Understanding people through their pottery

Proceedings of the 7th European Meeting on Ancient Ceramics (EMAC’03)

October 27-31, 2003 – Instituto Tecnológico e Nuclear, Lisbon, Portugal
TRABALHOS DE ARQUEOLOGIA: 42
COORDENAÇÃO EDITORIAL
António Marques de Faria

DESIGN GRÁFICO
www.bvmdesigners.pt

PRÉ-IMPRESSÃO E IMPRESSÃO
Tipografia Peres, S.A.

TIRAGEM
300 exemplares

DEPÓSITO LEGAL 22638/05

ISSN 0871-2581
ISBN 972-8662-25-4

Instituto Português de Arqueologia
LISBOA
2005

O Instituto Português de Arqueologia respeita os originais dos textos que lhe são enviados pelos autores, não sendo, assim, responsável pelas opiniões expressas nos mesmos, bem como por eventual plágios, cópias, ou quaisquer outros elementos que de alguma forma possam prejudicar terceiros.

Apoios:

FCT Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA CIÊNCIA E DO ENSINO SUPERIOR

IPA INSTITUTO PORTUGUÊS DE ARQUEOLOGIA

FUNDAÇÃO CALOISTE GOLDSCHMIDT

Metropolitano de Lisboa
CONTENTS

Preface
M. Isabel Prudêncio • M. Isabel Dias • J. C. Waerenborgh

11

Palissy ceramics: elemental analysis and origin of clays
A. Bouquillon • J. Castaing • F. Ravoire • O. Lecomte

19

Pedregales: a coarse ware workshop of Celtiberian tradition
at the Roman town of Clunia (Peñalba de Castro, Burgos, Spain)
J. Buxeda Garrigós • J. García-Irañez • F. Tuset Bertran

Bell Beaker relationships along the Atlantic coast
J. L. Cardoso • G. Querre • L. Salanova

Physical and chemical characterization of ceramic wall tiles,
dated to the 17th century, from the “Convento de Cristo”
in Tomar, Portugal
J. Coroadó • C. Gomes

Pottery production technology throughout the
third millennium BC on a local settlement network
in Fornos de Algodres, central Portugal
M. I. Dias • A. C. Valera • M. I. Prudêncio

Ceramic production in Monte da Pata I and Castelo das Juntas
Late Iron Age sites (Guadiana Basin, southern Portugal):
some archaeometric results
M. I. Dias • J. Albergaria • A. Jorge • A. C. Ramos • S. Melro • M. I. Prudêncio • F. Rocha

Some ethnoarchaeological possibilities in the pottery
technology investigations
B. V. Djordjevic

Technical analysis of earth ovens from Nieder Mörlen
M. Eiland • J. Lüning • Q. Williams

71
Contributions of ceramic debris to the chronology of restoration works at water conduits of the Roman aqueduct of Carthage
M. O. Figueiredo T. Pereira da Silva J. P. Veiga J. Giralt A. Alvarez

Pottery production in Late Neolithic cult sites of Santa Barbara and Cala Scizzo (Apulia, southeast Italy)
A. Geniola R. Laviano I. M. Muntoni

Analysis of incrusted pottery from Vörs, southwest Hungary

Technological investigation of early Neolithic pottery from Vörs, southwest Hungary
K. Gherdán K. T. Biró Gy. Szakmány M. Tóth

Ceramics, style and exchange in the Early Neolithic Upper Mondego Basin: a technological approach
A. Jorge P. M. Day A. C. Valera M. I. Dias M. I. Prudêncio

Food and drink in the Roman world
A. Martin

Ceramic materials in fire assay practices: a case study from 16th-century laboratory equipment
M. Martinón-Torres Th. Rehren

The origin of Aegean-like pottery from western Negev and northern Sinai by Neutron Activation Analysis
H. Mommsen A. Schwedt E. D. Oren

The “non vitrifiable red slip” ware found in Braga (northwest of Portugal): a mineralogical and chemical characterization
F. Oliveira M. A. Sequeira Braga M. I. Prudêncio M. Delgado M. A. Gouveia
Provenance studies of early mediaeval fast wheel pottery from Pliska, Bulgaria
V. P. Vasileva • G. Brey

Preliminary results of provenance analyses on Early Iron Age knobbed ware from Troia, Thrace and the Balkans
F. Pintér • M. Satir

Provenance of common wares from the Roman villae at São Cucufate (Beja) and Tourega (Évora) in Portugal
I. Vaz Pinto • A. Schmitt

