles) and $pD$ (open triangles) contributions to solvent effects on $appk_{ox}$. Values shown are means and vertical lines indicate standard
deviations. Average of the log\textsuperscript{app}k\textsubscript{ox} mean values in both H\textsubscript{2}O and D\textsubscript{2}O is 5.8 ± 0.1.

**Figure 6.4.** Spectra of native AAO in 25 mM sodium phosphate, pH 8.0 (solid line), and 100 mM sodium acetate, pH 5.0 (dotted line). Differences in the shoulder around 500 nm and the ratio band I/band II are shown.

**Figure 6.5.** Traces showing the reoxidation of AAO (7ºC, pH 8.0 and 5.0) at different wavelengths characteristic of possible intermediates in the reaction. A. Reaction in 25 mM sodium phosphate, pH 8.0. B. Reaction in 100 mM sodium acetate, pH 5.0. Insets show the spectra of the reduced and oxidized species of the enzyme with arrows indicating the direction of the spectral changes. Lack of transient species points out the absence of any detectable intermediates. Fits to exponential equations are shown under the spectral evolution changes.

**Figure 6.6.** Plot of the values of $k_{\text{obs1}}$ as a function of the time of incubation after reduction of the enzyme using $[\alpha$-2\textsuperscript{2}H\textsubscript{2}]$p$-methoxybenzyl alcohol in aqueous buffer, which was fitted to an exponential function yielding $y = 58 + 29 \times (1 - e^{-0.002 \times t})$ ($R^2 = 0.99$). There is an evident tendency towards the increase of the values, indicating the gradual loss of the deuterated tag on flavin N5 by exchange with the solvent. Means and standard deviations.

**Figure 7.1.** Pathway for 5-hydroxymethylfurfural (HMF) conversion into 2,5-furandicarboxylic acid (FDCA), via 2,5-formylfurancarboxylic acid (FFCA), including 2,5-diformylfuran (DFF) or 2,5-hydroxymethyl furancarboxylic acid (HMFCFA) intermediates.

**Figure 7.2.** HMF and DFF transformation by *P. eryngii* AAO. (A, B) HMF and DFF (3 mM), respectively, treatment (5 mL) with AAO (5 μM, corresponding to 54 U measured with veratryl alcohol) yielding 90–98% FFCA after 4 h, which was then slowly oxidized to FDCA (6–10% after 24 h). The AAO residual activity is also shown in A (dotted line).

**Figure 7.3.** FFCA transformation by *A. aegerita* UPO. FFCA (3 mM, 5 mL reaction) was slowly oxidized by UPO (20 U measured with veratryl alcohol) and H\textsubscript{2}O\textsubscript{2} (4 mM) to FDCA (~90% after 120 h). The UPO residual activity is also shown, as well as the comparison with the blank reactions (controls without enzyme).

**Figure 7.4.** HMF transformation by *P. eryngii* AAO plus *A. aegerita* UPO (successive addition). After 4 h treatment of HMF with AAO almost all HMF was converted into FFCA, and UPO was added to complete the HMF transformation into FDCA.

**Figure 7.5.** $^1$H-NMR spectra (5.6–10.0 ppm) of HMF (A), DFF (B) and FFCA (C) in DMSO-$d_6$.

**Figure 7.6.** $^1$H-NMR analyses revealing different hydration degrees. The $^1$H-NMR spectra (5.8–10.2 ppm) of 10 mM HMF (A), DFF (B) and FFCA (C) in D\textsubscript{2}O
show the H₁ to H₄ signals in the aldehyde and gem-diol (asterisks) forms, enabling calculation of their hydration degrees................................. 118

**Figure 7.7.** Scheme for enzymatic conversion of HMF into FDCA in a cosubstrate-free reaction cascade involving *P. eryngii* AAO and *A. aegerita* UPO. HMF (1) is oxidized by AAO to DFF (2), whose hydrated (gem-diol) form (2’) undergoes a second AAO oxidation yielding FFCA (3). The H₂O₂ formed during AAO reduction of O₂ enables UPO to convert unhydrated FFCA (3) into FDCA (4), with H₂O as the only by-product. The low amount of hydrated FFCA (3’) results in the inability of AAO to catalyze the last step in the reaction cascade, which is successfully catalyzed by UPO............................................................... 122
# List of Tables

**Table 1.1.** Comparison of the catalytic efficiencies of *P. eryngii* and *B. adusta* AAO oxidizing representative alcohol and aldehyde substrates..........................5


**Table 1.3.** Inventory of peroxidase and GMC genes (see Table 1.2 for enzyme abbreviations) in six brown-rot Agaricomycotina (CP, *Coniophora puteana*; GT, *Gloeophyllum trabeum*; FP, *Fomitopsis pinicola*; WC, *Wolfiporia cocos*; DSP, *Dacryopinax* sp. and RP, *Rhodonia placenta*) genomes........................................................................13

**Table 2.1.** Cycles of the mutagenic PCR programme..................................................33

**Table 2.2.** Data collection and refinement statistics for AAO:p-anisic acid complex.................................................................................................................................40

**Table 3.1.** Inventory of 95 genes from six GMC families in the genomes of 10 Polyporales species (BJEAD, *B. adusta*; PHLBR, *P. brevispora*; PHACH, *P. chrysosporium*; DICSQ, *D. squalens*; GANSP, *Ganoderma* sp.; TRAVE, *T. versicolor*; GELSU, *G. subvermispora*; FOMPI, *F. pinicola*; RHOP, *R. placenta*; and WOLCO, *W. cocos*) from four different clades, producing white-rot and brown-rot decay of wood. Four allelic variants are excluded from the inventory (Annex 1)...............................................................................................................................46

**Table 4.1.** Kinetic parameters for steady-state reaction of native AAO and its Phe397 variants in the oxidation of *p*-methoxybenzyl alcohol........................................63

**Table 4.2.** Transient-state kinetic parameters for the reductive half-reaction of native AAO and its Phe397 variants.................................................................................67

**Table 4.3.** Transient-state kinetic parameters for the oxidative half-reaction of native AAO and its Phe397 variants.................................................................................67

**Table 4.4.** Dissociation constant (*K_d*), and rate constants of formation (*k_for*) and dissociation (*k_dis*) of *p*-anisic acid complexes by native AAO and its Phe397 variants....................................................................................................................................72

**Table 5.1.** Estimated *k_cat*, *K_m* and *k_cat/K_m* constants for the steady-state kinetics of native AAO with *α*-protiated and *α*-dideuterated *p*-methoxybenzyl alcohols..........................................................82
Table 5.2. Thermodynamic parameters from the temperature dependence of the turn-over and hydride transfer reaction in native AAO oxidation of α-protiated and α-deuterated p-methoxybenzyl alcohols ................................................................. 82

Table 5.3. KIEs determined from the temperature dependence of the steady-state in native AAO ........................................................................................................ 83

Table 5.4. Reduction rate (k_{red}) and dissociation (K_d) constants for native AAO with α-protiated and α-deuterated p-methoxybenzyl alcohols ........................................ 83

Table 5.5. Primary and secondary KIEs determined from the temperature dependence of hydride transfer reaction (k_{red}) in native AAO ........................................ 84

Table 5.6. Estimated KIEs on K_d for native AAO and Y92F, Y92L and Y92W .......................................................................................................................... 85

Table 5.7. Reduction rate (k_{red}) and dissociation (K_d) constants for Y92F AAO with α-protiated and [α-^2H_2]-p-methoxybenzyl alcohol .............................................. 85

Table 5.8. Reduction rate (k_{red}) and dissociation (K_d) constants for Y92L AAO with α-protiated and [α-^2H_2]-p-methoxybenzyl alcohol .............................................. 87

Table 5.9. Reduction rate (k_{red}) and dissociation (K_d) constants for Y92W AAO with α-protiated and [α-^2H_2]-p-methoxybenzyl alcohol .............................................. 88

Table 5.10. Thermodynamic parameters from the temperature dependence of the hydride transfer reaction (k_{red}) in Tyr92 AAO variants oxidation of α-protiated and [α-^2H_2]-p-methoxybenzyl alcohols ................................................. 88

Table 5.11. KIES determined from the temperature dependence of hydride transfer reaction (k_{red}) in Tyr92 AAO variants ........................................................................ 89

Table 6.1. Reduction times of AAO mixed protiated or dideuterated alcohol substrates (1:1, c:c) at 12 °C in H_2O or D_2O calculated by following the reaction spectrophotometrically in a stopped-flow apparatus ........................................ 95

Table 6.2. Substrate and solvent KIE at different pL values for the reoxidation of AAO at 12°C .......................................................................................................... 97

Table 6.3. Kinetic parameters for the reoxidation of AAO with protiated (H) and deuterated (D) p-methoxybenzyl alcohol in protiated and deuterated solvents at different pLS and 12°C .................................................................................................................. 100

Table 6.4. KIE on the second-order rate constant for flavin oxidation at pL 8.0 ................................................................................................................................. 100

Table 7.1. Kinetic parameters for HMF, DFF, FFCA and HMFCQA oxidation by AAO (estimated from H_2O_2 formed) ........................................................................ 113

Table 7.2. Molar percentages (from 5-mL reactions) after 24-h treatment of HMF (3 mM) with AAO alone (5 μM, corresponding to 54 U measured with veratryl alcohol), UPO alone (0.65 μM, corresponding to 20 U measured with veratryl alcohol), and with AAO (5 μM, 54 U) and UPO (0.65 μM, 20 U) added
simultaneously (sim) or successively (suc); as well as after 24-h treatment of DFF (3 mM) with AAO (5 μM, 54 U), and FFCA (3 mM) with 6 and 200 mM H$_2$O$_2$.
Abstract

The superfamily of glucose-methanol-choline oxidases/dehydrogenases (GMC) is composed of FAD-containing, phylogenetically-related proteins that share a common fold subdivided into two different domains: the FAD-binding and substrate-binding ones. Some fungal oxidoreductases belonging to the superfamily play a role as auxiliary enzymes in the lignocellulose-degrading process. Most of them are extracellular oxidoreductases that produce the \( \text{H}_2\text{O}_2 \) required: (i) by high redox potential peroxidases to act on lignin; or (ii) to trigger Fenton reactions, which give rise to radical oxygen species that attack lignocellulose.

Investigation of the genomes of 10 selected Polyporales fungi, the only organisms able to completely mineralize lignin, shed light on the involvement of 5 families of GMC oxidoreductases in the lignocellulose decay. These were glucose oxidases (GOX), cellobiose dehydrogenases (CDH), pyranose 2-oxidases (P2O), methanol oxidases (MOX) and aryl-alcohol oxidases (AAO). Phylogenetic studies suggest that they share a common ancestor whose diversification took place at a more ancestral stage of fungal evolution, which is characterized by a low number of these GMC genes. AAO and MOX proved to be the most abundant GMC oxidoreductases present in the selected genomes. The number of genes encoding for these enzymes varies from one genome to another according to the ecophysiology of the fungi. In fact, brown-rot fungi, which do not mineralize lignin but alter its structure to gain access to carbohydrates, lost most of their lignin-degrading enzymes and GMC repertoire, except MOX. These fungi cause the demethoxylation of lignin that releases methanol and relies on the reactivity of radical oxygen species stemming from \( \text{H}_2\text{O}_2 \). These findings point out the co-evolution of these fungal GMC enzymes with the lignin-degrading peroxidases.

AAO from the basidiomycete Pleurotus eryngii was selected as a model representative of the GMC superfamily to be studied from a mechanistic point of view. It is an enzyme that catalyzes (i) the oxidative dehydrogenation of benzylic alcohols into their corresponding aldehydes and (ii) the reduction of \( \text{O}_2 \) to \( \text{H}_2\text{O}_2 \), in two separate half-reactions. The reductive one consists in the abstractions of the pro-\( R \) hydrogen as a hydride from the \( \alpha \)-carbon of the alcohol substrate by the FAD cofactor and of the proton from the hydroxyl group by the catalytic His502 residue. During the reoxidative half-reaction, these particles are eventually transferred to \( \text{O}_2 \), thereby reducing it to \( \text{H}_2\text{O}_2 \).

The role of the residue Phe397 in AAO catalysis was studied by comparing the steady and transient-state kinetics of the native enzyme with those of mutated variants for this position. Results suggested that, opposite to native enzyme in which the reduction acts as the limiting step of the overall catalysis, in some variants neither of the half reactions was rate limiting. Affinity studies, as well as the rate constants estimated for the formation and dissociation of the enzyme-
product complex using a product analog, suggested the involvement of residue Phe397 in the product release from the active site. Furthermore, substitution of Phe397 with non-aromatic residues resulted in a decrease in the oxidation constants.

The temperature dependence of AAO catalysis was studied with the aim of elucidating the involvement of the mechano-quantical effect known as hydrogen tunneling in the hydride transfer taking place during the reductive half-reaction of the enzyme. Data drawn from steady-state and rapid kinetics with protiated and deuterated substrates indicate that the tunneling effect is actually involved in the said transfer. Moreover, comparison of kinetic data for native AAO and mutated variants of residue Tyr92 suggests that the transfer depends on thermally-activated protein motions that enable the enzyme to transfer the particle from an already pre-formed, highly organized, enzyme-substrate configuration. These results are reinforced by the crystallographic structure resolved for the AAO:p-anisic acid complex, the final product of the 4-electron oxidation of p-methoxybenzyl alcohol.

The mechanisms lying behind the reoxidation of the enzyme and concomitant production of H₂O₂ had not been extensively characterized. Therefore, they were studied by rapid kinetics using solvent and substrate kinetic isotope effects. These investigations revealed that, after the initial and obligate electron transfer to overcome the spin inversion barrier, the enzyme transfers one hydrogen atom from FAD and one proton from a solvent exchangeable site in two separate kinetic steps, which are, thus, non-concerted. The solvent isotope effect that revealed this feature was negligible at acidic pH and appeared as a consequence of the combination of the lower proton availability at basic pH and the use of a deuterated solvent that slowed down the reaction.

Finally, the biotechnological application of GMC oxidases was assessed for the production of 2,5-furandicarboxylic acid (FDCA), which can be polymerized with ethylene glycol to produce renewable bioplastics. AAO from *P. eryngii* demonstrated to be capable of catalyzing the oxidation of precursors of FDCA that are derived from the dehydration of fructose present in plant biomass such as 5-hydroxymethylfurfural (HMF). In spite of its activity on HMF and some partially oxidized derivatives, AAO alone was not able to convert them into FDCA. Such inability was solved by the combined action of unspecific peroxygenase (UPO) from the fungus *Agrocybe aegerita*, which was able to overcome the AAO limitations at expenses of the H₂O₂ generated by it. The synergistic activity of these two enzymes allowed the operation of an enzymatic cascade for the production of FDCA from HMF. AAO and UPO converted 90% of initial HMF into FDCA with the only net consumption of atmospheric O₂.
Resumen

La superfamilia de glucosa-metanol-colina oxidonas/deshidrogenasas (GMC) se compone de proteínas que contienen FAD que están filogenéticamente relacionadas entre sí y comparten un plegamiento común que se subdivide en dos dominios diferentes: el de unión a FAD y el de unión a sustrato. Algunas oxidoreductasas fúngicas que pertenecen a esta superfamilia desempeñan la función de enzimas auxiliares en el proceso de degradación de la lignocelulosa. La mayor parte de ellas son oxidoreductasas extracelulares que producen el H₂O₂ requerido: (i) por las peroxidasas de alto potencial redox para actuar sobre la lignina; o (ii) para desencadenar las reacciones de Fenton, que dan lugar a especies radicales de oxígeno que atacan a la lignocelulosa.

El estudio de los genomas de 10 hongos seleccionados del orden Poliporales, los únicos organismos capaces de mineralizar totalmente la lignina, arrojó luz sobre la participación de 5 familias de oxidoreductasas GMC en la descomposición de la lignocelulosa. Estas fueron las glucosa oxidonas (GOX), cellobiosa deshidrogenasas (CDH), piranosa 2-oxidonas (P2O), metanol oxidonas (MOX) y aril-alcohol oxidonas (AAO). Los estudios filogenéticos sugieren que estas enzimas comparten un ancestro común cuya diversificación tuvo lugar en una etapa más temprana de la evolución fúngica, que se caracterizó por el escaso número de estos genes GMC. Las AAO y las MOX resultaron ser las oxidoreductasas GMC más abundantes en los genomas seleccionados. El número de genes que codifican para estas proteínas varía ampliamente de un genoma a otro de acuerdo con las características ecológicas de cada hongo. De hecho, los hongos de podredumbre parda, que no mineralizan la lignina, sino que alteran su estructura con el fin de acceder a los carbohidratos embebidos en esta, perdieron la mayor parte del repertorio de enzimas GMC, con excepción de las MOX. Estos hongos causan la demetoxilación de la lignina, que libera metanol y depende de la reactividad de las especies radicales de oxígeno que se originan del H₂O₂. Estos hallazgos indican la coevolución de las enzimas GMC fúngicas con las peroxidasas degradadoras de la lignina.

La AAO del basidiomiceto Pleurotus eryngii fue seleccionada como modelo representativo de la superfamilia GMC para ser estudiada desde el punto de vista mecanístico. Se trata de una enzima que cataliza: (i) la deshidrogenación oxidativa de alcoholes aromáticos produciendo los correspondientes aldehídos y (ii) la reducción de O₂ a H₂O₂ en dos semirreacciones separadas. La semirreacción de reducción consiste en las abstracciones del hidrógeno en posición pro-R del carbono α del substrato alcohol en forma de hidruro por el FAD y la del protón del grupo hidroxilo por la His502 catalítica. Durante la semirreacción de oxidación estas partículas son finalmente transferidas al O₂ reduciéndolo.
El papel que el residuo Phe397 desempeña en la catálisis de la AAO se estudió mediante la comparación de las cinéticas tanto de estado estacionario como transitorio entre la enzima nativa y variantes mutadas para este residuo. Los resultados sugieren que la Phe397 está involucrada en ayudar al sustrato a entrar y acomodarse en el centro activo, así como en la salida del producto aldehído. Además, los estudios de afinidad llevados a cabo, así como las constantes cinéticas estimadas para la formación y disociación del complejo enzima-producto empleando un análogo del mismo, avalan esta hipótesis.

La dependencia de la temperatura de la catálisis de AAO se estudió con el objetivo de dilucidar la participación del efecto mecano-cuántico conocido como tunneling de hidrógeno en la transferencia del hidruro durante la semirreacción de reducción de la enzima. Los datos obtenidos de las cinéticas en estado estacionario así como de las cinéticas rápidas con sustratos protiados y deuterados indican que el efecto túnel está involucrado en la mencionada transferencia. Además, la comparación de los datos cinéticos de la AAO salvaje con los de variantes mutadas del residuo Tyr92 sugieren que la transferencia depende de los movimientos proteicos activados térmicamente que permiten a la enzima transferir la partícula desde una configuración altamente organizada que se forma antes de la catálisis. Estos resultados se ven reforzados por la resolución de la estructura cristalográfica AAO:ácido p-anísico, el producto de la oxidación del alcohol p-metoxibencílico por 4 electrones.

Los mecanismos que subyacen a la reoxidación de la enzima y la producción de H₂O₂ no se habían caracterizado en detalle. Por ello, estos procesos se estudiaron mediante cinéticas rápidas empleando efectos isotópicos de sustrato y solvente. Esta investigación reveló que, tras la transferencia obligada inicial de un electrón para superar la barrera de inversión de spin, la enzima transfiere al O₂ un átomo de hidrógeno desde el FAD y un protón desde un lugar de intercambio con solvente en dos procesos químicos independientes, que son, por tanto, no concertados. El efecto cinético isotópico de solvente que desveló esto es despreciable a pH ácido y se hizo evidente como consecuencia de la combinación de la baja disponibilidad de protones a pH básico y el uso de solvente deuterado, que ralentiza la reacción.

Finalmente, la aplicación biotecnológica potencial de oxidasas GMC se evaluó para la producción de ácido 2,5-furandicarboxílico (FDCA), que puede ser polimerizado con etilenglicol con el fin de obtener bioplásticos. La AAO de P. eryngii demostró ser capaz de catalizar la oxidación de precursores del FDCA que provienen de la deshidratación de la fructosa presente en la biomasa vegetal tales como 5-hidroxiteturfurfural (HMF). A pesar de su actividad sobre HMF y algunos de sus derivados parcialmente oxidados, la AAO por sí sola no fue capaz de producir FDCA. Esto fue solventado por la acción combinada de una peroxigenasa inespecífica (UPO) del hongo Agrocybe aegerita, que fue capaz de catalizar las reacciones necesarias a expensas del H₂O₂ generado por la AAO. La acción sinérgica de estas dos enzimas permitió el establecimiento de una cascada...
Resumen

enzimática para la producción del FDCA a partir de HMF. AAO y UPO convirtieron un 90% del HMF inicial en FDCA con el único consumo neto de O$_2$ atmosférico.
Introduction
1.1. Introduction to the GMC superfamily

The glucose-methanol-choline (GMC) oxidase/dehydrogenase superfamily of proteins was first proposed by Cavener (1992) taking into account the similarities among the sequences of several enzymes: glucose dehydrogenase (GLD, EC 1.1.1.47) from Drosophila melanogaster, methanol oxidases (MOX, EC 1.1.3.13) from Hansenula polymorpha and Pichia pastoris, glucose oxidase (GOX, EC 1.1.3.4) from Aspergillus niger and choline dehydrogenase (CHD, EC 1.1.99.1) from Escherichia coli.

Since its first description, many enzymes have been assigned to this superfamily owing to their sequences’ common features. In particular, all of them share 5 regions, which are: the ADP-binding motif, the flavin attachment loop, the substrate-binding domain, the FAD-covering lid and the extended FAD-binding domain (Kiess et al. 1998). Such sequence similarities translate into very similar 3D structures, as revealed by the crystallographic data available of enzymes belonging to the superfamily. They all share a p-hydroxybenzoate hydroxylase (PHBH)-like fold (Mattevi 1998; Wierenga et al. 1983) and, thus, possess the same secondary structures constituting the different domains.

In general terms, the overall structures of these enzymes can be subdivided in two different substructures: the FAD-binding and the substrate-binding domains (Hallberg et al. 2002). Analysis of the sequences reveals that the FAD-binding domain shows a higher degree of conservation than the substrate-binding one. Such differences in the structure where the substrates bind open up a huge variability of different specificities for these enzymes. At first, given the great versatility of the isoalloxazine ring of FAD for the catalysis of redox reactions, the superfamily was thought to be composed of only oxidoreductases. However, another new class of enzymes has been discovered, hydroxynitrile lyase (HNL, EC 4.1.2.X.X), in which FAD is regarded as an evolutionary remnant that is not involved in the actual catalysis of the enzyme (Dreveny et al. 2001).

Representatives of this superfamily can be traced from prokaryotes to eukaryotes and their phylogeny has been extensively studied in insects (Iida et al. 2007; Sun et al. 2012) and fungi (Ferreira et al. 2015a; Zámocký et al. 2004). Given the high similarities they share, among which the presence of the FAD as a prosthetic group in noticeable, it has been proposed that they have evolved in different lines from a common ancestor. Therefore, phylogenetic studies have revealed that the superfamily can be subdivided into 5 different clades (Zámocký et al. 2004):

i) Alcohol oxidases and dehydrogenases, glucose oxidases and dehydrogenases, sorbose dehydrogenases and choline dehydrogenases, which is the most populated group in which the identities of sequence is higher amongst proteins.
ii) Hydroxynitrile lyases, which, as explained above, have evolved differently and FAD is supposed to have lost its catalytic function, so that they do not catalyze redox reactions.

iii) Cholesterol oxidases.

iv) Cellobiose dehydrogenases (CDH, EC 1.1.99.18), which underwent a gene fusion and bear two separate domains: one that binds FAD and another that harbors a heme.

v) Some eubacterial and archaeal dehydrogenases.

This work focuses on enzymes that catalyze the oxidation of alcohols, which is one of the most important reactions catalyzed by the members of the superfamily. This reaction takes place by the deprotonation of the hydroxyl moiety thanks to the action of a catalytic His that acts as a base (Hernández-Ortega et al. 2012c; Smitherman et al. 2014; Wongnate and Chaiyen 2013). Therefore, this His is conserved among all the representatives of the superfamily, along with another residue, which can be another His or an Asn, around 40 residues apart (Dreveny et al. 2001). The catalysis of aryl-alcohol oxidase (AAO) from Pleurotus eryngii as a model representative of the superfamily is detailed below.

1.2. Introduction to AAO

AAO (EC 1.1.3.7) is a fungal enzyme secreted from the mycelium of different fungi, including basidiomycetes involved in the degradation of lignocellulose.

AAO activity was reported during the 1960s in cultures of the lignicolous fungus Trametes versicolor by Farmer et al. (1960), although this enzyme was not further characterized. It was during the late 1980s and early 1990s that AAO was isolated from several Agaricales species, such as Pleurotus sajor-caju (Bourbonnais and Paice 1988), P. eryngii (Guillén et al. 1990b) and Pleurotus ostreatus (Sannia et al. 1991), and identified as the source of the H$_2$O$_2$ (Guillén et al. 1994) and aromatic aldehydes found in cultures of the above fungi (Guillén and Evans 1994; Gutiérrez et al. 1994). During subsequent years, its involvement in the ligninolytic process was demonstrated. AAO is responsible along with other GMC oxidoreductases and copper-radical oxidases for production of the H$_2$O$_2$ that, as described below, is required by: i) the activity of ligninolytic peroxidases; and ii) the formation of oxygen radicals that exert oxidative and depolymerising activities on polysaccharides and also on lignin.

Some AAOs have been exhaustively characterized, being those of P. eryngii (Ferreira et al. 2005; Guillén et al. 1992b; Hernández-Ortega et al. 2012a) and Bjerkandera adusta (de Jong et al. 1994; Romero et al. 2009) two remarkable examples. Their substrate specificity showed to be broad, since they proved to use secondary fungal metabolites, p-methoxybenzyl alcohol and other benzylic alcohols, as substrates. In fact, it is currently known that it can oxidize both phenolic and non-phenolic aryl-alcohols, together with other polyunsaturated (aliphatic) primary alcohols, to their corresponding aldehydes, as well as
aromatic secondary alcohols, albeit with much lower efficiency (Table 1.1). Moreover, the presence of low amounts of acids attributed to its activity in some fungal cultures (and in vitro reactions) paved the way for the demonstration of its activity on aryl aldehydes (Ferreira et al. 2010).

**Table 1.1.** Comparison of the catalytic efficiencies of *P. eryngii* and *B. adusta* AAO oxidizing representative alcohol and aldehyde substrates

<table>
<thead>
<tr>
<th>Substrate</th>
<th>P. eryngii</th>
<th>B. adusta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzyl alcohol</td>
<td>47 ± 9</td>
<td>18 ± 1</td>
</tr>
<tr>
<td><em>p</em>-Fluorobenzyl alcohol</td>
<td>59 ± 6</td>
<td>22 ± 2</td>
</tr>
<tr>
<td><em>m</em>-Fluorobenzyl alcohol</td>
<td>13 ± 1</td>
<td>47 ± 2</td>
</tr>
<tr>
<td><em>p</em>-Chlorobenzyl alcohol</td>
<td>398 ± 32</td>
<td>361 ± 15</td>
</tr>
<tr>
<td><em>m</em>-Chlorobenzyl alcohol</td>
<td>203 ± 4</td>
<td>1050 ± 30</td>
</tr>
<tr>
<td><em>p</em>-Methoxybenzyl alcohol</td>
<td>5230 ± 620</td>
<td>646 ± 45</td>
</tr>
<tr>
<td><em>m</em>-Methoxybenzyl alcohol</td>
<td>65 ± 24</td>
<td>349 ± 8</td>
</tr>
<tr>
<td>Veratryl alcohol</td>
<td>210 ± 5</td>
<td>22 ± 1</td>
</tr>
<tr>
<td>Isovanillyl alcohol</td>
<td>152 ± 5</td>
<td>51 ± 1</td>
</tr>
<tr>
<td>Vanillyl alcohol</td>
<td>0</td>
<td>31 ± 1</td>
</tr>
<tr>
<td>3-Chloro-<em>p</em>-methoxybenzyl alcohol</td>
<td>4090 ± 200</td>
<td>1480 ± 110</td>
</tr>
<tr>
<td>2-4-Hexadien-1-ol</td>
<td>1270 ± 60</td>
<td>186 ± 7</td>
</tr>
<tr>
<td>Cinnamyl alcohol</td>
<td>78 ± 11</td>
<td>305 ± 11</td>
</tr>
<tr>
<td>Coniferyl alcohol</td>
<td>0</td>
<td>5 ± 0.2</td>
</tr>
</tbody>
</table>
This plethora of substrates of AAO (Table 1.1), among which several reduced species derived from lignocellulose decay are noticeable, makes it a promising biocatalyst. The lignocellulosic materials are the main renewable resource on Earth because they are widespread and abundant (forests cover 27% of world’s area) and, thus, they are cheap and can be easily stored. As a consequence, the conversion of these materials into biofuels in biorefineries is of great interest. However, not only biofuels, that is heat and power, are important, but other by-products obtained during the biorefinery processes are also being carefully examined aiming at using them for the production of valorised chemicals (Bozell and Petersen 2010). AAO is a candidate for the enzymatic delignification of plant biomass (in synergy with other oxidoreductases) and for the production of aromatic aldehydes and acids that can originate from this renewable resource.

### 1.3. GMC and lignocellulose decay

Lignocellulosic biomass (in wood and nonwoody vascular plants) accounts for most of the total carbon fixed by land photosynthesis, and is constituted of three main polymers: cellulose, hemicellulose and lignin (Higuchi 1997). Both cellulose and lignin are the two most abundant polymers on Earth. Lignin is located in the middle lamellae, where it attains its highest concentration, and the secondary wall of vascular plants, together with the above polysaccharides. Its main functions are conferring rigidity to the plants, waterproofing vessels, and providing protection against desiccation, pathogens and irradiation (Gellerstedt and Henriksson 2008). Since lignin is very recalcitrant and protects polysaccharides from microbial hydrolysis, its degradation is a key step to complete the carbon cycle in land ecosystems. In fact, before it started to be biodegraded and mineralized, at the end of the Carboniferous period (~300 million year ago), the carbon that the plants fixed accumulated and therefore gave...
rise to the coal deposits we currently use as source of fossil fuels (Floudas et al. 2012).

The only organisms capable of degrading wood are some saprotrophic agaricomycetes, feeding on the simple sugars produced when cellulose and hemicelluloses are hydrolyzed. However, to accomplish this task, fungi must overcome a very recalcitrant barrier: lignin. Lignin is an amorphous polymer including a variety of bonds established among the three phenylpropanoid units that form its structure (Figure 1.1). Although these fungi do not use lignin as a nutrient, they have to remove or modify lignin to gain access to carbohydrates. The development of an extracellular system capable of altering the structure of lignin was, thus, a great achievement in evolutionary and ecological terms, since the polymer is mineralized and the carbon “sequestered” in it (as well as in plant polysaccharides) may go back to the atmosphere as CO₂. It is generally accepted that the first lignin-degrading organism must have been a basidiomycete (Floudas et al. 2012), which developed specific peroxidases to act on the recalcitrant lignin polymer oxidizing its subunits, causing bond breakages, and releasing the carbohydrates embedded within its matrix.

Figure 1.1. First structure proposed for angiosperm lignin showing its syringyl (S), guaiacyl (G) and p-hydroxyphenyl (H) phenylpropanoid units with different inter-unit linkages. Some minor structures are shown in brackets. From Nimz (1974).

The role of H₂O₂ in lignocellulose decay was studied as it proved to be produced simultaneously with the lignonolytic system. It was seen that the addition of catalase, an enzyme that degrades H₂O₂, to cultures of the white-rot fungus Phanerochaete chrysosporium diminished its lignin-degrading ability (Faison
and Kirk 1983). Two families of oxidoreductases include oxidases being able to produce this strong oxidant: copper-radical oxidases and GMC oxidoreductases.

The copper-radical oxidases are proteins that have one copper ion and a protein radical involved in catalysis, such as extracellular glyoxal oxidase (GLX, EC 1.2.3.15) (Kersten and Kirk 1987) and the related enzymes identified from sequenced genomes (Kersten and Cullen 2014), among others. On the contrary, as exposed above, GMC oxidoreductases are a superfamily of enzymes that share common structural patterns, including the FAD cofactor and a histidine catalytic base, although they differ in their substrate ranges. Extracellular enzymes of this superfamily involved in the lignocellulose-degradation process are cellobiose dehydrogenase (Ayers et al. 1978; Bao et al. 1993), pyranose 2-oxidase (Daniel et al. 1994), AAO (Ferreira et al. 2015a; Guillén et al. 1990b; Hernández-Ortega et al. 2012a) and methanol oxidase (Nishida and Eriksson 1987). The latter enzyme lacks a signal peptide to transport the protein to the extracellular space, but its presence out of the hyphae has been revealed, and it is supposed to be secreted by alternative secretion pathways (Daniel et al. 2007). Glucose oxidase (Eriksson et al. 1986) is an intracellular enzyme, so its role in lignocellulose degradation is controversial, since a transport system for the H₂O₂ formed would be required in order that it could carry out functions in the extracellular medium.

The study of genomes of ligninolytic fungi is important to identify the enzymes that carry out the lignin degradation. In this way, the first basidiomycete genome to be sequenced was that of *P. chrysosporium* (Martinez et al. 2004) due to the interest in this white-rot fungus of the order Polyporales as a model lignin-degrading organism (Kersten and Cullen 2007). Wood attack by white-rot fungi is based on their ability to degrade the recalcitrant polymer of lignin in a process that was defined as an enzymatic "combustion" (Kirk and Farrell 1987) and combines extracellular oxidases and peroxidases (Kersten and Cullen 2007; Ruiz-Dueñas and Martínez 2009). With a few exceptions corresponding to poor wood rotters (e.g., species of Jaapiiales and Cantharellales), the presence of lignin peroxidase (LiP, EC 1.11.1.14), manganese peroxidase (MnP, EC 1.11.1.13) or versatile peroxidase (VP, EC 1.11.1.16) genes is a constant and unique characteristic of all typical white-rot fungi based on comparative genome analysis (Barrasa et al. 2016; Floudas et al. 2012; Ruiz-Dueñas et al. 2013). The diversity, distribution and evolutionary relationships of ligninolytic peroxidases in the order Polyporales has been recently studied (Ruiz-Dueñas et al. 2013).

Brown-rot fungi have developed an alternative strategy, based on Fenton chemistry, to overcome the lignin barrier (Baldrian and Valásková 2008). H₂O₂ reduction by ferrous iron yields hydroxyl free radical, which is able to access, oxidize and depolymerize wood cellulose with a more or less limited modification of lignin (Kirk 1975; Martínez et al. 2011; Yelle et al. 2011). In 2009, the genome of *Rhodonia placenta* (syn.: *Postia placenta*) was sequenced as the model brown-rot fungus to increase our understanding of this type of wood decay (Martinez et al. 2009).
1.3.1. The AAO family in ligninolytic fungi

AAO activity has been reported in different fungi including *T. versicolor* (Farmer et al. 1960), *Fusarium solani* (Iwahara et al. 1980), *Rigidoporus microporus* (Waldner et al. 1988), *Pleurotus* species (Bourbonnais and Paice 1988; Guillén et al. 1992b; Sannia et al. 1991), *B. adusta* (de Jong et al. 1994; Kimura et al. 1990; Muheim et al. 1990b; Romero et al. 2009) and *Botrytis cinerea* (Goetghebeur et al. 1993); and the corresponding genes have been identified in many basidiomycete genomes (Floudas et al. 2012; Hernández-Ortega et al. 2012a), as described below. Further evidence of the simultaneous expression of AAO along with ligninolytic peroxidases (LiP) in *B. adusta* and in *Pleurotus* cultures (Camarero et al. 1996; Muheim et al. 1990a), supported the involvement of this oxidase in the degradation of lignin. Moreover, the enzyme was located in the hyphal sheath (which is formed by secreted fungal polysaccharide) during lignocellulose degradation (Barrasa et al. 1998), as it had been previously reported for peroxidases and laccases (Daniel et al. 1990; Gallagher et al. 1989; Green III et al. 1992).

The activity of AAO is supported by both non-phenolic and phenolic aryl alcohols that can derive from fungal metabolism (de Jong et al. 1994; Gutiérrez et al. 1994) and from lignin degradation (Kirk and Farrell 1987; Shimada and Higuchi 1991) and are substrates for the enzyme in cooperation with related dehydrogenases. It was seen that H$_2$O$_2$ is produced when adding aromatic alcohols, as well as the corresponding aldehydes and acids, to the mycelium of *P. eryngii* (Guillén et al. 1994). Thus, it was postulated that the redox cycling of these compounds results in a continuous supply of H$_2$O$_2$. The product of the reaction with AAO (aldehyde or acid) needs to be reduced in order to be re-used by the enzyme. Therefore, it is hypothesized that the oxidized species is transported to the intracellular space, where aryl-alcohol or aryl-aldehyde dehydrogenases, both NADPH-dependent enzymes, convert it into alcohol again (de Jong et al. 1994; Guillén and Evans 1994). Supply of reduced NADPH must be supported by the carbon availability for a fungus under ligninolytic conditions (Figure 1.2).

