Investigaciones Recientes (2005-2007) en Geomorfología Litoral recoge 44 trabajos científicos presentados en el marco de la IV Reunión de Geomorfología Litoral, celebrada del 3 al 5 de mayo de 2007 en Mallorca, organizada por el Departament de Ciències de la Terra (Universitat de les Illes Balears), la Societat d'Història Natural de les Balears (SHNB), el Institut Mediterrani d'Estudis Avançats (CSIC-UIB) y la Sociedad Española de Geomorfología (SEG).

Los trabajos cubren diferentes ámbitos temáticos: dinámica de playas, transporte de sedimentos, campos de dunas, retroceso de acantilados, cambios del nivel marino durante el Cuaternario, dinámica marina y gestión litoral.
Investigaciones recientes (2005-2007) en
Geomorfología Litoral

Lluís GÓMEZ-PUJOL y Joan J. FORNÓS
(Editores)

Universitat de les Illes Balears
Institut Mediterrani d’Estudis Avançats, IMEDEA (CSIC-UIB)
Societat d’Història Natural de les Balears
Sociedad Española de Geomorfología

2007
El presente volumen es una contribución a los proyectos de investigación:

UGIZC: Gestión Integrada de la Zona Costera en las Islas Baleares. Goven de les Illes Balears.

Prólogo

Siete años atrás la Sociedad Española de Geomorfología, en el marco de la costa gaditana y bajo el auspicio de la Facultad de Ciencias del Mar de la Universidad de Cádiz, convocaba las primeras Jornadas de Geomorfología Litoral. El encuentro nacía de la necesidad de promover la colaboración científica de los especialistas en Geomorfología Litoral de las universidades y centros de investigación del estado y así unir esfuerzos y divulgar más eficazmente los resultados de sus investigaciones. A las jornadas de Cádiz siguieron las de Santiago de Compostela (2003) y las de Las Palmas de Gran Canaria (2005), dejando tras de sí un conjunto de trabajos y guías de excursiones que permiten evaluar el estado de salud y la evolución de la investigación en Geomorfología Litoral. El presente volumen, editado con ocasión de la celebración de la IV Reunión de Geomorfología Litoral en la isla de Mallorca, reúne los trabajos aceptados para su presentación en la reunión científica bien de forma oral, bien en forma de póster. Para tal efeméride se ha editado también un volumen que, a modo de capítulos monográficos e itinerarios científicos, pretende dar una visión integral del estado actual del conocimiento científico del litoral de Mallorca.

Históricamente, el medio litoral ha centrado el interés de numerosos geómorfológos tanto de la zona peninsular, como de las áreas insulares (Canarias y Baleares) a lo largo de la segunda mitad del siglo XX. En este sentido la producción científica ha experimentado un incremento significativo de contribuciones y un cambio en su perspectiva. Si los trabajos de carácter geográfico descriptivo dominaron el panorama en la década de los setenta del siglo pasado, a partir de esta fecha predominan los enfoques evolutivos y los trabajos de historia geomórfica cuaternaria de las costas. A partir de los noventa, toman el protagonismo los trabajos de tipo dinámico, centrados en la comprensión de los procesos y agentes que operan en el litoral.

La consolidación de la Geomorfología Litoral, así como la evolución temática de contenidos descritos, puede seguirse a través del contenido de los volúmenes publicados con los trabajos presentados en cada uno de los encuentros de geomorfología litoral anteriores. De hecho, el número de trabajos y el formato de los encuentros, ya desde Santiago, apuntan a un claro dominio de la perspectiva dinámica (transporte de sedimentos, impacto del hombre en playas y dunas, dinámica de acantilados, etc.). Si repasamos las grandes cifras, se aprecia el incremento –convocatoria tras convocatoria– del número de trabajos: de las 12 conferencias presentadas en Cádiz, se pasa a los 27 trabajos y 62 autores en Santiago (2003), 33 trabajos y 103 autores en Las Palmas (2005) y 44 trabajos y 115
autores para la presente convocatoria. No es extraño, por tanto, que dada la consolidación del encuentro la convocatoria inicial de las Jornadas de Geomorfología Litoral haya pasado a denominarse Reunión de Geomorfología Litoral y ésta sea un claro exponente de la salud, vitalidad y relaciones internacionales de la comunidad académica del Estado.

