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Abstract 

We report high pressure angle-dispersive x-ray diffraction measurements on CoxFe2-xO4 

(x=1, 1.5, 1.75) spinels at room temperature up to 34 GPa. The three samples show a 

similar structural phase transformation from the cubic spinel structure to an analogous 

post-spinel phase at around 20 GPa. Spinel and post-spinel phases coexist in a wide 

pressure range (~20 – 25 GPa) and the transformation is irreversible. The equation of 

state of the three cubic spinel ferrites was determined and our results agree with the data 

obtained in related oxide spinels showing the role of the pressure-transmitting medium 

for the accurate determination of the equation of state. 

Measurements releasing pressure revealed that the post-spinel phase is stable down to 4 

GPa when it decomposes yielding a new phase with poor crystallinity. Later 

compression does not recover either the spinel or the post-spinel phases. This phase 

transformation induced by pressure explains the irreversible lost of the ferrimagnetic 

behaviour reported in these spinels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.- Introduction 

Mixed transition-metal oxides with cubic spinel structure (AB2O4; A tetrahedral and B 

octahedral sites) have been widely studied in the past because of its wide spread over 

the Earth and its use in different technological applications due to their magnetic and 

electric properties that can be modulated by changing the cationic composition [1]. 

Because of spinel density is relatively low since the presence of occupied tetrahedral 

sites  prevents further compaction of the oxygen sublattice, lattice compression lead to 

structural transitions [2-4] which strongly affects their electrical and magnetic properties 

[5-7]. Pioneering studies on the high pressure structural properties of cubic spinels were 

focused in understanding the behavior of Earth constituents in the crust and mantle [8] 

revealing that upon compression the spinels can adopt orthorhombic structures denoted 

as postspinels. The structure and properties of postspinels are still under debate. The 

reason is the great similarity of the possible high-pressure phases that can be 

isostructural to CaMn2O4, CaFe2O4 or CaTi2O4 [4]. The three phases have orthorhombic 

cells with similar lattice parameters and the transformation from spinel to one of these 

phases imply that cations change their coordination from tetrahedral and octahedral to 

octahedral and dodecahedral, respectively. Consequently, a more compact structure is 

formed and the phase transition occurs together with a small volume collapse. An 

example of the ambiguities that appear in the literature is the case of magnetite. High-

pressure XRD patterns of Fe3O4 have been analyzed using the CaMn2O4-type [9] and 

the CaTi2O4-type [10-11] structures. 

Regarding the magnetic properties, one of the most studied compounds are spinel 

ferrites. An interesting fact observed in these spinel ferrites is that pressure induces the 

disappearance of magnetism [12,13]. Some authors point out a structural phase 

transition into a non-magnetic phase stable at high pressure whereas other models argue 

about the magnetic collapse due to the 3d band widening induced by the pressure [12]. 

The latter effect decreases the density of states at the Fermi level below the stability 

limit for ferromagnetism given by the Stoner criterion [14]. Recently we have studied 

the stability of ferrimagnetism in the CoxFe3-xO4 (x = 1, 1.5, and 2) family showing 

pressure-induced transitions above 20 GPa [13].  Our results clearly discard any role of 

the magnetic collapse in CoFe2O4 and show that a structural phase transition is 

intimately correlated with the suppression of the ferrimagnetic order into either 

paramagnetic or antiferromagnetic high-pressure state. The other spinel ferrites also 

showed correlated pressure-induced magnetic and structural phase transitions. The high 



pressure non-magnetic phase of Co2FeO4 was found to be isostructural to the CaMn2O4-

type structure but the ascription of the high-pressure phases for the other two studied 

ferrites was ambiguous due to the occurrence of texture in the XRD patterns. In this 

paper we report a new structural study performed on a new set of samples prepared by a 

sol-gel method, which allows the preparation of more homogeneous samples than 

standard ceramic procedures. Our aim is to verify if all of these cobalt-iron spinels 

develop the same type of pressured-induced transitions or there exists some difference 

depending on their chemical composition. 