*P. eryngii* AAO’s preferential substrate is *p*-methoxybenzyl alcohol (Table 1.1), which is a secondary metabolite detected in fungal cultures grown both in glucose and lignin media (Gutiérrez et al. 1994). It is known that aromatic alcohols, aldehydes and acids are derived from the shikimic acid pathway of fungal secondary metabolism (Turner and Aldridge 1983). It was seen that the oxidized product, *p*-methoxybenzaldehyde (also known as *p*-anisaldehyde), was much more abundant in the *Pleurotus* cultures than its alcohol counterpart (Gutiérrez et al. 1994). High levels of related compounds, such as 3-chloro-*p*-anisaldehyde, were found to be abundant in *B. adusta* cultures (de Jong et al. 1992) and agree with catalytic efficiencies toward the corresponding alcohol for *B. adusta* AAO, for which seems to be the preferential substrate (Table 1.1). These chlorinated
derivatives are also minor extracellular metabolites in *P. eryngii* and *P. ostreatus* (Gutiérrez et al. 1994; Okamoto et al. 2002).

These findings further supported the hypothesis postulating that AAO was acting in the extracellular space involved in the said redox-cycling process for \( \text{H}_2\text{O}_2 \) production.

As mentioned above, based on macroscopic and chemical composition features, the wood-degrading processes were split into two different types involving different decay mechanisms. Some fungi leave a whitish residue, and thus were named white-rot fungi, while others produce a brown residue and were called brown-rot fungi (Martínez et al. 2005; Schwarze et al. 2000; Zabel and Morrell 1992). Owing to genomic and enzymatic studies, it is now thought that AAO could act as an auxiliary enzyme in both processes due to its \( \text{H}_2\text{O}_2 \)-producing activity and presence in the sequenced genomes of Agaricomycotina responsible for the two types of wood-decay processes.

**Figure 1.2.** Scheme of the natural role of AAO in decay of plant cell-wall producing \( \text{H}_2\text{O}_2 \) for: i) activation of lignin-degrading peroxidases; and ii) formation of cellulose-depolymerising hydroxyl radical (also causing lignin oxidation). Taken from Carro et al. (2016).
1.3.2. White-rot decay

White-rot fungi developed an enzymatic machinery to degrade lignin and, hence, be able to use cellulose and hemicellulose as a source of carbon and energy. The main enzymes involved are metalloproteins including lignin peroxidase, manganese peroxidase and versatile peroxidase, as well as laccases (EC 1.10.3.2) (Ruiz-Dueñas and Martínez 2009). Ligninolytic peroxidases are heme proteins that use H₂O₂ as the electron-accepting substrate to oxidize the lignin units. In contrast, laccases have copper as a cofactor, use O₂ as electron acceptor, and are thought to often act through small intermediate compounds, redox mediators, which in turn oxidize lignin. Since most enzymes cannot penetrate the intricate and compact structure of sound wood, small chemical oxidizers, activated oxygen species (as hydroxyl radical), metal cations (as Mn³⁺ produced by MnP and VP) and aromatic radicals (formed by different oxidoreductases) are probably responsible for the first stages of lignin decay (Evans et al. 1994). In white-rot decay there is a need of a continuous H₂O₂ flow in the extracellular environment in order that peroxidases be able to act on lignin. Moreover, hydroxyl radical can be produced through Fenton reaction between Fe²⁺ and H₂O₂, and participate in oxidative modification of cellulose (as described below for brown-rot decay) and also of lignin (Figure 1.2) (Bes et al. 1983; Forney et al. 1982; Gómez-Toribio et al. 2009).

White-rot fungi can be classified into two groups according to their gross degradation patterns. Some of them degrade lignin and cellulose simultaneously as it is the case for P. chrysosporium, one of the most studied lignin-degrading organisms. Instead, others, such as Ceriporiopsis subvermispora, degrade lignin before cellulose (Otjen and Blanchette 1986). The main differences between the sequenced genomes of these two fungi appear to be related to (i) the peroxidase repertoire, and (ii) the genes involved in lipid metabolism (Fernández-Fueyo et al. 2012). The latter is related to the fact that free radicals from unsaturated lipids are supposed to play a role in lignin attack too (Bao et al. 1994). Pleurotus eryngii also acts as a selective lignin degrader when growing on nonwoody lignocellulosic materials (Martínez et al. 1994). Selective white-rot fungi are the most interesting for industrial applications in which carbohydrates are the raw material, since they release cellulose from the lignin matrix without significantly consuming it.

The analysis of genomes of white-rot fungi in which AAO appeared to be produced, along with peroxidases, further confirmed its involvement in the white-rot process as an auxiliary enzyme producing H₂O₂. For instance, Floudas et al. (2012) analyzed 24 basidiomycete genomes to search for enzymes involved in the degradation of lignin. On the one hand, all white-rot genomes studied possessed AAO genes with the only exception of Auricularia delicata. On the other hand, AAO appears to be the most common H₂O₂-producing GMC, since MOX genes are not as abundant, GOX genes are absent, and P2O genes are only found in two of the genomes (Table 1.2).
Table 1.2. Inventory of peroxidase and GMC (AAO, aryl-alcohol oxidase; CDH, cellobiose dehydrogenase; MOX, methanol oxidase and P2O, pyranose 2-oxidase) genes in eleven white-rot Agaricomycotina (AD, Auricularia delicata; PST, Punctularia striposozonata; FM, Fomitiporia mediterranea; DS, Dichomitus squalens; TV, Trametes versicolor; SH, Stereum hirsutum; BA, Bjerkandera adusta; PB, Phlebia brevispora; PC, Phanerochaete chrysosporium; GS, Ganoderma sp. in the Ganoderma lucidum complex; and CS, Ceriporiopsis subvermispora) genomes

<table>
<thead>
<tr>
<th>Peroxidases</th>
<th>AD</th>
<th>PST</th>
<th>FM</th>
<th>DS</th>
<th>TV</th>
<th>SH</th>
<th>BA</th>
<th>PB</th>
<th>PC</th>
<th>GS</th>
<th>CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>21</td>
<td>21</td>
<td>33</td>
<td>21</td>
<td>39</td>
<td>11</td>
<td>34</td>
<td>16</td>
<td>18</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>CDH</td>
<td>1</td>
</tr>
<tr>
<td>MOX</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>P2O</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

From Floudas et al. (2012)

1.3.3. Brown-rot decay

The brown-rot decay is based on a non-enzymatic attack on wood that leads to lignin modification, instead of degradation/mineralization, and cellulose depolymerization. On having no longer the machinery for degrading lignocellulose (Table 1.3), brown-rot fungi are the only organisms known to be able to nearly completely remove all polysaccharides from wood after partial lignin degradation (Arantes et al. 2012). Nevertheless, it has been demonstrated that they do alter lignin in order to gain access to the carbohydrates leaving it partially modified but still polymeric and with a recognizable chemical structure (Martínez et al. 2011). Genomic studies have proved that these fungi stem from the white-rot lineage, and that they have lost most of the lignin-degrading apparatus their white-rot ancestors used to have, which means that peroxidases are absent or residual in their genomes (only one generic peroxidase gene in some species) (Ruiz-Dueñas et al. 2013). They have originated independently in several lineages and have representatives in five basidiomycete orders (Floudas et al. 2012).

The initial oxidative step alters the plant cell-wall structure in order to make it more accessible to enzymes involved in subsequent decay (Goodell et al. 1997). Reactive oxygen species, namely hydroxyl radical, generated by Fenton chemistry, play a key role in this oxidative process (Figure 1.2) (Baldrian and Valásková 2008; Halliwell 1965). Fenton chemistry is based on reaction among H2O2 and Fe2+ ions giving rise to hydroxyl free radical. This is a radical mechanism where Fe2+ is generated from Fe3+ in a cycle that involves fungal enzymes (Gómez-Toribio et al. 2009). The hydroxyl radical is the most powerful (non-specific) oxidant in biological systems but it has an extremely short half-life (10^-9 s) and, as a consequence, Fenton reactions need occur immediately adjacent to the site of oxidative action within the plant cell-wall because of spatial diffusion limitations (Arantes et al. 2012).
Since one of the most remarkable chemical alterations that brown-rot decay cause to lignin is demethoxylation (Martínez et al. 2011; Niemenmaa et al. 2008; Yelle et al. 2008), which ultimately gives rise to methanol, methanol oxidase is thought to be the most important $\text{H}_2\text{O}_2$-producing enzyme in brown-rot decay. Nevertheless, genomic studies have shown that brown-rot *Postia placenta* has AAO too (Martínez et al. 2009), suggesting that the latter oxidase might play a role in Fenton chemistry. Floudas et al. (2012) analysed seven brown-rot fungal genomes and found AAO genes in several of them, although they were not as abundant as those of methanol oxidase (Table 1.3).

### 1.4. AAO catalytic mechanism in detail

AAO catalyzes the two-electron oxidation of aromatic alcohols bearing an $\alpha$-carbon hydroxyl group (Ferreira et al. 2005) concomitantly with the reduction of $\text{O}_2$ to $\text{H}_2\text{O}_2$ in two separate half reactions. Furthermore, AAO activity on some aliphatic polyunsaturated and secondary aromatic alcohols (Hernández-Ortega et al. 2012b), as well as on geminal diols that originate from the hydration of aldehydes has also been demonstrated (Ferreira et al. 2010).

Diffusion of the alcohol substrate into the active site of the enzyme is limited by the presence of three residues —Tyr92, Phe397 and Phe501— that form a hydrophobic bottleneck shielding the cavity from the outer environment. Computational studies of the migration of the alcohol into the active site by PELE (Borrelli et al. 2005) showed that the substrate adopts a configuration such that its $\alpha$-carbon is situated near the flavin ring and the chains of residues His502 and His546 (Figure 1.3) (Hernández-Ortega et al. 2011a).

The mechanism and the active site residues involved in both half reactions have been deeply characterized by a combination of experimental and computational studies. Isotope labeling showed that alcohol oxidation takes place by concerted asynchronous proton transfer from alcohol hydroxyl to His502, and hydride transfer from $\alpha$-carbon position to flavin N5. Two conserved active site histidines, His502 and His546, are involved as catalytic base and substrate hydrogen bonding, respectively, as confirmed by mutational research (Figure 1.4A). The above hydride transfer is stereoselective (pro-$R$ hydrogen is transferred) as direct

### Table 1.3. Inventory of peroxidase and GMC genes (see Table 1.2 for enzyme abbreviations) in six brown-rot Agaricomycotina (CP, Coniophora puteana; GT, *Gloeophyllum trabeum*; FP, *Fomitopsis pinicola*; WC, *Wolfiporia cocos*; DSP, *Dacryopinax* sp.; and RP, *Rhodonia placenta*) genomes

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>GT</th>
<th>FP</th>
<th>WC</th>
<th>DSP</th>
<th>RP</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CDH</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MOX</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>P2O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

From Floudas et al. (2012) and Ferreira et al. (2015a)
consequence of AAO active site architecture and concerted mechanism, since when the alcohol hydroxyl is oriented to His502 (proton abstraction) only the pro-R hydrogen can be transferred to flavin N5 (hydride transfer). This half reaction gives rise to the protonated His502, the aldehyde and the hydroquinone form of the FAD cofactor (Figure 1.4B).

![Figure 1.3](image-url) **Figure 1.3.** Substrate migration studies revealed several positions of AAO active-site residues. Taken from Hernández-Ortega et al. (2011a).

During the oxidative half-reaction, O₂ positioning in front of flavin C₄a-N₅ locus is facilitated by Phe501, as shown by mutagenesis studies (Hernández-Ortega et al. 2011b). QM/MM calculations concluded that O₂ is first one-electron reduced by FADH₂/FADH⁻ yielding superoxide anion radical (Figure 1.4C). This process is activated by His502 charged state, which additionally provides a proton that reduces the singlet/triplet energy gap. The reaction is followed by second proton transfer from semiquinone FAD concomitant with spin inversion (and second electron transfer) without formation of a flavin-hydroperoxide intermediate. The first transfer is very fast but the second one seems to be rate limiting, as shown by isotope labeling (Figure 1.4D). The reoxidative half reaction produces reoxidized flavin and the H₂O₂. Release of the products permits the enzyme go back to the initial state.

**1.4.1. Involvement of quantum-mechanical tunneling in AAO catalysis**

There exist enzymes displaying hydrogen transfer mechanisms, either as a hydrogen atom (H), proton (H⁺) or hydride (H⁻), for which the postulated
theories on enzymatic reactions did not suit. This has encouraged the development of new models able to explain such different behaviors.

Transition state theory (TST) was first used to explain the reactions catalyzed by enzymes, including hydrogen and electron transfer reactions (Kraut 1988). This theory describes the reaction coordinate as a potential energy surface with a single free energy minimum (the reactant well) and a single maximum (the activated transition state complex) required to go to product.

![Diagram](image)

**Figure 1.4.** Proposed *P. eryngii* AAO catalytic cycle.

The study of the transfer reaction for different hydrogen isotopes soon revealed changes in the energy of activation ($E_a$) values, so that it became necessary to incorporate quantized approaches of quantum physics (Melander and Saunders 1987). This semiclassical model postulated that the observed kinetic isotope effects (KIE) for C-H cleavage were the consequence of the differences in zero point energies for the hydrogen isotopes protium (H), deuterium ($^2$H) and tritium ($^3$H), and predicted KIE, that is the ratio of a given rate measured with a protiated substrate and the one estimated with deuterated substrate, over 7, as long as tunneling occurs in an isotope-dependent manner. Therefore, some corrections were introduced in the theory, first including tunneling as having some
involvement in the processes (Bell 1980). Hence, the enzymes were thought to catalyze hydrogen transfer through a mixture of semiclassical and quantum-mechanical contributions. These models considered KIE and activation energy ($E_a$) to measure the magnitude of semiclassical and quantum-mechanical contributions, respectively (Kohen and Klinman 1999; Nagel and Klinman 2009). Nevertheless, extensive investigation on the transfer processes of soybean lipoxygenase (Knapp et al. 2002) and alcohol dehydrogenase (Kohen et al. 1999) led to the discovery of huge nearly temperature-independent KIEs that could not be explained by these tunneling corrections of TST.

Consequently, hydrogen transfer is nowadays regarded as a fully quantum-mechanical process governed by a hierarchy of enzyme motions (Knapp et al. 2002; Knapp and Klinman 2002; Nagel and Klinman 2009). Those include “passive” dynamics that pre-organize the active site in a way that create an appropriate ground-state structure for catalysis and “active” dynamics, also known as gating, that help sample donor-acceptor distances (DAD) between substrate and enzyme to produce a tunneling-ready conformation that permits the transfer (Klinman and Kohen 2013). Such DAD samplings help bring the reacting atoms together so that their wave function overlap and, thus, particle can be transferred across the barrier width, which is the basic premise of tunneling. Therefore, these protein motions have gained momentum because of its involvement in catalysis and, especially, tunneling in hydrogen transfer (Allemann et al. 2006; Fan and Gadda 2005; Klinman 2015; Luk et al. 2015; Singh et al. 2015).

Breakage of a C–H bond followed by H transference is a key biochemical process on which many enzymes rely for their catalysis (Basran et al. 2006). Amongst them, AAO from *P. eryngii*. In fact, the high primary substrate KIE observed during AAO reductive half reaction together with a moderated secondary substrate KIE suggest hydrogen tunneling modulation during HT (Hernández-Ortega et al. 2012a).

### 1.4.2. Reduction of O$_2$ by AAO and related oxidases

Reduction of O$_2$ by flavoenzymes is a fascinating yet intriguing process in nature. It is an impaired reaction due to the intrinsic characteristics of the O$_2$ and flavin molecules. Although the reactivity is favored by the differences in redox potential among the oxygen species and the flavin hydroquinone (Sawyer 1988), given the difference in the spin ground state of both molecules (O$_2$ is in triplet state and the cofactor in singlet state) the reaction is said to be impeded by the law of spin conservation (Malmstrom 1982). However, flavooxidases have overcome this restriction by single one-electron transfers in a stepwise manner (Mattevi 2006). Flavin cofactors play a central role in the whole process as they act receiving the two electrons from organic substrates during the reductive half-reaction and donating them eventually to O$_2$. Together with cofactors, also the architecture of active site is important for the redox process. In fact, flavooxidases are said to
speed up reactions with O\textsubscript{2} by at least hundred-fold, in comparison with free flavins, aided by the presence of a positive charge near flavin C4a, and the whole flavin environment (Gadda 2012).

Oxidases and monooxygenases are supposed to initiate the reoxidation reaction by transferring a first electron from the reduced flavin to O\textsubscript{2}, thereby giving rise to a caged radical pair formed by the neutral semiquinone and the superoxide cation radical. The radical pair is very unstable and immediately decays following different pathways (Massey 1994). In spite of such instability and the velocity of its disappearance, one intermediate with similar features to those of a flavosemiquinone was detected during the reoxidative half-reaction of the human liver glycolate oxidase (Pennati and Gadda 2011). The first electron transfer seems to be a bottleneck for the whole reaction, as demonstrated for glucose oxidase (Roth and Klinman 2003). Therefore, stabilization of the transition state to form the caged radical pair is crucial in these enzymes to attain the magnitude of acceleration of this first electron transfer (Gadda 2012; Klinman 2007).

Typically, oxidases are not supposed to stabilize any adduct after the second electron transfer and the decay of this radical pair; whereas monooxygenases normally stabilize C4a-peroxyflavin intermediates that can, in turn, either donate an O atom to their substrates or receive a proton and eliminate H\textsubscript{2}O\textsubscript{2} rapidly. As a consequence, the C4a-peroxyflavin has been considered a possible transient intermediate in oxidases and experiments were conducted to detect it. Glucose oxidase from \textit{Aspergillus niger} was subjected to pulse radiolysis experiments that suggested the presence of this C4a intermediate, but it was not detected spectroscopically (Ghisla and Massey 1989). However, pyranose 2-oxidase (P2O) proved to stabilize this C4a-peroxyflavin adduct before releasing H\textsubscript{2}O\textsubscript{2}, being the first oxidase to be found to stabilize it (Sucharitakul et al. 2008; 2011).

The reduction of O\textsubscript{2} to H\textsubscript{2}O\textsubscript{2} requires also two protons to be transferred along with the two above-mentioned electrons (Massey 1994). At least one of these protons is supposed to come from the flavin N5 (as a H atom), which has previously abstracted it from the organic substrate thereby oxidizing it; whereas the other one is supposed to originate from the solvent or a solvent exchangeable site. Elucidation of the provenance, transfer mechanism and relative timing of these particles employing deuterated substrates and solvents is a key step to gain insight into the reduction of O\textsubscript{2}. Several examples of these studies have enlightened our knowledge on flavoenzymes’ oxidation, such as those on choline oxidase (ChoOx) (Gannavaram and Gadda 2013), GOX (Bright and Gibson 1967; Roth et al. 2004) or P2O.

To the best of our knowledge, no other electron acceptor has been found for this AAO from \textit{P. eryngii} so far, opposite to what has been seen for other GMC oxidoreductases as GOX (Leskovac et al. 2005) and the recently-described quinone-dependent aryl-alcohol dehydrogenases (Mathieu et al. 2016).
1.5. Biotechnological application of GMC oxidoreductases

1.5.1. Paper pulp industry: Biopulping and biobleaching

One of the main steps of pulp and paper industry is the treatment of wood chips to separate cellulosic fibres (the actual raw material used) from the lignin forming the middle lamella, a process called pulping. The concern about environment and energy wasting has stimulated studies on the use of microorganisms to accomplish this task. The resulting biopulping process is thought to be energetically and environmentally more favorable than chemical and/or mechanical treatments (Blanchette et al. 1992; Rasmussen et al. 2010).

The biopulping process starts with the colonization of wood xylem and parenchyma by the fungi. After hyphae have grown on the substrate, the fungus will start producing its ligninolytic enzymatic system in order to degrade the middle lamellae and separate fibres (Breen and Singleton 1999). Since the loss of cellulose is undesirable, the organisms of choice are white-rot fungi showing preference for lignin degradation rather than cellulose degradation, whose task is to make cellulosic fibres accessible for the papermaking process (Scott and Swaney 1998). Several selective ligninolytic fungi, such as *C. subvermispora* and *P. eryngii*, together with the model white-rot fungus *P. chrysosporium*, and brown-rot fungi such as *Postia placenta*, among others, have been investigated for biopulping of wood and annual plants (Akhtar et al. 1997; Camarero et al. 1998; Ferraz et al. 2008; Giles et al. 2014; Masarin et al. 2009; Vicentim et al. 2009). AAO is supposed to act as an auxiliary enzyme providing H$_2$O$_2$ in these processes, as it is the case of natural degradation of lignin.

Pulp bleaching, which is the removal of chromophores in order to obtain white paper pulp, is another process in which AAO has shown to contribute. In a study in which two flax pulps were treated with fungal enzymes—laccases, peroxidases and ferurol esterases— the ability of AAO from *Pleurotus pulmonarius* CBS 507.85, which is a natural hyperproducer of the enzyme, to aid in this process was tested (Sigoillot et al. 2005). The results showed that the presence of AAO along with laccase improved the bleaching process probably due to the ability of AAO to prevent the repolymerisation of the phenoxy radicals released by laccases by using them as electron acceptors (as an alternative for O$_2$). In a similar way, AAO can be combined with ligninolytic peroxidases, in the presence of a substrate enabling it to release the H$_2$O$_2$ required by the former enzymes.

1.5.1. Flavour synthesis

White-rot fungi are among the most versatile flavor and aroma producers in nature (Fraatz and Zorn 2011; Lapadatescu et al. 2000). These compounds are mainly of aromatic nature and synthesized through biotransformations by plant, enzymatic or microbial processes (Serra et al. 2005). Since there exists demand
for naturally produced compounds, the biotechnological production of flavors and aromas attracted much attention (Krings and Berger 1998) due to the great economic importance this industry has.

One of the most important flavours is vanillin. It is naturally produced by orchids of the *Vanilla* genus, but this source represents only the 1% of the commercial vanilla flavor. As a consequence, several methods of obtaining vanillin have been developed (Priefert et al. 2001) that use bioconversion of lignin and phenylpropanoids, such as eugenol (Overhage et al. 2003). The ability of *B. adusta* AAO to oxidise vanillyl alcohol reported by Romero et al. (2009), could be exploited in the biotechnological production of this flavor. It has been suggested that AAO may be used to avoid formation of vanillyl alcohol as a by-product diminishing the yield of vanillin formation (**Figure 1.5A**), by the fungi of the genus *Pycnoporus* (Lomascolo et al. 2011).

![Figure 1.5](image_url) **Figure 1.5.** Catalytic efficiencies of *P. eryngii* and *B. adusta* AAOs in bioconversion of some flavours and aromas. **A.** Oxidation of vanillyl alcohol into vanillin. **B.** Oxidation of benzyl alcohol into benzaldehyde. **C.** Oxidation of *p*-methoxybenzyl alcohol into *p*-anisaldehyde. From Carro et al. (2016)

Another very remarkable commercial aromatic compound is benzaldehyde. Some research has been carried out for the fungal production of this chemical from *L*-phenylalanine (Lapadatescu et al. 2000; Lapadatescu and Bonnarme 1999). In this reaction of *L*-phenylalanine for flavour production, aryl-alcohols are the main products obtained, as reported for *B. adusta* (Lapadatescu et al. 2000) and *P. chrysosporium* (Jensen et al. 1994). Consequently, the application of AAO to such biotransformations could result in the obtention of higher levels of aromatic aldehydes, since their alcohol counterparts are substrates of the enzyme (**Figure**...
Finally, using AAO plus an unspecific peroxxygenase (UPO, EC 1.11.2.1) from the fungus Agrocybe aegerita (Ullrich et al. 2004), an oxidoreductase cascade can be used for toluene conversion into benzaldehyde, with the second enzyme using the peroxide generated by AAO.

Another flavour that AAO produces as a consequence of its auxiliary role in lignin degradation is p-anisaldehyde (4-methoxybenzaldehyde) (Figure 1.5C). It was shown that the corresponding alcohol is the physiological and preferential substrate of the P. eryngii enzyme (Ferreira et al. 2005; Guillén et al. 1992b) and that AAO and mycelium-associated aromatic dehydrogenases establish a concerted anisaldehyde redox cycle to produce H₂O₂ continuously as described above (Figure 1.2). Therefore, AAO can be used for biotransformations aiming at the production of vanillin, benzaldehyde, anisaldehyde and other aromas.

1.5.2. Deracemization of chiral secondary alcohols

Many of the drugs and potential drug candidates possess chiral centres and most of them need to be commercialized as enantiomers rather than racemates, given that enantiomers often carry out different activities within biological systems (Carey et al. 2006). Therefore, chiral intermediates for pharmaceuticals are synthesized through enantioselective asymmetric reactions (Patel 2013). As an alternative, deracemization of chiral mixtures is used by the pharmaceutical industry to obtain pure enantiomers. Among chiral compounds, some secondary alcohols are used as chiral intermediates and analytical reagents, and the development of synthesis procedures for the production of enantiomerically-enriched alcohols has gained importance in the pharmaceutical industry.

Biological systems are generally chiral and, as a consequence, many enzymes are regio- and enantioselective. These properties are regarded to be a consequence of the active sites’ architecture and the enzyme’s mechanism. Therefore, many microorganisms and enzymes offer attractive alternatives for easy production (asymmetrical synthesis of deracemization) of enantiomeric compounds of interest in the fine chemicals and pharmaceutical sectors (de Albuquerque et al. 2015; Matsuda et al. 2009). As explained above, the AAO catalytic mechanism consists in a hydride abstraction from the benzylic position of the alcohol by the oxidized flavin, in a reaction aided by an active-site histidine acting as a catalytic base to form the alkoxide intermediate (Hernández-Ortega et al. 2012a). Due to active site architecture, and the simultaneous nature of the hydride and proton abstractions, hydride transfer by AAO is stereoselective (only takes place from the pro-<em>R</em> position) as shown using the two α-monodeuterated enantiomers of <em>p</em>-methoxybenzyl alcohol (Hernández-Ortega et al. 2012b). Taking advantage of this information, Hernández-Ortega et al. (2012b) assayed the transformation of racemic secondary alcohols using <em>P. eryngii</em> AAO. They saw that the enzyme was able to oxidise the racemic 1-(<em>p</em>-methoxyphenyl)-ethanol, although it showed an apparent efficiency orders of magnitude smaller than the one for <em>p</em>-methoxybenzyl alcohol. AAO enantioselectivity toward the (<em>S</em>) isomer was shown
using chiral HPLC, which allows for the isolation of \((R)\) isomer from chiral mixtures (Figure 1.6). Moreover, the AAO enantioselectivity toward another secondary alcohol \(1\)-(\(p\)-fluorophenyl)-ethanol was estimated as an S/R ratio of 21, in reactions using the individual enantiomers.

Therefore, it is plausible that AAO could be used for the isolation of isomers from racemates taking advantage from its kinetic behaviour. However, AAO activity on secondary alcohols is low, due to some hindrances among such substrates and the residues forming the active site (Fernández et al. 2009). A mutated variant (F501A), in which the side chain of a bulky aromatic residue was removed to make room in the cavity, was created with the purpose of facilitating oxidation of secondary alcohols. The removal of this side chain resulted in a stereoselectivity S/R ratio on \(1\)-(\(p\)-fluorophenyl)-ethanol three-fold higher than that of the wild-type enzyme. Hence, improved variants by directed evolution, as it has been done with galactose oxidase (EC 1.1.3.9) for these purposes (Escalettes and Turner 2008), or further site-directed mutagenesis would result in better deracemization reactions.

![Chiral HPLC chromatograms showing the deracemization of 1-(\(p\)-methoxyphenyl)-ethanol by \(P.\) eryngii AAO. A. Chromatogram of the untreated racemate. B. Chromatogram after 24-h reaction with AAO, where only the peak of the \((R)\) isomer is detected (the peak of the \(p\)-methoxyacetophenone, formed from oxidation of the \((S)\) isomer, eluted in a different region of the chromatogram). From Carro et al. (2016)](image)

**Figure 1.6.** Chiral HPLC chromatograms showing the deracemization of 1-(\(p\)-methoxyphenyl)-ethanol by \(P.\) eryngii AAO. A. Chromatogram of the untreated racemate. B. Chromatogram after 24-h reaction with AAO, where only the peak of the \((R)\) isomer is detected (the peak of the \(p\)-methoxyacetophenone, formed from oxidation of the \((S)\) isomer, eluted in a different region of the chromatogram). From Carro et al. (2016)

### 1.5.3. Oxidation of furfurals

Over the last years, the use of renewable carbon sources instead of the classical fossil sources has come up as a necessity due to the expected decrease of crude oil reserves, as well as to reduce the sharp increase in the associated greenhouse effect emissions (Gallezot 2012). Within such a paradigm, lignocellulosic biomass is expected to substitute for fossil sources thanks to its interesting properties, as a renewable carbon source. Some valuable chemicals that can be obtained from lignocelluloses are the furaldehydes. These are primarily furfural and 5-
hydroxymethylfurfural (HMF). Furfural comes from pentoses present in the hemicelluloses, whereas HMF is formed from hexoses, which are present both in cellulose and hemicelluloses. HMF is synthesized by dehydration of monosaccharides, generally fructose (Antal et al. 1990), but direct conversion of glucose is also possible (Zhao et al. 2007). After optimized hydrolysis, disaccharides and polysaccharides would be the starting materials for these renewable building blocks (Rosatella et al. 2011).

The presence of two functional groups in HMF, combined with its furan aromatic ring, makes it an appealing starting material for various chemical applications. Serious attention has been paid to its oxidation and reduction, because they provide convenient synthetic pathways for the production of chemical building blocks for the polymer industry. One of these important building blocks is 2,5-furandicarboxylic acid (FDCA), which originates from the oxidation of HMF. Its importance resides in the ability to copolymerize with diols, producing poly(ethylene-2,5-furandicarboxylate) (PEF) among other polyesters. These polymers are thought to be able to substitute for polyesters based on terephthalic acid such as poly(ethylene-terephthalate), poly(propylene-terephthalate) or poly(butylene-terephthalate), which are biologically not degradable, and the precursors of which are fossil resources. Notably, PEF exhibits good mechanical and barrier properties (Papageorgiou et al. 2014) and has the double advantage of being renewable and biodegradable.

![Chemical structure of HMF, FFCA, DFF, and HMFCA](image)

**Figure 1.7.** Oxidative pathways from HMF (1) to FDCA (5). FFCA (4) formation can take place through two alternative intermediate compounds: DFF (2) or HMFCA (3).

The oxidative pathway leading from HMF to FDCA takes place via 2,5-formylfurancarboxylic acid (FFCA) and includes two alternative intermediates: 2,5-diformylfuran (DFF) and 2,5-hydroxymethylfurancarboxylic acid (HMFCA) (**Figure 1.7**). FFCA and other of these partially-oxidized compounds are also of interest as intermediates for the preparation of surfactants, biofuels, resins and other compounds (Moreau et al. 2004).
Several processes involving enzymes and organisms have been reported aiming at the obtention of FDCA from HMF (Carro et al. 2015; Dijkman et al. 2014; Dijkman and Fraaije 2014; Dijkman et al. 2015; Hanke 2012; Koopman et al. 2010; van Deurzen et al. 1997). Regarding the use of AAO with this purpose, Hanke et al. (2012) screened for available AAOs capable of oxidizing HMF with variable results. With the same purpose, Carro et al. (2015) analyzed the ability of \textit{P. eryngii} AAO to oxidise HMF.

These findings paved the way to implement AAO together with a fungal peroxxygenase to obtain a valorized by-product originated from lignocellulosic biomass. Furthermore, they widened the spectrum of AAO aromatic substrates, which is now thought to range from benzylic carbocycles to heterocycles, as HMF and DFF.

1.6. Summary

The finite character of fossil fuels makes it necessary to find new resources, preferentially renewable ones. In this way, lignocellulosics are a remarkable material due to their ubiquitous and renewable character. Furthermore, the concern about the environment impels us to search for new catalytic procedures that take advantage of natural processes, instead of the chemical environmentally polluting and energy-wasting ones. Hence, the use of organisms or enzymes to carry out catalytic industrial processes is gaining importance.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure18.png}
\caption{Scheme depicting the physiological role of AAO in lignocellulose degradation and its potential applications in the cellulose and other chemical sectors.}
\end{figure}
AAO, like all GMC oxidoreductases involved in lignocellulose decay, is a very promiscuous enzyme. It catalyzes the oxidation of a great deal of polyunsaturated alcohols (and hydrated aldehydes). Its applicability on some industrial processes showed to be promising as a biocatalyst in several conversions. AAO, because of its involvement in the lignocellulose decay process, has potential to be applied to lignocellulose biorefineries. AAO has so far shown its potential applications in paper pulp manufacture and bioconversion of lignocellulose-derived compounds, synthesis of flavours, and deracemization of chiral alcohols (Figure 1.9). In spite of the fact that the use of GMC enzymes (among which AAO) for these purposes is not yet sufficiently developed, much progress has been done the recent years in this field as one can infer from the huge amount of publications available on enzymatic biocatalysis.

This chapter has been partially redrafted after the book chapter: Fungal aryl-alcohol oxidase in lignocellulose degradation and bioconversion. Microbial enzymes in Bioconversions of Biomass. Carro J, Serrano A, Ferreira P, Martínez AT. Springer, Berlin, Germany, pp 301–322.
Structure and Objectives

This Thesis has been structured into different sections. One general Introduction dealing with aspects of the GMC superfamily of oxidoreductases with special emphasis on AAO, its catalytic mechanism and biotechnological applications, as a model representative of the superfamily, is presented. Afterwards, the Materials and Methods employed throughout the Thesis are detailed. Then, five different chapters in which results and discussion of the various topics studied in this Thesis are presented. Finally, a general Discussion that brings together and relates the results described in each of the chapters has been added in order to sum up the main results of this work, followed by a section that briefly summarizes the main conclusions of the Thesis, some Annexes and the whole Bibliography.

The objectives of the present work were three:

i) To investigate the genomes of basidiomycetes in search for genes encoding for GMC oxidoreductases and the study of their phylogenetic relationships, evolution history, as well as their relation with physioecological aspects of the different fungi (Chapter 3).

ii) To investigate the mechanistics of AAO from the basidiomycete *Pleurotus eryngii* as a model representative of the GMC superfamily of enzymes, focusing on the elucidation of the role of active-site Phe397 (Chapter 4), the involvement of mechano-quantical tunneling in its reductive half-reaction (Chapter 5), and the reoxidative half-reaction (Chapter 6).

iii) To apply GMC oxidases to a biotechnological process: the production of 2,5-furandicarboxylic acid, a building block that gives rise to renewable and biodegradable bioplastics, from precursors derived from plant biomass (Chapter 7).
Materials and Methods
Chapter 2

Materials and Methods

2.1. Reagents

GOX type VII from *Aspergillus niger*, glucose, *p*-methoxybenzyl alcohol, *p*-anisic acid, 5-hydroxymethylfurfural (HMF), 5-hydroxymethylfurancarboxylic acid (HMFCa), 2,5-diformylfuran (DFF), 2,5-furandicarboxylic acid (FDCA), *t*-butylmethyl-ether, D$_2$O and bis(trimethylsilyl)trifluoroacetamide (BSTFA) were purchased from Sigma-Aldrich. FFCA (5-formylfurancarboxylic acid) was from TCI America. Deuterium oxide 99.6% isotopic purity was bought from Cambridge Isotope Co. AmplexRed® and horseradish peroxidase (HRP) were purchased from Invitrogen. [α-²H$_2$]-*p*-methoxybenzyl alcohol and (R)-[α-²H]-*p*-methoxybenzyl alcohol were synthesized at the Instituto de Ciencia de Materiales de Aragón.

2.2. Genome screening and evolutionary studies

2.2.1. Genome sequencing

The genomic sequences of *B. adusta* (HHB-12826-SP), *Phebia brevispora* (HHB-7030-SS6) and *Ganoderma* sp. (10597-SS1) were obtained at the Joint Genome Institute (JGI), as part of the Saprotrophic Agaricomycotina Project coordinated by D.S. Hibbett (Clark University, USA). The genomes were produced as described by Binder et al. (2013) and the gene prediction is available for searching through http://genome.jgi-psf.org/Bjead1_1, http://genome.jgi-psf.org/Gansp1 and http://genome.jgi-psf.org/Phlbr1, respectively.