La Geomorfología Litoral, en un contexto en el que el hombre ocupa una franja del territorio susceptible de sufrir los efectos inmediatos derivados de las variaciones climáticas, cobra hoy en día una importancia especial. En este sentido el libro que el lector tiene en sus manos recoge, bajo el título de Investigaciones Recientes (2005-2007) en Geomorfología Litoral, cuarenta y cuatro trabajos de investigadores procedentes de diferentes universidades de la Península, Canarias, Baleares, Portugal, Italia, Dinamarca, Israel y Australia a propósito de la dinámica y evolución de playas, campos de dunas, dinámica marina, registro cuaternario y costas rocosas.

Los editores, juntamente con el resto de colaboradores del Departament de Ciencies de la Terra (Universitat de les Illes Balears), del Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB) y de la Societat d’Història Natural de les Illes Balears que han trabajado en la organización de la IV Reunión de Geomorfología Litoral, desean agradecer la contribución de los autores de cada uno de los trabajos así como el apoyo de la Universitat de les Illes Balears, la Conselleria d’Economia, Hisenda i Innovació y la Conselleria de Medi Ambient del Govern de les Illes Balears, el Departament de Medi Ambient del Consell de Mallorca, el Ministerio de Educación y Ciencia, Cuevas del Drach S.A. y la Caja de Balears “Sa Nostra”.

Lluís GÓMEZ-PUJOL
Joan J. FORNÓS
Palma, 14 abril 2007

Índice

PRÓLOGO .. 1

ÍNDICE .. 3

HOLOCENE COASTAL DUNEFIELD DYNAMICS, DENMARK: A RECORD OF STORMINESS VARIATION DURING THE LAST 5000 YEARS?
L.B. Clemmensen .. 7

DISTRIBUCIÓN DE CELDAS LITORALES Y TRANSPORTE DE SEDIMENTO EN LA BAHÍA DE CÁDIZ
G. Anfuso, J. Benavente, F.J. Gracia y L. del Río .. 11

EFFECTO DE LA MAREA EN LA CLASIFICACIÓN MORFODINÁMICA DE PLAYAS
J. Benavente, L. del Río, G. Anfuso, F.J. Gracia, D. Nachite, A. Rodríguez- Ramírez y L. Cáceres .. 17

ESTUARIOS DE ARROYOS COSTEROS DEL OCCIDENTE DE ASTURIAS
G. Flor y G. Flor-Blanco ... 23

CARACTERÍSTICAS MORFOLÓGICAS Y SEDIMENTARIAS DE LA PLAYA ARTIFICIAL DE PONIENTE (GÍÓN, ASTURIAS). EVOLUCIÓN 1995-2004
G. Flor, G. Flor-Blanco y R. Escribano .. 27

BALANCE SEDIMENTARIO ANUAL EN LAS PLAYAS DE MASPALOMAS Y EL INGLÉS (ISLAS CANARIAS)
A. Fontán, I. de Santiago, N. Cuevas, P. Vega y J. Alcántara-Carrió 31

CAMBIOS EN LA DINÁMICA LITORAL INDUCIDOS POR LA ACTIVIDAD HUMANA EN ÁREAS COSTERAS URBANIZADAS: EL CASO DEL MARESME (BARCELONA)
J. M. Parareda y M. Boccio .. 37

MÉTODOS PARA LA DETERMINACIÓN AUTOMÁTICA DE LA LÍNEA DE COSTA CON PRECISIÓN SUBPIXEL
J.E. Pardo, L.A. Ruiz, J. Almonacid, B. Rodríguez y G. Gracia 39