 

2.- Experimental section. 

 Polycrystalline samples of CoFe2O4, Co1.5Fe1.5O4, and Co1.75Fe1.25O4 were 

synthesized by a sol-gel method using the citrate route. Stoichiometric amounts of Fe 

and Co were dissolved in a 0.1 M solution of nitric acid. Then, citric acid and ethylene-

glycol were added in a ratio of 4g:2ml per g of the resulting oxide.  The solution was 

heated until the gel formation followed by desiccation. The resulting powder was heated 

overnight at 650º C. The powders were ground and pressed into pellets. The sintering 

process was adapted to the chemical composition of the sample. CoFe2O4 was then 

sintered at 1100ºC for 48 h in air and cooled down to room temperature. Co1.5Fe1.5O4 

and Co1.75Fe1.25O4 were sintered at 1100ºC in the same conditions, but they were slowly 

cooled (1ºC/min) down to 925ºC and quenched into air to prevent decomposition into 

two spinel phases [15]. The samples were characterized by x-ray powder diffraction 

(XRD) using a Rigaku D-system and Cu Kα radiation. The chemical composition of the 

samples was tested by using the wavelength dispersive x-ray fluorescence spectrometry 

technique (advant’XP+ model manufactured by ARL). The Fe:Co ratio agreed with the 

nominal one for all samples. Magnetic measurements were carried out between 5 and 

300 K by using a commercial Quantum Design (SQUID). These properties agreed with 

samples with the right oxygen stoichiometry. 

Synchrotron XRD experiments under pressure using a membrane diamond-anvil cell 

(DAC) were carried out at the beam line MSPD in the ALBA synchrotron [16]. The 

measurements were performed at room temperature in angle dispersive mode with an 

incident monochromatic wavelength of 0.4246 Å. Samples were loaded in 130 µm 

diameter holes of 40 µm thick stainless steel gaskets in DAC with diamond culet sizes 

of 300 µm. Two ruby grains were loaded with the sample for pressure determination [17]. 

https://www.researchgate.net/publication/259437830_The_new_Material_Science_Powder_Diffraction_beamline_at_ALBA_Synchrotron?el=1_x_8&enrichId=rgreq-242ffdbdf45d00f000b9a1c0b5e38521-XXX&enrichSource=Y292ZXJQYWdlOzI2NzEwMDY0MztBUzoxOTc3NjI3ODEwNjExMjFAMTQyNDE2MTcyOTQyNw==


A mixture of methanol and ethanol (4:1) was used as the pressure-transmitting medium. 

Diffraction images were recorded on a fast scanning CCD camera (Rayonix SX 165). 

The image data were integrated using the FIT2D software package [18], and the 

resulting diffraction patterns were analyzed with the Fullprof program [19]. 

 

 
3.- Results and discussion. 

Powder XRD were measured on CoxFe2-xO4 samples (x=1, 1.25, 1.5, 1.75 and 2) 

synthesized by the abovementioned sol-gel method at room temperature. All samples 

were successfully refined as cubic spinel (space group Fd3�m) without sign of the 

tetragonal distortion reported in ref. 20 for CoFe2O4 but in agreement with ref. 3 and 21. 

Figure 1 shows a representative refinement. The lattice parameter decreases with 

increasing the Co-content with a ratio of -0.13 Å/x in this composition range as can be 

seen in the inset of Fig. 1. This result agrees with the tabulated ionic radii of Co2+/Fe2+ 

and Co3+/Fe3+ as iron cations are always bigger [22]. 

The samples with x=1, 1.5 and 1.75 were chosen to study the structural changes 

induced by the pressure in this family of compounds. Figure 2 shows representative 

diffraction patterns obtained for x=1 and x=1.75 up to 34 GPa. Similar behaviour was 

observed for the intermediate composition x=1.5. The cubic spinel structure is stable up 

to ~20 GPa and above this pressure, new diffraction peaks appear in the patterns 

marking the start of a pressure induced structural phase transition. Below this point, 

only two features are noticeable, a shift of the peaks in agreement with the unit cell 

contraction as the pressure increases, and a broadening of the peaks above 10 GPa. The 

latter is likely to be related with the loss of hydrostatic conditions of the 

methanol/ethanol mixture above 10 GPa [23,24]. 