2.2.2. Genome screening for GMC gene families in Polyporales

The above genomes, plus those of *Dichomitus squalens*, *Fomitopsis pinicola*, *Gelatoporia subvermispora* (syn.: *Ceriporiopsis subvermispora*), *P. chrysosporium*, *R. placenta*, *Trametes versicolor* and *Wolfiporia cocos (= Wolfiporia extensa)* available at the JGI MycoCosm portal (http://genome.jgi-psf.org/programs/fungi) (Grigoriev et al. 2012), were screened for genes of the AAO, MOX, GOX, CDH, P2O and PDH families in the GMC superfamily. Among the above genomes, those from the Antrodia clade (*F. pinicola*, *R. placenta* and *W. cocos*) correspond to wood decay by brown-rot species, while the other species (*B. adusta*, *D. squalens*, *Ganoderma* sp., *G. subvermispora*, *P. chrysosporium*, *P. brevispora* and *T. versicolor*) cause white-rot decay of wood.

The screening for each of the GMC families was performed by blasting an entire set of filtered model proteins for each of the genomes with the following (GenBank) reference sequences: i) AAO from *Pleurotus eryngii* (AAC72747); ii) MOX from *Gloeophyllum trabeum*, *Pichia methanolica* and *Candida boidinii* (AB114440, AF141329 and Q00922); iii) GOXs from *Talaromyces flavus*, *Penicillium expansum*, *Penicillium amagasakiense*, *Aspergillus niger* and *Botryotinia fuckeliana* (AAB09442, ABN79922, AAD01493, AAF59929 and
CAD88590); iv) CDHs from *P. chrysosporium*, *G. subvermispora*, *Coniophora puteana*, *Pycnoporus cinnabarinus* (syn.: *Trametes cinnabaria*) and *T. versicolor* (CAA61359, ACF60617.1, BAD32781 AAC32197 and AAC50004); v) P2Os from *T. versicolor*, *Peniophora* sp., *P. chrysosporium*, *Lyophyllum shimeji* and *G. trabeum* (BAA11119, AAO13382, AAS93628, BAD12079 and ACJ54278); and vi) PDHs from *Leucoagaricus meleagris* (syn.: *Agaricus meleagris*), *Agaricus xanthodermus* and *Agaricus bisporus* (AAW82997, AAW92123 and AAW92124).

### 2.2.3. Sequence analysis

The genomic sequences with the highest similarities with the reference sequences for the different GMC families were, firstly, examined for the automatically annotated introns, searching for consensus 5' - 3' and lariat sequences (Ballance 1986), as well as for the annotation of N- and C-termini. The presence or absence of secretion signal peptides predicted by the JGI automatic annotation pipeline was manually revised to detect possible mistakes (e.g. in neighbor introns) that could result in inaccurate predictions, followed by inspection of the eventually revised sequences using the Signal P 4.0 server ([www.cbs.dtu.dk/services/SignalP-4.0](http://www.cbs.dtu.dk/services/SignalP-4.0)) (Petersen et al. 2011). Moreover, other servers as TargetP 1.1 (Emanuelsson et al. 2000), Wolf psort (Horton et al. 2007) and TMHMM 2.0 were used to confirm the secreted nature of proteins as well as to predict their putative subcellular locations. Predictions were confirmed by multiple alignment with MUSCLE (Edgar 2004) and by the comparison with reference sequences. Multiple alignments were also used for analysis of motifs conserved in GMC proteins (the ADP-binding domain and, at least, one of the two characteristic Prosite PS00623 and PS00624 sequences) (Cavener 1992). The sequences that lacked these GMC conserved motifs were discarded.

Finally, molecular models of 94 out of the 95 GMC sequences (JGI references in Annex 1) could be generated at the Swiss-Model server ([www.swissmodel.expasy.org](http://www.swissmodel.expasy.org)), which selected the most adequate templates (Bordoli et al. 2009). For AAO, MOX, GOX, CDH and P2O sequences, the crystallographic structures of *P. eryngii* AAO (PDB 3FIM), *Arthrobacter globiformis* ChoOx (PDB 3LJP, note that no MOX crystal structure is available), *A. niger* GOX (PDB 1CF3), *P. chrysosporium* CDH (PDB 1KDG) and *Aspergillus oryzae* P2O (PDB 1TTO) were used as templates, respectively. Strictly conserved histidine and histidine/asparagine residues at the active site (Hernández-Ortega et al. 2012c; Wongnate et al. 2014) were searched for in all the models, and species lacking these residues were discarded.
2.2.4. GMC evolutionary history

The evolutionary history of the (95) GMC sequences obtained was estimated with RaxML v.7.7.1 (Stamatakis et al. 2008) from the multiple alignment obtained with MEGA5 (Tamura et al. 2011). For evolutionary tree construction, a maximal likelihood with clustering method was used, with the WAG model of amino acid substitutions, and the gaps treated as deletions (a 100 iteration bootstrap was performed). Identity degrees between all the above sequences were obtained after pairwise alignment with ClustalW2.

2.2.5. Reconciliation analyses

The histories of gene duplication and losses for total GMCs (and the individual families) were inferred using Notung 2.6 (Durand et al. 2006). The gene tree was used as input and combined with a Polyporales phylogenetic tree (Binder et al. 2013) from TreeBase (www.treebase.org, tree ID Tr67497). The estimated numbers of gene duplications and deletions on each branch were used to hypothesize the number of sequences at the ancestral nodes. Two different threshold levels (30% and 90%) were used to assess the significance of the predictions obtained.

2.3. AAO purification and mutagenesis

2.3.1. Enzyme production and purification

Recombinant AAO from Pleurotus eringii was obtained by expressing the mature AAO cDNA (GenBank AF064069) in Escherichia coli W3110 strain. Pre-cultures were grown in LB media for 16 h at 180 rpm and 37ºC in the presence of ampicillin (1 μg · mL⁻¹).

After this time, flasks containing 900 mL of TB medium were inoculated with 30 mL of the pre-culture, along with the addition of 100 mL of a solution containing 170 mM KH₂PO₄ and 720 mM of K₂HPO₄ and ampicillin. Cultures were grown at 37ºC and 220 rpm until they attained an optical density of 1 measured at 500 nm, when expression was triggered by the addition of 1 mM IPTG. 4 hours after induction cells were pelleted by centrifugation at 8000 rpm for 5 min.

Cells were resuspended in lysis solution containing Tris HCl 50 mM pH 8.0, EDTA 10 mM and DTT 5 mM. Then, lysozyme was added at a final concentration of 2 mg/mL and was put on ice for 30 min, after which time DNase was added and left to act for other 30 min. Afterwards, cells were sonicated and centrifuged for 30 min at 12500 rpm. Supernatant was discarded and the inclusion bodies obtained were dissolved in wash solution (20 mM Tris HCl pH 8.0, EDTA 1 mM and DTT 5 mM) with the use of a homogeneizer and once again centrifuged at 12500 rpm for 30 min. The washing process was repeated twice.
The washed inclusion bodies were dissolved in unfolding solution, which contained 20 mM Tris HCl pH 8.0, EDTA 2 mM, DTT 5 mM and urea 8 M, with the use of a tissue homogenizer. The protein solution in urea was centrifuged for 30 min at 12500 rpm.

The protein concentration was estimated by the method described by Bradford and, then, the inclusion bodies were in vitro refolded. The refolding solution is composed of 20 mM Tris HCl pH 9.0, L-glutathione oxidized 2.5 mM, 40% glycerol, DTT 1 mM, urea 600 mM and FAD 0.02 mM. Protein was added to the said solution at a final concentration between 100–200 μg/mL and refolding took place at 4°C in the shade for 5 days.

After this time the enzyme was concentrated by tangential filtration using cassettes of 10 μm of pore (Millipore). Enzyme was then centrifuged for 15–20 h at 13500 rpm to remove glycerol and dialyzed against 50 mM sodium phosphate pH 6.0. Enzyme was then further concentrated using amicon® filters of 10 μm of pore (Millipore).

The enzyme was eventually purified by anion exchange chromatography in an FPLC apparatus (GE Healthcare) in a Resource Q column 6 mL (GE Healthcare). The column was equilibrated with 50 mM sodium phosphate pH 6.0 (solution A), into which 5 mL of the protein solution were injected. The solution employed to elute the protein was the same described above supplemented with NaCl 1 M (solution B). Two column volumes of solution A were employed to inject the protein and let it bind the column. Then, 1 column volume of solution B was passed through the column in order to elute the purified protein, which was manually collected and whose activity was determined with p-methoxybenzyl alcohol. The chromatographic process was monitored at 465 and 280 nm with a UV-visible detector. AAO was then aliquoted and conserved at -80°C.

The above-described procedure was employed for the production and purification of native AAO as well as its mutated variants.

### 2.3.2. Site-directed mutagenesis

AAO mutated variants were produced by site-directed mutagenesis using the QuickChange® kit (Stratagene) based on PCR reactions run with oligonucleotides bearing mismatches. These primers were specifically designed for each variant according to the desired mutation. All of them were designed obeying the following rules: i) they were 25-40 bases long, ii) their melting temperatures were equal or higher than 78°C, iii) the mismatches were placed in the middle of the oligonucleotide, iv) their cytosine/guanine content was equal or higher than 40% and v) their extremes must be composed of either cytosine or guanine. The forward 5’-primers employed were the following (along with their reverse complementary counterparts):
Y92F: 5’-GGGTCTAGCTCTGTTCACTTATGGTCATGATGCG-3’
Y92L: 5’-GGGTCTAGCTCTGTTCACTCATGGTCATGATGCG-3’
Y92W: 5’-GGGTCTAGCTCTGTTCACTGGATGGTCATGATGCG-3’
F397Y: 5’-CTTTTCCAACAAATGGTACCACCAGCTATCCCTCG-3’
F397W: 5’-CTTTTCCAACAAATGGTGACCCAGCTATCCCTCG-3’
F397A: 5’-CTTTTCCAACAAATGGCCACCCAGCTATCCCTCG-3’
F397L: 5’-CTTTTCCAACAAATGGTGACCCAGCTATCCCTCGC-3’

These primers were employed in PCR reactions to introduce the mutation at the desired location. The DNA polymerase employed was *Pfu* (Roche) and the template DNA was the pFLAG1 vector harboring the native AAO gene. **Table 2.1** shows the PCR programme used.

The products of the PCR reaction were subjected to enzymatic digestion with the restriction enzyme DpnI (Roche), which shows specificity towards methylated and hemimethylated DNA, hence destroying the parental, non-mutated DNA. PCR products were sequenced at Secugen to prove the success of the site-directed mutagenesis.

**Table 2.1. Cycles of the mutagenic PCR programme**

<table>
<thead>
<tr>
<th>Part</th>
<th>Cycles</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95°C</td>
<td>60 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95°C</td>
<td>50 s</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>60°C</td>
<td>50 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68°C</td>
<td>480 s</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68°C</td>
<td>420 s</td>
</tr>
</tbody>
</table>

The vectors containing the mutated AAO genes were transformed into *E. coli* DH5α strain for propagation. Competent cells were transformed by incubation with 10 μL of vector on ice for 30 min, followed by a temperature shock at 42°C for 1.5 min. Then, cells were added 800 μL of antibiotic-free LB medium and grown for 1 h at 37°C under shaking at 220 rpm. After this time, they were inoculated on LB-agar plates containing ampicillin and colonies grown for 20 h.

Isolated colonies were inoculated into liquid LB medium and grown overnight under shaking to purify propagated plasmid using the High Pure Plasmid Isolation Kit (Roche). Vectors were then transformed into the expression host above-mentioned following the protocol described for transformation.

### 2.3.3. Estimation of the molar extinction coefficient

In order to carry out kinetic studies proteins must be properly quantified. AAO is normally quantified spectroscopically thanks to the estimation of its molar extinction coefficient (ε) at the maximum of the flavin band I (around 460 nm).

Molar extinction coefficients are estimated by heat denaturation of the enzyme and quantification of the released FAD cofactor, whose extinction coefficient is
known to be $11300 \text{ M}^{-1}\text{cm}^{-1}$ at 450 nm. Comparison of the absorbance of the maximum of flavin band I of the protein prior to being denatured at 100 °C for 5 min with the absorbance of FAD at 450 nm allows the estimation.

### 2.4. Kinetics and affinity studies

#### 2.4.1. Stopped-flow measurements

**Enzyme monitored turnover**

Experiments were performed using a stopped-flow spectrophotometer from Applied Photophysics Ltd., model SX17.MV.

Enzyme-monitored turnover experiments were carried out by mixing AAO (~10 µM, final concentration) with exceedingly saturating $p$-methoxybenzyl alcohol concentrations (at least 10-fold the $K_m$ for each of the variants), under air-saturated conditions at 25°C. Spectral evolution of the enzymes during redox turnover was recorded between 350–700 nm with a photodiode array (PDA) detector.

**Studies on the reductive half-reaction**

Reduction rate constants were determined using the above stopped-flow spectrophotometer, under anaerobic conditions. Solutions, buffers, substrates and proteins (native AAO and mutated variants) were poured into glass tonometers and subsequently subjected to 20–25 cycles of evacuation and Ar flushing connected to an anaerobic train. Glucose (10 mM final concentration) and glucose oxidase (10 U·mL$^{-1}$) were added after some vacuum-Ar cycles to all solutions, except for the sodium dithionite, in order to ensure anaerobiosis.

The stopped-flow equipment was made anaerobic by flushing a solution of sodium dithionite so that it scavenged all traces of oxygen. Sodium dithionite was then removed by rinsing the apparatus with the above buffer. Reactions were followed with the photodiode array (PDA) detector and baseline was made with anaerobic 50 mM sodium phosphate buffer pH 6.0. Kinetics were measured by mixing ~20 µM of AAO with increasing concentrations of $[\alpha-^1\text{H}_2]-p$-methoxybenzyl, $[\alpha-^2\text{H}_2]-p$-methoxybenzyl and $\text{(R)}-[\alpha-^2\text{H}]-p$-methoxybenzyl alcohols using the single-mixing mode of the equipment at several temperatures. Temperature was maintained constant with a thermostated water bath and enzyme and substrate were equilibrated for 10 min so that they attained the desired temperature prior to measuring kinetics.

Observed rate constants ($k_{\text{obs}}$) were estimated by global fitting the reduction spectra of the enzyme to a two-species model using the ProKineticist software from Applied Photophysics. Reduction rate constants were estimated by nonlinear fitting of the observed rate constants at different substrate concentrations to either **Equation 1** or **Equation 2**:
Chapter 2                                                                                           Materials and Methods

\[ k_{\text{obs}} = \frac{k_{\text{red}}A}{K_d + A} \quad \text{Eq. 1} \]
\[ k_{\text{obs}} = \frac{k_{\text{red}}A}{K_d + A} + k_{\text{rev}} \quad \text{Eq. 2} \]

where \( k_{\text{obs}} \) is the observed rate for flavin reduction at a given substrate concentration, \( k_{\text{red}} \) and \( k_{\text{rev}} \) are the limiting rate for hydride transfer (HT) from the substrate to flavin N5 and its reverse reaction, respectively, at saturating substrate concentration; \( K_d \) stands for the dissociation constant of the enzyme-substrate complex.

Single-mixing reoxidation studies

The reoxidative half-reaction was investigated by mixing reduced AAO with increasing \( O_2 \) concentrations obtained by bubbling \( O_2/N_2 \) mixtures into 50 mM sodium phosphate buffer pH 6.0 from tanks for 15 min. Procedures were as explained above for the reductive half-reaction, except for that, in this case, AAO and glucose were put into a tonometer bearing a side-arm, where \( p \)-methoxybenzyl alcohol (1.3-fold the concentration of AAO) was poured along with glucose oxidase. After the required vacuum-Ar cycles, enzyme and substrate were mixed before being mounted onto the stopped-flow equipment. In the single-mixing mode, reduced enzyme and substrate are mixed at equal proportions in the mixing chamber.

Reactions were measured with both the PDA and the monochromator detectors at 12°C. \( k_{\text{obs}} \) were obtained by either global fitting of the spectra or fitting the monochromator traces to exponential equations describing two-step and three-step processes. Fitting averaged \( k_{\text{obs}} \) to Equation 3 allowed the estimation of the apparent second-order rate constant for reoxidation (\( k_{\text{ox}} \)) and fitting to Equation 4 allowed the estimation of the oxidation constant (\( k_{\text{ox}} \)):

\[ k_{\text{obs}} = \text{app} k_{\text{ox}} \cdot [O_2] + k_{\text{rev}} \quad \text{Eq. 3} \]
\[ k_{\text{obs}} = \frac{k_{\text{ox}}[O_2]}{K_d+[O_2]} \quad \text{Eq. 4} \]

Double-mixing reoxidation studies

Reactions were conducted in either 50 mM sodium phosphate, pH 6.0, 30 mM sodium phosphate, pH 7.0, 25 mM sodium phosphate, pH 8.0 or 100 mM sodium acetate, pH 5.0 (concentrations were chosen so that ionic strength of the buffers would be similar to that of 50 mM sodium phosphate, pH 6.0, the optimal pH for the enzyme) (Ferreira et al. 2005), at 12 °C, unless otherwise stated. The measurements were performed using a TgK Scientific Model SF-61DX stopped-flow spectrophotometer. In the double-mixing mode, enzyme and one substrate are mixed together at equal proportions in a so-called ageing loop and, after the ageing time, they are pushed by buffer into the optical cell (pathlength 1 cm),
where they mix with the second substrate at equal proportions. Then, the enzyme and the first substrate are diluted four times, whereas the second substrate —O₂ in this case— is only diluted by one half.

The stopped-flow apparatus is made anaerobic by flushing O₂-free buffer (50 mM sodium phosphate, pH 6.0) containing glucose 2 mM and glucose oxidase 5 µM through the system. The buffer was made anaerobic by O₂-free argon bubbling for at least 15 min. Glucose and glucose oxidase reacted overnight inside the equipment, and were then rinsed out by flushing anaerobic buffer prior to the measurements. Reactions were investigated using the monochromator mode, following absorbance at a given wavelength. The observed rate constants (kₜₜₒₛₜₑₜ) were calculated by fitting the obtained traces using exponential fits with the software Kinetic Studio (TgK Scientific).

The enzyme was made fresh prior to being used by gel filtration through PD-10 desalting columns (General Electric), followed by centrifugation to remove denatured enzyme. The desalting columns were equilibrated by passing the desired buffer through it prior to being used, and the enzyme was eluted using the same buffer (prepared in H₂O or D₂O, or containing glycerol). D₂O buffers were prepared by dissolving the salts in deuterium oxide and pD was adjusted with sodium deuteroxide (99.5% isotopic purity) using a pHmeter (pD = pH reading + 0.41). Viscosity effect experiments were performed in 50 mM sodium phosphate buffer, pH 6.0, with 7.4% (v:v) glycerol to mimic the viscosity of deuterium oxide at 12°C (1.6x10⁻³ N·s·m⁻²) (Cheng 2008). To study the reaction of the reduced enzyme with O₂, the enzyme was put in a tonometer connected to an anaerobic train, where it was subjected to 20–25 cycles of gas removal by applying vacuum, followed by O₂-free argon flushing. Besides, glucose oxidase was added to the enzyme at a final concentration of 0.05 µM and glucose 1 mM was poured into a side arm connected to the tonometer. After the cycles glucose was mixed with the glucose oxidase.

Buffers and p-methoxybenzyl alcohol were made anaerobic by O₂-free argon bubbling for 15 min into air-tight glass syringes and glucose (1 mM) and glucose oxidase (0.05 µM) were added. Buffers containing O₂ at desired concentrations were prepared by bubbling different O₂/N₂ mixtures for 15 min. Different percentages of O₂ were attained using an O₂/N₂ blender connected to pure and certified O₂ and N₂ tanks. Actual O₂ concentrations were measured at 25°C using a computer-interfaced Oxy-32 O₂-monitoring system (Hansatech Instruments, Inc) just prior to the use of the buffers. Once mounted onto the apparatus, all solutions containing enzyme, buffers and substrates were equilibrated for 10 min so they could attain the temperature of the system (12°C unless otherwise stated) and possible traces of O₂ were scavenged.

However, single-mixing mode was used to calculate the time the enzyme and the substrate had to age together when mixed at equal concentrations so that the enzyme got completely reduced. Such reactions were followed at 463 nm with
deuterated and protiated substrates, both in H$_2$O and D$_2$O buffers. This experiment allowed avoiding the enzyme’s turnover when mixed with O$_2$ in the double-mixing experiments. The monochromator was the detector used throughout the experiments due to its shorter dead time compared to that of the photo-diode-array (PDA), too slow to record the reoxidative reactions of AAO. All measurements were made by triplicate.

$k_{obs}$ were obtained by fitting the monochromator traces to two-step exponential equations. Rate constants were obtained by nonlinear fitting of the $k_{obs}$ at various O$_2$ concentrations to Equation 3.

2.4.2. Rate constants for AAO:p-anisic acid complex formation and dissociation.

Studies on the formation of the AAO:p-anisic acid complex were performed by analyzing spectral changes upon mixing enzyme (~20 µM) with increasing concentrations of the ligand (within the range 0.04–2 mM) at 12 °C. Formation of the complex was followed with the PDA detector between 300–700 nm.

Data were globally fitted to an equation describing a one-step process. The obtained $k_{obs}$ linearly depended on the ligand’s concentration and were, thus, fitted to Equation 5:

$$k_{obs} = k_{for} \cdot [L] + k_{dis}$$

Eq. 5

in which $k_{for}$ stands for the second-order rate constant for the complex formation; [L] represents the ligand concentration, and $k_{dis}$ is the rate constant for the complex dissociation.

2.4.3. Steady-state kinetics

Direct measurements of AAO activity

Steady-state kinetics were measured for AAO by following spectrophotometrically the oxidation of p-methoxybenzyl alcohol into p-anisaldehyde at 285 nm ($\varepsilon_{285} = 16950$ M$^{-1}$·cm$^{-1}$).

Bi-substrate kinetics were obtained by varying both the alcohol substrate and O$_2$ concentrations in 50 mM sodium phosphate buffer pH 6.0 at the desired temperatures.

Reactions were performed in screw-cap cuvettes in which buffer was equilibrated using different O$_2$/N$_2$ mixtures that were bubbled for 15 min in a thermostated water bath set at the desired temperatures. O$_2$ solubility in water strongly depends on temperature and, thus, actual O$_2$ concentrations were calculated for each O$_2$/N$_2$ mixtures and temperatures.

Reactions were triggered by the addition of the alcohol substrate and AAO (final concentrations between 3 and 5 nM) with syringes into the cuvette at a final
volume of 1 mL. Initial rates were calculated as the change in absorbance divided by time from the linear phase of the oxidation of the alcohol to its aldehyde. Kinetic constants were obtained by fitting the observed rate constants to **Equation 6** or **Equation 7**, describing ternary mechanism or ping-pong mechanisms, respectively:

\[
\frac{v}{e} = \frac{k_{\text{cat}} AB}{K_{m(\text{ox})}A + K_{m(\text{al})}B + K_d B + AB}
\]

**Eq. 6**

\[
\frac{v}{e} = \frac{k_{\text{cat}} AB}{K_{m(\text{ox})}A + K_{m(\text{al})}B + AB}
\]

**Eq. 7**

where \(v\) stands for the initial velocity, \(e\) is the enzyme concentration, \(k_{\text{cat}}\) is the maximal turnover number, \(A\) the alcohol concentration, \(B\) the \(O_2\) concentration, \(K_{m(\text{ox})}\) and \(K_{m(\text{al})}\) are the Michaelis-Menten constants for \(O_2\) and alcohol, respectively, and \(K_d\) the dissociation constant.

**Indirect measurements of AAO activity**

Some AAO substrates and products do not allow the direct spectrophotometric measurement of the product of their reaction with AAO. Therefore, steady-state kinetic parameters for AAO oxidation of HMF, MMF, DFF, HMFCA and FFCA were calculated by monitoring AAO-catalyzed production of \(H_2O_2\) upon reacting with the substrates at several concentrations (0.125 – 32 mM) using a HRP-coupled assay, at 25 ºC in air-saturated 50 mM sodium phosphate, pH 6.

The reactions were initiated by adding the enzyme (0.11 μM) with an adder-mixer. In the presence of the \(H_2O_2\) generated by AAO, HRP (6 U/ml) oxidized AmplexRed® (60 μM) in a 1:1 stoichiometry forming resorufin (\(\epsilon_{563} 52,000\) M\(^{-1}\)·cm\(^{-1}\)). Kinetic parameters were obtained by fitting the data to the Michaelis-Menten equation using SigmaPlot software.

**2.4.4. Studies on the temperature dependence of AAO catalysis.**

Temperature dependence of the calculated rate constants (\(k_{\text{cat}}, k_{\text{cat}}/K_m\) or \(k_{\text{red}}\)) was estimated by fitting to the Arrhenius equation (**Equation 8**). This allowed the estimation of the corresponding Arrhenius pre-exponential factors for protium and deuterium isotope (\(A_H\) and \(A_D\) respectively) and its corresponding activation energy values (\(E_{aH}\) and \(E_{aD}\)). KIEs (i.e., the ratios of the rate with protium to the rates with deuterium) were determined using **Equation 9**. Combination of **Equations 8** and 9 led to the graphic representation of the temperature dependence of the KIE.
\[ k = A \times e^{\frac{E_a}{RT}} \quad \text{Eq. 8} \]

\[ \text{KIE} = \frac{k_H}{k_D} \quad \text{Eq. 9} \]

### 2.4.5. Spectral characterization of the AAO-p-anisic acid complex.

The affinity of the five AAO variants for p-anisic acid was assessed by titration of the enzyme with increasing amounts of the ligand in 50 mM sodium phosphate pH 6.0 at 12°C. Spectral changes were recorded using a spectrophotometer and their magnitude upon complex formation was fitted to Equation 10, which accounts for a 1:1 stoichiometry, as a function of p-anisic acid concentration:

\[ \Delta A = \frac{\Delta \varepsilon (E+L+K_d) - \Delta \varepsilon \sqrt{(E+L+K_d)^2 - 4EL}}{2} \quad \text{Eq. 10} \]

in which \( \Delta A \) accounts for the observed change in absorbance, \( \Delta \varepsilon \) represents the maximal absorption difference in each of the spectra, \( K_d \) is the dissociation constant, and \( E \) and \( L \), the enzyme and p-anisic acid concentrations.

### 2.5. Crystallization of wild-type AAO in complex with p-anisic acid

AAO was crystallized in complex with its inhibitor p-anisic acid. Crystallization was achieved from a protein solution at 6 mg·mL\(^{-1}\) mixed with p-anisic acid (1.35 mM), both in 150 mM NaCl and 100 mM NaK\(_2\)PO\(_4\) pH 7.0. Then, 0.5 uL of this mixture was added to 0.5 uL of mother liquor consisting of 0.1 M sodium acetate, pH 4.5 and 1.0 M di-ammonium hydrogen phosphate. Crystals were cryoprotected with reservoir solution containing 20% of glycerol solution. Diffraction data sets were collected on the I24 beamline at the Diamond Synchrotron (Oxfordshire, UK) at 100 K using a wavelength of 0.96862 Å. Data were processed, scaled and reduced with XDS (Kabsch 2010) and SCALA (Kabsch 1988) from the CCP4 package (Collaborative Computational Project, Number 4, 1994). MOLREP (Vagin and Teplyakov 1997) from CCP4 was used to solve all the structures with the native AAO structure (PDB code: 3FIM) as search model. Refinements were performed automatically by REFMAC 5 (Murshudov et al. 1997) from CCP4 and manually by COOT (Emsley et al. 2010). PROCHECK (Laskowski et al. 1993) and MOLPROBITY (Chen et al. 2010) were used to assess and validate final structures.

Crystal belonged to the P6\(_4\)22 hexagonal space group with one AAO: p-anisic acid complex molecule in the asymmetric unit and diffracted up to 2.30 Å. Residues lacking electron density were not included in the final models. Statistics for data collection and refinement are shown in Table 2.2.
The PISA server (Krissinel and Henrick 2007) was used to infer macromolecular assemblies from crystal structures, as well as to study their interfaces.

### Table 2.2. Data collection and refinement statistics for AAO:p-anisic acid complex

<table>
<thead>
<tr>
<th>Crystal data</th>
<th>AAO:p-anisic acid complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P6_422</td>
</tr>
<tr>
<td>Unit Cell Parameters (Å)</td>
<td>a = b = 179.33, c = 160.18</td>
</tr>
<tr>
<td></td>
<td>α = β = 90°, γ = 120°</td>
</tr>
</tbody>
</table>

#### Data Collection

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (K)</td>
<td>100</td>
</tr>
<tr>
<td>Beamline</td>
<td>ID24 DLS</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.96862</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>43.99 - 2.30</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>2.30 (2.42 - 2.30)</td>
</tr>
<tr>
<td>Total reflections</td>
<td>2710007 (392719)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>67615 (9716)</td>
</tr>
<tr>
<td>Mean I/σ(I)</td>
<td>28.1 (6.2)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100 (100)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>40.1 (40.4)</td>
</tr>
<tr>
<td>R_merge^a</td>
<td>0.133 (0.806)</td>
</tr>
</tbody>
</table>

#### Data Refinement

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution range (Å)</td>
<td>42.3 - 2.30</td>
</tr>
<tr>
<td>Protein non-hydrogen atoms</td>
<td>4299</td>
</tr>
<tr>
<td>Ligand non-hydrogen atoms</td>
<td>94</td>
</tr>
<tr>
<td>Solvent non-hydrogen atoms</td>
<td>280</td>
</tr>
<tr>
<td>R_work (%)</td>
<td>17.43</td>
</tr>
<tr>
<td>R_free^b (%)</td>
<td>19.50</td>
</tr>
<tr>
<td>r.m.s.d. bond length (Å)</td>
<td>0.012</td>
</tr>
<tr>
<td>r.m.s.d. bond angles (°)</td>
<td>1.661</td>
</tr>
<tr>
<td>Average B-factor, (Å²)</td>
<td>32.93</td>
</tr>
</tbody>
</table>

*Values in parentheses correspond to the highest resolution shell*

^aR_merge = Σ|I - I_ave| / ΣI, where the summation is over symmetry-equivalent reflection

^bR calculated for 7% of data excluded from the refinement

This work was carried out in collaboration with Dr. Marta Martínez Júlvez from the University of Zaragoza.
2.6. Reactions of AAO and AAO/UPO enzymatic cascades with furfurals

2.6.1. Reactions

The time-course of 24-h conversions of HMF and by AAO was followed (samples were taken after 2, 4, 8 and 24 h) at 25 °C, in 5 mL of sodium phosphate (pH 6) containing 5 μM enzyme (corresponding to 54 units measured with veratryl alcohol) and 3 mM substrate. Similar reactions were performed with the partially-oxidized HMF derivatives DFF, HMFCA and FFCA.

UPO reactions in 5 mL on the same substrates (3 mM) were followed for up to 120 h using 0.65 μM enzyme (corresponding to 20 U measured with veratryl alcohol) in 50 mM phosphate (pH 7) and 10 mM H₂O₂.

The effect of UPO on the HMF conversion by AAO was evaluated by simultaneous (from the beginning of the reaction on) or successive (after 4-h of reaction with AAO) addition of 0.65 μM UPO to the reaction solutions under the conditions described above in 50 mM sodium phosphate (pH 7).

In addition to the above 24-h reactions, the time courses of initial transformation of HMF (32 mM) by AAO (0.3 μM, 3.4 U) and UPO (86 nM, 2.6 U) were followed (after 30, 60 and 180 s) using 50 mM sodium phosphate of pH 6 and pH 7, respectively.

2.6.2. Gas chromatography-mass spectrometry analyses

Samples were taken from the one-pot reactions after different times in order to analyze the products present. 250 μL of the reaction mixtures were harvested and reactions were stopped by the addition of HCl to pH 2–3. Low pH values cause protonation of the organic acids and permit their subsequent liquid-liquid extraction. The latter was carried out by mixing the reaction mixtures with an excess of t-butyl-methyl-ether three times, followed by desiccation with NaSO₄ to remove water traces. Then, t-butyl-methyl-ether was evaporated using a rotary evaporator at room temperature and samples were derivatized with 50 μL of BSTFA for 15 min at 25°C (Teixidó et al. 2006).

Products of the reactions were separated and identified by GC-MS in a gas chromatograph equipped with an HP-5MS column (Agilent, Santa Clara, CA, USA; 30 m 9 0.25 mm internal diameter; 0.25 μm film thickness) coupled to a quadrupole mass detector. The oven program started at 110 °C for 2 min, increasing at 20 °C-min⁻¹ until 310 °C. Helium was used as the carrier gas at a flow rate of 1.2 mL-min⁻¹. Response factors were obtained by fitting the responses of various concentrations of these standard compounds (after its liquid-liquid extraction and derivatization) as a function of concentration to a linear equation. These response factors were used to estimate the molar percentage of each of the compounds in the reactions.
2.6.3. AAO and UPO activities before/after incubation with furfurals

Residual activities of AAO and UPO were measured after different times of incubation with HMF and its partially-oxidized derivatives.

In the case of AAO, activity was determined by following spectrophotometrically the production of $p$-anisaldehyde at 285 nm ($\Delta\varepsilon_{285} = 16950 \, \text{M}^{-1}\cdot\text{cm}^{-1}$) with 5 nM AAO and 200 µM $p$-methoxybenzyl alcohol at a final volume of 1 mL, at 25°C.

Regarding UPO, its residual activity was measured as the veratraldehyde production at 310 nm ($\varepsilon_{310} = 9300 \, \text{M}^{-1}\cdot\text{cm}^{-1}$) with 5 nm of enzyme and 10 mM of veratryl alcohol at a final volume of 1 mL, at 25°C.

Experimental points of residual activity were fitted to equations describing their activity decay as a function of time. This allowed the estimation of the enzyme’s half-life as well as their total turnover number.

2.7. NMR studies of aldehyde hydration

The hydration rates of aldehyde solutions (~10 mM, HMF, DFF and FFCA) in 50 mM sodium phosphate, pH 6; and 50 mM sodium borate-acetate-phosphate, pH 3 and pH 9, prepared with 99.9% isotopic purity $^2$H$_2$O were estimated by $^1$H-NMR using a Bruker Avance 600 MHz instrument. The internal reference for chemical shifts was the signal from residual water proton ($\delta_{H} = 4.9$ ppm). The signal of the $H$-$C$-(OH)$_2$ proton in the $gem$-diol form was integrated and referred to that of the $H$-$C$=O proton of the aldehyde species for the hydration degree estimation. Spectra in DMSO-$d_6$ (isotopic purity $\geq 99.8$ %) were run as a reference, showing only the non-hydrated species.

These measurements were made in collaboration with Dr. Ana Ardá and Dr. Jesús Jiménez-Barbero, formerly in Centro de Investigaciones Biológicas-CSIC.
3

GMC genes in 10 Polyporales genomes
Three representative Polyporales—*Bjerkandera adusta*, *Ganoderma* sp. (*G. lucidum* complex) and *Phlebia brevispora*—were sequenced and their different GMC gene families are analyzed in this chapter. *Bjerkandera adusta* is a strong lignin degrader, which produces AAO (Muheim et al. 1990b) together with ligninolytic peroxidases (Heinfling et al. 1998; Kimura et al. 1991). Some species of *Ganoderma* cause extensive wood delignification (González et al. 1986; Martínez et al. 1995; Martínez et al. 2011) and little is known about GMC production by these fungi (Peláez et al. 1995; Ralph et al. 1996). Finally, *P. brevispora* was investigated for wood biopulping due to selective lignin removal (Akhtar et al. 1993; Fonseca et al. 2014). Moreover, seven additional sequenced Polyporales genomes were screened and included in the present comparative analysis of GMC-encoding genes. All of the genomes studied here are available at the Joint Genome Institute (JGI) portal. The present chapter is part of a wider genomic project covering other gene families (Hori et al. 2013; Kovalchuk et al. 2013; Mbéahuruike et al. 2013; Ruiz-Dueñas et al. 2013; Syed et al. 2013) as an example of genome-enabled mycology to gain insight into the biology and evolution of fungi (Hibbett et al. 2013).