CARACTERIZACIÓN TRIDIMENSIONAL DE LA DINÁMICA INTRANUAL E INTERANUAL DE LA PLAYA DEL SALER
J. E. Pardo, L. García-Asenjo, P. Garrigues, J. Palomar y M.J. Porres de la Haza ... 41

ANÁLISIS MORFOMÉTRICO DE PLAYAS ENCAJADAS EN EL LITORAL CATALÁN
J. Guillén, D. Bowman, L. López y V. Pellegrino .. 43
CAMBIOS MORFOLÓGICOS DE BARRAS SUMERGIDAS EN PLAYAS ARTIFICIALES
E. Ojeda, J. Guillén y F. Ribas ... 47

EJEMPLO DE EVOLUCIÓN DE UNA COSTA CON BARRERA LITORAL E INTENSO
TRANSPORTE LONGITUDINAL: LAS PLAYAS DE SOTAVento EN FUerteventura
J. Alonso, L. Cabrera, J. A. Jiménez, H. I. Valdemoro e I. Sánchez 51

LA EVOLUCIÓN DE LA LÍNEA DE COSTA EN LA FACHADA ATLÁNTICA ANDALUZA
ENTRE 1956 Y 2004
P. Fniile y J. Ojeda ... 55

EVOLUCIÓN DE LA COSTA DEL DELTA DEL RÍO TORDERA DURANT EL ÚLTIMO
ASCENSO EUSTÁTICO (HOLOCENO)
J. Serra y X. Vallois ... 61

CLASIFICACIÓN MORFO DinÁMICA DE PLAYAS EN AMBIENTES MICROMAREALES
L. Gómez-Pujol, A. Orfilla, B. Cañellas, A. Álvarez-Ellacuría, F. Méndez, R.
Medina y J. Timoté ... 65

BEACH RESPONSE TO HIGH ENERGY WAVE CLIMATE: A CASE STUDY IN THE
PORTUGUESE WEST COAST
J. Trindade, A. Ramos-Pereira y M. Neves ... 73

TRANSPORTE DE SEDIMENTOS EN UNA PLAYA ESTUARINA DE BAJA ENERGÍA, PLAYA
DE LADEIRA (NO ESPAÑA)
R. González-Villanueva, I. Alejo y M. Pérez-Alureea 77

EVOLUCIÓN E IMPACTOS ANTRÓPICOS EN EL ESTUARIO DEL RÍO TAHADDART (NO DE
MARRUECOS)
D. Nachite, M. Amharrak, R. Bkaki, G. Anfuso y J. Benavente 83

CUANTIFICACIÓN DEL CONTENIDO SEDIMENTARIO DE LOS RESTOS DE POSIDONIA
OCEANICA EN PLAYAS Y FOREDUNES DE MENORCA
F. X. Roig-Munar, J. A. Martín-Prieto, A. Rodríguez-Perea y G.X. Pons 89

VARIACIÓN MORFOLÓGICA Y TEXTURAL DE UNA PLAYA DE CANTOS ADOSADA A UN
IMPORTANTE RELIEVE ESTRUCTURAL (ES COLL BAIX, N MALLORCA)
M. Espinosa y J.M. Martínez-Pontinós .. 95

CARACTERIZACIÓN DE LA DINÁMICA HIDROGEOMORFOLOGÍA DE LA LAGUNA
CHARCO DEL TORO (COMPLEJO PALUSTRE DEL MANTO EÓLICO LITORAL DE EL
ALBARE – Doñana, Huelva)
C. Borja, F. Díaz del Olmo y F. Borja ... 101

APROXIMACIÓN AL ANÁLISIS DEL DESEPLAZAMIENTO DE LAS DUNAS DE MASPALOMAS
(GRAN CANARIA, ISLAS CANARIAS)
L. Hernández, J. Ojeda, N. Sánchez y P. Máyer 107