Above 20 GPa, the new peaks grow up as the spinel phase gradually disappears. 

Both phases coexist in a wide pressure range of around 5-7 GPa. At 30 GPa, only the 

high pressure phase is present. The patterns are typical of postspinel phases but the 

width of the diffraction peaks prevent an accurate Rietveld refinement (more parameters 

to be refined than freedom degrees). We have tested the three models (CaMn2O4-, 

CaFe2O4- and CaTi2O4-like) with constrains and the results were very similar with 

identical lattice parameters. We have analysed the data using the CaTi2O4-like model 

(space group Bmmb) as it has got the least number of free parameters among the three 

models.  Figure 3 compares the pressure dependence of the unit cell volume for the 



three compounds. The plots show a strong shrink in the volume at the phase transition 

with increasing pressure because the postspinel phase is much denser. The volume 

decrease in our samples ranges between 7.8 and 6.4% in agreement with the data 

reported for related spinels [10,13]. 

The pressure dependence of the unit cell volume shows a turning point around 

10 GPa. This feature is likely related to the loss of hydrostatic conditions 

abovementioned. In order to test this point, the P(V) data for the spinel phase of the 

three compositions were fitted to the second order of the Birch-Murnaghan (BM) 

equation of state using two ranges of fit: Fitting the data with P≤10 GPa (hereafter 

denoted as BM10) and fitting the data with P≤23 GP (BM23) which is the highest 

pressure value where accurate Rietveld refinements can be achieved for the spinel 

phase. By using results up to 10 GPa (BM10) we minimize the influence of deviatoric 

stresses in the results. The third-order BM isothermal equation of state is given by 

[25,26]: 

𝑃𝑃(𝑉𝑉) =
3𝐾𝐾0

2
[𝜂𝜂

7
3 − 𝜂𝜂

5
3]{1 +

3
4

(𝐾𝐾′
0 − 4)[𝜂𝜂

2
3 − 1]} 

Where P and V are measured in GPa and Å3, respectively. η=V0/V and V0 

stands for the reference volume (usually measured at ambient conditions) whereas 

K0 and K0' are the bulk modulus and its pressure derivative, respectively. In the second-

order BM isothermal equation, K’0 is fixed to 4 [3, 27]. A summary of the elastic 

constants obtained in these fits are summarized in table I and they are compared with a 

previous measurement of Co2FeO4 [13]. As indicated in this table, significant 

differences are obtained depending on the range of the fit when the alcohol mixture is 

used as pressure transmitting medium. Overall the bulk modulus deduced from BM23 is 

higher than the ones from BM10. The latter values range between 177 and 183 very 

close to the values reported for CoFe2O4 [3] and Fe3O4 [2] using an optimum pressure 

transmitting medium like He where hydrostatic conditions are kept up to ~50 GPa [3]. 

BM23 shows higher values of bulk modulus in agreement with the data reported using 

non-hydrostatic pressure mediums. This suggests that deviatoric stresses cause a 

reduction of bulk compressibility (increase of bulk modulus) as has been already found 

in other compounds [2,28,29].  In this way, the fit of Co2FeO4 is very good with smaller 

standard deviations and similar value of bulk modulus. Figure 4 shows the two kinds of 

fits emphasizing the difference observed below 10 GPa for Co1.5Fe1.5O4 and the quality 

of the fit for Co2FeO4. 
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This study complements our previous work [13] showing that all CoxFe3-xO4 

spinels (1≤x≤2) show the same type of pressure-induced transition above 20 GPa. The 

result is a similar postspinel phase without spontaneous magnetization as the magnetic 

circular dichroic signal vanishes [13]. The irreversibility of this transition, as shown in 

Fig. 3, reveals that magnetism is not recovered after releasing the pressure. However, if 

the structural phase transition is not complete (insufficient pressure), the magnetism 

decreases in according to the phase transformation. 
 