### 3.1. Results

#### 3.1.1. GMC gene families in ten Polyporales genomes

A total of 41 GMC genes—21 AAO, 15 MOX, 3 CDH and 2 P2O genes (Table 3.1)—were identified in the recently sequenced genomes of *B. adusta*, *Ganoderma* sp. and *P. brevispora*. Family classification was completed by inspection of the enzyme molecular models described below for characteristic flavin environment and catalytic residues (Gadda 2008; Hernández-Ortega et al. 2012a; Romero and Gadda 2014; Wongnate and Chaiyen 2013). The genome of *B. adusta* has the highest number of GMC genes (a total of 18), while similar numbers (11-12 genes) were found in the two other genomes. No GOX or PDH genes were found in any case and P2O genes were also absent from the *Ganoderma* sp. genome. AAO genes are the most abundant GMC genes in *B. adusta* and *Ganoderma* sp. (11 and 7, respectively) while MOX genes are the most abundant in *P. brevispora* (6 genes). None of the 41 GMC genes identified in the three genomes had been previously cloned and deposited in databases. Annotated genomes from seven more species of Polyporales were included for a wider comparison. The resulting ten genomes include representatives of the Phlebioid (*B. adusta*, *P. brevispora* and *Phanerochaete chrysosporium*), core Polyporoid (*Dichomitus squalens*, *Ganoderma* sp. and *Trametes versicolor*) Gelatoporia (*Gelatoporia subvermispora*) and Antrodia (*Fomitopsis pinicola*, *Rhodonia placenta* and *Wolfiporia cocos*) clades (Binder et al. 2005).

The number of genes of the different GMC families in each of the ten genomes is shown in Table 3.1, up to a total of 95 (their JGI protein ID references are in Annex 1), which also indicates the existence of alleles and recognized signal
peptides. MOX genes are equally present in the white-rot and brown-rot genomes (average 4.0-4.4 genes/genome) while those of AAOs are nearly 6-fold more abundant in the genomes of white-rot (average 5.7 genes/genome) than brown-rot (average 1.0 gene/genome) species. Moreover, CDH genes were present in all the white-rot genomes (1 copy per genome), but absent from the brown-rot genomes. Finally, also P2O genes were absent from the brown-rot genomes and no PDH genes were found in any of the genomes.

**Table 3.1.** Inventory of 95 genes from six GMC families in the genomes of 10 Polyporales species (BJEAD, *B. adusta*; PHLBR, *P. brevispora*; PHACH, *P. chrysosporium*; DICSQ, *D. squalens*; GANSP, *Ganoderma* sp.; TRAVE, *T. versicolor*; GELSU, *G. subvermispora*; FOMPI, *F. pinicola*; RHOPL, *R. placenta*; and WOLCO, *W. cocos*) from four different clades, producing white-rot and brown-rot decay of wood. Four allelic variants are excluded from the inventory (Annex 1).

<table>
<thead>
<tr>
<th></th>
<th>Phlebioid</th>
<th>Core polyporoid</th>
<th>Gelatoporia</th>
<th>Antrodia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BJE AD</td>
<td>PHL BR</td>
<td>PHA CH</td>
<td>DIC SQ</td>
</tr>
<tr>
<td>AAO</td>
<td>11 3</td>
<td>3 8 7 3</td>
<td>4 1 2 0</td>
<td></td>
</tr>
<tr>
<td>MOX</td>
<td>5 6 3</td>
<td>4 4 4</td>
<td>1 4 4 4</td>
<td></td>
</tr>
<tr>
<td>GOX</td>
<td>0 0 1</td>
<td>0 0 0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>CDH</td>
<td>1 1 1</td>
<td>1 1 1 1</td>
<td>1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>P2O</td>
<td>1 1 1</td>
<td>0 0 1 0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>PDH</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>All GMC</td>
<td>18 11 9</td>
<td>13 12 9</td>
<td>6 5 8 4</td>
<td></td>
</tr>
</tbody>
</table>

**3.1.2. Structural modeling of GMC oxidoreductases from Polyporales genomes**

Most of the predicted GMC sequences (94 of 95) were modeled using related crystal structures as templates. Five representative structures are shown in **Figure 3.1** corresponding to *B. adusta* AAO (A), *F. pinicola* MOX (B), *R. placenta* GOX (C), *G. subvermispora* CDH (D) and *B. adusta* P2O (E) mature proteins. All these GMCs show a common folding with the lower domain harboring the FAD cofactor. Specific features are present in AAO, which possesses a loop partially covering the entrance to the active site (Figure 3.2A, in orange); and CDH, which has a heme domain connected by an unstructured linker (Figure 3.1D). Interestingly, AAOs and CDHs are known as monomeric proteins, while GOXs, P2Os and MOXs form oligomers (Romero and Gadda 2014). One large β-sheet is present in both the FAD-binding (sheet A) and the substrate-binding (sheet C) domains, the former being accompanied by two small sheets (B and D) and the latter by only one (sheet E) (Figure 3.1A). Similar numbers of α-helices exist in the FAD-binding and the substrate-binding
Figure 3.1. Ribbon models for the molecular structures of representative members of the five GMC oxidoreductase families found in 10 Polyporales genomes (flavin and heme cofactors as yellow and red sticks, respectively). **A.** AAO of *B. adusta* (JGI protein ID 245059) indicating the position of 4 β-sheets, individual β-strands, and 19 α-helices. **B.** MOX (monomer) of *F. pinicola* (JGI protein ID 156775). **C.** GOX (monomer) of *P. chrysosporium* (JGI protein ID 131961). **D.** CDH of *G. subvermispora* (JGI protein ID 84792) (flavin domain in the left and heme domain in the right). **E.** P2O (monomer) of *B. adusta* (JGI protein ID 34622). The molecular models were built using crystal structures of related proteins as templates.
domains (9-10 in AAO), some of them (e.g. AAO helices 1, 4 and 10) conserved in most GMCs. All the predicted models present the ADP-binding $\beta\alpha\beta$ motif near their N-termini (Annex 2A) and the GMC signatures 1 and 2 (Prosite PS00623 and PS00624, respectively; Annexes 2B and 2C), with the only exception of P2O that lacks signature 1. The FAD flavin ring enters the GMC upper domain, where several residues form a substrate-binding site at the re-side of the isoalloxazine ring (Figure 3.2). They include a histidine strictly conserved in the superfamily, corresponding to B. adusta AAO His497 (Figure 3.2A), F. pinicola MOX His535 (Figure 3.2B), P. chrysosporium GOX His538 (Figure 3.2C), G. subvermispora CDH His688 (Figure 3.2D) and B. adusta P2O His540 (Figure 3.2E).

A second conserved histidine in AAO and GOX (His541 and His581 in Figure 3.2A and C, respectively), is replaced by an asparagine in MOX, CDH and P2O proteins (Asn 578, Asn731 and Asn583 in Figure 3.2B, D and E, respectively). An aromatic residue often precedes the fully conserved histidine, being a tryptophan in AAO (Trp496) and MOX (Trp534) and a phenylalanine in GOX (Phe537), while a leucine (Leu539) and an asparagine (Asn687) occupy this position in the P2Os and CDHs, respectively (Figure 3.2). At the opposite (si)
side of the isoalloxazine ring, another aromatic residue, which points towards the active site, is conserved, being a phenylalanine in AAO (Phe90) and a tyrosine in MOX (Tyr99) and GOX (Tyr90) (Figure 3.2A-C).

An asparagine preceding the latter position is conserved in all the Polyporales GMCs (Asn89, Asn98, Asn89 and Asn322 in Figure 2, AAO, GOX, MOX and CDH, respectively) with the exception of P2Os. This asparagine residue, also conserved in other GMCs, is involved in flavin bent conformation (Kiess et al. 1998).

### 3.1.3. Evolutionary history of GMC oxidoreductases in the Polyporales genomes

The evolutionary history of the 95 GMCs identified in the ten Polyporales genomes (five allelic variants excluded) was inferred by comparing their predicted amino-acid sequences (mature proteins). It is worth noting that all the sequences from each of the GMC families cluster together in the maximal likelihood tree (Figure 3.3). The two main groups correspond to the 39 MOXs and the 42 AAOs (100% and 79% bootstrap, respectively), with the only 3 GOXs distantly associated to the AAOs. Interestingly, ten of the eleven *B. adusta* AAOs are included in a thirteen-member subgroup (a, 100% bootstrap), suggesting recent duplication. In contrast, MOXs include a subgroup (b, 100% bootstrap) of ten sequences, each from one of the genomes. These ten sequences share an insertion and a slightly longer C-terminus involved in oligomerization and/or secretion of the enzymes through a unique secretory pathway (Danneel et al. 1994), suggesting a common origin of these genes. At the basal nodes the well supported (100% bootstrap) P2O (4 sequences) and CDH (7 sequences) families appear unrelated between them and with the rest of the GMCs. The distant position of the latter families and the relatedness between AAOs, GOXs and MOXs, agree with the pairwise identity values across and within gene families. In fact, the average pairwise (inter-family) identity between P2O and CDH sequences is 8% and, among them and the rest of the families, range between 11% and 14%. These values are significantly lower than those between AAO and MOX (25% inter-family average), GOX and MOX (24% inter-family average) and AAO and GOX sequences (31% inter-family average). On the other hand, the pairwise (intra-family) identities within the CDH and P2O families are higher, 73 and 51%, respectively; whereas AAOs, GOXs and MOXs show values of 46, 30 and 57%, respectively.
Figure 3.3. Maximum likelihood tree of the 95 GMC sequences from 10 Polyporales genomes (different color labels), prepared with RaxML (with gaps treated as deletions). The AAO, MOX, P2O and CDH clusters (and the a and b subclusters mentioned in the text) are shown, together with a few GOX sequences related to AAOs. Numbers at nodes indicate bootstrap values. Those sequences modeled in Figures 3.1 and 3.2 are indicated by arrows. See Table 3.1 for abbreviations of the fungal species.
3.1.4. GMC gene duplication and loss during diversification of Polyporales

The expansion or reduction in the number of GMC genes upon evolution of Polyporales was investigated by reconciliation of the evolutionary tree of the 95 GMC genes (Figure 3.3) and the phylogenetic tree of the 10 species of Polyporales (from TreeBase) using Notung. The results obtained (using two different threshold levels) suggest that the ancestors of Polyporales had a high number of GMC genes, more than found in any of the extant species or the predicted intermediate ancestors (Figure 3.4). Therefore, during GMC evolution 14 contraction events and two expansions (from nodes d to node g and from node e to node h) were predicted.

![GMC tree](Figure 3.4)

Figure 3.4. Estimated range of GMC gene copies at the ancestral nodes (and extant species) of the represented phylogeny of Polyporales taken from Binder et al. (2013) after reconciliation with the gene phylogeny (Figure 3.3) using Notung. Branches and numbers after gene expansion and contraction are in blue and red color, respectively. For reconciliation of the individual GMC families, see Figure 3.5.

A similar tendency was observed for each of the individual GMC families (Figure 3.5A-E) with a total of 39 contraction events and 7 expansions. In this case, expansions resulted in higher AAO (in node g and in B. adusta; Figure 3.5A), GOX (in R. placenta; Figure 3.5C) and P2O (in node c; Figure 3.5E) gene numbers (often after previous contractions) than predicted for the initial Polyporales ancestor. The stronger contraction of GMC gene numbers was evident in the Antrodia clade, resulting in only 4-5 genes in W. cocos and F. pinicola and the largest expansion was observed in B. adusta (Phlebioid clade) with 18 GMC genes, including 11 AAOs (Figure 3.4). Interestingly, most of the
Figure 3.5. Estimated range of individual AAO (A), MOX (B), GOX (C), CDH (D) and P2O (E) gene copies, and total GMC from sum of family gene numbers (F), at the ancestral nodes of the represented phylogeny of Polyporales taken from Binder et al. (2013) after reconciliation with the gene phylogeny. Branches and numbers after gene expansion and contraction are in blue and red color, respectively.
remaining GMC genes in the Antrodia clade correspond to the MOX family (4/5 in *F. pinicola*, 4/8 in *R. placenta* and 4/4 in *W. cocos*).

### 3.2. Discussion

The global reaction in initial wood decay by white-rot and brown-rot basidiomycetes is iron-catalyzed oxidation of lignin or polysaccharides, respectively, by H$_2$O$_2$ generated by oxidases (from the GMC and/or the copper-protein radical superfamilies). In white-rot decay, this reaction is catalyzed by Fe$^{3+}$ in the heme cofactor of ligninolytic peroxidases, while in brown-rot decay free Fe$^{2+}$ reduces H$_2$O$_2$ forming the highly-reactive hydroxyl radical (Baldrian and Valásková 2008; Kersten and Cullen 2007; Martínez et al. 2005). The information available on the presence and relevance of GMC families in the different Polyporales species is discussed below.

#### 3.2.1. Aryl-alcohol oxidase

AAO was first isolated from *Pleurotus* species (Agaricales) (Bourbonnais and Paice 1988; Guillén et al. 1990a; Guillén et al. 1992a; Sannia et al. 1991), where it generates H$_2$O$_2$ by redox-cycling of anisaldehyde (Guillén and Evans 1994), an extracellular fungal metabolite (Gutiérrez et al. 1994). Subsequent studies focused on the *Pleurotus eryngii* enzyme, which was cloned and sequenced (Varela et al. 1999), heterologously expressed (Ruiz-Dueñas et al. 2006; Varela et al. 2001), crystallized (Fernández et al. 2009) and its reaction mechanisms investigated by a variety of techniques (Ferreira et al. 2005; 2006; 2009; 2010; 2015b; Hernández-Ortega et al. 2011b; 2011a; 2012c; 2012b). Then, a Polyporales AAO was isolated from *B. adusta* (Muheim et al. 1990b). Although the above enzymes are known as secreted proteins (Hernández-Ortega et al. 2012a), recognized signal peptides are missing from four of the 42 sequences from the ten Polyporales genomes, including one sequence from *B. adusta* and two from *D. squalens* and *P. chrysosporium*. The latter is in agreement with the description of an intracellular AAO in this fungus (Asada et al. 1995).

AAO activity has been detected in cultures of a few other Polyporales species (Peláez et al. 1995), although a Southern blot (using a *P. eryngii* probe) did not detect the corresponding gene in many of these (Varela et al. 2000) suggesting gene variability among different fungi. AAO activity in *B. adusta* (Romero et al. 2010), a sequence corresponds to BJEAD_171002 from the JGI genome, has been largely characterized showing higher activity on p-hydroxy and chlorinated benzyl alcohols than *Pleurotus* AAO (Romero et al. 2009). p-Hydroxybenzyl alcohols are the typical substrates of vanillyl alcohol oxidase, a flavoenzyme from a different superfamily (Leferink et al. 2008), but they are not efficiently oxidized by *Pleurotus* AAO, whose best substrates are p-methoxylated benzyl alcohols (Ferreira et al. 2005; Guillén et al. 1992b). Therefore, the best characterized Polyporales AAO shows catalytic properties intermediate between Agaricales AAO and vanillyl-alcohol oxidase. The higher activity of *B. adusta* AAO on chlorinated
benzyl alcohols, which was already noticed by de Jong et al. (1994), is related to the ability of this species to synthesize 3-chloro-\textit{p}-methoxybenzaldehyde (de Jong et al. 1992; de Jong and Field 1997). Redox cycling of this and related chlorinated compounds provides a continuous source of \( \text{H}_2\text{O}_2 \) to \( B. \text{adusta} \) peroxidases (de Jong et al. 1994), similar to the \textit{Pleurotus} anisaldehyde redox cycling. Chloroaromatics could also help wood colonization due to their antibiotic properties.

### 3.2.2. Glucose oxidase

In contrast to AAO, which has been rarely reported in ascomycetes (Goetghebeur et al. 1992), GOX has been largely studied in \( A. \text{niger} \) (Frederick et al. 1990) and other ascomycetous fungi, but rarely in basidiomycetes (Danneel et al. 1993). This is the protein with the largest sequence identity with AAO, as shown in the gene tree, both sharing the general folding and active-site residues (Hecht et al. 1993; Witt et al. 2000; Wohlfahrt et al. 1999).

GOX is widely used in biosensors and other biotechnological applications (Bankar et al. 2009) but its involvement in lignocellulose degradation was discarded, since the best known representatives are confirmed intracellular enzymes. However, two of the only three GOX sequences identified in the Polyporales genomes include a typical signal peptide, suggesting participation in the extracellular attack on lignocellulose.

### 3.2.3. Pyranose 2-oxidase

\( \text{P2O} \), which differs from GOX in glucose oxidation at the C2 (instead of the C1) position, is known as a secreted enzyme (Daniel et al. 1994) involved in lignocellulose degradation (Nyanhongo et al. 2007). This oxidoreductase was first investigated in \( P. \text{chrysosporium} \) (Artolozaga et al. 1997) and these studies suggested that P2O rather than GOX is secreted during wood decay (Vole et al. 1996). However, none of the four genes found in the Polyporales genomes has a recognized signal peptide, in agreement with the sequence obtained by de Koker et al. (2004) for the cloned P2O gene from \( P. \text{chrysosporium} \). Therefore, if secreted, this would be by an alternative mechanism, as suggested for MOX (see below).

\( \text{P2O} \) is produced by other Polyporales, including \textit{Trametes multicolor} (= \textit{Trametes ochracea}) (Leitner et al. 2001) and most recent P2O research focuses on this enzyme, whose reaction mechanisms have been elucidated in a variety of crystallographic, spectroscopic, directed mutagenesis, isotope labeling and kinetic studies (Hallberg et al. 2004; Pitsawong et al. 2010; Prongjit et al. 2009; Sucharitakul et al. 2008; 2011; Wongnate et al. 2011; 2014).
3.2.4. Methanol oxidase

MOX is mostly known as a peroxysomal enzyme in methylotrophic ascomycetous yeasts, such as *Pichia pastoris* or *C. boidinii* (Ozimek et al. 2005). The first basidiomycete MOX was purified and characterized from *P. chrysosporium* (Nishida and Eriksson 1987) and it is also known from *Phlebiopsis gigantea* (Danneel et al. 1994). MOX was proposed as the main oxidase in brown-rot decay based on biochemical characterization and expression analyses in *Gloeophyllum trabeum* (Daniel et al. 2007). The corresponding gene is present in the genome of *R. placenta* (Martínez et al. 2009), and was overexpressed in wood-containing cultures of this brown-rot fungus and also in those of the white-rot *P. chrysosporium* (Vanden Wymelenberg et al. 2010).

The MOX gene of *G. trabeum* and other basidiomycetes does not include a recognized signal peptide. However, the extracellular location of MOX has been demonstrated and operation of an alternative secretion mechanism was proposed (Daniel et al. 2007). The rationale for MOX involvement in brown-rot decay is that demethylation, resulting in methanol release, was reported first by Kirk (1975) and confirmed by 2D-NMR analyses (Martínez et al. 2011) as the main lignin modification in brown-rot decay.

3.2.5. Pyranose and cellobiose dehydrogenases

PDH and CDH use electron acceptors different from O\(_2\) and, therefore, do not contribute to H\(_2\)O\(_2\) supply. However, they oxidize plant carbohydrates and participate in electron transfer to other lignocellulose-degrading oxidoreductases.

PDH catalyzes the same oxidations of P2O but uses quinones as electron acceptors, being an enzyme of interest in biotechnology (Peterbauer and Volc 2010). The first PDH was isolated from *Agaricus bisporus* (Volc et al. 1997) and also found in related species (Kittel et al. 2008; Kujawa et al. 2007) including *L. meleagris* where it was thoroughly investigated (Krondorfer et al. 2014a; 2014b; Tan et al. 2013). Screening for PDH revealed its exclusive presence in the above and other litter-degrading Agaricales (Volc et al. 2001), an observation that is consistent with its absence from all the (wood-rotting) Polyporales genomes analyzed.

CDH includes both flavin and heme domains, the former being able to oxidize cellobiose to cellobiolactone by transferring the electrons to Fe\(^{3+}\) via the heme domain (Henriksson et al. 2000; Zámocký et al. 2006). CDH was first described in *P. chrysosporium* (whose conidial state was referred as *Sporotrichum pulverulentum* in some of these studies) (Ayers et al. 1978; Bao et al. 1993). The ancestral fusion between the two CDH domains and the subsequent evolution in different fungi has been discussed (Zámocký et al. 2004). One CDH gene was present in the genomes of the 7 white-rot Polyporales analyzed and absent from the three brown-rot Polyporales genomes, in agreement with a recent review
(Hori et al. 2013), in which CDH was found only in white-rot genomes. However, this GMC seems to be present in other brown-rot fungi, as revealed by its early description in *C. puteana* (order Boletales) (Schmidhalter and Canevascini 1993) and its detection in the genomes of brown-rot fungi from other Agaricomycotina orders (Floudas et al. 2012).

Its ability to generate hydroxyl radical by simultaneous Fe$^{3+}$ and O$_2$ reduction has been suggested (Kremer and Wood 1992), but O$_2$ reduction by CDH is inefficient and only takes place in the absence of Fe$^{3+}$. However, recent studies showed that CDH increases the cellulolysis yield and contributes to the action of lytic polysaccharide monooxygenase (Langston et al. 2011).$^1$

CDH from *P. chrysosporium* experiences proteolytic cleavage in cultures releasing the flavin domain (Wood and Wood 1992), which was described as a different enzyme, cellobiose-quinone oxidoreductase (Westermark and Eriksson 1974). However, the physiological significance of such cleavage and the role of cellobiose-quinone oxidoreductase under natural conditions is unknown (Raices et al. 2002).

### 3.2.6. Final evolutionary/ecological remarks

The total number of GMC genes cloned to date from species of the order Polyporales is fewer than 10: from *P. chrysosporium*, *P. cinnabarinus*, *Pycnoporus sanguineus* (syn.: *Trametes sanguinea*), *T. ochracea* and *T. versicolor* (de Koker et al. 2004; Dumonceaux et al. 1998; Leitner et al. 1998; Moukha et al. 1999; Raices et al. 1995; Sulej et al. 2013; Vecerek et al. 2004). However, the present survey of GMC genes from a broader sampling including ten Polyporales genomes (from different clades and lifestyles) reveals nearly one hundred GMC genes representing five of the six best-known families (no PDH genes present).

The GMC superfamily is thought to have evolved from an old common ancestor, which very likely exhibited broad substrate specificity and poor kinetic parameters and gave rise to more specialized and efficient enzymes as evolution proceeded (Cavener 1992). The present study suggests that this diversification took place at a more ancestral stage of fungal evolution, with predominant gene loss among members of the Polyporales. This resulted in two main GMC types (groups) corresponding to AAO and MOX, with an average of ~4 gene copies per genome, and three small groups corresponding to P2O, CDH and GOX (neighbor to the AAO group) with 0–1 copies per genome, in agreement with previous studies (Zámocký et al. 2004; Kittl et al. 2008).

---

$^1$ Note added for this Thesis: It has been recently shown that both CDH and GDH (the latter not mentioned here) can activate this key enzyme for cellulose degradation (Kracher et al. 2016).
While ligninolytic peroxidases (from the LiP, MnP and VP families) were absent from the brown-rot fungal genomes but present in all the white-rot fungal genomes (Ruiz-Dueñas et al. 2013), H$_2$O$_2$-producing GMCs were present in genomes of both white-rot and brown-rot species. Floudas et al. (2012) showed that the first wood-rotting fungus appeared by incorporation of secreted high redox-potential (ligninolytic) peroxidase genes in the genome of an ancestral basidiomycete. This was most likely accompanied by the evolution of several extracellular H$_2$O$_2$-producing oxidases, some of them with different evolutionary origin. These included copper-radical oxidases and several families of GMCs derived from related enzymes involved in intracellular metabolism.

White-rot decay was likely the ancestral lifestyle in wood decay basidiomycetes (Floudas et al. 2012; Ruiz-Dueñas et al. 2013) and brown-rot evolved several times among Polyporales, and other Agaricomycotina orders. The white-rot to brown-rot transition in Polyporales included loss of the ligninolytic peroxidase genes, which are not required since lignin remained polymeric in brown-rotted wood. However, extracellular H$_2$O$_2$, used as peroxidase-activating substrate in white-rot decay, also plays an important role in brown-rot decay as the precursor of the hydroxyl radical formed by Fenton reaction. Therefore, it seems that the same H$_2$O$_2$-generating oxidases present in white-rot fungi remained in the derived brown-rot species. During the subsequent evolution, some differences in the frequency of the individual GMC families appeared. In this way, MOX genes are the most abundant GMC genes in the brown-rot Polyporales, while AAO genes are the most abundant in the white-rot species (up to eleven copies in B. adusta). Finally, the number of CDH genes predicted in the ancestor of Polyporales diminished, but all the white-rot species maintain one CDH gene, which contributes to polysaccharide degradation by these fungi. However, CDH genes disappeared in brown-rot fungi, where Fenton chemistry is the main mechanism for polysaccharide attack.

The results described in this chapter have been drawn from the publication: Ferreira P, Carro J, Serrano A, Martínez AT. A survey of genes encoding H$_2$O$_2$-producing GMC oxidoreductases in 10 Polyporales genomes. Mycologia 107:1105–1119, 2015.
An active site Phe contributes to product release in AAO catalysis
The catalytic pocket of AAO from *Pleurotus eryngii* is shielded from the outer environment by a triad of aromatic residues —Tyr92, Phe501 and Phe397— that form a hydrophobic bottleneck and constitute a barrier for the access to the active site (Figure 4.1) (Fernández et al. 2009). This is one striking difference opposed to the structure of other related enzymes from the same superfamily. The roles of Tyr92 and Phe501 have been unveiled and are involved in: i) establishing aromatic stacking interactions that guide the alcohol substrate to a catalytically competent configuration (Ferreira et al. 2015b); and ii) in compressing the active site to promote the reactivity with O₂ (Hernández-Ortega et al. 2011b), respectively. However, the role of Phe397 in AAO catalysis had not been previously studied.

This phenylalanine residue is located in a loop unique to the AAO family, which partially covers the access to the active site (Ferreira et al. 2015a) (shown in Figure 3.2A, in orange). It is supposed to act as an additional barrier that prevents the free diffusion of molecules in and out of the catalytic pocket. AAO, in contrast to the majority of related GMC flavoproteins, is a monomeric enzyme. Polymeric enzymes rely on the correct positioning of the adjacent monomers to cover the entrances to their active sites. This is probably the reason why AAOs have developed the 390–402 insertion in which the phenylalanine studied is located. Computational studies of substrate migration into the active site suggested that Phe397 was displaced as it swung along with the alcohol substrate helping it enter the catalytic pocket (Hernández-Ortega et al. 2011a).

![Figure 4.1](image)

**Figure 4.1.** Characteristic loop and aromatic residues delimiting the FAD access in AAO. A. Channel opening in AAO surface. B. Semitransparent surface showing aromatic residues (Tyr92, Phe397 and Phe501) and loop (green) limiting the access to FAD and catalytic histidine (His502), with one product (p-anisic acid) molecule at the active site. From AAO:anisic acid structure (Carro et al. 2017), see Figure 5.2 and Chapter 5 for description of the complex structure.
In this chapter, steady-state and transient-state kinetic studies on wild-type AAO and several mutated variants have been performed to elucidate the role of Phe397 in AAO catalysis.

4.1. Results

4.1.1. Spectral properties and steady-state kinetics of AAO and its Phe397 variants

The four AAO Phe397 variants, analogously to the native enzyme, were purified as holoproteins after E. coli expression and in vitro activation. The UV-visible spectra of all variants showed the typical bands I and II of the flavin (around 385 and 460 nm, respectively). The \(\sim 10–11\) absorbance ratios between \(A_{280\text{ nm}}\) and band I maximum showed that FAD cofactor was in oxidized state and correctly incorporated into the proteins. Maxima of flavin bands I and II showed some slight shifts upon mutation. F397Y showed the band I maximum at 463 nm, as native AAO, whereas F397L and F397W had their maxima at 462 nm and F397A at 459 nm. Regarding band II, F397L, F397W and F397A showed their maxima at 385 nm, while F397Y showed it at 387, as the native enzyme (Figure 4.2). However, all the variants displayed similar band I/band II absorbance ratios, and shoulder around 500 nm, indicating similar folding around cofactor.

![Figure 4.2. Spectra of native AAO (solid line) and its F397Y (dotted line), F397A (short dash line), F397W (dash-dot line) and F397L (long dash line) AAO variants recorded between 300 and 600 nm in 50 mM sodium phosphate pH 6.0 at 25°C.](image)

Steady-state kinetics revealed remarkable differences among native AAO and its Phe397 variants (Table 4.1). Measurements were carried out using \(p\)-methoxybenzyl alcohol, the physiological substrate of AAO (Ferreira et al. 2005). In all four cases, the kinetics best fitted equation 7 describing a ping-pong
mechanism, as revealed by the Hanes-Woolf plots of its bi-substrate kinetics (Figure 4.3), in which all lines intersect at x = 0.

Figure 4.3. Linearized Hanes-Woolf plots of the bi-substrate kinetics of F397Y (A), F397A (B), F397W (C) and F397L (D) AAO variants measured by varying the concentrations of p-methoxybenzyl alcohol and O₂ in 50 mM sodium phosphate pH 6.0 at 12°C. Filled circles, 0.06 mM O₂; open circles, 0.16 mM O₂; filled triangles, 0.34 mM O₂; open triangles, 0.71 mM O₂; and squares, 1.60 mM O₂.

The F397Y variant displays a three-fold lower kcat than the native enzyme, whereas their Kₘ(Al) values are exactly the same. Consequently, kcat/Kₘ(Al) shows a three-fold lower value than that of native AAO. Its behavior towards O₂ is also altered, since Kₘ(Ox) is almost four-fold lower than that of the native enzyme.

Table 4.1. Kinetic parameters for steady-state reaction of native AAO and its Phe397 variants in the oxidation of p-methoxybenzyl alcohol

<table>
<thead>
<tr>
<th>Variant</th>
<th>kcat (s⁻¹)</th>
<th>Kₘ(Al) (µM)</th>
<th>kcat/Kₘ(Al) (s⁻¹·µM⁻¹)</th>
<th>Kₘ(Ox) (µM)</th>
<th>kcat/Kₘ(Ox) (s⁻¹·µM⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>129 ± 5</td>
<td>25 ± 3</td>
<td>5160 ± 650</td>
<td>348 ± 36</td>
<td>371 ± 41</td>
</tr>
<tr>
<td>F397Y</td>
<td>48 ± 1</td>
<td>25 ± 1</td>
<td>1920 ± 65</td>
<td>94 ± 4</td>
<td>512 ± 20</td>
</tr>
<tr>
<td>F397W</td>
<td>68 ± 1</td>
<td>280 ± 8</td>
<td>240 ± 5</td>
<td>90 ± 4</td>
<td>718 ± 10</td>
</tr>
<tr>
<td>F397A</td>
<td>66 ± 1</td>
<td>54 ± 1</td>
<td>1224 ± 32</td>
<td>500 ± 10</td>
<td>133 ± 3</td>
</tr>
<tr>
<td>F397L</td>
<td>115 ± 1</td>
<td>226 ± 4</td>
<td>506 ± 10</td>
<td>190 ± 4</td>
<td>610 ± 13</td>
</tr>
</tbody>
</table>

Measured in 50 mM sodium phosphate (pH 6.0) at 12°C. † From Ferreira et al. (2015b)
Concerning variant F397W, its $k_{\text{cat}}$ is half of that of the native enzyme and its $K_{m(\text{al})}$ is inflated by ten-fold due to the presence of the bulky tryptophan. Therefore, $k_{\text{cat}}/K_{m(\text{al})}$ is almost 20-fold smaller than that of the native enzyme. Its reactivity with $O_2$ shows also some differences with regard to the native enzyme, since it has a low $K_{m(\text{ox})}$ as well as a higher $k_{\text{cat}}/K_{m(\text{ox})}$. In fact it seems to be the most efficient of all the variants (native AAO comprised) at reacting with $O_2$.

Variant F397A has a very similar $k_{\text{cat}}$ to F397W, half of that of native AAO. Its $K_{m(\text{al})}$ is slightly higher than that of native AAO or F397Y, but $k_{\text{cat}}/K_{m(\text{al})}$ is lower than native AAO. It is the variant presenting a highest $K_{m(\text{ox})}$ and, thus, lowest $k_{\text{cat}}/K_{m(\text{ox})}$.

Replacement of phenylalanine with leucine in the F397L variant showed that, although the resulting $k_{\text{cat}}$ had no difference with the native enzyme, the $K_{m(\text{al})}$ is high, similar to that of variant F397W, and thus the catalytic efficiency for alcohol oxidation ($k_{\text{cat}}/K_{m(\text{al})}$) is low. However, the resulting $K_{m(\text{ox})}$ was lower than that of native AAO and, as a consequence, its catalytic efficiency reducing $O_2$ ($k_{\text{cat}}/K_{m(\text{ox})}$) is higher, and similar to those for the F397Y and F397W variants.

**4.1.2. AAO redox state during turnover**

To investigate the redox state of the cofactor during turnover, the Phe397 variants were mixed in the stopped-flow instrument with equal volumes of an exceedingly saturating concentration of $p$-methoxybenzyl alcohol in aerobic conditions (at least 10-fold their $K_m$). This allows the reaction to proceed and to attain the turnover, a lag phase characterized by a plateau in the absorbance of flavin band I, until this eventually drops to the reduced state.

![Figure 4.4](image-url) **Figure 4.4.** Redox state during turnover of native AAO and its Phe397 variants. AAO (green), F397W (orange), F397L (blue), F397A (black) and F397Y (red) (~10 µM) were mixed with an excess of $p$-methoxybenzyl alcohol in 50 mM sodium phosphate (pH 6) at 25°C under aerobic conditions. Lines show the time course of absorbance changes at the maxima of the flavin band I (between 459 and 463 nm, depending on the variant).
The absorbance decrease from the initial mixing, until attaining the steady-state turnover indicates the percentage of the oxidized enzyme that remains as such during turnover.

On the one hand, for native AAO and the majority of the variants —F397W, F397A and F397L— the most abundant species during turnover is the oxidized enzyme (Figure 4.4). This indicates that, for the native protein and these variants, the reduction of FAD is slower than the oxidation by oxygen. Nevertheless, all these variants show decreased percentages of oxidized enzyme in comparison to native AAO, whose percentage is around 80%. F397L, F397A and F397W display around 60% of oxidized enzyme in turnover. In contrast, variant F397Y only shows around 40% oxidized enzyme at the steady-state turnover, suggesting that the reductive half-reaction predominates over its oxidative counterpart.

**Figure 4.5.** Spectral time-course of Phe397 variants during turn-over with p-methoxybenzyl alcohol. A. F397Y at 0.001, 0.05, 0.1, 0.2, 0.5, 1, 5, 10, 50, 100, 200 s. B. F397W at 0.001, 0.05, 2, 5, 10, 20, 200, 1000 s. C. F397A at 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 200 and 500 s. D. F397L at 0.001, 0.005, 0.05, 0.1, 0.2, 0.5, 1, 2, 50, 100 and 500 s. Dashed lines correspond to the oxidized enzymes before mixing. Assays performed under air atmosphere in 50 mM phosphate pH 6.0 at 25ºC with an excess of substrate.

On the other hand, the variants with an aromatic residue, tyrosine or tryptophan, at the Phe397 position showed formation of a charge-transfer complex between
the reduced enzyme and the aldehyde product, also found for native AAO (not shown), characterized by an increase in absorbance at 520–650 nm with time (Figure 4.5A and 4.5B, respectively). However, the replacement by a non-aromatic residue —e.g. alanine or leucine— impairs the formation of this complex (Figure 4.5C and 4.5D, respectively).

### 4.1.3. Rapid kinetics of the two AAO half reactions

In the light of the above results, the reductive and oxidative half reactions of the Phe397 variants were analyzed to obtain their kinetic parameters, and unveil the rate-limiting step of their catalytic cycles.

The reductive half-reaction of the variants was studied using the stopped flow spectrophotomer under anaerobic conditions. The spectra obtained indicated two-electron reduction of the flavin, in agreement with the previously reported hydride transfer reaction for the native protein. Global analyses of the spectral evolution for all variants were fitted to a one-step model (A→B) (Figure 4.6). The $k_{obs}$ values obtained at different substrate concentrations exhibited a hyperbolic dependence that allowed $k_{red}$ and $K_d$ determination upon fitting to Equation 1 or 2. The insignificant $k_{rev}$ values determined indicated an essentially irreversible reduction of the flavin for all variants.

![Figure 4.6](image_url)

**Figure 4.6.** Time course of the reduction of Phe397 variants (~10 μM) with 37 μM of p-methoxybenzyl alcohol at 12°C. A. F397Y after 0.001, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05 and 0.1 s. B. F397W at 0.001, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.2 and 0.5 s. C. F397A at 0.001, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15 and 0.3 s. D. F397L after 0.001, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.2 and 0.4 s. Dashed lines correspond to the oxidized enzymes before mixing. Data were globally fitted to a single-step model described from initial species A to final species B (shown in insets). Estimated $k_{obs}$ is provided in each panel.