UTILIDADES DE LA TECNOLOGÍA LIDAR EN LA CARACTERIZACIÓN MORFOMÉTRICA
DE SISTEMAS DUNARES: EL CASO DE MASPALOMAS (GRAN CANARIA, ISLAS
CANARIAS)
J. Ojeda, I. Vallejo y L. Hernández .. 113

THE SAN LEONE (AGRIGENTO) DUNES: COASTAL GEOMORPHOLOGY
V. Liguori, G. Manno y F. Caruso ... 119

CARTOGRAFÍA DIACRÓNICA Y EVOLUCIÓN GEOMORFOLÓGICA RECIENTE DEL PAISAJE
DUNAR DEL LITORAL DE ESTEPOÑA (MÁLAGA)
J. Gómez-Zotano .. 121

VALORACIÓN ECONÓMICA DE LOS SISTEMAS ARENOSOS DE MENORCA: UNA
CONTRIBUCIÓN A LA REVALORIZACIÓN DE LA GEOMORFOLÓGIA LITORAL
M. Pérez-López y F.X. Roig-Munar .. 123

EL SISTEMA PLAYA-DUNA EN ES COMÚ DE MURO (PARQUE NATURAL S’ALBUFERA):
CASO DE ESTUDIO PARA UNA GESTIÓN INTEGRADA DEL MEDIO COSTERO
L. Royo, A. Traveset, J. Servera y L. Rico ... 129

LAS DUNAS LITORALES DE LA DEVESA DE L’ALBUFERA DE VALENCIA
R.M. Martí y A. Quintana .. 133

ANÁLISIS ESPACIO-TEMPORAL (1956-2005) DE LA FOREDUNE DE CALA MESQUIDA
(MALLORCA) MEDIANTE EL USO DE VARIABLES GEOMORFOLOGÍA Y ANTRÓPICAS
J.A. Martín-Prieto, F.X. Roig-Munar y A. Rodríguez-Perea 137

SISTEMAS DUNARES Y DIVERSIDAD FLORÍSTICA EN MENORCA
P. Fraga y F.X. Roig-Munar ... 141

TEMPORALES MARINOS EN TENERIFE: PROPUESTA TÍPOLOGICA
A. Yanés, V. Marzol y C. Romero .. 148

SOME REMARKS ON SEA LEVEL VARIATION IN PORTUGAL: A STATISTICAL ANALYSIS
A.A. da Silva y E. Freire .. 153

CARACTERIZACIÓN DE ACANTILADOS CONGLOMERÁTICOS (COSTA DE TARRAGONA)
I. Montoya, I. Rodriguez y M.I. Sánchez 155

Calas ramificadas: una aproximación
V.M. Rosselló y F. Segura ... 161

RASGOS EROSIVOS DE NIVELES MARINOS CUALENTRIEOS EN LAS LADERAS DEL
PEÑÓN DE GIBRALTAR
Holocene coastal dunefield dynamics, Denmark: a record of storminess variation during the last 5000 years?

L.B. CLEMSENSEN

Department of Geography and Geology, University of Copenhagen, Denmark

Abstract: The stratigraphy of the aeolian systems was studied in well-exposed coastal cliff sections, natural exposures and by examination of cores. The stratigraphy of the aeolian systems was also investigated by ground-penetrating radar mapping. Sand samples for optically stimulated luminescence (OSL) dating were obtained and chronologies for individual duneform evolution as well as a general scheme Holocene duneform dynamics in Denmark were established. According to that coastal dune formation in Denmark started about 3000 BP. Dunefields were apparently stabilized (or poorly developed) until about 2300 and 1900 BP when wide-spread aeolian sand movement was initiated. A period of duneform stabilization and soil formation followed, but around 800 BC and 550 BC large-scale aeolian sand drift took place again. This pattern of alternating aeolian sand movement and duneform stabilization continued again with aeolian activity phases beginning around AD 15 and AD 250, around AD 950 and AD 1200. It is concluded therefore that the major control on Holocene duneform dynamics in Denmark was climate change, but it also appears that land exploitation increasingly influenced the dynamics of the coastal dune systems. Coastal dunefields in Denmark could then act as a proxy for Holocene storminess variation in southern Scandinavia and could therefore add to our understanding of past atmospheric circulation in the North Atlantic.