4. Conclusions. 

The pressure dependence of XRD measurements using methanol:ethanol as 

pressure medium has shown that CoxFe3-xO4 spinels (1≤x≤1.75) have the same pressure 

transition around 20 GPa. The postspinel phase is similar for all compositions and the 

transition is irreversible because after releasing the pressure, the postspinel phase is 

stable down to 4 GPa and then it decomposes. The original spinel phase is not recovered 

even after several hours at ambient pressure and the postspinel phase is not recovered 

with a second pressurization. Therefore, the loss of ferrimagnetism in these spinels 

under pressure is very likely related to strong structural changes including the 

amorphization and the structural transition to a paramagnetic postspinel phase without 

spontaneous magnetization. 

Our study reveals that the alcohol mixture used in this work as pressure media 

provides hydrostatic conditions for reliable equations of state up to 10 GPa. Above this 

pressure the medium is only quasi-hydrostatic. However, the bulk modulus obtained for 

these cobalt-iron spinels are similar among them and to other oxide spinels indicating a 

similar compressibility for this family of compounds independently of the Co valence 

and Co-Fe distribution between tetrahedral and octahedral sites. 
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Figure Captions. 

Figure 1.  Rietveld refinement (λ=1.5418 Å) of Co1.5Fe1.5O4 at ambient conditions 

(space group Fd3�m). Points and line stands for experimental and calculated patterns, 

respectively. The difference is plotted at the bottom together to the allowed reflections. 

Inset: Evolution of the cubic lattice parameter vs. Co-content in the CoxFe3-xO4 series 

(1≤x≤2). 
  
Figure 2. Powder x-ray diffraction patterns of CoFe2O4 (left) and Co1.75Fe1.25O4 (right) 

at selected pressures. The asterisk marks the appearance of contribution from postspinel 

phase while cross indicate the vanishing spinel phase. The pressure was increased and 

released as indicated by arrows on the right of the picture. 

 

Figure 3.- Pressure dependence of the unit cell volume per formula unit for (a) 

CoFe2O4, (b) Co1.5Fe1.5O4 and (c) Co1.75Fe1.25O4. Circles and squares stand for spinel 

and postspinel phases, respectively. Dark symbols: determination upon compression. 

Open symbols: determination upon decompression. The lines are guide for the eyes. 

 

Figure 4.-  Unit cell volume as a function of pressure for Co1.5Fe1.5O4 and Co2FeO4. 

Continuous lines show the fits BM10 and BM23 for Co1.5Fe1.5O4 and the fit BM23 for 

Co2FeO4. The broad arrow indicates the turning point in the pressure dependence of the 

cell volume for Co1.5Fe1.5O4. 

 

 

 

 

 

 

 

 



TABLES. 

 

 

 Co2FeO4
*  Co1.75Fe1.25O4  Co1.5Fe1.5O4  CoFe2O4 

Fit range V0 (Å3) K0 (GPa)  V0 (Å3) K0 (GPa)  V0 (Å3) K0 (GPa)  V0 (Å3) K0 (GPa) 

BM10 ≤ 10 GPa --- ---  585.5 (7) 177(8)  576.4(6) 182(8)  584.9(3) 175(2) 

BM23 ≤ 23 GPa 560.9(1) 194.3(4)  576 (1) 247(14)  577(1) 209(9)  583(1) 250(12) 

Table 1. Bulk modulus and reference volume according to the second order (K’=4) Birch-Murnaghan (BM) equation of 
state. BM10 and BM23 stand for the two ranges of fit indicated in the table. Numbers in parentheses refer to standard 
deviations of the last significant digits. (*) The values for this sample were calculated from the data of ref. 13 measured 
using He as pressure transmitting medium. 
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