66
For native AAO (spectral changes not shown) and F397A and F397L variants, $k_{\text{cat}}$ (Table 4.1) and $k_{\text{red}}$ (Table 4.2) were of the same range indicating that the reductive half reaction is rate-limiting in AAO catalysis. Nevertheless, variants F397Y and F397W showed $k_{\text{red}}$ 3-fold and 2-fold faster than their $k_{\text{cat}}$ values suggesting that the reductive half-reaction is not the limiting step in the reaction catalyzed by these variants. In this way, the F397L and F397A variants have $k_{\text{red}}$ values lower than native AAO, while those of the F397Y and F397W variants show higher values. For all variants, $K_d$ values (Table 4.1) were similar to the $K_{m(\text{al})}$ estimated under steady-state conditions (Table 4.1). In this way, F397W showed the highest $K_d$, followed by F397L and then by F397A, F397Y and native AAO.

**Table 4.2.** Transient-state kinetic parameters for the reductive half-reaction of native AAO and its Phe397 variants

<table>
<thead>
<tr>
<th></th>
<th>$k_{\text{red}}$ (s$^{-1}$)</th>
<th>$K_d$ (µM)</th>
<th>app$k_{\text{red}}$ (s$^{-1}$·mM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>115 ± 3</td>
<td>31 ± 2</td>
<td>3710 ± 258</td>
</tr>
<tr>
<td>F397Y</td>
<td>150 ± 3</td>
<td>41 ± 3</td>
<td>3660 ± 277</td>
</tr>
<tr>
<td>F397W</td>
<td>124 ± 3</td>
<td>292 ± 17</td>
<td>425 ± 10</td>
</tr>
<tr>
<td>F397A</td>
<td>69 ± 1</td>
<td>61 ± 2</td>
<td>1130 ± 40</td>
</tr>
<tr>
<td>F397L</td>
<td>87 ± 1</td>
<td>180 ± 7</td>
<td>483 ± 20</td>
</tr>
</tbody>
</table>

Measured using stopped-flow rapid spectrophotometry in 50 mM sodium phosphate (pH 6.0) at 12°C under anaerobic conditions.

The oxidative half-reactions of these variants were also investigated by stopped-flow spectrophotometry by following the absorbance increase in both bands I and II of the flavin (Figure 4.7). For the four Phe397 variants (and native AAO), it fitted equations describing a process composed of more than one step. The spectral evolution for the reoxidation of F397Y and F397W variants fitted an equation describing a two-step model (A→B→C) as was described for native protein. The first step (A→B) was faster than the second one and accounts for ~90% of the amplitude of the reaction. In contrast to what observed for the native AAO and other variants, the $k_{\text{obs}A\rightarrow B}$ values for F397W showed hyperbolic dependence on O$_2$ concentrations, describing an essentially irreversible process involved in enzyme:oxygen complex formation followed by flavin reoxidation. The obtained $k_{\text{ox}}$ (Table 4.3) is similar to $k_{\text{red}}$ (Table 4.2), indicating that the rates for the reductive and the reoxidative half-reactions are almost balanced, in agreement with its redox state during turn-over. $K_d$ value is in the same range than $K_{m(\text{ox})}$, leading to $k_{\text{ox}}/K_d$ ratio that agrees with the catalytic efficiency value determined by steady-state assays (Tables 4.1 and 4.3). For F397Y variant, these $k_{\text{obs}A\rightarrow B}$ were linearly dependent on oxygen concentration, allowing the determination of an app$k_{\text{ox}}$ second order rate constant identical to that reported for native enzyme (Table 4.3). For both variants the second process (B→C) accounts for less than 10% in amplitude, and was concentration independent and too slow to be relevant for catalysis.
Figure 4.7. Time course of the oxidation of Phe397 variants (~5–10 μM) at 12°C. A. F397Y oxidation spectra with 26 μM O₂ measured at 0.002, 0.01, 0.02, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1 and 3 s. B. F397W oxidized with 60 μM O₂ recorded at 0.002, 0.003, 0.005, 0.1, 0.15, 0.2, 0.025, 0.03, 0.04, 0.05 and 0.5 s. C. F397A after mixing with 26 μM O₂ at 0.002, 0.01, 0.05, 0.1, 0.15, 0.5, 1, 1.5, 2, 3, 4 and 5 s. D. F397L oxidized with 26 μM O₂ recorded at 0.003, 0.006, 0.009, 0.012, 0.015, 0.025, 0.03, 0.5, 0.7, 1, 2 and 3 s. Dashed lines correspond to the reduced enzymes before mixing. Insets show the course of the reactions monitored at the maximum of flavin band I superimposed with their fits in red. Residuals of each fit are displayed at the bottom of the insets. The estimated $k_{\text{obs}}$ for each phase is provided.

Table 4.3. Transient-state kinetic parameters for the oxidative half-reaction of native AAO and its Phe397 variants

<table>
<thead>
<tr>
<th></th>
<th>$k_{\text{ox1}}$ (s⁻¹)</th>
<th>$K_{\text{d1}}$ (μM)</th>
<th>app$k_{\text{ox1}}$ (s⁻¹·mM⁻¹)</th>
<th>app$k_{\text{ox2}}$ (s⁻¹·mM⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>na²</td>
<td>na²</td>
<td>770 ± 40</td>
<td>na²</td>
</tr>
<tr>
<td>F397Y</td>
<td>na²</td>
<td>na²</td>
<td>770 ± 70</td>
<td>na²</td>
</tr>
<tr>
<td>F397W¹</td>
<td>125.5 ± 11.3³</td>
<td>156 ± 27³</td>
<td>801 ± 156³</td>
<td>na²</td>
</tr>
<tr>
<td>F397A</td>
<td>na²</td>
<td>na²</td>
<td>78 ± 4</td>
<td>9.8 ± 0.1⁴</td>
</tr>
<tr>
<td>F397L</td>
<td>na²</td>
<td>na²</td>
<td>340 ± 10</td>
<td>11 ± 1⁴</td>
</tr>
</tbody>
</table>

Measured using stopped-flow spectrophotometry in 50 mM sodium phosphate (pH 6.0) at 12°C under anaerobic conditions. ¹The F397W constants for the first phase show a hyperbolic dependence on O₂ concentration (in contrast to all other variants). ²not applicable. ³$k_{\text{ox1}}/K_{\text{d1}}$ ratio. ⁴The F397A and F397L second phase (~25% of total amplitude) constants depend linearly on O₂ concentration.
F397A and F397L showed more complex oxidation patterns, their spectral evolution best fitted a three-step model (A→B→C→D). The third phase was too small in both amplitude and velocity to be determined accurately, but for the other two $k_{\text{obsA=B}}$ and $k_{\text{obsB=C}}$ values could be determined showing a linear dependence on O2 concentration that allow estimation of their corresponding $\text{app}k_{\text{ox1}}$ and $\text{app}k_{\text{ox2}}$ second-order rate constants (Table 4.3). Values of $\text{app}k_{\text{ox2}}$ were one order of magnitude smaller than $\text{app}k_{\text{ox1}}$ for both variants, and too slow to be relevant for catalysis (12.7 s⁻¹ and 14.3 s⁻¹ for F397A and F397L, respectively at 1.3 mM of O2). Moreover, the $\text{app}k_{\text{ox1}}$ values for F397L and F397A were half and one-order of magnitude slower that for native AAO, respectively.

Even though the above suggests that different chemical steps are taking place in the oxidation AAO, analysis of the different spectra did not reveal any intermediates (Figure 4.7).

### 4.1.4. Studies on AAO: p-anisic acid complex formation and dissociation

The differences observed between $k_{\text{cat}}$ and $k_{\text{red}}$ (or either between $k_{\text{cat}}/K_{\text{m}}$ and $\text{app}k_{\text{ox}}$) values for both F397Y and F397W encouraged the investigation of the affinity of AAO and p-anisic acid (as a substrate/product analog) to figure out which process was limiting the rate of the reaction. Release of the aldehyde product was a likely candidate, rather than H2O2, which is a smaller molecule that was not expected to encounter a barrier to exit the active site because of the presence of a bulky amino-acid.

**Figure 4.8.** LigPlot+ diagram (Laskowski and Swindells 2011) showing the interactions among the active-site residues and the FAD cofactor with the ligand, p-anisic acid, in the crystallographic structure of the complex. Green dashed lines represent H bonds between donor and acceptor atoms accompanied by their bonding distances. Red lines in semicircles represent hydrophobic interactions among the represented residues and the different atoms of p-anisic acid.
The reasons for choosing \( p \)-anisic acid instead of \( p \)-anisaldehyde were two: i) AAO has activity on the \( gem \)-diol hydrated forms of aldehydes, which coexist in aqueous solutions (Ferreira et al. 2010); and ii) the formation of the enzyme-aldehyde complex was too fast to be recorded with the stopped flow equipment. Affinity constants for the acid were expected to be high as this molecule is known for acting as a competitive inhibitor of AAO (Ferreira et al. 2009), stabilized at the enzyme’s active site through a H bond with His502, as revealed by crystallographic data (Figure 4.8). Crystallographic structure of the complex is shown and detailed in Chapter 5.

Figure 4.9. Differential absorption spectra upon titration of native AAO and Phe397 variants with increasing concentrations of \( p \)-anisic acid. A, AAO, and B-D, F397Y, F397W and F397A variants, respectively.

The \( p \)-anisic acid dissociation constants (\( K_d \)), obtained from spectral changes during AAO titration with increasing concentrations of \( p \)-anisic acid (Figure 4.9), proved to be very high for both F397L and F397A variants (Table 4.4). In fact, the \( K_d \) of the former variant could not be estimated since saturation, as shown by the AAO spectral changes upon the acid’s titration, could not be attained. Therefore, the F397L \( K_d \) is supposed to lie well within the millimolar range. F397A a high \( K_d \) and was not possible to estimate it accurately, while
Phe397 contributes to product release in AAO

F397Y showed the smallest one, which means that it is the variant that more tightly binds p-anisic acid.

The rate constants for the formation \( (k_{\text{for}}) \) and the dissociation \( (k_{\text{dis}}) \) of the complex between p-anisic acid and AAO variants were also investigated by studying the velocity of the spectral changes of the enzyme upon binding of the ligand in a stopped-flow spectrophotometer (Figure 4.10).

**Figure 4.10.** Spectral changes upon formation of the AAO:p-anisic acid complex. A. Native AAO, mixed with 0.5 mM of the ligand at 0.003, 0.01, 0.02, 0.03, 0.04, 0.05, 0.065, 0.085, 0.1, 0.13, 0.15, 0.2 and 0.4 s. B. F397Y, mixed with 0.65 mM of p-anisic acid measured after 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3 and 4 s, and C. F397W mixed with p-anisic acid 1 mM recorded at 0.005, 0.02, 0.04, 0.05, 0.07, 0.1, 0.2, 0.4, 0.5, 0.7, 1, 2 and 5 s. Global analysis of the spectral evolution best fit a single-step model. Insets show the obtained species. D. \( k_{\text{obs}} \) dependence on p-anisic acid concentration for each variant. Solid line was obtained by linear regression analysis of the data to equation 6: \( y_0 \) and slope represent the rate constants for dissociation \( (k_{\text{dis}}) \) and formation \( (k_{\text{for}}) \) of the AAO-p-anisic acid complexes, respectively, for native AAO (filled circles), and its F397Y (open circles) and F397W (inverted triangles) variants. Assays performed in 50 mM phosphate pH 6.0 at 12°C.

The high velocity of complex formation by the F397L and F397A variants impeded estimation of these parameters at 12°C, and even 6°C. Therefore, only the rate constants for native AAO, F397Y and F397W could be estimated. The F397Y \( k_{\text{for}} \) was two-fold lower than that for the native enzyme, whereas the one for F397W was two orders of magnitude lower. Differences in \( k_{\text{dis}} \) values were also
observed between the native enzyme and the above two variants, since the latter were not significantly different among them, but their $k_{\text{dis}}$ values were at least 10-fold slower than that of the native AAO (Table 4.4).

Table 4.4. Dissociation constant ($K_d$), and rate constants of formation ($k_{\text{for}}$) and dissociation ($k_{\text{dis}}$) of p-anisic acid complexes by native AAO and its Phe397 variants

<table>
<thead>
<tr>
<th></th>
<th>$K_d$ ($\mu$M)</th>
<th>$k_{\text{for}}$ (s$^{-1}$·mM$^{-1}$)</th>
<th>$k_{\text{dis}}$ (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>170 ± 5</td>
<td>18.0 ± 0.3</td>
<td>2.69 ± 0.17</td>
</tr>
<tr>
<td>F397Y</td>
<td>25 ± 2</td>
<td>7.7 ± 0.1</td>
<td>0.24 ± 0.04</td>
</tr>
<tr>
<td>F397W</td>
<td>155 ± 9</td>
<td>0.70 ± 0.01</td>
<td>0.19 ± 0.01</td>
</tr>
<tr>
<td>F397A</td>
<td>nd$^1$</td>
<td>nd$^1$</td>
<td>nd$^1$</td>
</tr>
<tr>
<td>F397L</td>
<td>nd$^1$</td>
<td>nd$^1$</td>
<td>nd$^1$</td>
</tr>
</tbody>
</table>

Data were measured in 50 mM sodium phosphate (pH 6.0) at 12°C. 1 nd, not determined (too fast complex formation and dissociation)

4.2. Discussion

4.2.1. Conservation of active-site Phe397 within the AAO family

Phe397 is located within a loop characteristic of the AAO family. This loop is placed in a location that is prone to harboring insertions and deletions amongst the members of the GMC superfamily, so analogous structures can be found in other GMCs (Hallberg et al. 2002). Among them, ChoOx (Quaye et al. 2008; Xin et al. 2009) and CHO (Vrielink et al. 1991; Vrielink and Ghisla 2009) are notable examples, whose insertions seemed to be even longer than that of AAO. However, other GMC proteins lack this feature, like GOX or P2O (Ferreira et al. 2015a; Hallberg et al. 2004; Hecht et al. 1993). Representatives of the GMC superfamily are usually multimeric enzymes, and their monomers group together in a way such that the entrances to their active sites, which tend to be wider than in AAO’s, are partially covered by the monomer placed next to it. Given their monomeric nature, AAOs, CHO’s and CHD’s have developed such structures to control diffusion of molecules into buried active sites.

The said insertion spans the residues 390 to 402 in P. eryngii AAO and is supposed to enclose the active-site cavity from the outer environment (Fernández et al. 2009) as well as to oscillate as a mechanism of gating for the substrate into its binding pocket, as revealed by computational studies (Hernández-Ortega et al. 2011a), similar to what has been reported for phenylalanine residues in P450 3A4 (Fishelovitch et al. 2009).

Due to its central location within the loop, Phe397 forms, along with Phe501, Tyr92, and the side chains of other nonpolar residues, a highly hydrophobic bottleneck that acts as a barrier for the entrance of the reducing substrate into the catalytic cavity (Fernández et al. 2009) (Figure 4.1). Tyr92 establishes aromatic stacking interactions with the substrates and helps them accommodate in a catalytically relevant position inside the pocket (Ferreira et al. 2015b). Phe501, in its turn, modulates the O$_2$ reactivity with the FAD cofactor by helping the
molecule attain a proper distance to both flavin C4a and His502 (Hernández-Ortega et al. 2011b).

Several residues forming the loop were highly conserved during the superfamily evolution, revealing its important role for the enzyme. Among them, the phenylalanine in position analogous to Phe397 in *P. eryngii* AAO is conserved within the family of AAO-like proteins. Analysis of 70 sequences of putative AAO from basidiomycetes, mostly from the Polyporales order (Figure 4.11), showed that phenylalanine was the residue present in, at least, 50% of them. Tyrosine or tryptophan residues were also found in some of the sequences, so up to 60% of all these putative AAOs possessed an aromatic residue in that position. Aliphatic (isoleucine, leucine or valine) and even polar (like proline) make up the other 40% of residues in this position. In any case, all the residues present instead of this phenylalanine possess a relatively bulky side chain that would permit some interaction with the substrates. In this way, the accessibility to the active site would be controlled instead of permitting a free diffusion of molecules from the environment.

**Figure 4.11.** Sequence logo for 70 putative AAO sequences from various basidiomycetes corresponding to positions 390–403 of mature *P. eryngii* AAO generated using WebLogo (Crooks et al. 2004). Sequences were taken either from genomes available at the Joint Genome Institute (www.jgi.doe.gov) or from GenBank (the numbers of sequences are indicated in the parentheses) and belong to the following fungal species: *Bjerkandera adusta* (11), *Dichomitus squalens* (9), *Fomitiporia mediterranea* (1), *Fomitopsis pinicola* (1), *Ganoderma sp.* (7), *Gelatoporia subvermispora* (4), *Gloeophyllum trabeum* (2), *Laccaria bicolor* (1), *Phanerochaete chrysosporium* (3), *Phlebia brevispora* (3), *P. eryngii* (1), *Pleurotus pulmonarius* (1), *Punctularia strigosozonata* (6), *Rhodonia placenta* (2), *Stereum hirsutum* (15) and *Trametes versicolor* (3). The height indicates the relative frequency of each amino acid.

### 4.2.2. Phe397 is critical for substrate diffusion to the active site

Phe397 seems to play an important role in helping the AAO reducing substrate to enter the cavity and attain a catalytically relevant position inside the active site, as it had been suggested in a previous study (Hernández-Ortega et al. 2011a). Evidence for this assumption comes from the fact that the replacement of Phe397 provokes a steep decrease in the $k_{cat}/K_m$ values for all the variants herein investigated. This effect is most noticeable in F397W, which shows the highest $K_m$
and, thus, the lowest $k_{\text{cat}}/K_{m(\text{al})}$ value, probably due to the bulkiness of the residue, which hinders the entrance of the alcohol substrate to attain a catalytically competent position. However, once the substrate is in the active site, the reduction of the F397W variant takes place as in native AAO, as shown by the $k_{\text{red}}$.

The above effect is similar to that observed when Phe501 was replaced with tryptophan in AAO (Hernández-Ortega et al. 2011b). Nevertheless, it is noticeable that in the case of F397Y, the drop of the catalytic efficiency (for alcohol oxidation) is due to the small $k_{\text{cat}}$ that the variant shows. Regarding affinity, the $K_m$ for p-methoxybenzyl alcohol, as well as the $K_d$, remain almost invariable upon mutation. Mutation of phenylalanine with leucine, which is a residue of the same length as phenylalanine, but lacks aromaticity, produced a moderate increase in $K_m$ and $K_d$. Similar effects were also seen when Tyr92 was mutated by phenylalanine or even leucine, which could establish the T-shaped stacking interactions with the substrate (Ferreira et al. 2015b).

Removal of the side chain in F397A provokes a decrease in both $k_{\text{cat}}$ and $k_{\text{red}}$ concomitantly to an increase in $K_{m(\text{al})}$. Diffusion of the substrate into the active site, given its $K_d$ values, must not be impaired, but the proper positioning to attain a catalytically relevant state is hindered. This causes the $K_m$ increase as well as the $k_{\text{red}}$ decrease, which is what is limiting the overall catalysis.

### 4.2.3. Phe397 also plays a role in AAO reoxidation

The substitution of Phe397 by other aromatic and non-aromatic residues also points towards involvement in the oxidation of the enzyme's cofactor. In fact, the oxidation of the F397A and F397L variants is slowed down as shown by the small rate constants, in particular, those for the second phase. However, they do not seem to limit the whole catalytic cycle, as $k_{\text{cat}}$ and $k_{\text{red}}$ values are similar, or even higher when a leucine (or other bulky) side-chain is introduced.

As detailed in Chapter 6, oxidation of AAO takes place through two different kinetic steps in which a H atom and a H$^+$ are transferred from the FAD moiety to O$_2$, thereby reducing it. According to spectroscopic data, these processes cannot be separated in native AAO, although this could be the case for these two variants. Most probably, each phase accounts for one of these processes that could be uncoupled in these variants. Other GMC enzymes as P2O also display biphasic oxidations that account for different processes (Sucharitakul et al. 2008; 2011).

The F397Y and F397W variants show high oxidation rates ($^{app}k_{\text{ox}}$) that would not limit the catalysis. Therefore, involvement of the product release step in slowing down the catalytic cycle is likely. Surprisingly, the F397W variant showed saturation upon increase in O$_2$ concentration, which had not been seen for any other AAO variant so far. High affinity for O$_2$ might be responsible for this behavior, since compression of the active site has previously been suggested as playing a role in increasing the enzyme’s reactivity with O$_2$ due to the limitation of
Chapter 4  Phe397 contributes to product release in AAO

the diffusion of the molecule in the active site (Hernández-Ortega et al. 2011b). These changes, however, preclude a proper entrance of the alcohol substrate in the active site, so they are not beneficial for the catalysis of the enzyme. The same applies for variants F397L and F397Y, whose side chains seem to improve the reactivity of the enzyme with O₂, given their lower $K_m$ and higher $k_{cat}/K_{m(ox)}$ values.

### 4.2.4. Phe397 involvement in substrate diffusion and product release

The differences between the $k_{cat}$ and $k_{red}$ values for the F397Y and F397W variants suggest that, in contrast to native AAO whose catalytic cycle is limited by the reductive half reaction (Ferreira et al. 2009), the rate-limiting process of the whole catalysis by these mutated variants must be a different step. Estimation of the $appk_{ox}$ and $k_{cat}/K_{m(ox)}$ values) for these variants, which are equal or even higher than those calculated for native AAO, ruled out that the reaction with O₂ or its diffusion to the active site could be involved in limiting the p-methoxybenzyl alcohol catalysis.

In the case of F397Y, the $K_d$ values 6-26 fold lower than found for the native AAO and the other variants suggest that the affinity of this variant for the reaction product (p-anisaldehyde) would be high in agreement with the binding results obtained for p-anisic acid. Somehow, the enzyme is retaining this product analog inside the active site without letting it out. The estimation of $k_{dis}$, that is, the rate constant for the dissociation of the enzyme-p-anisic acid complex, gave additional insight on the mechanism. Since this velocity was 10-fold lower than that of native AAO, it can be indicative of a slower product (p-anisaldehyde) release from the active site of the enzyme. The same can be applied to the variant F397W, which shows also a slower $k_{dis}$ than native AAO.

The product release is, therefore, impaired in these two Phe397-mutated variants, thereby limiting the whole catalytic cycle. It is likely that the reaction with O₂ is also precluded by the presence of the aldehyde molecule in the active site. In fact, linearized Hanes-Woolf plots of the steady-state kinetics rule out the ternary complex formation for these variants. Furthermore, the redox state during turnover for F397Y and F397W shows that the percentage of oxidized enzyme is lower than for the native enzyme. Such results point towards the inability of the enzyme to be oxidized in presence of the aldehyde product in the active-site pocket. Other flavoenzymes with catalytic cycles limited or partially limited by the product release have been reported, as it is the case for D-amino acid oxidase (Setoyama et al. 2002), cyclohexanone monooxygenase (Sheng et al. 2001) or nitroalkane oxidase (Valley et al. 2010). The case of amadoriase I is also relevant, since its catalysis is partially limited by the product release, although the oxidation of the enzyme takes place through an ordered ternary complex including the enzyme, product and O₂ (Wu et al. 2001).
It is noticeable that the substitution of this phenylalanine by alanine or leucine permitted a very fast diffusion in and out of the active site of the analog. This further reinforces the hypothesis that this residue controls the substrate diffusion in AAO.

4.2.5. Final remarks

The residue Phe397 plays an important role in the catalysis of \textit{P. eryngii} AAO, as suggested by its high conservation among other AAO and putative AAO sequences. As drawn from the results above discussed, it must be involved in both the reductive and the oxidative half reaction of the enzyme. During the reductive half reactions, it helps the substrate enter the active site and attain a catalytically relevant position. Moreover, it acts aiding the release of the aldehyde product from the active site, since its replacement makes this step the catalytically rate-limiting process of the AAO reaction. Some variants in which Phe397 has been substituted indicate that the presence of the product in the active site precludes the reaction of the enzyme with \( O_2 \), impeding the oxidation of the enzyme and affecting the whole catalytic cycle. Analysis of the oxidative half reaction also suggests that the presence of Phe397 is important to constrain the active site and, thus, limit the diffusion of the \( O_2 \) inside the cavity to attain the position in which enzyme and \( O_2 \) are able to react. In any case, the disruption caused by the substitution of this phenylalanine negatively affects either one of the half reactions, suggesting that its presence is due to a balance attained for the promotion of both half reactions.
Protein motions promote hydride tunneling in AAO catalysis
In the present chapter, KIEs employing different isotopically-substituted substrates, both in steady-state and rapid kinetics, have been used to assess the temperature dependence of the hydride transfer (HT) in alcohol substrate oxidation by AAO (Figure 5.1) and, thus, the mechanistics lying behind this process. Furthermore, disruption of the AAO’s active site by site-directed mutagenesis of a residue, Tyr92, involved in the stacking-stabilization of the substrate in the active site (Ferreira et al. 2015b), has been used to unveil the role that the structure of substrate binding pocket plays in promoting the HT. These studies are complemented with crystallographic data that shed light on the catalytically relevant position of the substrate into the active site and the distances over which the hydride (H−) must be transferred.

![Figure 5.1. Reductive half-reaction of AAO. Hydrogen in position pro-R of the alcohol α-carbon is abstracted as a H– by the N5 locus of FAD concomitantly to the abstraction of the hydroxyl proton by His502. This results in the reduction of the cofactor to hydroquinone, an aldehyde product and the protonation of His502.](image)

5.1. Results

5.1.1. Crystallographic structure of native AAO in complex with p-anisic acid

The crystallographic structure of AAO in complex with p-anisic acid was resolved at a resolution of 2.3 Å. The structural model of AAO:p-anisic acid complex comprises residues 2-566, 1 FAD, 1 p-anisic acid, 5 glycerols and 280 water molecules. Structural superposition of the complex with the apoAAO (PDB 3FIM) shows a r.m.s.d value of 0.21 Å (superimposing 565 Cα atoms) (Figure 5.2A) concluding that their overall structures are pretty similar.

p-Anisic acid is a competitive inhibitor of AAO that binds tightly to AAO’s active site, showing a $K_I$ of 0.25 mM (at pH 8.0) and a $K_d$ of 94 ± 3 µM (Ferreira et al. 2005; 2010). It is also the product of the reaction of AAO with the hydrated gem-diol form of the p-anisaldehyde, which coexists in aqueous solution with the aldehyde form of the compound (Ferreira et al. 2010).
The crystal structure of the complex shows the \( p \)-anisic acid tightly bound through three H bonds between its O carboxylic atoms and NE2 atom of the catalytic His502, which acts as a base during AAO reductive half reaction, ND1 atom of His 546 and N5 atom of FAD isoalloxazine ring. Several other residues located at the active site, Phe397 and Tyr92, and the FAD itself establish hydrophobic interactions with atoms of the ligand molecule (Figure 5.2B). The distances from O carboxylic atoms of the acid to the Ne of His502 and the flavin N5 are of 2.55 and 2.99 Å, respectively. The flavin N5 locus receives the H\(^+\) from the corresponding pro-\( R \) position of the alcohol substrate. However, since it is the acid, instead of the alcohol acting as a ligand in the active site, it must be taken into account that the alcohol H to N5 distance will be slightly different.

**Figure 5.2.** Crystal structures of AAO: \( p \)-anisic acid complex. A. Cartoon superposition of the crystallographic structures of \( p \)-anisic acid complex (orange) and ligand-free AAO (pdb 3FIM) (blue). B. Detail of the active site superimposed in AAO: \( p \)-anisic acid complex and in ligand-free AAO. The H-bonds between the carboxylic O atoms of the \( p \)-anisic acid and the N atoms of the isoalloxazine ring and His546 and His502 residues are drawn in black lines and distances in Å. FAD, \( p \)-anisic acid and residues are drawn as CPK colored sticks with C atoms in wheat (complex) and blue (ligand-free AAO).

Tyr92, which is mutated in this work to unveil its involvement in tunneling, is located forming a triad —with Phe397 and Phe501— that acts as a hydrophobic bottleneck separating the enzyme’s active site from the outer environment. Moreover, it has been suggested that it establishes aromatic stacking interactions that help the substrate attain a catalytically competent position inside the active site. As depicted in Figure 5.2B, its position seems not to be altered upon the \( p \)-anisic acid binding.
5.1.2. Temperature dependence of KIEs on native AAO catalysis

To investigate the temperature dependence of AAO catalysis, especially the HT that takes place during the reductive half reaction, bi-substrate steady-state and transient state kinetics were performed for native AAO at different temperatures. In these studies we used the α-protiated and two different α-deuterated p-methoxybenzyl alcohols: i) the monodeuterated substrate, in which only the pro-R H actually abstracted by the flavin is substituted ((R)-[α-H] p-methoxybenzyl alcohol); and ii) its dideuterated counterpart, where both H atoms bound to the α carbon are isotopically substituted ([α-2H2]-p-methoxybenzyl alcohol).

**Figure 5.3.** Temperature dependences of steady-state kinetic parameters for native AAO. A. Arrhenius plots of \( k_{\text{cat}} \) with [α-H2]-p-methoxybenzyl alcohol (filled circles) and [α-2H2]-p-methoxybenzyl alcohol (open circles). B. Temperature dependence of the KIE of \( k_{\text{cat}} \) (\( D_{k_{\text{cat}}} \)) with [α-2H2]-p-methoxybenzyl alcohol. C. Arrhenius plots of \( k_{\text{cat}}/K_m \) with [α-H2]-p-methoxybenzyl alcohol (filled triangles) and [α-2H2]-p-methoxybenzyl alcohol (open triangles). D. Temperature dependence of the KIE of catalytic efficiency \( D(k_{\text{cat}}/K_m) \). Means and standard deviations.

On the one hand, the use of deuterated and protiated substrates will permit to calculate the primary kinetic isotope effects and, thus, elucidate if there exists a tunneling effect in the HT. On the other hand, differences in catalytic constants between mono and dideuterated substrates allow evaluating the secondary kinetic
isotope effect, which is due to the presence of an isotopically labeled H whose bond is not directly involved in the HT reaction.

Regarding steady-state, the kinetic constants estimated every 5°C between 10°C and 30°C for the α-protiated and [α-2H2]-p-methoxybenzyl alcohols are shown in Table 5.1. Previous studies have described that AAO turn-over (kcat) is limited by the rate of H− transfer, reflecting only this chemical step (Ferreira et al. 2009). The temperature dependences of kcat values, together with the temperature dependence of the primary substrate KIE, are shown in Figure 5.3, A and B, respectively. The dependences were fit to Arrhenius equation to estimate Arrhenius pre-exponential factors (A) and activation energy (Ea), which allowed the calculations of the difference in activation energies (ΔEa(H–D) = EaD – EaH) and the Ah/Ad ratio (Table 5.2). The Ea for turn-over with α-deuterated substrate was higher than that obtained with the α-protiated substrate, resulting in temperature-dependent KIE (ΔEa(H–D) is large) and a value for the isotope effect on the Arrhenius prefactor below unity (Ah/Ad<< 1).

The high Dkcat values observed clearly indicated that the breakdown of Cα-H/D is a rate-limiting step in flavin reduction. In contrast, the kcat/Km estimated using α-deuterated substrate showed a temperature dependence pattern similar to that for α-protiated substrate, thus KIE is temperature independent (avg. 4.3 ± 1.3). D(kcat/Km(αH)) was lower than the Dkcat values (Table 5.3), indicating that CH bond cleavage becomes masked by other kinetic steps during the overall AAO catalysis.

| Table 5.1. Estimated kcat, Km and kcat/Km constants for the steady-state kinetics of native AAO with α-protiated and α-dideuterated p-methoxybenzyl alcohols |
|---|---|---|---|
| T (°C) | [α-1H2] | | [α-2H2] |
| | kcat (s⁻¹) | Km (µM) | kcat/Km (s⁻¹·µM⁻¹) | kcat (s⁻¹) | Km (µM) | kcat/Km (s⁻¹·µM⁻¹) |
| 10 | 118.3 ± 2.2 | 32.0 ± 1.7 | 3.0 ± 0.2 | 7.6 ± 0.3 | 8.8 ± 1.1 | 0.86 ± 0.12 |
| 15 | 157.2 ± 4.3 | 54.9 ± 3.7 | 3.5 ± 0.3 | 9.0 ± 0.2 | 12.4 ± 1.1 | 0.73 ± 0.07 |
| 20 | 177.3 ± 2.3 | 42.8 ± 1.4 | 4.1 ± 0.1 | 19.4 ± 0.2 | 20.1 ± 0.6 | 0.96 ± 0.17 |
| 25° | 197.0 ± 2.0 | 49.0 ± 1.0 | 4.0 ± 0.3 | 25.0 ± 0.2 | 24.6 ± 2.5 | 1.02 ± 0.13 |
| 30 | 268.4 ± 15.5 | 53.9 ± 7.3 | 5.0 ± 0.7 | 49.6 ± 1.3 | 48.6 ± 3.2 | 1.02 ± 0.07 |
| Bisubstrate kinetics were performed by varying both concentrations of O2 and α-protiated and [α-2H2]-p-methoxybenzyl alcohols. °Data from Hernández-Ortega et al. (2012c). Means and standard deviations. |

| Table 5.2. Thermodynamic parameters for the temperature dependence of the turnover and HT in native AAO oxidation of protiated and deuterated p-methoxybenzyl alcohols |
|---|---|---|
| Parameters | kcat (s⁻¹) | kred |
| [α-1H2] | 9.8 x 10⁶ | 2.5 x 10⁸ |
| [α-2H2] | 2.5 x 10⁸ | 2.5 x 10⁸ |
| (R)-[α-2H] | 8.3 | 8.3 |
| A_H (s⁻¹) | 2.3 x 10³ | 3.6 x 10⁸ |
| E_aH (kcal·mol⁻¹) | 16.2 | 9.8 |
| A_D (s⁻¹) | 4.3 x 10⁷ | 0.7 |
| E_aD (kcal·mol⁻¹) | 9.9 | 1.5 |
| A_H/A_D | 0.006 |
| ΔE_aD/ΔH (kcal·mol⁻¹) | 3.9 |

Chapter 5                                                                                     Hydride tunneling in AAO
Table 5.3. KIEs determined from the temperature dependence of the steady-state in native AAO

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>$^3k_{cat}$</th>
<th>$^3(D(k_{cat}/K_m))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15.6 ± 0.6</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td>15</td>
<td>17.4 ± 0.6</td>
<td>4.9 ± 0.6</td>
</tr>
<tr>
<td>20</td>
<td>9.1 ± 0.2</td>
<td>4.3 ± 0.7</td>
</tr>
<tr>
<td>25</td>
<td>7.9 ± 0.1</td>
<td>3.9 ± 0.2</td>
</tr>
<tr>
<td>30</td>
<td>5.4 ± 0.4</td>
<td>4.9 ± 0.8</td>
</tr>
</tbody>
</table>

Conditions were as described in Table 5.1. KIE values for $k_{cat}$ and $k_{cat}/K_m$ are the ratio between activities from bisubstrate kinetics with $\alpha$-protiated/\([\alpha-2H]_2\)-deuterated alcohols. Means and standard deviations.

To reinforce the above results, the temperature dependence of HT during flavin reduction in native AAO was investigated by using the $\alpha$-protiated and different $\alpha$-deuterated —(R)–[\alpha-H] and [\alpha-2H]– $p$-methoxybenzyl alcohols under stopped-flow conditions. The reduction ($k_{red}$) and dissociation constants ($K_d$) estimated with each substrate, every 2°C between 6°C and 14°C, are provided in Table 5.4. Arrhenius plots of the estimated $k_{red}$ for native AAO with each substrate are shown in Figure 5.4A, and the thermodynamic parameters estimated by fitting to Arrhenius equation are provided in Table 5.2. The activation energy for $D^*$ abstraction with (R)-[\alpha-H]$_1$-$p$-methoxybenzyl alcohol is higher than that obtained with [\alpha-2H]$_2$-$p$-methoxybenzyl alcohol. As a consequence, the KIE estimated with the monodeuterated substrate is more temperature-dependent than that calculated for the dideuterated substrate (3.9 and 1.5 for $\Delta$E$_a(D-H)$, respectively). Besides, the values for $A_H/A_D$ were very close to zero and unity for (R)-[\alpha-H]$_1$ and [\alpha-2H]$_2$-$p$-methoxybenzyl alcohols, respectively. The highest $^3k_{red}$ values obtained for [\alpha-2H]$_2$-$p$-methoxybenzyl alcohol with respect to those found for the R isomer indicated a secondary KIE that increases with temperature, opposite to the behavior of the primary $^3k_{red}$ (Table 5.5).