Ceramic production in the northwestern Iberian Peninsula: studying the functional features of pottery by analysing organic material.
M. P. Prieto-Martínez • J. Juan Tresserras • J. C. Matamala

Amphorae in Sellium from the first to the fifth century AD: importation and regional production
M. I. Prudêncio • M. I. Dias • S. da Ponte

The discovery of European porcelain technology
C. M. Queiroz • S. Agathopoulos

Major and trace element characterization of Archaic and Roman pottery from Achaia, Greece
C. Rathosi • C. Katagas • P. Tsoli-Katagas

Nature and provenance of Montilier-Platzbünden Horgen pottery (3179-3118 calendar years BC, western Switzerland)
M. A. Rodot • R. Martineau • J. Bonvalot • G. Galetti

Studies of the southern Gaul sigillata ceramics: the workshops of La Graufesenque and Montans
Ph. Sciau • M. A. Languille • E. Dooryhee • Th. Martin • A. Vernhet
Imaging vegetal inclusions in porous clayey materials and ceramics, by impregnation with fluorescent polymers
C. Sestier R. Martineau E. Chenu A. Elias R. Goyadín E. Ladmiral

Chemical and physical characterization of fragments from ceramic jars called “formas de açúcar” exhumed in the town of Machico, Madeira Island
E. Sousa J. Silva C. Gomes

A study of ceramics from the Devesa do Rei site (Vedra, A Coruña, Spain)
M. Tabarés-Domínguez M. P. Prieto-Martínez

Amphora production in the pre-Roman Northeast of the Iberian Peninsula and evidence of trade with the Balearic Islands
E. Tsantini J. Buxeda i Garrigós M. Madrid Fernández J. M. Gurt i Esparraguera M. Miñarro i Casas

Ceramics culture: a real system and a source of historical information
Y. B. Tsetlin

Technical ceramics in early iron smelting: the role of ceramics in the early first millennium BC iron production at Tell Hammeh (az-Zarqa), Jordan
H. A. Veldhuijzen

Developing the linear modular OSL (LM - OSL) as a new tool for ceramic dating
A. Zink J. Castaing

Participants List
Ceramic production in the northwestern Iberian Peninsula: studying the functional features of pottery by analyzing organic material

M. P. PRIETO MARTÍNEZ, J. JUAN TRESERRAS, J. C. MATAMALA

ABSTRACT In this article we offer a preliminary interpretation of analytical results of organic material taken from pottery found in eleven sites in Galicia, in the northwestern Iberian Peninsula. The sites are from different chronological periods, ranging from the Late Neolithic until the Galaico-Roman period. We start with a short presentation of the contexts, then a summary of the ceramic materials, and finally present the results of the analyses. The ceramics were studied applying the theoretical and methodological concept of the Technological Operative Chain (Cobas and Prieto 2003). This is the first time that an investigation project of this type and scope has been carried out in Galicia.

1. Introduction

Our main objective is to characterise the ceramics and their specific or functional uses over a lengthy period of time (from the Neolithic until the Galaico-Roman period), making use of available information: contextual knowledge (descriptions of the sites), formal knowledge (the production process used) and analytical information (results from the analyses of organic materials).

We are in the process of studying the ceramic materials by applying the theoretical and methodological concept of the Technological Operative Chain (Cobas and Prieto, 2003; Prieto, 2001, 2002). For this reason, the results of the analyses of organic material should be considered as a part of the stages of ceramic production, as a stage of use or disuse. By adding this information to the context of the vessels we may evaluate their function, and observe if there are any significant changes in terms of the consumption and transformation of foodstuffs from Late Prehistory until Roman times in Galicia.

In summary, the formal models — particularly ceramic styles — together with the production and consumption of foodstuffs, undergo transformations according to the patterns of rationality that governed the societies we are studying.

And so, the aim of this study is to include sites from different periods and a relatively large number of vessels from each period, and to bring this information together using a theoretical and methodological perspective (Landscape Archaeology and the Archaeology of Foodstuffs), although these are the first steps in a long-term investigation project.

We present the results from eleven sites with different uses and from different historical periods: from the Late Neolithic we have a barrow and a nearby area of activity; from the Early Bronze Age we have four sites (two megaliths, a cist and a settlement); from the
Late Bronze Age we have three sites (two settlements, and a ritual or domestic area); from the Late Iron Age we have only one site: a mine connected with a fortified settlement; and from the Roman period we have one, a Galaico-Roman rural site (Fig. 1).