Keywords: aeolian systems, storminess, atmospheric circulation, Holocene, Denmark

Introduction

Denmark is situated in a temperate climate zone characterised by frequent high-energy wind events. The high-energy wind climate has led to the formation of impressive dunefields along the west coast of Jutland and on the Kattegat island Anholt (Clemensen & Murray, 2006).

Stratigraphical studies indicate that duneform formation in Denmark started around 5000 years ago (Clemensen et al., 2001a; 2001b; 2001c; Clemensen et al., 2006; Clemensen et al., 2007; Murray & Clemensen, 2001; Pedersen & Clemensen, 2005). Instrumental data indicates that storminess has varied much in
Plataformas litorales levantadas en el canal Beagle (Tierra de Fuego, Argentina)

R. BLANCO, M. COSTA, M. VALCÁRCEL y A. PéREZ-ALBERTI

1 Departamento de Xeografía, Universidade de Santiago de Compostela. Santiago de Compostela, A Coruña.

Resumen: El empleo del test de esclerómetro (Schmidt Hammer Test) y los métodos topográficos permiten identificar plataformas litorales rocosas levantadas en una zona de complejo comportamiento tectónico, isostático y con actividad sísmica como el Canal Beagle. Las tendencias identificadas en los valores de reboque del esclerómetro revelan que los efectos de la alteración marina pueden preservarse en antiguas superficies, dependiendo del tiempo que han permanecido sometidas a alteración subacuática.

Palabras clave: Esclerómetro, Canal Beagle, alteración, plataformas litorales

Abstract: The Schmidt Hammer Rock Test and a detailed surveying work has been used to identify raised shore platforms in the Beagle Channel, an area with a complex tectonic and isostatic history. The rebound values recorded show that the effects of tidal weathering can be preserved in ancient intertidal surfaces. The degree of preservation is related with the time lapse that the surface remained exposed to subaerial weathering.

Keywords: Schmidt Hammer Test, Beagle Channel, weathering, shore platforms.

Introducción
En muchas costas rocosas es común la existencia de formas litorales como acantilados, plataformas litorales, cuevas o stacks, situadas a distintas elevaciones por encima del nivel actual del mar, como consecuencia de distintos procesos, incluyendo cambios del nivel del mar relativo, isostasia, movimientos tectónicos o actividad sísmica. Las plataformas litorales levantadas pueden ser difíciles de identificar en el campo, especialmente en ausencia de depósitos marinos, dado que su morfología a menudo está oculta por sedimentos continentales, procesos de edafización o vegetación, o han sido degradadas por procesos continentales.

En este trabajo se ha identificado un nivel de plataforma litoral levantada por medio de el uso del Schmidt Hammer Test y la correlación altitudinal con depósitos marinos dañados.