Table 5.4. Reduction rate ($k_{red}$) and dissociation ($K_d$) constants for native AAO with $\alpha$-protiated and $\alpha$-deuterated $p$-methoxybenzyl alcohols

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>([\alpha-1H]_2)</th>
<th>(R)-[\alpha-2H]</th>
<th>([\alpha-2H]_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$k_{red}$ (s$^{-1}$)</td>
<td>$K_d$ (μM)</td>
<td>$k_{red}$ (s$^{-1}$)</td>
</tr>
<tr>
<td>6</td>
<td>75.6 ± 2.4</td>
<td>15.7 ± 2.8</td>
<td>10.7 ± 0.1</td>
</tr>
<tr>
<td>8</td>
<td>81.1 ± 0.8</td>
<td>21.4 ± 0.5</td>
<td>11.7 ± 0.1</td>
</tr>
<tr>
<td>10</td>
<td>89.0 ± 2.0</td>
<td>22.6 ± 1.4</td>
<td>14.7 ± 0.1</td>
</tr>
<tr>
<td>12</td>
<td>95.9 ± 1.8</td>
<td>22.0 ± 1.2</td>
<td>17.8 ± 0.2</td>
</tr>
<tr>
<td>14</td>
<td>112.0 ± 1.6</td>
<td>24.4 ± 1.0</td>
<td>20.8 ± 0.9</td>
</tr>
</tbody>
</table>

Measurements were carried out in 50 mM sodium phosphate buffer pH 6 under anaerobic conditions. Means and standard deviations.
Table 5.5. Primary and secondary KIEs determined from the temperature dependence of hydride transfer reaction \( k_{\text{red}} \) in native AAO

<table>
<thead>
<tr>
<th>( T ) (°C)</th>
<th>Primary KIE ( [\alpha-^2\text{H}_2] )</th>
<th>( (R)-[\alpha-^2\text{H}] )</th>
<th>Secondary KIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9.9 ± 0.3</td>
<td>6.7 ± 0.3</td>
<td>1.39 ± 0.02</td>
</tr>
<tr>
<td>8</td>
<td>9.9 ± 0.1</td>
<td>6.9 ± 0.5</td>
<td>1.41 ± 0.02</td>
</tr>
<tr>
<td>10</td>
<td>9.6 ± 0.2</td>
<td>6.0 ± 0.3</td>
<td>1.52 ± 0.02</td>
</tr>
<tr>
<td>12</td>
<td>9.1 ± 0.2</td>
<td>5.7 ± 0.2</td>
<td>1.60 ± 0.02</td>
</tr>
<tr>
<td>14</td>
<td>8.9 ± 0.3</td>
<td>5.8 ± 0.3</td>
<td>1.63 ± 0.08</td>
</tr>
</tbody>
</table>

\( k_{\text{red}} \) constants were calculated for \( \alpha \)-protiated and \( \alpha \)-deuterated \( ([\alpha-^2\text{H}_2]) \) and \( (R)-[\alpha-^2\text{H}] \)-p-methoxybenzyl alcohols. Experimental conditions were as described in Table 5.1. Primary KIE values are the ratio between HT constants on \( \alpha \)-protiated/\( \alpha \)-deuterated alcohols (values ± S.D.), whereas secondary KIEs were estimated as the ratio between HT constants of monodeuterated and dideuterated substrates.

In relation to \( K_d \) estimated by rapid kinetics, it follows the same pattern as the \( K_{m(al)} \) (Table 5.1), so it increases with temperature irrespective of the isotopic composition of the substrate (Figure 5.4B) and, thus \( k_{\text{cat}}/K_m \) is temperature independent (Figure 5.3D).

Regarding the \( K_d \) values calculated for each of the substrates and temperatures, it is worth noting that they are dependent on temperature, and they increase with it, irrespective of the substrate employed (Table 5.4). Furthermore, there exists no primary \( D K_d \) with \( (R)-[\alpha-^2\text{H}] \)-p-methoxybenzyl alcohol; whereas when \( [\alpha-^2\text{H}_2] \)-p-methoxybenzyl alcohol is used, there are both primary \( (D_2K_d) \) and secondary KIEs \( (D_2K_{dd}) \) (Table 5.6). \( D_2K_d \) and \( D_2K_{dd} \) show the same values at different temperatures, indicating that the exerted effect is probably due to the presence of
the second isotopic substitution in the substrate and independent of temperature).

Table 5.6. Estimated KIEs on \( K_d \) for native AAO and its Y92F, Y92L and Y92W variants

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>wild-type</th>
<th>Y92F</th>
<th>Y92L</th>
<th>Y92W</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( K_{d} )</td>
<td>( K_{d} )</td>
<td>( K_{d} )</td>
<td>( K_{d} )</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.0 ± 0.2</td>
<td>1.9 ± 0.4</td>
<td>1.9 ± 0.2</td>
<td>1.8 ± 0.2</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>1.1 ± 0.0</td>
<td>3.2 ± 0.3</td>
<td>2.8 ± 0.3</td>
<td>1.7 ± 0.1</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>1.3 ± 0.1</td>
<td>2.4 ± 0.2</td>
<td>1.9 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>1.1 ± 0.1</td>
<td>2.2 ± 0.1</td>
<td>2.0 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>0.9 ± 0.2</td>
<td>1.5 ± 0.1</td>
<td>1.5 ± 0.3</td>
<td>1.7 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

The \( K_d \) constants measured with \( \alpha \)-protiated and \( [\alpha-^2H] \)-p-methoxybenzyl alcohols. (R)-[\( ^{+}H \)]-p-methoxybenzyl alcohol was also used with the native enzyme. KIE is estimated as the ratio between the constants obtained with protiated and deuterated substrate. Means and standard deviations.

5.1.3. Temperature dependence of the HT reaction in Tyr92 variants

In this chapter, we further study the role that AAO's binding pocket plays in HT modulation by kinetic characterization of the HT reaction of several Tyr92 variants (Y92F, Y92L and Y92W).

The reductive half-reactions of Y92F, Y92L and Y92W variants were analyzed by using \( \alpha \)-protiated and \( [\alpha-^2H] \)-p-methoxybenzyl alcohols every 2°C between 6°C and 14°C for Y92F and Y92L, and at 12, 16, 20 and 25°C for Y92W. The spectral evolutions of these Tyr92 variants with \( \alpha \)-deuterated substrate were similar to those previously reported with \( \alpha \)-protiated substrate (Ferreira et al. 2015b), indicating a full two-electron flavin reduction (Figure 5.5). Tables 5.7, 5.8 and 5.9 show the \( k_{red} \) and \( K_d \) constants estimated for Y92F, Y92L and Y92W, respectively. The Y92F and Y92L variants showed similar reduction rates and affinity to those reported for the native AAO, while the incorporation of a bulkier residue in the Y92W variant, produced a strong decrease in HT efficiency (7- and 200-fold lower reduction rate and affinity, respectively). Arrhenius plots for all Tyr92 variants are provided in Figure 5.6, and their thermodynamic parameters are shown in Table 5.10. A more detailed description of the results obtained with the three variants is included below.

Table 5.7. Reduction rate \( (k_{red}) \) and dissociation \( (K_d) \) constants for Y92F AAO with \( \alpha \)-protiated and \( [\alpha-^2H] \)-p-methoxybenzyl alcohol

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>( [\alpha-^1H] )</th>
<th>( K_d ) (μM)</th>
<th>( [\alpha-^2H] )</th>
<th>( K_d ) (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>83.4 ± 2.9</td>
<td>22.7 ± 2.1</td>
<td>8.3 ± 0.1</td>
<td>12.9 ± 0.7</td>
</tr>
<tr>
<td>8</td>
<td>89.1 ± 1.7</td>
<td>22.0 ± 1.1</td>
<td>9.2 ± 0.1</td>
<td>13.2 ± 0.6</td>
</tr>
<tr>
<td>10</td>
<td>102.7 ± 1.0</td>
<td>25.3 ± 0.6</td>
<td>10.7 ± 0.2</td>
<td>15.7 ± 1.0</td>
</tr>
<tr>
<td>12</td>
<td>108.4 ± 0.8</td>
<td>29.6 ± 0.6</td>
<td>12.3 ± 0.1</td>
<td>17.0 ± 0.4</td>
</tr>
<tr>
<td>14</td>
<td>117.6 ± 1.8</td>
<td>27.3 ± 0.9</td>
<td>13.3 ± 0.3</td>
<td>16.4 ± 1.0</td>
</tr>
</tbody>
</table>

Means and standard deviations.
Figure 5.5. Reduction spectra of Tyr92 variants (~10 μM) with [α-²H₂]-p-methoxybenzyl alcohol at 12°C. A. Native AAO with 31 μM of substrate at times: 0.004, 0.015, 0.02, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.2 and 0.3 s. B. Y92F with 37 μM of substrate after: 0.001, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.13 and 0.15 s. C. Y92L with 37 μM of substrate at times: 0.001, 0.02, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6 and 0.8 s. D. Y92W with 312 μM of substrate after: 0.16, 0.5, 1, 3, 5, 7, 10, 15, 20, 30 and 60 s. Dashed lines represent the unbound enzyme spectra. Insets show initial and final species determined after global fitting of the reduction spectra.

Regarding the Y92F variant, its overall behavior resembles very closely that of the native AAO, with similar activation energy for D⁻ versus H⁻ abstraction. Therefore, their thermodynamic parameters were practically identical to those calculated for the native enzyme (ΔEₐ ≈ 1.5 and A_H/A_D ≈ 0.6). Besides, K_d values for Y92F tend to increase with temperature and are, thus, dependent of it (Table 5-7). There is also an isotopic contribution on it, since the estimated p₂K_d values are bigger than 1, but seem not to depend on temperature (mean 1.7 ± 0.3), similarly to native enzyme.
Figure 5.6. Temperature dependences of of HT reaction $k_{\text{red}}$ for Tyr92 variants: A. Arrhenius plots for the reduction of Y92F with $\alpha$-protiated $p$-methoxybenzyl alcohol (filled triangles) and [α-$^2$H$_2$]-$p$-methoxybenzyl alcohol (open triangles). B. Arrhenius plots for the reduction of Y92L with $\alpha$-protiated $p$-methoxybenzyl alcohol (filled squares) and [α-$^2$H$_2$]-$p$-methoxybenzyl alcohol (open squares). C. Arrhenius plots for the reduction of Y92W with $\alpha$-protiated $p$-methoxybenzyl alcohol (filled diamonds) and [α-$^2$H$_2$]-$p$-methoxybenzyl alcohol (open diamonds). D. Temperature dependence of $^{p}k_{\text{red}}$ for Y92F (triangles), Y92L (squares) and Y92W (diamonds). Means and standard deviations.

Table 5.8. Reduction rate ($k_{\text{red}}$) and dissociation ($K_{d}$) constants for Y92L with $\alpha$-protiated and [α-$^2$H$_2$]-$p$-methoxybenzyl alcohol

<table>
<thead>
<tr>
<th>$T$ (°C)</th>
<th>[α-$^1$H$<em>2$] $k</em>{\text{red}}$ (s$^{-1}$) $K_{d}$ (μM)</th>
<th>[α-$^2$H$<em>2$] $k</em>{\text{red}}$ (s$^{-1}$) $K_{d}$ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>72.3 ± 2.8</td>
<td>36.8 ± 3.8</td>
</tr>
<tr>
<td>8</td>
<td>76.4 ± 0.7</td>
<td>42.2 ± 0.9</td>
</tr>
<tr>
<td>10</td>
<td>82.4 ± 0.9</td>
<td>45.0 ± 1.2</td>
</tr>
<tr>
<td>12</td>
<td>90.1 ± 0.4</td>
<td>47.8 ± 0.7</td>
</tr>
<tr>
<td>14</td>
<td>100.6 ± 1.4</td>
<td>43.7 ± 1.5</td>
</tr>
</tbody>
</table>

Means and standard deviations.

Substitution of Tyr92 with leucine, a non-aromatic residue that probably produces some stacking interaction with the alcohol substrate, led to a slightly different behavior. This variant has a more temperature-dependent KIE (Table 5.11) than native protein. It also showed more temperature dependent rates for D$^-$ abstraction than for H$^-$ abstraction ($\Delta E_{a(D-H)}$ is larger than that for native AAO). As a consequence, the Y92L variant isotope effect on the Arrhenius pre-
factor is very close to zero. Regarding the $K_d$ values, although they are slightly higher than those calculated for native AAO and Y92F, they follow the same pattern and are dependent on temperature as well (Table 5.8). In this case there is also a significant $D_2K_d$ (Table 5.6) that, analogously to the other variants analyzed so far, is independent of temperature (mean $1.4 \pm 0.3$).

Table 5.9. Reduction rate ($k_{\text{red}}$) and dissociation ($K_d$) constants for Y92W with $\alpha$-protiated and $[\alpha-^2\text{H}_2]$-p-methoxybenzyl alcohol

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>$[\alpha-^1\text{H}_2]$</th>
<th>$[\alpha-^2\text{H}_2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$k_{\text{red}}$ (s$^{-1}$)</td>
<td>$K_d$ (mM)</td>
</tr>
<tr>
<td>12</td>
<td>13.9 ± 0.8</td>
<td>4.6 ± 0.5</td>
</tr>
<tr>
<td>16</td>
<td>17.5 ± 0.1</td>
<td>3.8 ± 0.1</td>
</tr>
<tr>
<td>20</td>
<td>21.8 ± 0.5</td>
<td>5.3 ± 0.4</td>
</tr>
<tr>
<td>25</td>
<td>27.6 ± 0.3</td>
<td>6.6 ± 0.1</td>
</tr>
</tbody>
</table>

Means and standard deviations.

Introduction of a bulky amino-acid in the active site seems to disrupt the behaviours analyzed so far with $[\alpha-^1\text{H}_2]$-p-methoxybenzyl and $[\alpha-^2\text{H}_2]$-p-methoxybenzyl alcohols. The activation energy for $D^-$ abstraction by Y92W variant shows a temperature dependence that is similar to that for $H^-$ abstraction ($\Delta E_{a(D-H)}$ is bellow unity), leading to a virtually temperature independent KIE and a $A_H/A_D$ value greater than unity. With regard to the affinity for the substrate, $K_d$ seem to be only slightly dependent on temperature (Table 5.10) and there is no statistically relevant $D_2K_d$ (Table 5.6), being the mean of the values $1.0 \pm 0.2$.

Table 5.10. Thermodynamic parameters from the temperature dependence of the hydride transfer reaction ($k_{\text{red}}$) in Tyr92 variants oxidation of $\alpha$-protiated and $[\alpha-^2\text{H}_2]$-p-methoxybenzyl alcohols.

<table>
<thead>
<tr>
<th>AAO variant</th>
<th>$k_{\text{red}}$ (s$^{-1}$)</th>
<th>$A_H$ (s$^{-1}$)</th>
<th>$E_{aH}$ (kcal-mol$^{-1}$)</th>
<th>$k_{\text{red}}$ (s$^{-1}$)</th>
<th>$A_D$ (s$^{-1}$)</th>
<th>$E_{aD}$ (kcal-mol$^{-1}$)</th>
<th>$A_H/A_D$</th>
<th>$\Delta E_{a(D-H)}$ (kcal-mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y92F</td>
<td>108.4 ± 0.8</td>
<td>3.1×10$^8$</td>
<td>8.3</td>
<td>12.3 ± 0.1</td>
<td>4.8×10$^8$</td>
<td>9.9</td>
<td>0.646</td>
<td>1.6</td>
</tr>
<tr>
<td>Y92L</td>
<td>90.1 ± 0.4</td>
<td>9.7×10$^6$</td>
<td>6.6</td>
<td>11.0 ± 0.2</td>
<td>3.4×10$^9$</td>
<td>11.1</td>
<td>0.003</td>
<td>4.5</td>
</tr>
<tr>
<td>Y92W</td>
<td>13.9 ± 0.8</td>
<td>7.7×10$^7$</td>
<td>8.8</td>
<td>1.5 ± 0.1</td>
<td>1.5×10$^7$</td>
<td>9.1</td>
<td>5.260</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Measurements were carried out in 50 mM phosphate buffer, pH 6, every 2°C between 6 and 14 °C for Y92F and Y92L variants and at 12, 16, 20 and 25°C for Y92W variant. $k_{\text{red}}$ constants estimated at different temperatures for each variants were fitted to Arrhenius equation to obtain the parameters shown above. Means and standard deviations.
5.2. Discussion

5.2.1. AAO structure fosters HT.

Unlike other crystal structures from the GMC superfamily, AAO from *P. eryngii* structure shows a buried active site with a unique Gln395-Thr406 loop that restricts the access of substrates (Fernández et al. 2009). Therefore, the catalytic N5 of FAD is only accessible through a hydrophobic funnel-shaped bottleneck delimited by lateral side chains of residues Tyr92, Phe397 and Phe501. Diffusion simulations of the p-methoxybenzyl alcohol substrate into the AAO active site described motion reorganization of the Gln395-Thr406 loop including Phe397 side chain oscillations to allow the entrance of substrates (Hernández-Ortega et al. 2011a). Once in the active site, the reducing substrate would adopt a catalytically competent position suitable for a concerted proton abstraction from the α-hydroxyl by the His502 catalytic base and hydride transfer from the (R)-α-hydrogen to the flavin N5 at a distance of 2.4-2.5 Å.

In this chapter, the AAO crystal structure complexed with p-anisic acid closely resembles that of the p-methoxybenzyl alcohol with the Cα atom of ligand and the FAD N5 atom at a distance of 2.9 Å (Figure 5.2B). Remarkably, the AAO active-site cavity does not go through any conformational changes upon inhibitor binding and is already pre-formed to attain the catalytically competent geometry. Moreover, comparison of this overall complex structure with the ligand-free AAO structure shows minimal rearrangements at the fold level (Figure 5.2A) which cannot explain how alcohol substrate is completely embedded inside an inaccessible active site. The burial of substrates is a common feature developed by a larger number of flavoprotein oxidases involved in hydride transfer reactions (Kim et al. 1993; Li et al. 1993; Mattevi et al. 1996; Rowland et al. 1997). Some of these flavoproteins (e.g. D-amino acid oxidase (EC 1.4.3.3) and cholesterol oxidase) show open and closed conformations with active-site gates controlling the entrance of ligands into the binding pocket. Others such as vanillyl-alcohol oxidase (VAO, EC 1.1.3.38), a fungal enzyme involved in the oxidation of phenolic compounds, do not show any apparent structural elements involved in such

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Y92F</th>
<th>Y92L</th>
<th>T (°C)</th>
<th>Y92W</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10.1 ± 0.4</td>
<td>9.9 ± 0.4</td>
<td>12</td>
<td>9.3 ± 0.6</td>
</tr>
<tr>
<td>8</td>
<td>9.7 ± 0.2</td>
<td>9.2 ± 0.1</td>
<td>16</td>
<td>9.6 ± 0.9</td>
</tr>
<tr>
<td>10</td>
<td>9.6 ± 0.2</td>
<td>8.6 ± 0.2</td>
<td>20</td>
<td>9.4 ± 0.8</td>
</tr>
<tr>
<td>12</td>
<td>8.8 ± 0.1</td>
<td>8.2 ± 0.2</td>
<td>25</td>
<td>9.2 ± 0.2</td>
</tr>
<tr>
<td>14</td>
<td>8.9 ± 0.2</td>
<td>7.9 ± 0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$k_{\text{red}}$ constants were calculated for α-protiated and (R)-[α-2H]-p-methoxybenzyl alcohols. KIE values for $k_{\text{red}}$ ($\delta k_{\text{red}}$) are the ratio between hydride transfer constants on α-protiated/α-deuterated alcohols. Means and standard deviations.
conformational changes, and binds ligands without modifying the conformation of its catalytic residues (Mattevi et al. 1997). Thus, AAO and VAO show a highly pre-organized active site able to oxidize aromatic alcohols related to the lignin biopolymer.

5.2.2. Involvement of environmentally modulated tunneling in AAO HT transfer.

In this chapter, we study the effect of temperature on the kinetic isotope effects with deuterated \( p \)-methoxybenzyl alcohol to further investigate whether AAO HT proceeds quantum mechanically. Previous studies indicated that the AAO overall turnover is limited by the \( \text{H}^- \) or \( \text{D}^- \) transfer from \( p \)-methoxybenzyl alcohol to the N5 of FAD (Ferreira et al. 2009). Herein, the temperature effect on the \( k_{\text{cat}} \) and \( D_{k_{\text{cat}}} \) values suggests that tunneling plays a role in the hydride transfer during AAO catalysis. Evidence for this assumption is provided by the temperature-dependence of \( D_{k_{\text{cat}}} \) with values higher than expected in a semiclassical approach, as well as the \( A_H/A_D \) ratio very close to zero. However, the lower \( D_{k_{\text{cat}}/K_{m(\text{al})}} \) values observed as compared to the determined \( D_{k_{\text{cat}}} \) and \( D_{k_{\text{red}}} \) indicated kinetic complexity for \( p \)-methoxybenzyl alcohol oxidation. In the catalytic mechanism of AAO, the \( D_{k_{\text{cat}}/K_{m(\text{al})}} \) value is given as follows:

\[
D_{\frac{k_{\text{cat}}}{K_{\text{m}}}} = \frac{D_{k_2} + C_f + D_{Eq} C_r}{1 + C_f + C_r}
\]

where, \( D_{k_2} \sim D_{k_{\text{red}}} \) is the intrinsic isotope effect for the cleavage of the \( p \)-methoxybenzyl alcohol CH bond, \( C_f \) and \( C_r \) are the forward and reverse commitments to catalysis, and \( D_{Eq} \) is the equilibrium isotope effect which has a value of 1.24 for the conversion of an alcohol to an aldehyde (Cleland 1980). The irreversibility of AAO HT reaction and the lack of effect of oxygen concentration on the \( D_{k_{\text{cat}}/K_{m(\text{al})}} \) (Table 5.3) are consistent with a negligible reverse commitment to catalysis. As a consequence, any decrease in the observed \( D_{k_{\text{cat}}/K_{m(\text{al})}} \) must be due to the forward commitment to catalysis, which is given by the ratio of the rate constant for the hydride transfer step on the rate constant for the dissociation of enzyme:substrate complex \( (k_a/k_{-1}) \).

In order to avoid this kinetic complexity, the involvement of tunneling in the hydride transfer reaction was investigated in AAO reductive-half reaction by transient kinetic assays. In this regard, the temperature dependence of \( D_{k_{\text{red}}} \) on \( p \)-methoxybenzyl alcohol and \( (R)\)-[\( \alpha \)-\( ^2 \text{H} \)]-\( p \)-methoxybenzyl alcohol agrees well with the steady-state parameters, suggesting that tunneling plays a role in the transfer of \( \text{H}^- \) from the pro-\( R \) position of the substrate to flavin N5. Moreover, the \( A_H/A_D \) value very close to zero and the more favourable HT compared to DT (large value for \( \Delta E_a \) with protium and deuterium) indicates that DAD sampling is critical to reach the optimal tunneling conformation.
This tunneling model agrees very well with the tight binding pocket found in the AAO structure complexed with \( p \)-anisic acid that accommodates the reducing substrate in a catalysis ready conformation. The flexibility of AAO active site could be related to its catalytic promiscuity oxidizing a wide variety of alcohol and aldehyde compounds structurally related with the lignin biopolymer (Ferreira et al. 2005). It is worth mentioning that a combination of passive and active dynamics tunneling is observed when using \([\alpha-^2H_2]-p\)-methoxybenzyl alcohol \((A_H/A_D \sim 1)\). The \( ^{2}k_{\text{red}} \) observed reflects a contribution of the vibrations of the S-hydrogen to those of the R-hydrogen at the ground state and the tunneling ready state during HT with \( p \)-methoxybenzyl alcohol. Thus, the gating contribution is the one already observed with \((R)-[\alpha-^2H]-p\)-methoxybenzyl alcohol. Moreover, the passive component is due to the secondary isotope effects expressing isotopic differences in zero point energy that change along the reaction coordinate of the Marcus-like model (appearing as isotopic differences in the reorganization energy and the reaction driving force) (Roston et al. 2014).

**5.2.3. Contribution of Tyr92 to the environmentally modulated tunneling.**

The crystal structure of AAO:\( p \)-anisic complex agrees very well with previous studies indicating that the stacking-stabilizing interaction of aromatic substrate by Tyr92 active site residue is essential for HT in AAO alcohol oxidation (Ferreira et al. 2015b). Therefore, disruption of these interactions could have even deleterious effects on AAO active site configuration and HT process. In this chapter, the contribution of this residue to the alcohol oxidation has been investigating using the Y92F, Y92L and Y92W variants.

Replacement of Tyr92 with phenylalanine did not show any significant differences in HT transfer efficiency with regard to native AAO. Analogously, the effect on the temperature dependence for HT and DT with \( \alpha \)-protiated and \([\alpha-^2H_2]-p\)-methoxybenzyl alcohols were similar to those observed for the native protein, suggesting that gating is the main acting force during tunneling.

Y92L and Y92W variants showed, in contrast, critical changes from the behaviour of the native enzyme. In this regard, the reduced isotope effect on \( A_H/A_D \) observed for Y92L, together with its more temperature dependence for DT, indicate that DAD sampling is more relevant in this variant than in native AAO. Such an increase in gating contribution suggests that the Y92L active site is more flexible than that of the native AAO. Moreover, Y92L compromises the optimal disposition of the reacting atoms, deduced from its higher \( K_d \) and lower HT efficiency, that can be compensated by increasing the DAD sampling. Similar results were reported for soybean lipoxygenase upon reduction of the side chain of an active-site residue (Meyer et al. 2008).

Regarding the Y92W mutant, the introduction of a bulkier residue augments the rigidity of the active site, thereby impairing the gating contribution to catalysis.
This assumption is a consequence of the temperature-independent $d_{\text{red}}^{k}$ and the large $A_{H}/A_{D}$ ratio. These results do not indicate, however, that the mutation improves the configuration of the active site by eliminating the necessity of the gating contribution for catalysis, since HT efficiency for this variant is reduced by almost 100-fold with regard to native AAO. Therefore, it is likely that introduction of tryptophan in the AAO active site impedes the stacking interaction with alcohol substrate thus hampering the efficient orientation and gating contribution. Consequently, the variant is forced to rely on passive dynamics to attain a tunneling relevant position for HT, which could be the reason why catalysis is impaired.

### 5.2.4. Final remarks

Results herein reported point towards HT taking place through quantum-mechanical tunneling effect as deduced from the temperature dependence of the reaction parameters of AAO. Fast active protein motions, also known as gating, proved to play a key role in the HT from substrate to the FAD cofactor of the enzyme. Structural data reinforce the hypothesis by offering insight into the distances over which the particle is transferred. Structural and kinetic data suggest that AAO's active site is highly pre-organized for the substrate to accommodate in a catalytically relevant position that only requires thermally activated DAD sampling for the transfer. Motions within the substrate molecule proved to be essential for DAD sampling, as suggested by the secondary KIE estimated by using differently deuterated substrates and the different behaviour shown by the reduction of the enzyme with these substrates. Disruption of the AAO active site structure by replacement of a residue directly involved in the substrate positioning into the active site shows that the enzyme's commitment to catalysis is changed and other protein motions, i.e. passive dynamics, might be involved in compensating for this alteration.

---

Results exposed in this chapter have been redrafted after the publication: Carro J, Martínez-Júnuez M, Medina M, Martínez AT, Ferreira P. Proteins motions promote hydride tunneling in the reduction of aryl-alcohol oxidase. In preparation.
Non-concerted hydrogen and proton transfers from AAO to dioxygen
In this chapter, *P. eryngii* AAO has been subjected to rapid kinetics experiments involving solvent, substrate and multiple kinetic isotope effect (KIE), and viscosity and pL (i.e. pH/pD) effects to unveil the nature and transfer mechanism of the H /H⁺ during the oxidative half-reaction of the enzyme, and the possible involvement of transient species. The results obtained agree well with previous reports on the steady-state and transient-state oxidation process and, thus, shed additional light on the AAO mechanistics of O₂ reduction.

### 6.1. Results

#### 6.1.1. Preparing reduced AAO

The aim of the present work is to investigate the reoxidative half-reaction of AAO by double-mixing stopped-flow spectroscopic techniques and KIE studies. Reoxidation studies require that the enzyme be completely reduced by an electron-donor substrate, under anaerobic conditions that prevent turnover, before triggering reoxidation by mixing with buffer containing different O₂ concentrations. Consequently, the aim of the first experiment was to calculate the time the enzyme was meant to remain inside the so-called “ageing loop” of the stopped-flow apparatus to be reduced, after being mixed with equimolar amount of the alcohol substrate.

Four single-mixing experiments were set up, and the reaction of AAO and [α-¹H₂]-p-methoxybenzyl alcohol or [α-²H₂]-p-methoxybenzyl alcohol, in both H₂O and D₂O buffers, was followed at 463 nm, the wavelength of the bound FAD band I (Ferreira et al. 2005). The estimated reduction times (Table 6.1) were, thus, the “ageing times” used throughout the experiments under each condition, unless otherwise stated. The reduction of the enzyme turned out to be a first-order reaction and showed a marked dependency on the isotopes present in the substrate, due to the reductive half-reaction being the rate-limiting step of the AAO catalytic cycle, and the large substrate KIE at the temperature used (12°C) (Hernández-Ortega et al. 2012c).

<table>
<thead>
<tr>
<th>Alcohol substrate</th>
<th>Solvent</th>
<th>Ageing time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[α-¹H₂]-p-methoxybenzyl</td>
<td>H₂O</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D₂O</td>
<td>1</td>
</tr>
<tr>
<td>[α-²H₂]-p-methoxybenzyl</td>
<td>H₂O</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>D₂O</td>
<td>4</td>
</tr>
</tbody>
</table>

Measurements carried out in a stopped-flow apparatus in H₂O or D₂O at 12°C under anaerobic conditions

#### 6.1.2. Reoxidation of AAO

Reoxidation was first studied at pH 6.0 with [α-¹H₂]-p-methoxybenzyl alcohol, the optimal pH for AAO catalysis and its preferential reducing substrate. Traces (at 463 nm) in Figure 6.1 show that the AAO reoxidative half-reaction follows a biphasic pattern. As it can be seen, the first phase accounts for the main increase
in absorbance and seems to be faster. The second phase becomes more evident at higher O$_2$ concentrations since the first phase becomes faster, whereas the second one remains constant. Consequently, both phases separate due to their differential behavior towards the O$_2$ concentration.

**Figure 6.1.** Time-resolved absorbance spectroscopy of the reoxidation of reduced AAO, which was premixed with p-methoxybenzyl alcohol (1:1 concentration) and allowed to age for 1 s, at varying O$_2$ concentrations. Traces at 463 nm show the biphasic behavior of the reaction (first and second phase separation is shown by a dashed line). Fits to exponential equations are shown. Inset shows spectra of the initial (reduced, black) and final (oxidized, red) flavin species.

The values of the $k_{\text{obs}}$ for the first phase ($k_{\text{obs}1}$) were dependent on the O$_2$ concentration in a linear fashion that showed no signs of saturation. Fitting $k_{\text{obs}1}$ to **equation 3** shows that the reoxidative half-reaction has an $\text{app}k_{\text{ox}}$ of $(7.7 \pm 0.2) \times 10^5$ M$^{-1}$·s$^{-1}$, as well as a $k_{\text{rev}}$ of $27 \pm 2$ s$^{-1}$ that corresponds to the intercept of the y-axis (**Figure 6.2A**). This $\text{app}k_{\text{ox}}$ value was similar to those previously reported using single-mixing assay ($6.7 \times 10^5$ M$^{-1}$·s$^{-1}$) and suggests that the presence of the aldehyde product at the active site does not affect the rate of protein reoxidation. Besides, the second phase proved to be independent of the O$_2$ concentration, and showed an invariable $k_{\text{obs}2}$ of $17 \pm 1$ s$^{-1}$ (**Figure 6.2B**) that is too slow to be relevant for the turnover.
6.1.3. Solvent isotope and pL-related effects

Taking into account that one H atom and one H+ (along with one electron) must be donated to O2 so that it gets reduced to H2O2, KIEs were estimated to give insight into the mechanistics of the reoxidation of the enzyme. The first isotope experiments were carried out to determine whether there was a significant solvent isotope effect or not on the reoxidation of AAO. Reoxidation was then performed both in H2O and D2O buffers at pL 6.0. Surprisingly, the estimated D2O(appkox)H, which represents the effect of the deuterated solvent on the rate constant, seemed to be close to unity (Table 6.2). Since effects determined when employing D2O as a solvent may not be caused by the mass of the isotope, but by pH, as well as by the viscosity of the medium (D2O is more viscous than H2O), the following experiments aimed at ruling out these effects.

In order to determine whether pL 6.0 was such that the reaction proceeded in a pL-independent manner, reoxidation reactions were performed at pLs 5.0, 7.0 and 8.0, in both deuterated and protiated buffers, and the constants obtained compared to see if they met such a requirement. As shown in Figure 6.3, the log(appkox) at the various pH values were not statistically different. In fact, the mean of the log(appkox) was 5.8 ± 0.1.

Table 6.2. Substrate and solvent KIE at different pL values for the reoxidation of AAO at 12°C

<table>
<thead>
<tr>
<th>pL</th>
<th>D(appkox)H2O</th>
<th>D2O(appkox)H</th>
<th>Viscosity effecta</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>—</td>
<td>0.94 ± 0.13</td>
<td>—</td>
</tr>
<tr>
<td>6.0</td>
<td>1.46 ± 0.12</td>
<td>0.83 ± 0.05</td>
<td>1.02 ± 0.10</td>
</tr>
<tr>
<td>7.0</td>
<td>—</td>
<td>1.07 ± 0.13</td>
<td>—</td>
</tr>
<tr>
<td>8.0</td>
<td>1.65 ± 0.11</td>
<td>1.22 ± 0.11</td>
<td>—</td>
</tr>
</tbody>
</table>

aViscosity effects were calculated as the appkox measured at pH 6.0 in H2O using [α-H2]-p-methoxybenzyl alcohol over the appkox measured with the same substrate and aqueous buffer containing 7.3% glycerol. Means and standard deviations.
Although no large solvent isotope effect was detected, a trend was noticeable (Table 6.2). At pL 5.0 and 6.0, the $D_2O(\text{app}k_{\text{ox}})_H$ values were even smaller than 1, while there seemed to be a slight increase at higher pLs. In fact, estimated $D_2O(\text{app}k_{\text{ox}})_H$ at pL 7.0 was of $1.1 \pm 0.1$ and it attained the value of $1.2 \pm 0.1$ at pL 8.0. Interestingly, at pL 6.0 the intersection of the y-axis, thus the $k_{\text{rev}}$, tended to 0 (not shown), indicating that the probable reversible reaction detected when using $H_2O$ was negligible in the deuterated solvent. Instability of the enzyme prevented the experiments at either more acidic or more basic pLs.

![Figure 6.3](image_url)  
**Figure 6.3.** pH (filled circles) and pD (open triangles) contributions to solvent effects on $\text{app}k_{\text{ox}}$. Values shown are means and vertical lines indicate standard deviations. Average of the log $\text{app}k_{\text{ox}}$ mean values in both $H_2O$ and $D_2O$ is $5.8 \pm 0.1$.

Moreover, it was necessary to rule out any viscosity effect in the reaction. Therefore, reactions were performed in buffer containing 7.3% glycerol (mimicking $D_2O$ viscosity at $12^\circ C$). The viscosity effect at pL 6.0 was negligible (Table 6.2). Moreover, there was no effect on the y-axis intercept of the fit, showing a $k_{\text{rev}}$ value of $22 \pm 7 \, s^{-1}$, not statistically different from the value obtained at pL 6.0.

The spectrum of the reoxidized enzyme at pL 5.0 appears to be significantly different than spectra recorded at more basic pLs, due to the protonation of one group in the active site. It displayed a shifted band I maximum (at 456 nm rather than at 463 nm) and the flavin band II peak (around 380 nm) appeared to be notably lower than that of flavin band I (Figure 6.4). In spite of such spectral changes, the mechanism of the reoxidation seemed to be the same at different pHSs.
Figure 6.4. Spectra of native AAO in 25 mM sodium phosphate, pH 8.0 (solid line), and 100 mM sodium acetate, pH 5.0 (dotted line). Differences in the shoulder around 500 nm and the ratio band I/band II are shown.

6.1.4. Substrate isotope effects

In order to determine if any of the detected phases corresponded to the breakage of the flavin N5-H bond, experiments were carried out in which the enzyme was first reduced using \([\alpha-^{2}H_{2}]p\)-methoxybenzyl alcohol and then reoxidized using different O\(_{2}\) concentrations. It was previously described that the pro-R hydrogen bound to the \(\alpha\)-carbon of the alcohol is abstracted as a hydride by the N5 of the flavin, assisted by His502, during the reductive half-reaction of the enzyme (Hernández-Ortega et al. 2012c). If this hydride remains bound to the N5 until the enzyme is reoxidized without being washed out by the buffer (i.e. it does not exchange rapidly with the solvent), a KIE should be evident. Experiments were performed both at pHs 6.0 and 8.0. For both pHs, the \(D(\text{app}k_{\text{ox}})_{H_{2}O}\) effects were significantly greater than 1 (Table 6.2). Moreover, the similar substrate KIE observed at both pH values rule out a pH effect on the H transfer in H\(_{2}O\) buffers within the investigated range (pH 6.0–8.0).