TABLE 1
Study sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>Local Council</th>
<th>Province</th>
<th>Type of site</th>
<th>Cultural type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte de Os Escurros</td>
<td>Silleda</td>
<td>Pontevedra</td>
<td>Megalithic tumulus</td>
<td>Late Neolithic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area of activity</td>
<td>Late Neolithic</td>
</tr>
<tr>
<td>Forno dos Mouros</td>
<td>Toques</td>
<td>A Coruña</td>
<td>Megalithic dolmen</td>
<td>Early Bronze Age</td>
</tr>
<tr>
<td>San Cosme 3</td>
<td>Mos</td>
<td>Pontevedra</td>
<td>Megalithic tumulus</td>
<td>Early Bronze Age</td>
</tr>
<tr>
<td>A Forxa</td>
<td>Riós</td>
<td>Ourense</td>
<td>Funerary cist</td>
<td>Early Bronze Age</td>
</tr>
<tr>
<td>Devesa do Rei</td>
<td>Vedra</td>
<td>A Coruña</td>
<td>Open-air settlement</td>
<td>Bronze Age</td>
</tr>
<tr>
<td>Monte Buxel</td>
<td>Pazos de Borbén</td>
<td>Pontevedra</td>
<td>Settlement with ditches</td>
<td>Late Bronze Age</td>
</tr>
<tr>
<td>Carballeira do Espírito Santo</td>
<td>Silleda</td>
<td>Pontevedra</td>
<td>Village with ditches</td>
<td>Late Bronze Age</td>
</tr>
<tr>
<td>Mirás</td>
<td>Ames</td>
<td>A Coruña</td>
<td>Possible burial site</td>
<td>Late Bronze Age</td>
</tr>
<tr>
<td>O Petó</td>
<td>Vedra</td>
<td>A Coruña</td>
<td>Mine next to a hill fort</td>
<td>Change of era</td>
</tr>
<tr>
<td>Agro de Ouzande</td>
<td>Silleda</td>
<td>Pontevedra</td>
<td>Small rural settlement</td>
<td>Galaico-Roman</td>
</tr>
</tbody>
</table>

UNDERSTANDING PEOPLE THROUGH THEIR POTTERY

194
A total of ninety-nine analyses were carried out as part of the project on material from eighteen sites (fifty-five ceramic samples, thirty stone items and fourteen sediments). In this presentation we have selected sixty-two samples: fifty-two ceramic items and ten sediments.

We attempted to respect the following selection criteria for samples: (1) The appearance of visible organic remains on the piece, (2) Giving priority to sections most likely to conserve residues, such as the bottom of vessels or their inner walls, (3) Formal variety, attempting to sample both decorated and undecorated ceramics, (4) Giving priority to vessels that may be studied as complete items, as they offer more information than isolated fragments of pottery, (5) Contextual quality, giving preference to pieces from well-documented excavation contexts, (6) The deposits analysed are of interest as they may have been used as containers for foodstuffs.

Different techniques were used to analyse the contents, identify residues and to characterise microscopic residues, chemical and biochemical indicators: microscopic observation using binocular magnifiers, optical microscopes (Olympus BH2), and a scanning electron microscope with incorporated X-ray micro analyzer (EDS) (Hitachi S-23000 and Jeol JSM-840); biogeochemical analysis and the combined technique of gas chromatography/mass spectrometry (Hewlett Packard 5890 and Hewlett Packard 5970) (Jones et al., 1998; Juan Tresserras, 1997; Juan Tresserras et al., 1999; Maya et al., 1999). Work in experimental archaeology and the study of ethnographic materials played a decisive role in obtaining guide samples that have helped to characterise specific products in archaeological sites (Juan Tresserras, 1997).

It is important to note that the largest number of sites and samples are from the Bronze Age. From the samples as a whole, there is a higher percentage of "negative" rather than "positive" samples, although nearly all of the sites contain information; only two barrows failed to yield positive results.

2. Results

In the Late Neolithic (Fig. 2) the function of the ceramics appears to have been for the preservation and preparation of foodstuffs, implying the contents were held for a short time. The shapes and clays are similar, both in terms of the vessels analysed and the total number of sites. It is important to note that on one hand there is a formal similarity and functional diversity in the ceramics found and, on the other that it is the most remote period in Galicia for which indicators have been documented related to the processing of acorn flour and animal fats for food preservation.

In the Early Bronze Age (Fig. 2) we have found the largest number of indicators of organic material. It is the first time that we find the use of beer linked with simple and open vessels for ritual funerary consumption. It confirms the use of wheat as a foodstuff, and the processing of acorn flour from this period. Undecorated cup shapes are documented with different contents: honey/med, and flour from acorns and wheat. Here we observed a formal similarity and a functional variability.