Área de estudio
El Canal Beagle presenta una longitud aproximada de 220 km y unos 5 km de ancho, con un rango de mareas vivas alrededor de 2.5 m (Servicio de Hidrografía Naval). El régimen de oleaje se caracteriza por fetch muy cortos y un ambiente en general de baja energía, incrementándose la exposición al oleaje hacia el este. El substrato se compone de series de rocas metamórficas, volcánicas y sedimentarias de origen marino y continental. El sur de la Isla Grande de Tierra Fuego es una zona tectónicamente activa, al situarse en el contacto entre las placas litosféricas sudamericana y Escocia, y presenta una
la formación de las playas de gravas, cantos y bloques actuales. Las plataformas intermareales son estrechas con un máximum en torno a los 45 m, y con una geometría marcada por un alto control estructural a causa del buzoneo subhorizontal de los estratos. El material del substrato es también de carácter metamórfico, aunque a diferencia de Bahía Golondrina no se observa una pizarrosidad tan marcada. Playa Larga, situada al este de la desembocadura del río Olivia, presenta una serie de playas levantadas de 4 m (405±55 14C yr BP), 6.25 m (3095±60 14C yr BP), 7.65 m (4335±60 14C yr BP) y 9.95 m (5615±60 14C yr BP). Aunque se ha considerado que el levantamiento se debe fundamentalmente a procesos tectónicos, el hecho de que la playa más reciente se encuentre a una elevación de 4 m, lo que indica una tasa de levantamiento superior a la de los niveles más antiguos, ha llevado a sugerir un origen sísmico para dicho nivel (Gordillo et al., 1992).

Método
Se realizaron cuatro perfiles topográficos en cada sector utilizando una estación total Leica 370. El cerco hidrográfico se estableció localmente utilizando los datos del Servicio de Hidrografía Naval. El esclerómetro o Schmidt Rock Hammer, ampliamente utilizado para la caracterización de la resistencia de la roca en ambientes litorales (Haslett and Curr, 1998; Trenhaile et al., 1998, 1999; Stephenson and Kirk, 2000b; Andrade et al., 2002; Dickson et al., 2004; Trenhaile and Kanyaya, 2004; Kennedy and Beban, 2005; Blanco Chao et al., 2006, 2007) se aplicó en un total de 75 puntos a lo largo de los ocho perfiles, realizándose 25 lecturas en cada punto.

Resultados
Los perfiles obtenidos en el levantamiento topográfico de B. Golondrina sugieren la existencia de varios escalones que cortan el buzoneo de los estratos. Aunque aparentemente existen varias superficies limitadas por escarpes, las más elevadas se encuentran muy cubiertas por la vegetación, lo que hace difícil determinar sus características. Sin embargo, la superficie situada inmediatamente sobre la plataforma intermareal actual si ha podido ser descrita en detalle. La superficie intermareal actual es una plataforma estrecha e irregular, con un ancho de unos 15 m y una pendiente variable, entre 2° y 6°. El perfil es muy irregular, con una topografía de detalle controlada por la estructura de la roca, con numerosos escarpes definidos por el buzoneo de los estratos. La presencia de arena y clastos es muy escasa, limitándose a pequeñas acumulaciones confinadas en depresiones estructurales, así como en una pequeña playa de grava.

La superficie inmediatamente superior (S1) puede identificarse con una anchura entre los 5 y los 11 m y una pendiente entre 1° y 5°. El escarpe externo se encuentra entre 0.4 y 1.1 m sobre el nivel de marea alta (S.N.M.A.), y el interno entre 1.1 y 1.65 m S.N.M.A. De los 33 puntos en los que se aplicó el esclerómetro, 22 se encuentran en la zona intermareal, entre las cotas de marea 0.8 y 2.64 m, siendo 0.0 y 2.33 las elevaciones máximas mínima y máxima respectivamente. Dos de los puntos se sitúan respectivamente a 0.14 y 0.3 m S.N.M.A., correspondiendo a dos resalta situados en la zona intermareal, coincidentes con la disposición de los estratos. En la zona supramareal el test se aplicó en 7 puntos situados entre 0.5 y 2.9 m S.N.M.A.