6.1.5. Individual and multiple isotope effects at pH 8

Since the tendency towards the existence of a solvent \(D_{2}O(\text{app}k_{\text{ox}})_{H}\) effect at increasing pH values was evident, individual and multiple isotope effects were estimated at pH 8.0 to establish whether or not the H and H\(^{+}\) were transferred in the same chemical step. The \(D(\text{app}k_{\text{ox}})_{H_{2}O}\) was statistically equal to that measured at pH 6.0, indicating that there existed no pH effect on the breakage of the bond between N5 of the flavin and the H or the D atoms. The \(D_{2}O(\text{app}k_{\text{ox}})_{H}\) value at pH 8 was 1.2 ± 0.1, which is a small, but significant effect. The values of the constants for all the conditions assayed are given in Table 6.3.
Table 6.3. Kinetic parameters for the reoxidation of AAO with protiated (H) and deuterated (D) \( p \)-methoxybenzyl alcohol in protiated and deuterated solvents at different pLs and effect of glycerol at \( 12^\circ C \)

<table>
<thead>
<tr>
<th>pL</th>
<th>Substrate, ( \text{solvent} )</th>
<th>( \text{app} k_{\text{ox}} \times 10^5 ) (M(^{-1})s(^{-1}))</th>
<th>( k_{\text{rev}} ) (s(^{-1}))</th>
<th>( k_2 ) (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>H, H(_2)O</td>
<td>6.0 ± 0.4</td>
<td>16 ± 4</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>H, D(_2)O</td>
<td>6.4 ± 0.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.0</td>
<td>H, H(_2)O</td>
<td>7.7 ± 0.1</td>
<td>27 ± 2</td>
<td>17 ± 1</td>
</tr>
<tr>
<td></td>
<td>H, D(_2)O</td>
<td>8.6 ± 0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D, H(_2)O</td>
<td>5.3 ± 0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.0</td>
<td>H, H(_2)O</td>
<td>6.0 ± 0.5</td>
<td>34 ± 5</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>H, D(_2)O</td>
<td>5.6 ± 0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.0</td>
<td>H, H(_2)O</td>
<td>8.2 ± 0.3</td>
<td>22 ± 5</td>
<td>16 ± 3</td>
</tr>
<tr>
<td></td>
<td>H, D(_2)O</td>
<td>6.7 ± 0.5</td>
<td>34 ± 10</td>
<td>17 ± 5</td>
</tr>
<tr>
<td></td>
<td>D, H(_2)O</td>
<td>5.0 ± 0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D, D(_2)O</td>
<td>5.4 ± 0.4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Glycerol (pL 6.0)

H, H\(_2\)O | 7.3 ± 3.3 | 17 ± 3 | 17 ± 1
H, glyc | 7.1 ± 0.6 | 22 ± 7 | 16 ± 2

Means and standard deviations

Interestingly, the multiple \( \text{D}_2\text{O}(\text{app} k_{\text{ox}}) \) value, which is the effect due to the substitution of \( p \)-methoxybenzyl alcohol with \( \alpha-[^2\text{H}_2]-p \)-methoxybenzyl alcohol and H\(_2\)O with D\(_2\)O simultaneously, was similar to the value obtained for \( \text{D}(\text{app} k_{\text{ox}})_{\text{H}_2\text{O}} \) and slightly lower than the product of both kinetic and solvent KIEs \( \text{D}(\text{app} k_{\text{ox}})_{\text{H}_2\text{O}} \times \text{D}_2\text{O}(\text{app} k_{\text{ox}})_{\text{H}}) \) suggesting non-concerted \( \text{H} \) and \( \text{H}^+ \) transfers. Moreover, the \( \text{D}_2\text{O}(\text{app} k_{\text{ox}})_{\text{D}} \) effect, which reflects the effect of the D\(_2\)O on the reaction with \( \alpha-[^2\text{H}_2]-p \)-methoxybenzyl alcohol, is very close to unity. This indicates that the transfer of \( \text{H} \) from flavin to O\(_2\) is the overall rate-limiting step of the reaction regardless of the solvent isotopic composition, meaning that substrate and solvent effects are not additive.

Table 6.4. KIE on the second-order rate constant for flavin oxidation at pL 8.0

<table>
<thead>
<tr>
<th>KIE</th>
<th>( \text{H}_2\text{O} )</th>
<th>( \text{D}_2\text{O} )</th>
<th>( \text{D}_2\text{O} \times \text{H}_2\text{O} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{D}(\text{app} k_{\text{ox}})_{\text{H}_2\text{O}} )</td>
<td>1.65 ± 0.11</td>
<td>1.24 ± 0.14</td>
<td>2.01 ± 0.22</td>
</tr>
<tr>
<td>( \text{D}(\text{app} k_{\text{ox}})_{\text{D}_2\text{O}} )</td>
<td>1.22 ± 0.11</td>
<td>0.92 ± 0.09</td>
<td>1.51 ± 0.13</td>
</tr>
<tr>
<td>( \text{D}<em>2\text{O}(\text{app} k</em>{\text{ox}})_{\text{D}} )</td>
<td>1.51 ± 0.13</td>
<td>2.01 ± 0.22</td>
<td>1.00 ± 0.09</td>
</tr>
<tr>
<td>( \text{D}<em>2\text{O}(\text{app} k</em>{\text{ox}})_{\text{H}} )</td>
<td>1.51 ± 0.13</td>
<td>2.01 ± 0.22</td>
<td>1.00 ± 0.09</td>
</tr>
</tbody>
</table>

Measurements were carried out in 25 mM sodium phosphate pH 8.0 at \( 12^\circ C \). Means and standard deviations.

Furthermore, \( \text{D}(\text{app} k_{\text{ox}})_{\text{D}_2\text{O}} \), i.e. the effect of the heavy substrate on the reactions performed in D\(_2\)O, is greater than 1, but smaller than the \( \text{D}(\text{app} k_{\text{ox}})_{\text{H}_2\text{O}} \) effect, so it
points out again the fact that it is the substrate effect the one that predominates on catalysis, being larger than solvent effect (Table 6.4).

**6.1.6. Presence of intermediate species**

The stabilization of transient intermediate species involved in the catalytic mechanism of AAO oxidative half-reaction was further investigated at several wavelengths and at pH 5.0 and 8.0, fearing that different pHs could rule different mechanisms and, thus, the change could evidence intermediates. Due to the probable transient nature of such species, temperature of the experiments was lowered to 7°C.

Special attention was paid to traces at 340/540 and 370/390 nm, since they are typical of semiquinones and C4a-(hydro)peroxyflavin, respectively. However, shots every 10 nm from 300 to 540 nm did not show any intermediate, i.e. formation and disappearance of a spectroscopic species at either pH (Figure 6.5). These results are in agreement to those previously observed at pH 6 using a stopped-flow spectrophotometer in the single-mixing mode. That means that, despite the existence of intermediates is obligate for the catalysis with O₂ to occur (Massey 1994), they cannot be seen under our experimental conditions.

**6.1.7. Wash-out of the hydrogen bound to flavin N5**

Evidence suggests that the hydride abstracted from the pro-R position of the alcohol substrate is transferred firstly to the N5 of the flavin and from this position to the O₂. Nonetheless, this position could be subjected to exchange with protons present in the buffer. In that case, the estimated \( \frac{d}{appk_{ox}}H_2O \) would tend to disappear with time due to increase in rate if exchange took place.

In order to check if the wash-out of the deuterated tag by the protiated buffer took place, an experiment was made in which AAO was reoxidized after different ageing times (3, 40, 150, 300 and 600 s) to see if the rate constants for the reoxidation increased at higher times (Figure 6.6). As ageing time increased, so did the \( k_{obs1} \) measured at 463 nm, most probably due to the exchange of the D with H coming from the aqueous buffer. The longest ageing time was 600 s, which corresponded to the longest ageing time the stopped-flow apparatus allowed to be set. The corresponding \( k_{obs1} \) fitted at different times were plotted vs time and fitted to an exponential equation (\( R^2 = 0.99 \)), which showed that the \( k_{obs1} \) at \( t = 0 \) was 58 ± 1 s⁻¹, whereas the rate constant for deuterated tag loss was of 0.002 s⁻¹, which indicates the increase in \( k_{obs1} \) in time, and the maximal rate increase of 29 s⁻¹. The 50% of the increase (if added to the velocity at \( t = 0 \)) equals 72 s⁻¹, which corresponds to a \( t \) value of 300 s, which is the half-life of the deuterated tag on flavin N5.
Figure 6.5. Traces showing the reoxidation of AAO (7°C, pH 8.0 and 5.0) at different wavelengths characteristic of possible intermediates in the reaction. A. Reaction in 25 mM sodium phosphate, pH 8.0. B. Reaction in 100 mM sodium acetate, pH 5.0. Insets show the spectra of the reduced and oxidized species of the enzyme with arrows indicating the direction of the spectral changes. Lack of transient species points out the absence of any detectable intermediates. Fits to exponential equations are shown under the spectral evolution changes.
Figure 6.6. Plot of the values of $k_{\text{obs}1}$ as a function of the time of incubation after reduction of the enzyme using $[\alpha-2\text{H}_2]$-p-methoxybenzyl alcohol in aqueous buffer, which was fitted to an exponential function yielding $y = 58 + 29 \times (1 - e^{-0.002 \times t})$ ($R^2 = 0.99$). There is an evident tendency towards the increase of the values, indicating the gradual loss of the deuterated tag on flavin N5 by exchange with the solvent. Means and standard deviations.

6.2. Discussion

6.2.1. The AAO catalytic cycle

Reoxidation of the flavin cofactor in AAO and other flavooxidases takes place concomitantly to the reduction of O$_2$ to H$_2$O$_2$, in a stepwise reaction that involves the transfer of a total of two electrons and two protons. In this work, KIEs, along with pL effects, have been employed to unravel the nature and relative timing of the transfer of these particles using the stopped-flow technique. Utilization of deuterated substrates gives insight into the breakage of the bond between flavin N5 and the H that has been previously abstracted from the alcohol substrate as a hydride; whereas isotopically substituted solvents shed light on the involvement of species originating from the solvent itself or a solvent exchangeable site.

The catalytic cycle of AAO is composed of two half-reactions. During the reductive half-reaction, FAD is reduced owing to the oxidation of the alcohol substrate to aldehyde. Afterwards, the reoxidative half-reaction takes place when the enzyme donates to O$_2$: i) one electron; ii) one H atom, supposed to originate from the hemolytic breakage of the flavin N5-H bond; and iii) one H$^+$ from a solvent exchangeable site, which can be the same catalytic His502 involved in the reductive half-reaction (Hernández-Ortega et al. 2012c). It is the reductive half-
reaction, in particular the H⁻ abstraction from the substrate, the overall rate-limiting step of the enzyme’s catalysis, as deduced from the large second-order rate constants estimated for flavin oxidation (much higher than $k_{\text{cat}}$) as well as the coincidence between the observed $k_{\text{red}}$ and $k_{\text{cat}}$ (Hernández-Ortega et al. 2012c).

When the reoxidative half-reaction was investigated, the whole process turned out to be split into two distinct phases. The biphasic nature of AAO reoxidation had already been reported in literature for the native AAO and its F501Y and F501W variants (Hernández-Ortega et al. 2011b). Interestingly, non-aromatic substitutions of Phe501 showed monophasic reoxidation processes, suggesting the involvement of an aromatic residue of the re-side of flavin in the appearance of the two phases. Another GMC oxidase, P2O, was found to display a biphasic behavior as well (Sucharitakul et al. 2008), whereas many others—such as glucose oxidase, glycolate oxidase (Pennati and Gadda 2011) or fructosamine oxidase (Collard et al. 2011)—exhibit monophasic reoxidation.

The second-order rate constant for the first phase in AAO reoxidation is within the typical range for oxidases and around 3000-fold higher than the rate of the reaction between free flavin and O₂ (Mattevi 2006). The amplitude of the second phase accounts for a small portion (up to 15%) of the total amplitude, and its rate constant is independent of the O₂ concentration. Therefore, the species formed after the first phase must not be considered as an intermediate of the reaction, but as the reoxidized enzyme. In fact, the second phase must not be relevant for catalysis because its rate constant at 12°C (17 ± 1 s⁻¹) is much smaller than the AAO $k_{\text{cat}}$ (129 ± 5 s⁻¹) (Ferreira et al. 2015b). This second phase could be a consequence of either the release of the product or an isomerization of the flavin. Such second phases not directly involved in catalysis have also been described in the reductive half-reaction of putrescine oxidase (Kopacz et al. 2014) or the reoxidative half-reaction of mutated variants of fructosamine oxidase (Collard et al. 2011). Therefore, all the results on AAO reoxidation discussed below correspond to the first phase.

### 6.2.2. H transfer limits the reoxidation reaction in AAO

In the light of the above results, the first reoxidation phase must account for both the breakage of the flavin N5-H bond, and the H and H⁺ transfers. Evidence for this comes from the fact that a substrate $^{2}D_{\text{app}}k_{\text{ox}}$ (due to deuterated alcohol used for AAO reduction) was evident. However, the fact that no solvent effects are noticeable at pH 5.0 and 6.0, as has been proved for glucose oxidase (Bright and Gibson 1967), indicate that H transfer is the rate-limiting step of the reoxidative half-reaction. Therefore, it is the same particle, transferred as a H⁻ during the reductive half-reaction and as a H during the reoxidative one, that limits the rates of both half-reactions. These rapid kinetics results agree with previous results from AAO steady-state kinetics (Hernández-Ortega et al. 2012c). Similarly, no significant solvent effect on the reoxidation efficiency $^{2}D_{\text{app}}(k_{\text{cat}}/K_{\text{mO}_2})_H$ of 1.07 ± 0.05 was found at pH 6.0. Furthermore, at the same pH, a reducing substrate...
KIE on the reaction with $\text{O}_2 - {^2D(k_{\text{cat}}/K_{\text{mO}_2})}_{\text{H}_2\text{O}}$ of 1.57 ± 0.04 was reported, being similar to that found here on the second-order apparent rate constant for flavin reoxidation (1.46 ± 0.12).

The existence of a significant $^{2D(app k_{\text{ox}})}_{\text{H}_2\text{O}}$ suggested that the D transferred from the deuterated alcohol substrate to the flavin N5 did not exchange rapidly with the solvent protons. However, in $[\alpha-^{2H}_2]-p$-methoxybenzyl alcohol and protiated buffer experiments, the longer the ageing times were, the higher the $k_{\text{obs}}$ became. Such increase in $k_{\text{obs}}$ must be due to the replacement of the D bound to the N5 with H originating from the solvent. In fact, the estimated half-life of this isotopically labeled flavin was around 300 s, which indicates that the exchange takes place slowly, showing a rate of exchange of around $(2.3 \pm 0.4) \times 10^{-3}$ s$^{-1}$. The estimated rate constant for the exchange of H from N5 of free FMN was 525 s$^{-1}$ (Macheroux et al. 2005).

This reduced exchange rate is due to the closeness of the active site of the enzyme, which is separated from the environment by: i) a loop characteristic of the AAO family that limits the access to the active site (Ferreira et al. 2015a); and ii) by a triad of aromatic residues (Tyr92, Phe397 and Trp501) that create a highly hydrophobic bottleneck isolating the active site from the outer environment, as crystallographic data reveal (Fernández et al. 2009). Another flavoenzyme, P2O, displays similar exchange rates ($3.5 \times 10^{-3}$ s$^{-1}$) due to its enclosed active site away from the solvent (Sucharitakul et al. 2011).

### 6.2.3. Isotope effects (at high pL) reveal non-concerted H and H$^+$ transfers

While investigating $^{2D(app k_{\text{ox}})}_{\text{H}}$ at different pL values, an interesting fact came up. Although the solvent effect was negligible at pL 5.0 and 6.0, it showed an increasing trend with increasing pH. At more basic pLs, when H$^+/D^+$ availability is lower, there seems to be a combined effect with the isotopically substituted solvent so that the effect becomes noticeable. Therefore, investigation at more basic pLs is more informative than at more acidic ones.

Estimation of individual and multiple KIEs at pL 8.0 sheds additional light on the transfer of both H and H$^+$. On the one hand, at pL 8.0 there is a $^{2D(app k_{\text{ox}})}_{\text{H}_2\text{O}}$ significantly greater than 1 and, on the other hand, a small, yet significant, $^{2D(app k_{\text{ox}})}_{\text{H}}$ is evident. Since $^{2D(app k_{\text{ox}})}_{\text{H}_2\text{O}} > ^{2D(app k_{\text{ox}})}_{\text{H}}$, it can be deduced that, at pL 8.0, the H (after N5-H bond breakage) and H$^+$ transfers are independent steps. This is in agreement with the fact that $^{2D(app k_{\text{ox}})}_{\text{H}_2\text{O}}$ is invariable throughout a pL range (at least 6.0 to 8.0), whereas $^{2D(app k_{\text{ox}})}_{\text{H}}$ is only greater than 1 at higher pLs (at more acidic pL is the H transfer which limits reoxidation, as explained above).

Moreover, $^{D(app k_{\text{ox}})}_{2\text{H}_2\text{O}}$, which measures the contribution of the deuterated substrate on the reactions performed in heavy solvent, is greater than 1. This is
indicative of the solvent effect not possessing enough limiting capacity to lower the rate constants as much as the substrate effect has. Even the estimations of $\text{D}_2\text{O}^{(\text{app}k_{\text{ox}})}$, i.e. the effect of performing the reaction in D$_2$O when employing [$\alpha$-$^2$H$_2$] p-methoxybenzyl alcohol as reducing substrate, is completely negligible. The latter means that, when the heavy substrate limits the reaction, the solvent cannot slow it down any further.

Finally, the fact that the product of the isolated effects $-D(\text{app}k_{\text{ox}})_{\text{H}_2\text{O}} \times D_2\text{O}^{(\text{app}k_{\text{ox}})}_{\text{H}}$ is higher than the $D,\text{D}_2\text{O}^{(\text{app}k_{\text{ox}})}$, which represents the effect of performing the reaction in D$_2$O and reducing the enzyme with deuterated substrate simultaneously, indicates that both transfers occur as different chemical steps and are, thus, non-concerted. This is opposed to the transfer of H$^-$ and H that takes place during the reductive half-reaction of the enzyme. In that case, both transfers are concerted, although asynchronous. The flavooxidase choline oxidase (ChoOx) proved to transfer both the H and H$^+$ to O$_2$ in a concerted manner in the same chemical step, as arisen from the studies of multiple isotope effects on $k_{\text{cat}}/K_{\text{ox}}$ (Gannavaram and Gadda 2013).

Results exposed above demonstrate that transfers of H and H$^+$ to O$_2$ take place in separate kinetic steps and, thus, suggest that there could be intermediate species during reoxidation of AAO. However, thorough examination of traces at different wavelengths did not reveal the presence of spectroscopically detectable intermediates at both pH 5.0 or 8.0 (at 7°C). The reason for performing the experiments at different pHs was that P2O is said to switch from one reoxidation mechanism in which the C4a-(hydro)peroxylavin is formed to another in which the intermediate is undetectable due to pH (modifying the protonation state of a group with a $pK_a$ of 7.6) (Prongjit et al. 2013). No differences, however, were seen on the reoxidation of AAO at different pHs. Moreover, in the case a C4a-peroxylavin were formed, it should accumulate when the deuterated solvent and substrate were used, as well as when the pD effect could be noticeable, at pH 8.0. Nevertheless, under such conditions, examination of traces at 390 and 370 nm did not reveal stabilization of such an intermediate.

### 6.2.4. Final remarks

The reoxidative half-reaction of AAO has proved to be composed of three separate chemical events. The first of them is the obligate electron transfer from the flavin hydroquinone to the O$_2$, followed by the H and H$^+$ transfers. Although AAO displays only one catalytically relevant phase during its reoxidation, it is likely that it accounts both for the transfer of H and H$^+$. The limiting step, which is the bond breakage of N5-H, as revealed by substrate KIEs, has an $\text{app}k_{\text{ox}}$ in the range of typical oxidases at pH 5.0–8.0 and displays a small reverse reaction, which seems not to exist when the reaction takes place in deuterated solvent. The H bound to flavin N5 proved to be exchangeable with the atoms present in the solvent with a slow rate constant. H$^+$ transfer does not limit the reaction, but the combination of deuterated solvent and pD revealed its contribution, and the
multiple KIE at pH 8.0 made evident the non-concerted transfer of H and H⁺. Furthermore, the existence of an intermediate in the reaction that could be detected through spectroscopic methods is ruled out.
5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase
In this chapter it is described that AAO is able also to oxidize some furanic compounds such as HMF and DFF to FFCA (Figure 7.1). This is not only an important scientific finding, given the structural differences with previously known AAO substrates, but also of biotechnological relevance due to the importance of these renewable chemicals described in the Introduction. AAO was combined with an unspecific peroxygenase (UPO) from Agrocybe aegerita (Ullrich et al. 2004) for the full oxidative conversion of HMF in an enzymatic cascade. This peroxygenase belongs to the only recently-established superfamily of heme-thiolate peroxidases and is capable of incorporating peroxide-borne oxygen into diverse substrate molecules (Hofrichter and Ullrich 2014). Among others, it catalyzes the $\text{H}_2\text{O}_2$-dependent stepwise hydroxylation of aliphatic and aromatic alcohols into the corresponding aldehydes (via gem-diol intermediates) and finally into carboxylic acids (Gutiérrez et al. 2011; Ullrich and Hofrichter 2005).

![Figure 7.1](Pathway for 5-hydroxymethylfurfural (HMF) conversion into 2,5-furandicarboxylic acid (FDCA), via 2,5-formylfurancarboxylic acid (FFCA), including 2,5-diformylfuran (DFF) or 2,5–hydroxymethyl furancarboxylic acid (HMFCa) intermediates.]

### 7.1. Results

#### 7.1.1. AAO oxidation of HMF and its partially-oxidized derivatives

The ability of P. eryngii AAO to oxidize HMF and its partially-oxidized derivatives (HMFCa, DFF and FFCA) was tested by incubating them with the enzyme, typically, in 24-h experiments. Then, all the compounds present in the reaction mixture at different times (that is, remaining substrate and products) were analyzed by GC-MS, after trimethylsilyl (TMSi) derivatization of the alcohol and carboxylic groups, and the corresponding molar percentages were estimated (MS
identification of the different compounds present in these and other enzymatic reactions is described in Annex 3).

When AAO was incubated with HMF at pH 6 (the optimal pH for the enzyme) nearly all HMF had been converted into FFCA (98% molar percentage) after 4 h, and very little FDCA was formed (Figure 7.2A). As time passed, FFCA slowly decreased due to formation of some FDCA (6% after 24 h). Interestingly, neither DFF nor HMFCA were detected in the analyses. These results showed that AAO is able to oxidize HMF, as well as DFF and/or HMFCA considering that these two compounds are obligate intermediates in the pathway from HMF to FFCA (Figure 7.1A). With the aim of revealing which pathway is more likely to be followed, DFF was put together with AAO to test the ability of the enzyme to oxidize it, and the reaction compounds were analyzed (Figure 7.2B).

**Figure 7.2.** HMF and DFF transformation by *P. eryngii* AAO. (A, B) HMF and DFF (3 mM), respectively, treatment (5 mL) with AAO (5 μM, corresponding to 54 U measured with veratryl alcohol) yielding 90-98% FFCA after 4 h, which was then slowly oxidized to FDCA (6-10% after 24 h). The AAO residual activity is also shown in A (dotted line).
Similarly to what had been seen with HMF, after 2 h of incubation almost 90% FFCA and only 3% FDCA were detected, and these percentages slightly changed during the subsequent incubation (around 10% FDCA after 24 h). On the contrary, when HMFCa was incubated with AAO, no product formation was observed.

The above reactions took place during long-time incubations (24 h) at room temperature. In order to test whether or not the enzyme was active throughout the complete reaction time, its residual activity was determined. The main activity decrease during HMF conversion by AAO (Figure 7.2A) occurred during the first two hours, dropping from initially 100% to 84%. Between hours 2 and 24, the AAO activity slowly further decreased, but maintaining 71% of its activity in the end. These results demonstrate that the enzyme was catalytically active over the whole experiment, in spite of the loss of some activity.

7.1.2. AAO kinetic parameters for HMF and its partially-oxidized derivatives

Having seen that HMF was converted into several products by AAO, the kinetic parameters of the enzyme for the different potential substrates (HMF, DFF, HMFCa, and FFCA) were estimated in 3-min reactions by H2O2 release, measured in a peroxidase-coupled assay (Table 7.1). HMF proved to be the best AAO substrate in terms of catalytic efficiency, although the $k_{cat}$ for DFF was higher. In contrast, HMFCa turned out to be a bad substrate of AAO. Although some AAO activity was revealed by H2O2 formation, it was impossible to work out the kinetic parameters since no enzyme saturation by HMFCa was observed, and only a $k_{obs}$/concentration value was calculated. Thus, it is likely that the reaction of HMF to FFCA proceeds via the formation of DFF from HMF (upon oxidation of the alcohol group) and then, one aldehyde group is further oxidized to a carboxylic group, which is in agreement with the GC-MS results (see below). Regarding FFCA, no activity could be detected in the kinetic study.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Structure</th>
<th>$K_m$ (mM)</th>
<th>$k_{cat}$ (min$^{-1}$)</th>
<th>$k_{cat}/K_m$ (min$^{-1}$·mM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMF</td>
<td><img src="image" alt="HMF Structure" /></td>
<td>1.6 ± 0.2</td>
<td>20.1 ± 0.6$^a$</td>
<td>12.9 ± 1.2$^a$</td>
</tr>
<tr>
<td>DFF</td>
<td><img src="image" alt="DFF Structure" /></td>
<td>3.3 ± 0.2</td>
<td>31.4 ± 0.7</td>
<td>9.4 ± 0.5</td>
</tr>
<tr>
<td>HMFCa</td>
<td><img src="image" alt="HMFCa Structure" /></td>
<td>-</td>
<td>-</td>
<td>1.0 ± 0.1$^b$</td>
</tr>
<tr>
<td>FFCA</td>
<td><img src="image" alt="FFCA Structure" /></td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

$^a$ Values corrected taking into account that two H2O2 equivalents are formed in two successive oxidations to convert HMF into FFCA (as shown by GC-MS). $^b$ AAO was not saturated at increasing HMFCa concentrations and only a $k_{obs}$/concentration value could be obtained.
In order to confirm which products were formed in the above kinetic studies, the reaction mixtures were analyzed by GC-MS. It turned out that, during 3-min of HMF incubation with AAO, FFCA is formed with the concomitant decrease of HMF. As in the case of the 24-h reactions, no DFF and only traces of HMFCA were detectable (after 30 s, 1 min and 3 min reaction). Therefore, the \( \text{H}_2\text{O}_2 \) estimated in the HMF reactions corresponds to two subsequent oxidations steps performed by AAO (from an alcohol group to a carboxylic group); and the corresponding correction was introduced for \( k_{\text{cat}} \) estimation in Table 7.1. In the case of DFF, the product formed during the 3-min incubation was FFCA, as expected, accompanied by a decrease of DFF.

In the light of all the above results, we propose that the oxidative pathway leading from HMF to FFCA may proceed via the formation of DFF that is rapidly oxidized to FFCA. AAO shows very low activity towards HMFCA and, if formed, it should have accumulated and then been detectable by GC-MS.

### 7.1.3. Oxidation of FFCA’s aldehyde group by \( \text{H}_2\text{O}_2 \)

Since no activity of AAO on FFCA was observed and low but significant amounts of FDCA were detected in the reaction mixtures with HMF and DFF, its formation remained unclear. \( \text{H}_2\text{O}_2 \) is a strong oxidant, and hence its possible involvement in (chemical) FFCA oxidation was taken into consideration (\( \text{H}_2\text{O}_2 \) is formed by AAO in stoichiometric amounts via \( \text{O}_2 \) reduction). To prove this possibility, FFCA (3 mM) was incubated with 6 mM \( \text{H}_2\text{O}_2 \), the maximal concentration that could have been produced by AAO during HMF oxidation to FFCA, for 24 h and the reaction was analyzed by GC-MS. The amount of FDCA formed (11%) was in fact in the same range as that obtained in the reactions of HMF and DFF with AAO (6-10%) and strongly supports the above made assumption of a chemical oxidation of FFCA into FDCA by AAO-derived \( \text{H}_2\text{O}_2 \). This was additionally confirmed by the fact that a higher \( \text{H}_2\text{O}_2 \) concentration (200 mM) resulted in a higher amount of formed FDCA (84%).

### 7.1.4. Fungal peroxygenase for HMF conversion

Because AAO was seemingly not able to oxidize FFCA into FDCA, we tested the ability of a second fungal enzyme, \( \text{A. aegerita} \) UPO, to catalyze the reaction. UPO needs \( \text{H}_2\text{O}_2 \) as co-substrate to carry out the desired oxidation and AAO produces it by reducing \( \text{O}_2 \) during HMF and DFF oxidation, so the former enzyme may benefit from the activity of the latter.

First, we followed by GC-MS the oxidation of HMF by UPO, in the presence of exogenous \( \text{H}_2\text{O}_2 \), to get an idea of how the conversion proceeds with this enzyme. Opposite to that observed for AAO, the UPO reaction was found to start with the oxidation of the HMF carbonyl group yielding HMFCA (72% after 8 h, enabling to estimate a turnover rate of 7 min\(^{-1}\), and 97% in 24 h). Then, HMFCA was converted into FFCA (up to 50%) and some FDCA (up to 10%). The latter conversion was confirmed by FFCA treatment with UPO forming FDCA (Figure...
7.3), although the reaction was much slower than observed with HMF, and 96 h were required to attain 90% conversion (~80% conversion in 72 h, enabling to estimate a turnover rate of 0.9 min\(^{-1}\)).

The oxidation of FFCA was catalyzed by UPO, and was not the result of the \(\text{H}_2\text{O}_2\) added, since only 10% FDCA was obtained in the controls without enzyme (in agreement with previous results). As in the case of AAO, UPO maintained most activity (over 90%) during the 24-h reaction, and more than 50% activity after 120 h.

![Graph](image)

**Figure 7.3.** FFCA transformation by *A. aegerita* UPO. FFCA (3 mM, 5 mL reaction) was slowly oxidized by UPO (20 U measured with veratryl alcohol) and \(\text{H}_2\text{O}_2\) (4 mM) to FDCA (~90% after 120 h). The UPO residual activity is also shown, as well as the comparison with the blank reactions (controls without enzyme).

### 7.1.5. Complete HMF conversion by an AAO-UPO reaction cascade

Considering the above results, we designed a one-pot reaction system using HMF as substrate and AAO and UPO as biocatalysts. First, both enzymes were added together from the beginning of the reaction and were left to react for 24 h. UPO catalyzed oxidation at expenses of the \(\text{H}_2\text{O}_2\) released by AAO. After 24 h no HMF was left and almost equal amounts of FFCA and HMFCA (46-47%) had been produced, together with some FDCA. This result suggests that, while AAO catalyzes the oxidation of the hydroxyl group of HMF, UPO performs the oxidation of the carbonyl group (as shown in the short incubation-time reactions) at the expense of the \(\text{H}_2\text{O}_2\) simultaneously produced by AAO. Then, the reaction stops due to AAO’s inability to oxidize further the HMFCA produced by UPO.

Finally, a sequential reaction system (cascade) with AAO plus later added UPO was intended. The aim was to enable AAO to oxidize HMF to FFCA releasing two
H$_2$O$_2$ equivalents, and then add UPO, which would use the H$_2$O$_2$ in a way that a higher overall amount of FDCA will be obtained. While all previous reactions were performed at pH 6, this reaction was performed at pH 7 (the optimal pH for UPO reactions and still a good pH for AAO). After a 4-h incubation of HMF with AAO, UPO was added and left up till HMF to FDCA conversion was completed (Figure 7.4). During these first 4 h, almost all HMF had been converted by AAO to FFCA (98%) and a small amount of FDCA, at the same time that atmospheric O$_2$ was reduced to H$_2$O$_2$. After adding UPO, the levels of FFCA progressively decreased, accompanied by increasing amounts of FDCA. At hour 120, only some FFCA remained (9%), and the rest was almost completely converted into FDCA (91%).

![Figure 7.4](image_url)

**Figure 7.4.** HMF transformation by *P. eryngii* AAO plus *A. aegerita* UPO (successive addition). After 4 h treatment of HMF with AAO almost all HMF was converted into FFCA, and UPO was added to complete the HMF transformation into FDCA.

A final comparison of the results of the different conversions described above (24-h reactions unless otherwise stated) is provided in Table 7.2, including the oxidation of: i) HMF by AAO, UPO, and AAO+UPO added simultaneously or successively (the latter in 24-h and 120-h reactions); ii) DFF by AAO; and iii) FFCA by 6 mM and 200 mM H$_2$O$_2$. 
Table 7.2. Molar percentages (from 5-mL reactions) after 24-h treatment of HMF (3 mM) with AAO alone (5 μM, corresponding to 54 U measured with veratryl alcohol), UPO alone (0.65 μM, corresponding to 20 U measured with veratryl alcohol), and with AAO (5 μM, 54 U) and UPO (0.65 μM, 20 U) added simultaneously (sim) or successively (suc); as well as after 24-h treatment of DFF (3 mM) with AAO (5 μM, 54 U), and FFCA (3 mM) with 6 and 200 mM H$_2$O$_2$.

<table>
<thead>
<tr>
<th></th>
<th>HMF</th>
<th>AAO+UPO</th>
<th>DFF</th>
<th>FFCA + H$_2$O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAO (24 h)</td>
<td>UPO (24 h)</td>
<td>sim (24 h)</td>
<td>suc (24 h)</td>
</tr>
<tr>
<td>HMF</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HMFCA</td>
<td>0</td>
<td>97</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>DFF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FFCA</td>
<td>94</td>
<td>0</td>
<td>47</td>
<td>84</td>
</tr>
<tr>
<td>FDCA</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

7.1.6. NMR analysis of carbonyl hydration in HMF-derived furanaldehydes

The $^1$H-NMR spectrum of HMF in deuterated dimethylsulfoxide (DMSO-$d_6$) shows five signals corresponding to the aldehyde proton (H$_1$, 9.5 ppm), the two protons of the furanic ring (H$_2$ and H$_3$, 7.6 and 6.7 ppm, respectively), the two benzylic protons (4.5 ppm) and the hydroxyl proton (5.6 ppm) (the two latter not shown in Figure 7.5A). The spectrum of HMF in D$_2$O buffer (pH 6) displayed four signals, since the proton from the hydroxyl group interchanges with D$_2$O, that were the same found in DMSO-$d_6$: H$_2$ (7.6 ppm), H$_3$ (6.7 ppm), H$_1$ (9.5 ppm) and H$_4$ (4.5 ppm) (the latter not shown in Figure 7.6A). In the light of these results, it seems that HMF does not produce any geminal diol (gem-diol) form. This reinforces the hypothesis that AAO oxidation of HMF to FFCA occurs via DFF, since the absence of hydration rules out the oxidation of the aldehyde group yielding HMFCA.

The DFF spectrum in DMSO-$d_6$ (Figure 7.5B) gives only two signals owing to the symmetry of the molecule. These correspond to the protons of the aldehyde (H$_{1+4}$) and the ones from the furanic ring (H$_{2+3}$). On the contrary, the spectrum in D$_2$O (Figure 7.6B) is more complex, displaying six signals: H$_{1+4}$ (9.8 ppm), H$_{2+3}$ (7.7 ppm) coinciding with those of DFF in DMSO; and H$_{1+4}$ (6.1 ppm), H$_{2+3}$ (6.8 ppm), H$_3^*$ (7.6 ppm) and H$_4^*$ (9.5 ppm) corresponding to the hydrated forms. The similar intensities of the H$_{1+4}$, H$_{2+3}$, H$_3^*$, and H$_4^*$ signals indicate that only one of the DFF carbonyl groups gets (partially) hydrated. The DFF hydration degree, estimated from the integration of H$_{1+4}$, H$_3^*$, and H$_{1+4}$, is of 53%, and corresponds to gem-diol formation at one of the carbonyl groups.
Figure 7.5. $^1$H-NMR spectra (5.6-10.0 ppm) of HMF (A), DFF (B) and FFCA (C) in DMSO-$d_6$.

Figure 7.6. $^1$H-NMR analyses revealing different hydration degrees. The $^1$H-NMR spectra (5.8-10.2 ppm) of 10 mM HMF (A), DFF (B) and FFCA (C) in $D_2O$ show the H$_1$ to H$_4$ signals in the aldehyde and gem-diol (asterisks) forms, enabling calculation of their hydration degrees.