The same contents of durum wheat have been found in vessels with formal variability: undecorated cups, bowls with bell-beaker decoration and incised bowls. In this case, we detected a possible functional similarity and a variable form. Milk-based products have been found in one bell-beaker vessel that is profusely decorated and is different from the rest of the group.
LATE NEOLITHIC
Monte de Os Escuros

This vessel has starch concentrations indicative of acorns, with some grains affected by grinding, probably as a result of grinding up acorns to make a rough kind of flour.

EARLY BRONZE AGE
Devesa do Rei

The vessels did not present any indicators of organic material.

The vessel contains fatty acids and cholesterol, meaning that it may have contained animal fat or possibly some type of product conserved in fat.

The vessels did not present any indicators of organic material.

The vessel contains fatty acids typical of milk products, and has been interpreted as a milk-based product.

This vessel has concentrations of starches some features of acorns (Quercus sp.), with some grains affected by grinding, and interpreted as containing rough acorn flour (Quercus sp.).

The vessel contained cerealic acid and pollen from heather (Erica sp.), Cistus (Cistaceae) and oaks (deciduous Quercus.), the same as fragment PZDEV03/5a135, which also featured frustules of diatomace that have been interpreted as honey or mead.

Vessels CADEV001 and CADEV003 have phytoliths and silica skeletons from the sheaths of cereals (Triticum aestivum/durum type) and starches (type Triticaceae). Furthermore, the vessel CADEV109 has cereal pollen that have been interpreted as durum wheat (Triticum aestivum/durum).

Forno dos Mouros
San Cosme 3
A Forxa

The vessels did not present any indicators of organic material.

In both, the indicators of organic material are similar: cereal, starches affected by malting and enzymatic attack, yeasts, cereal phytoliths, which has been interpreted as being beer.

Fig. 1—Reconstructed and analysed vessels and results of organic material analyses in the Late Neolithic and Early Bronze Age.

This means that Galician bell-beaker pottery may be said to have a degree of functional variability. In some cases, the decorated bell-beaker type is connected with wheat and milk products (in other parts of the Iberian Peninsula, it was found to have been used for beer); in other cases, undecorated bell-beaker pottery was found to have contained acorn flour. The four are basic dietary elements found in societies of this kind.

UNDERSTANDING PEOPLE THROUGH THEIR POTTERY
LATE BRONZE AGE

Monte Buxel

CAM/B02/027 (6.2 cm)
The vessels did not present any indicators of organic material.

CAM/B01/04 (8.7 cm)
The vessel contains fatty acids and cholesterol, interpreted as animal fat or a product that was possibly preserved in fat, with microcarbons found on the outside of the vessel.

Carballeira do Espírito Santo

CACE/C01 (6.1 cm)
The vessel did not present any indicators of organic material.

Mirás

CAM/B01/01 (17.5 cm)
The indicators of organic materials are sclereids, epidermal and parenchymatic tissue from leaves of Brassica sp., Brassicaceae, animal fat from mammals and microcarbons, and has been interpreted as possibly a stew made from turnip tops or cabbage with animal fat or meat.

LATE IRON AGE

O Peto

This vessel has oxalate, starches affected by malting and enzymatic attack, yeasts, cereal phytoliths (some silica skeletons of Hordeum sp. type) and is interpreted as beer.

ROMAN PERIOD

Agro de Ouzande

? CAM/A01/07 (15 cm)
The vessel contains residue from nettle (Urtica dioica) and fatty acids from land mammals, interpreted as perhaps being a stew stew.

CAM/A01/07 (15 cm)
The vessel contains cerotic acid and pollen from heather (Erica sp.), eurasia (Cistaceae), brassicaceae (Brassica sp.) and oaks (Quercus sp.)

? CAM/A01/07 (15 cm)
The vessel contains silified pericarp-type cells and silica skeletons of Panicum/Stellaria type, interpreted as flour made from seeds of millet / maize.

The only sediment that provided indicators of fragments of turnip seed coverings (Brassica sp.) and has been interpreted as turnip greens.

This vessel has sclereids, epidermal and parenchymatic tissue from leaves of Brassica sp., brassicaceae, mammalian animal fats and microcarbons, and has been interpreted as possibly being from a stew containing turnip greens or cabbage with animal meat or fat.

? CAM/A01/07 (8.4 cm)
The vessel had fatty acids typical of milk products and lactobacteria, and has been interpreted as a milk product.