The FFCA spectrum in DMSO-$d_6$ includes four signals: H$_1$ bound to the carbonyl carbon, H$_2$ and H$_3$ in the furanic ring, and that of the proton of the carboxylic
group (the latter not shown in Figure 7.5C). The spectrum in D$_2$O (Figure 7.6C) has five signals: H$_1$ (9.7 ppm) and H$_3$ (7.6 ppm) correspond to those found in DMSO-d$_6$; while H$_1^*$ (6.1 ppm) and H$_2^*$ (6.7 ppm) correspond to the hydrated form; and H$_2$-$3^*$ (7.3 ppm) results from overlapping of the above aldehyde H$_2$ signal and the gem-diol H$_3^*$ signal (the carboxylic proton is exchanged in $^2$H$_2$O).

By integrating the areas of H$_1$ and H$_1^*$, an 8% hydration degree was calculated at pH 6. FFCA hydration was also estimated in pH 3 and pH 9 D$_2$O buffer, and ~3% and ~6% degrees were obtained, respectively. In agreement with this low hydration degree, no significant FFCA oxidation by AAO was found (in the pH 3-9 range).

7.2. Discussion

7.2.1. Substrate specificity of a fungal model flavooxidase (AAO)

AAO belongs to the superfamily of GMC oxidoreductases, whose name derives from three of its first and best characterized members: GDH, MOX and CHD (Cavener 1992). Recently, AAO structure-function and mechanistic aspects have been studied in-depth (Fernández et al. 2009; Ferreira et al. 2009; Hernández-Ortega et al. 2011b; 2011a; 2012c; 2012b) and its ability to oxidize aromatic (and some aliphatic polyunsaturated) primary alcohols, as well as related aldehydes has been shown (Ferreira et al. 2005; 2010). Comparison of AAO activities oxidizing these substrates reveals much lower catalytic efficiency oxidizing aldehydes than alcohols, due to both lower $k_{cat}$ and higher $K_m$ values. Moreover, the effect of the same ring substituents on AAO activity was opposite for substituted benzyl alcohols and aldehydes, a fact already noticed by Guillén et al. (1992b) when the AAO aldehyde oxidase activity was recognized for the first time, that is related to the required aldehyde hydration discussed below.

7.2.2. HMF and DFF: Two new AAO substrates

The enzyme kinetics and product GC-MS analyses showed that AAO is able to carry out two subsequent oxidations using HMF and O$_2$ as substrates, yielding FFCA and two equivalents of H$_2$O$_2$. In the first step, AAO oxidizes the hydroxyl group of HMF to a carbonyl giving DFF and, in the second step, it oxidizes one of the aldehyde groups of DFF to the corresponding carboxylic acid (FFCA). The fact that DFF was not detected as a reaction product is in agreement with the higher AAO turnover number on this compound compared to HMF, making that all the DFF formed rapidly turns into FFCA.

In the light of the above results, the possibility that four-electron oxidation of HMF to FFCA by AAO takes place with DFF acting as a transient intermediate remaining at the active site during the whole reaction must be considered. Simultaneous alcohol and aldehyde oxidase activities have been already reported in the reaction of AAO with other substrates (such as 3-chloro-p-methoxybenzyl and m- and p-fluorobenzyl alcohols) (Ferreira et al. 2010) and oxidation of the
aldehyde intermediate without leaving the enzyme active site is supported by the ternary-complex mechanism described in AAO (Ferreira et al. 2009). The latter means that the aldehyde product is still at the active site when the enzyme is reoxidized by O$_2$ and, if it is an AAO substrate as DFF is, it will be hydrated and immediately oxidized without leaving the active site. In this scenario, the active site histidine (His502) that acts as a catalytic base accepting the proton from the C-5 hydroxyl of HMF for subsequent hydride transfer to the flavin, will accept the proton from the C-5 hydroxyl of the DFF gem-diol that will remain at the same position at the active site. Rapid HMF conversion into FFCA by AAO contrasts with results reported for some galactose oxidase (EC 1.1.3.9) variants (Kalum et al. 2014) that predominantly yielded DFF from HMF oxidation. Oxidation of aryl-alcohols by galactose oxidase variants had been previously reported (Escalettes and Turner 2008), and the different HMF products compared with AAO are most probably the result of the different catalytic mechanisms of both enzymes, since galactose oxidase belongs to the group of copper-radical oxidases (Whittaker 2002) while AAO is a flavoenzyme.

AAO has in general terms much lower activities on aldehydes than on their alcohol counterparts but this is not the case for HMF and DFF. It had been described by Ferreira et al. (2010) that hydration of aldehydes forming the gem-diol forms is required for their reactivity with AAO (which in fact always acts as an alcohol oxidase). The results from $^1$H-NMR estimation of the carbonyl hydration degree in HMF derivatives agree with this reactivity. DFF showed a 53% hydration degree, which means that the gem-diol form is more abundant than the aldehyde one. Hydration of one of the carbonyls is promoted by the electron withdrawing effect of the second one and, therefore, no double hydration of DFF was detected. This means that there exists a dynamic equilibrium between the two aldehydes and the one-aldehyde plus the gem-diol forms, the latter being constantly formed while transformed into FFCA by AAO. On the other hand, the carbonyl substituent in HMF acts as electron withdrawer, lowering the reactivity of the alcohol group for hydride transfer to the AAO cofactor, as shown for aryl alcohols with other electron withdrawing substituents (such as F and Cl atoms in Table 1.1). The opposite consequences of these electron withdrawing effects (i) reducing oxidation of the HMF hydroxyl group due to the simultaneous carbonyl presence, and (ii) promoting hydration of one of the DFF carbonyls due to the presence of the second carbonyl group, resulted in the unexpected similar activity of AAO on the alcohol and aldehyde groups of these two furanic compounds.

Nevertheless, the enzyme is seemingly not able to catalyze the next step, which is the oxidation of the remaining aldehyde functionality present in FFCA. The carboxyl group in FFCA could also act as an electron withdrawer promoting the carbonyl reaction with water. However, GC-MS analyses did not show products of the reaction of FFCA with AAO, in agreement with the lack of H$_2$O$_2$ release when the reaction was followed using the peroxidase-coupled assay. Both the comparatively low hydration degree, 8% estimated by $^1$H-NMR, and the
deactivating effect of the carboxyl group in hydride transfer to flavin could be responsible for the lack of AAO activity on FFCA. In the case of DFF, oxidation to FFCA can take place at the C-5 carbonyl formed during AAO oxidation of HMF without substrate reaccommodation or exit from the active site, as discussed above. However, FFCA oxidation to FDCA must be produced at the C-2 position, and most probably requires exit and new entrance of the substrate to adopt the catalytically relevant position, a process that will be complicated by the bulky nature of the carbonyl group, making more difficult the third oxidation step by AAO.

However, some FDCA was always detected by GC-MS when HMF, or even DFF, were incubated with AAO. Since AAO releases H$_2$O$_2$, we hypothesized that it might chemically oxidize the aldehyde group of FFCA to some extent (Hanke 2012), which was in fact proven by an appropriate experiment with FFCA and a higher amount of H$_2$O$_2$. In conclusion, it is possible to state that AAO catalytically oxidizes HMF to FFCA and, indirectly, may oxidize some FFCA yielding FDCA.

### 7.2.3. Oxidase/peroxygenase cascade for HMF conversion into FDCA

Even though the oxidative biotransformation of HMF into FFCA by AAO (via DFF) has been a good achievement, we were interested in the biocatalytic synthesis of FDCA because of its potential as precursor of renewable polyesters (Bozell and Petersen 2010). That was the reason why we introduced a second enzyme, the UPO from the basidiomycete *A. aegerita* (Ullrich et al. 2004) to complete the enzymatic conversion of HMF. Owing to the wide range of reactions catalyzed by UPO, we started by elucidating the oxidative pathway the enzyme was using in HMF oxidation. We observed that it preferentially catalyzed the oxidation of the aldehyde group of HMF producing HMFCA, which was opposite to what AAO was doing when oxidizing the hydroxyl group to yield DFF. Then, the reaction proceeded up to FDCA, although the conversion was rather inefficient, since UPO activity towards FFCA was much lower compared to HMF. Although oxidation of HMF and related compounds was not previously described for a basidiomycete UPO, similar reactions were reported for another member of the heme-thiolate peroxidase superfamily, chloroperoxidase (CPO, EC 1.11.1.10) of the ascomycete *Caldariomyces fumago*, albeit in the presence of high enzyme doses (van Deurzen et al. 1997).

The simultaneous action of AAO and UPO on HMF did not result in its substantial conversion into FDCA, most probably because the H$_2$O$_2$ generated by the AAO oxidation of HMF to DFF was immediately used by UPO to oxidize the same compound (HMF) to HMFCA. According to the reactions described above, this proceeded in such a way that a mixture of HMFCA and FFCA was finally obtained. However, the addition of UPO when most HMF had already been transformed into FFCA resulted in the almost complete conversion of HMF into FDCA due to FFCA oxidation by UPO (in a long-term reaction) using the H$_2$O$_2$
excess provided by AAO. This enzymatic cascade, whose two initial steps are the AAO-catalyzed oxidation of HMF and DFF (gem-diol form) with the concomitant reduction of two O₂ to two H₂O₂, followed by a third step catalyzed by UPO, which resulted in the oxidation of predominantly unhydrated FFCA at expenses of the previously formed H₂O₂, is illustrated in Figure 7.7.

Figure 7.7. Scheme for enzymatic conversion of HMF into FDCA in a cosubstrate-free reaction cascade involving P. eryngii AAO and A. aegerita UPO. HMF (1) is oxidized by AAO to DFF (2), whose hydrated (gem-diol) form (2') undergoes a second AAO oxidation yielding FFCA (3). The H₂O₂ formed during AAO reduction of O₂ enables UPO to convert unhydrated FFCA (3) into FDCA (4), with H₂O as the only by-product. The low amount of hydrated FFCA (3') results in the inability of AAO to catalyze the last step in the reaction cascade, which is successfully catalyzed by UPO.

7.2.4. Final remarks

The present findings describing AAO-catalyzed oxidation of the hydroxymethyl and carbonyl substituents of the HMF furan ring expand our knowledge of the range of alcohols and aldehydes that this flavoenzyme is able to oxidize. Thus, it attacks the benzylic position of substituted aromatic heterocycles (such as HMF and DFF) in the same way as the respective position in the substituted aromatic carbocycles previously considered to be typical AAO substrates. The newly
identified activities of fungal AAO are similar to those of a bacterial HMF oxidase recently described in a *Methylovorus* species that appears to be involved in a HMF degradation pathway. More importantly, although the use of AAO for HMF conversion into FDCA is covered by one patent, which also describes use of chloroperoxidase, albeit with very modest FDCA yields in all cases, this is the first time that full enzymatic conversion of HMF into FDCA has been reported using a reaction cascade in which the $\text{H}_2\text{O}_2$ generated by AAO during oxidative transformation of HMF into FFCA is used by a peroxygenase to catalyze conversion of the latter compound into FDCA.

Discussion
Chapter 8

The present Thesis contains several studies on different aspects of GMC oxidoreductases, focusing on AAO from *P. eryngii* as a representative of the superfamily:

Firstly, a genomic screening was conducted in search for gene sequences encoding for members of six families belonging to the GMC oxidoreductase superfamily that, besides, are related to lignocellulose decay (Chapter 2). Ten genomes were selected from basidiomycetous fungi from the order Polyporales, which are known for being the only organisms capable of completely mineralizing lignin. The importance of these enzymes was evidenced by the high numbers of sequences (95) present in the genomes of these fungi. These studies allowed outlining the possible roles of these enzymes in the different modalities of lignocellulose decay and to relate the co-evolution of the GMC oxidoreductases — as auxiliary enzymes — and the agents of this process.

Secondly, several studies were carried out to gain insight into the catalytic mechanism and the structure-function relationships in the GMC enzymes. One relevant representative of the superfamily was chosen as a model, AAO from the basidiomycetous fungus *Pleurotus eryngii*, which had already been extensively characterized. Nonetheless, the results present in this work shed light on different aspects that had not been studied in previous works.

Such is the case of the temperature dependence of the hydride transfer from the substrate to the enzyme’s cofactor during the reduction of AAO and its involvement in the quantum-mechanical effect known as tunneling (Chapter 5). This effect, nowadays considered to be involved in all hydrogen (hydride or proton comprised) transfer reactions, allows the particle to be transferred under the theoretical energy barrier for the reaction. Kinetic data confirmed the involvement of tunneling in the hydride transfer that takes place during the reductive half-reaction of the enzyme from the α carbon of the substrate to flavin N5. Moreover, kinetics revealed that the enzyme-substrate complex was formed in such an organized configuration that permitted the hydride transfer with the only assistance of thermally-activated motions of the side chains of active-site residues known as gating. The resolution of a crystallographic structure of AAO in complex with an enzyme’s inhibitor, *p*-anisic acid, reinforced this hypothesis as very little differences between the structures of the enzyme alone and complexed were found. Furthermore, the distances measured from the inhibitor’s α carbon to flavin N5 are such that allow tunneling to occur.

The role of Phe397, a residue located in a loop unique to the AAO family and which forms, along with other aromatic residues, a bottleneck that separates the catalytic pocket from the outer environment, was elucidated (Chapter 4). Kinetic results suggested that, in contrast to what happens to native enzyme, neither the reductive half-reaction nor the reoxidative one is the rate-limiting step in several Phe397-mutated variants. Additional studies on the formation and dissociation of the enzyme-inhibitor complex suggested that Phe397 is involved
in the product release from the catalytic pocket. Besides, the reoxidation pattern is altered if Phe397 is substituted by a non-aromatic residue, pointing towards the role of aromaticity in facilitating reactivity with \( \text{O}_2 \).

The knowledge on the mechanism of AAO’s reoxidation and the concomitant \( \text{O}_2 \) reduction to \( \text{H}_2\text{O}_2 \) was complemented by kinetic isotope effects estimated by stopped-flow spectroscopy. These allowed the elucidation of the origin of the particles transferred to \( \text{O}_2 \) — one electron, one hydrogen atom and one proton— (Chapter 6). Studies revealed that, apart from the initial and obligate one-electron transfer from flavin N5 to \( \text{O}_2 \), the other two particles were transferred in a non-concerted manner, that is, in two separate chemical steps, required for the reduction of \( \text{O}_2 \) by AAO. Moreover, the combined effect of high pH and use of deuterated solvents revealed the solvent isotope effect that permitted to conclude that the proton transferred originates from a solvent exchangeable site. The exchange of the particle bound to the reduced flavin N5 locus was also unveiled and the exchange rate estimated.

Finally, the applicability of GMC oxidoreductases in biotechnological processes was tested for the laboratory-scale production of FDCA from the renewable, plant-biomass-derived, chemical HMF (Chapter 7). In this case, AAO proved to be a good catalyst involved in the chemical pathway of interest that, in addition to oxidizing the substrate and some partially oxidized derivatives, produced \( \text{H}_2\text{O}_2 \). This latter feature was exploited for the catalysis of reactions that AAO was not able to carry out by the addition of an UPO able to catalyze them at expenses of the \( \text{H}_2\text{O}_2 \) previously formed by AAO.

### 8.1. Wealth of GMC genes and their biotechnological potential.

The identification of 95 putative GMC oxidoreductases belonging to 5 different families in the 10 Polyporales genomes described in Chapter 3 (Ferreira et al. 2015a) gives a hint about the enormous number of different GMC enzymes involved in lignocelluloses degradation that may exist in nature. Taking these results into account, it can be deduced that ligninolytic fungi possess a great number of genes whose proteins might be exploited for biotechnological purposes, similarly to the results obtained from the applications of AAO presented in Chapter 7.

In general, ligninolytic enzymes share features that make them suitable for biotechnological applications: i) the wide range of substrates they can act on, and ii) the possibility of creating enzymatic cascades taking advantage of their synergistic natural roles.

On the one hand, given the amorphous and variable chemical structure of lignocellulose, fungi have developed an immense repertoire of different enzymes capable of mineralizing or, at least, modifying it (Gupta et al. 2016). On the other, the chemical characteristics of lignocellulososes have forced the enzymatic
extracellular oxidative systems of these fungi to be unspecific and, thus, very promiscuous (Kersten and Cullen 2007).

In Chapter 1, a plethora of several different AAO substrates is listed. They act as electron donors for AAO to reduce O\textsubscript{2} for the production of H\textsubscript{2}O\textsubscript{2} for ligninolytic peroxidases and can originate from the fungal secondary metabolism, as the p-methoxybenzyl alcohol, or be products of the lignocellulose degradation, like the veratryl alcohol (Ruiz-Dueñas and Martínez 2009). In this work, the biotechnological applicability of one GMC oxidase, AAO, as well as its ever-growing substrate range, are made evident by the discovery of several new AAO substrates—HMF and DFF—that derive from the hydrolysis of the hydrocarbons forming the secondary cell wall (Chapter 7).

The physiological roles of the GMC oxidoreductases involved in lignocellulose degradation are, in general, and as explained in Chapter 3, related to the H\textsubscript{2}O\textsubscript{2} production for peroxidases or Fenton reaction (Ferreira et al. 2015a). Taking AAO as an example, its role is to establish a redox recycling in which intracellular NAPD-dependent dehydrogenases are involved, to generate a continuous supply of H\textsubscript{2}O\textsubscript{2} at the expenses of the fungus that is feeding on the carbohydrates released from the lignocellulose degradation (Guillén et al. 1994; Guillén and Evans 1994). The produced H\textsubscript{2}O\textsubscript{2} fuels high redox potential peroxidases that oxidize lignin.

In the present thesis, advantage was taken of this ability to create an enzymatic cascade that is based on the production of H\textsubscript{2}O\textsubscript{2} concomitantly to the obtention of chemicals of interest. Chapter 7 is an example of this, since AAO was used, along with a H\textsubscript{2}O\textsubscript{2}-dependent enzyme, UPO, to carry out reactions of industrial interest. As explained, not only were their activities on the different intermediates of the chemical pathway complementary, but also the ability of UPO to consume the by-product generated by AAO. In this way, a self-sufficient enzymatic cascade was developed, thanks to the in situ H\textsubscript{2}O\textsubscript{2} generation.

Even if the appropriate biocatalysts are selected from the pool of different sequences nowadays at our disposal, additional tools do exist that permit the improvement of their abilities to act on specific substrates. Protein engineering is an ever-growing field that allows us to either mutate specific residues in the enzyme to obtain variants or to artificially evolve our enzymes towards a given activity.

Rational design of enzymes is a biotechnological approach that has had good results in ligninolytic enzymes, such as the improvement of the stability of versatile peroxidase (VP) towards H\textsubscript{2}O\textsubscript{2} (Sáez-Jiménez et al. 2015) or the engineering of the heme pocket to improve the asymmetric sulfoxidations by a dye-decolorizing peroxidase (DyP) (Linde et al. 2016). Regarding the GMC oxidoreductases, they have also been engineered to create better variants for specific purposes. That is the case of AAO from P. eryngii, which was mutated in order to make more room available for secondary alcohols to fit in its active site.
and, thus, improve their oxidation (Hernández-Ortega et al. 2012b). Chapters 4 and 5 demonstrate the ease of these techniques, although the mutants created in this work aimed at unveiling the catalytic properties of the enzymes. The use of computational methods for this purpose may act as guide, as it was shown by the collaborations to create mutated variants of AAO, in which these studies complemented the experimental findings (Hernández-Ortega et al. 2011b; 2011a; 2012c).

There exists also the possibility of mutating a given enzyme towards a specific task. This is known as directed evolution and is based on creating variability in a sequence and screening for a determined activity. AAO has been subjected to these approaches for its improved expression in a determined heterologous host (Viña-González et al. 2015a; 2015b). Apart from these findings with AAO, other ligninolytic enzymes, such as laccases (Pardo et al. 2016; Pardo and Camarero 2015) or the unspecific peroxygenase employed in Chapter 7 (Alcalde et al. 2015; Molina-Espeja et al. 2014; 2015) have been evolved towards different activities.

Therefore, with all the above tools at our disposal, the current availability of sequences thanks to the modern sequencing techniques is a great starting point for the selection of biocatalysts for industry.

8.2. Elucidation of the catalytic mechanisms to obtain better biocatalysts.

A significant part of this thesis is devoted to unveiling the catalytic mechanism and its relation to the structure of AAO from P. eryngii as a model enzyme of the GMC superfamily. The structure-function studies as those described in Chapters 4, 5 and 6 are crucial for the understanding of the biocatalysts’ mode of action and may help the development of more robust and efficient ones.

The catalytic mechanism of AAO had been extensively investigated (Ferreira et al. 2009; 2015b; Hernández-Ortega et al. 2011b; 2011a; 2012c; 2012b) and reviewed (Carro et al. 2016; Hernández-Ortega et al. 2012a). However, the three above-mentioned chapters shed additional light into the mechanistics of AAO reduction and reoxidation.

Identification of the specific residues responsible for the catalysis of the enzyme is of great importance because they can be mutated in order to obtain a better activity for a purpose, as already discussed in the precedent section. Chapter 4 deals with the role of Phe397 in AAO catalysis. Its involvement may be important, for instance, to overcome the inability to access the AAO active site that FFCA displays. This kind of studies may help determine which changes must be introduced in a protein to make it a better biocatalyst, or to gain a specific activity.

Other kinetic studies shed light on the involvement of the O$_2$ concentration in AAO catalysis. As revealed by the bi-substrate kinetics carried out in Chapters 4
and 5, AAO is not saturated at an atmospheric O₂ pressure. Therefore, improvement of the aeration of enzymatic reactions might lead to increase in the efficiency of the reactions of these GMC enzymes as biocatalysts.

### 8.3. Reoxidation of native AAO and mutated variants

For the first time, the estimation of kinetic isotope effects in transient-state kinetics permitted the elucidation of the mechanism of the reoxidative half-reaction of AAO. The use of a double-mixing stopped-flow system turned out to be essential for their estimation, since, as detailed in Chapter 6, the tag (deuterated or protiated) on flavin N5 is washed out by the atoms present in the solvent relatively quickly. Therefore, the use of single mixing techniques, which require the enzyme to be reduced prior to the actual experiment, may mask the contributions of the deuterated solvent or substrate.

Therefore, the double-mixing experiments established that the origin of the hydrogen atom transferred to superoxide radical after the formation of the so-called caged radical pair by the transfer of the initial electron from FAD to O₂, was the N5 of the flavin itself. Moreover, the solvent isotope effect that was made evident at high pHs permitted to conclude that the origin of the proton transferred was a solvent exchangeable site, most probably, the proton abstracted by the catalytic His502 during the reduction of the enzyme. Besides, the fact that these two effects are independent and, thus, the multiple effect is similar to the substrate isotope effect, revealed that these transfers are not concerted.

In spite of their independence, they cannot be separated spectroscopically, as they proved to be detected as the same phase in the stopped-flow apparatus. However, transient-state studies of the reoxidation of two Phe397-mutated variants, F397A and F397L, revealed the existence of two separate, and relevant, phases, both linearly dependent on O₂ concentration (Chapter 4). This was in opposition to the second phases reported for other variants, native included, which seemed not to be catalytically relevant. Although their origin has not yet been elucidated, they could represent the two transfers (hydrogen and proton) that take place during O₂ reduction. Future transient-state experiments of these variants’ reoxidation using the double mixing mode will shed light on this aspect.

### 8.4. Rate-limiting steps in AAO catalysis

As already explained, the reaction of AAO is stereoselective, which would allow the use of the enzyme to create enantiomerically pure compounds from racemic mixtures (Chapter 1). AAO, in fact, abstracts the pro-R hydrogen bound to the α carbon of the alcohol substrate to be transferred to the flavin N5 in the form of a hydride (Hernández-Ortega et al. 2012b). The stereoselectivity of the enzyme has not been inverted through any of the mutations introduced in its active site. Other flavoenzymes as the vanillyl alcohol oxidase, had their stereoselectivity altered due to changes in the active site that disrupted the whole configuration of the active site (van den Heuvel et al. 2000).
The importance of this atom in AAO catalysis is great since it limits the reactions of both the half-reactions of the native enzyme. As explained in Chapter 5, the transfer of the pro-\(R\) hydrogen as a hydride to reduce flavin with the involvement of the mechno-quantical effect known as tunneling constitutes the main bottleneck of the catalytic cycle. This is reflected in the same values found for \(k_{\text{cat}}\) and \(k_{\text{red}}\) in most of the variants. Moreover, the kinetic isotope effects on the \(appk_{\text{ox}}\) for the native enzyme demonstrated that the transfer of the hydrogen atom bound to flavin N5 (which originated from the substrate) is the rate-limiting step of the reoxidation (Chapter 6).

Nevertheless, two mutated variants, F397Y and F397W, did not follow the same pattern as the native enzyme and showed that, in their catalytic cycles, the hydride transfer was not the rate-limiting step (Chapter 4). \(k_{\text{cat}}\) and \(k_{\text{red}}\) values were not of the same range, being \(k_{\text{cat}}\) lower than \(k_{\text{red}}\), indicating that another step limited the reaction. In the same manner, the estimated \(appk_{\text{ox}}\) for these mutants were similar to that of the native enzyme, ruling out the contribution of this process to limiting the catalysis. Therefore, it was concluded that the product release, a step that is englobed in the \(k_{\text{cat}}\) value, was the rate-limiting step.

### 8.5. New AAO substrates

In the light of the results described in Chapter 7, several new AAO substrates have been found: HMF and DFF. The molecules that have proved to be substrates of the enzyme, as it can be seen in Chapter 1, were mainly aromatic conjugated alcohols or aldehydes, or aliphatic unsaturated alcohols, such as hexadienol (Ferreira et al. 2005). In general terms, AAO proved to have more activity on alcohols than on their aldehyde counterparts (Ferreira et al. 2010). However, this was not the case for HMF and DFF, since AAO demonstrated to have the same activity on both of them. This is due to the fact that AAO has activity on the gem-diol forms of aldehydes that arise as a consequence of the hydration of the carbonyl group. Such reactions are promoted by the presence of electron withdrawing substituents on the ring. The carbonyl group in HMF acts as an electron withdrawing group and, thus, fosters the hydration of DFF molecule to produce a diol as the more abundant form of the carbonyl-diol pair (Chapter 7). In contrast, the presence of such substituents impairs the AAO reactivity with alcohols. This is the reason why AAO shows a similar activity on HMF and DFF.

All in all, these new aromatic compounds, although they exhibit a furanic ring instead of the benzenic ring found for the majority of AAO substrates, are benzylic alcohols whose oxidation is catalyzed by AAO.
Conclusions
Conclusions

1. In wood-rotting Polyporales GMC oxidases constitute a source of $\text{H}_2\text{O}_2$ that contributes: i) to white-rot decay as the oxidizing substrate of ligninolytic peroxidases, and ii) to brown-rot decay oxidizing ferrous iron with generation of hydroxyl free radical involved in cellulose degradation.

2. The most numerous genes of GMC oxidases in the Polyporales genomes are AAO and MOX genes, but they are differently represented: AAO is virtually absent from brown-rot fungi, while MOX is more abundant since it uses as a substrate the product from lignin demethoxylation characterizing brown-rot decay.

3. The catalytic mechanism of AAO, as a model oxidase in white-rot decay, is based on the transfer of a $\text{H}^-$ from the alcohol pro-$R$ position to the flavin N5 through a *tunneling* mechanism that characterizes the reductive half-reaction of the enzyme.

4. The active site of AAO has evolved in such a way that it can accommodate the substrate in a tunneling-ready position enabling the $\text{H}^-$ transfer thanks to the temperature-dependent active dynamics, as revealed by kinetic and crystallographic data.

5. Phe397, located in a loop at the entrance of AAO’s active site, plays a role in helping the product of the reaction exit the cavity, at the same time that it affects FAD reoxidation by compressing the enzyme’s catalytic pocket.
6. Reduction of O\textsubscript{2} to H\textsubscript{2}O\textsubscript{2} during AAO reoxidation implies the transfers of one H atom from the flavin N\textsubscript{5} of the enzyme and one H\textsuperscript{+} originating from the solvent or a solvent exchangeable site in two separate chemical steps, besides to an obligate initial electron transfer.

7. In addition to its contribution to natural degradation of lignin, enabling carbon recycling in land ecosystems, AAO is also an enzyme of biotechnological interest.

8. Almost full conversion of the renewable platform chemical HMF into the bioplastic precursor FDCA can be attained thanks to an enzymatic cascade established between AAO and UPO, which relies on their concerted action on the intermediates of the reaction and their synergistic production/consumption of H\textsubscript{2}O\textsubscript{2}.
Annexes
Annex 1. JGI ([www.jgi.doe.gov](http://www.jgi.doe.gov)) references (protein ID #) for the 95 GMC genes (plus 5 alleles) identified in the genomes of ten wood-rotting Polyporales (for species abbreviations see Table 3.1; the existence of alleles and recognized signal peptides is indicated, see notes below)

--White-rot-----------------Brown-rot-----

<table>
<thead>
<tr>
<th>BJE AD</th>
<th>PHL BR</th>
<th>PHA CH</th>
<th>DIC SQ</th>
<th>GANS P</th>
<th>TRAVE</th>
<th>GEL SU</th>
<th>FOM PI</th>
<th>RHO PL</th>
<th>WOL CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>52991</td>
<td>66377</td>
<td>71431</td>
<td>114902</td>
<td>114954</td>
<td>156054</td>
<td>171002</td>
<td>171059</td>
<td>183896</td>
<td>245049</td>
</tr>
<tr>
<td>135972</td>
<td>164178</td>
<td>37188</td>
<td>6199</td>
<td>96414</td>
<td>102587</td>
<td>103879</td>
<td>86071</td>
<td>160139</td>
<td>160546</td>
</tr>
<tr>
<td>14752</td>
<td>182736</td>
<td>67648</td>
<td>67654</td>
<td>85135</td>
<td>117498</td>
<td>124428</td>
<td>130042</td>
<td>138009</td>
<td></td>
</tr>
<tr>
<td>171002</td>
<td>171059</td>
<td>183896</td>
<td>245049</td>
<td>245297</td>
<td>22550</td>
<td>30547</td>
<td>31138</td>
<td>31987</td>
<td></td>
</tr>
<tr>
<td>40237</td>
<td>176148</td>
<td>133945</td>
<td>117387</td>
<td>118493</td>
<td>137959</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84544</td>
<td>171059</td>
<td>171002</td>
<td>171059</td>
<td>183896</td>
<td>245049</td>
<td>245297</td>
<td>22550</td>
<td>30547</td>
<td>31138</td>
</tr>
<tr>
<td>40728</td>
<td>44654</td>
<td>54008</td>
<td>55496</td>
<td>58266</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34705</td>
<td>45314</td>
<td>143000</td>
<td>227734</td>
<td>241975</td>
<td>27956</td>
<td>29466</td>
<td>128210</td>
<td>128980</td>
<td>157963</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5574</td>
<td>6010</td>
<td>126879</td>
<td>149587</td>
<td>157363</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14505</td>
<td>116436</td>
<td>116439</td>
<td>130292</td>
<td>144610</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167157</td>
<td>170473</td>
<td>43286</td>
<td>80773</td>
<td>90445</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127556</td>
<td>129478</td>
<td>156775</td>
<td>118723</td>
<td>126217</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129158</td>
<td>129841</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114505</td>
<td>116436</td>
<td>116439</td>
<td>130292</td>
<td>144610</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167157</td>
<td>170473</td>
<td>43286</td>
<td>80773</td>
<td>90445</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127556</td>
<td>129478</td>
<td>156775</td>
<td>118723</td>
<td>126217</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129158</td>
<td>129841</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>131961</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45135</td>
<td>160653</td>
<td>11098</td>
<td>153749</td>
<td>86428</td>
<td>73596</td>
<td>84792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34622</td>
<td>123747</td>
<td>137275</td>
<td>174721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* RHOPL_129841, RHOPL_126217 and RHOPL_56055 are allelic variants of MOX RHOPL_118723, RHOPL_129158 and RHOPL_55972, respectively; while RHOPL_44654 and RHOPL_58266 were considered as variants of AAO RHOPL_55496. * The protein models including a recognized signal peptide are underlined.
Annex 2. Sequence logo of the ADP-binding motif (A), with consensus sequence [DP]-x-[VIL]-[VI]-x-G-x-G-x(2)-[GA]-x(3)-A-x-[RKT]-L-x(7)-[VT]-x(2)-[LIV]-E-x-G, and GMC signatures 1 (B) and 2 (C), with consensus sequences [GA]-[RKNC]-x-[LIVW]-G(2)-[GST](2)-x-[LIVM]-[NH]-x(3)-[FYWA]-x(2)-[PAG]-x(5)-[DNESHQA] and [GS]-[PSTA]-x(2)-[ST]-[PS]-x-[LIVM](2)-x(2)-S-G-[LIVM]-G respectively, in 95 GMC sequences (TABLE SI) from 10 Polyporales genomes. The overall height of each stack represents the sequence conservation at that position, and the height of each letter reflects the relative frequency of the corresponding amino acid. Residues in A, B and C correspond to positions 2-33, 73-100 and 264-283, respectively in B. adusta AAO (JGI protein ID 245059), and equivalent positions in the other GMCs.
**Annex 3.** Supplemental results describing MS identification of products from HMF conversion into FDCA

All identified compounds in the AAO and UPO reactions with HMF and its partially-oxidized derivatives co-eluted and shared their mass spectra with standards. They include FFCA and FDCA from HMF conversion by successive addition of AAO and UPO, as well as DFF detected as traces in AAO reactions with HMF, and HMFCA resulting from UPO conversion of HMF. All of them showed several ions characteristic of the fragmentation patterns that these molecules undergo upon ionization, as detailed below.

The spectrum of TMSi-HMF showed a small molecular peak ($m/z$ 198), as it normally occurs when ionizing TMSi cyclic alcohols. Its base peak ($m/z$ 183) corresponds to the ion [M-CH$_3$]$^+$, $m/z$ 169 to [M-COH]$^+$, and $m/z$ 109 is the ion [M-OTMSi]$^+$, which rises from the loss of 89 units characteristic of silylated compounds. The ion $m/z$ 73 corresponds to the TMSi group. The spectrum of TMSi-FFCA has a small molecular peak ($m/z$ 212), the ion $m/z$ 197 corresponds to [M-CH$_3$]$^+$, and $m/z$ 123 to [M-OTMSi]$^+$. The spectrum of TMSi-FDCA shows the small molecular peak ($m/z$ 300), the ion [M-CH$_3$]$^+$ at $m/z$ 285 and ions $m/z$ 73 and 147 that suggest that it is silylated at both carboxylic groups.

The spectrum of DFF is simpler since the molecule cannot be silylated. It shows a small molecular peak at $m/z$ 124, $m/z$ 95 corresponds to the ion [M-CH$_3$]$^+$, and $m/z$ 67 is [M-2CHO]$^+$. Finally, the spectrum of TMSi-HMFCA is more complex due to the fact that it gets silylated at two positions (hydroxyl and carboxyl groups). As in the former compounds, the molecular peak ($m/z$ 286) is small. It possesses other ions, such as [M-CH$_3$]$^+$ at $m/z$ 271, [M-OTMSi]$^+$ at $m/z$ 197, and [M-COOTMSi]$^+$ at $m/z$ 169. Both peaks at $m/z$ 73 and 147 indicate that this compound bears at least two TMSi groups.
Ballance DJ (1986) Sequences important for gene expression in filamentous fungi. Yeast 2:229-236
Basran J, Masgrau L, Sutcliffe Mf, Scrutton NS (2006) Solution and computational studies of kinetic isotope effects in flavoprotein and quinoprotein catalyzed substrate
Bibliography


Bibliography


genomics of *Ceriporiopisis subvermispora* and *Phanerochaete chrysosporium* provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109:5458-5463


Guillén F, Martínez AT, Martínez MJ (1992b) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus *Pleurotus eryngii*. Eur J Biochem 209:603-611


Bibliography


Iida K, Cox-Foster DL, Yang XL, Ko WY, Cavener DR (2007) Expansion and evolution of insect GMC oxidoreductases. BMC Evolutionary Biology 7:75


Bibliography


Mattevi A (2006) To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31:276-283


Bibliography


157
158


Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13:754-793


Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol 2:164-177


Bibliography


Schmidhalter DR, Canevascini G (1993) Isolation and characterization of the cellubiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) Karst. Arch Biochem Biophys 300:559-563


Syed K, Nelson DR, Riley R, Yadav JS (2013) Genome-wide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the Polyporelae species
Bibliography

_Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora._ Mycologia 105:1445-1455


Bibliography


Wierenga RK, Drenth J, Schulz GE (1983) Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD - as well as NADPH-binding domains of glutathione reductase. J Mol Biol 167:725-739


161
Wood JD, Wood PM (1992) Evidence that cellobiose-quinone oxidoreductase from *Phanerochaete chrysosporium* is a breakdown product of cellobiose oxidase. Biochim Biophys Acta 1119:90-96