FIG. 1 - Reconstructed and analysed vessels and results of organic material analyses in the Late Bronze Age, Iron Age and Roman Period.
It is also important to note that in the A Lagoa site indications were found of turnip tops or cabbage mixed with animal fat or meat having been contained in a large and undecorated vessel with rough finish. This is the oldest period for which this type of foodstuff has been documented in Galicia.

In the Late Bronze Age (Fig. 3) there are few samples with positive indicators, although they are highly varied. A connection may be seen between the sizes of the vessels and their contents: the largest was used for cooking stews with turnip tops or cabbage and animal fat or meat, and the medium-sized vessel for conserving an unknown product in animal fat. The alimentary indicators detected have revealed that some of the products known from previous periods were still consumed. It is also interesting to note that milk products were not only used as human foodstuffs, but also for coating food storage pits in villages.

In the Late Iron Age (Fig. 3), formal similarity may be seen in the vessels analysed, with only one having faint decorations, compared to their functional diversity, either for the processing or storage of beer, or for stews with turnip greens or cabbage with animal meat or fat. Unfortunately, the vessels made on a wheel that were analysed did not contain any indicators of organic material.

The Roman Period (Fig. 3) is the most informative site in terms of the sample analysed and results obtained, although unfortunately it was not possible to reconstruct many of the vessels analysed.

We can see a differential use of the vessels. On one hand, wheel-made ceramics, the only fine pottery documented at the site, for the consumption of milk-based products or derivatives, and a stew made with turnip tops. On the other, indigenous hand-made pottery, for use before preparing or serving foodstuffs. A nettle stew was documented, which had already been found in the Alto do Castro hillfort from the closing stages of the Iron Age. Certain products consumed in previous periods were still in use, such as honey and mead, milk-derived products and turnip tops. Although the use of millet flour has only been documented in this Roman site, we know that it was consumed throughout the peninsula since at least the Iron Age (Buxó, 1997). Also, the sediment found to be turnip seeds indicates that the dwellers of the site stored some foodstuffs for their own consumption.

3. Evaluation

This stage of interpretation is preliminary, as we do not have any samples from sites earlier than the Late Neolithic, and only a limited number of samples from other periods.

Here there are two issues worth noting: some of the products that became typical foodstuffs in Galicia first appeared in the Bronze Age, such as beer, honey/mead, durum wheat, milk-based products and turnip top stews. However, we imagine that some already formed part of the local diet in earlier periods. Some types of food are detected in Galicia for the first time at the end of the Hillfort Culture period, such as nettle stews and millet flour.

At methodological level, we may extrapolate the following consequences. Analysing the organic material makes it possible to discover what the vessels contained, but does not offer any direct information about their function. The formal characteristics may help to reveal what they were used for, or the processing stage of the foodstuffs within the food production chain. However, the context brings coherence to the group as a whole. The morphology of vessels in general is not necessarily connected with their function: we may find the same type of vessel used for different foodstuffs, or the same product in a wide range of vessels.
The selection stage is essential for obtaining a coherent series of results with positive indicators for organic material, despite only having a limited number of samples. We believe that this investigation gives us a better understanding of certain processes involved in the production, processing and consumption of foodstuffs, in a diachronic manner. It is therefore important to consider that this study only offers a series of preliminary interpretations, and is the first step in a long-term investigation project.

Acknowledgements

A. Rodríguez Paz for the illustrations, and all of the team that worked on the sites studied, particularly M. Tabarés, B. Íñiguez and Y. Porto.

NOTES

1 Archaeology Laboratory of the ‘Padre Sarmiento’ Institute of Galician Studies, CSIC-Xunta de Galicia.
2 Laboratory of the Archaeological Museum of Catalonia / Cultural Management Programme, University of Barcelona.
3 These sites were excavated as part of a series of projects, mainly in connection with the oil pipeline and motorway running from Santiago to Aibo de Santo Domingo (Prieto et al., 2002), carried out by the Archaeology Laboratory. This unit was formerly known as the ‘Landscape Archaeology Investigation Group’ of the University of Santiago de Compostela, and is now the Heritage, Palaeoenvironment and Landscape Laboratory (associated with the ‘Padre Sarmiento’ Institute of Galician Studies, CSIC-Xunta de Galicia).
4 With teams from the Archaeological Museum of Catalonia-Barcelona, and the scientific and technical services of the University of Barcelona.
5 We use the term ‘negative samples’ when there are no residues, meaning that no results may be obtained; ‘positive samples’ are those in which residues are present.
6 We also confirmed that woolen cloth was spun in this period, after discovering a weight from a spinning wheel.

BIBLIOGRAPHY