En Moat se ha identificado una superficie situada entre 0.1 y 1.8 m S.N.M.A., aunque a causa del elevado control estructural (Blanco Chao et al, 2006) presenta una superficie irregular con depresiones...
Figura 2. Valores de rebote del esclerometro y elevación mareal. Círculos negros: intermareal; círculos blancos: supramareal

Discusión

Para algunos autores la eficacia de la alteración inducida por la humectación y desecación maresal se encuentra en función de la frecuencia de los ciclos de humectación/desecación (Stephenson and Kirk, 2006) y por otros el factor principal es el tiempo de desecación (Kanyana and Trenhaile, 2005; Trenhaile, 2005). En ambos casos, sin embargo, implica que la alteración es mayor hacia las cotas de marea alta, que en un contexto litológico, sobre el factor principal es el tiempo de desecación (Kanyana and Trenhaile, 2005; Trenhaile, 2005). En ambos casos, sin embargo, implica que la alteración es mayor hacia las cotas de marea alta, lo que, en un contexto litológico, homogéneo debería traducirse en un descenso de la resistencia de la roca desde las cotas de marea baja hacia las cotas de marea alta. El esclerometro ha permitido comprobar la existencia de dicha tendencia, así como de las modificaciones causadas por procesos erosivos mecánicos como la abrasión (Blanco Chao et al. 2006, 2007). Los valores R registrados en los puntos de la zona intermareal actual de los dos sectores estudiados presentan un claro descenso con la elevación maresal (Fig 1).

En la actualidad, los puntos situados sobre las cotas de marea alta están sometidos principalmente a alteración subacuática, y solamente los puntos más cercanos al mar pueden ser afectados por salpicaduras y spray. Por tanto, el grado de alteración en las superficies supramareales no está determinado por la elevación maresal y, en todo caso, la alteración debería ser mayor en las zonas sometidas al spray y las salpicaduras. En otros trabajos se ha identificado que los valores R de las plataformas levantadas tienden a ser más bajos que en las superficies intermareales actuales (Dickson et al., 2004). En Moat los valores R de la superficie supramareal son más bajos que en el intermareal, aunque manteniendo la misma tendencia del intermareal pero con una pendiente ligeramente menor. Sin embargo, en Bahía Golondrina se observa un claro umbral entre los valores R de la zona intermareal y los de la zona supramareal. Dado que la alteración subacuera no está controlada por los ciclos mareales, el descenso hacia tierra de los valores R en las superficies supramareales puede interpretarse como una característica heredada de la alteración experimentada cuando se encontraban sometidas a la alteración maresal.

En Moat, la datación 14C de una cresta de playa situada a 1,6 m S.N.M.A. proporciona una fecha mínima de 2500 BP para el modelo de la más alta de las superficies supramareales. Por otra parte, existen indicios que sugieren que la plataforma intermareal actual empezó a modelarse hace al menos 850 años BP. La antigüedad de la plataforma levantada, junto al hecho de haber experimentado procesos de abrasión (Blanco Chao et al., 2006) es consecuente con los valores R registrados. Por su parte, el marcardo umbral observado en B. Golondrina podría explicarse si la superficie ha experimentado un levantamiento rápido y relativamente reciente. En Bahía Golondrina no se dispone de dataciones radiocarbónicas, pero existen elementos como la elevación de una playa levantada en Playa Larga, a pocos kilómetros al este de Golondrina. La playa, con una edad de 405 ± 55 14C yr BP tiene su cresta entre 0,85 y 1,4 m S.N.M.A., muy similar a la de la superficie de Golondrina. Asumiendo que sean de la misma edad, la plataforma intermareal actual se habría desarrollado en menos de 500 años. Ya que la plataforma actual tiene una anchoa máxima de 15 m, supondría una tasa de de retroceso de 30 mm/yr, lo que no se encuentra fuera de las tasas señaladas por otros autores (Sunamura, 1992; Trenhaile, 2000), especialmente teniendo en cuenta que las tasas de erosión no son continuas en el tiempo, sino que tienden a reducirse al incrementarse la anchura y reducirse la pendiente (Trenhaile, 2000; 2001; 2005).

Bibliografía

Agradecimientos

Quantifying the role of intertidal ice in shore platform development. South Shetland Islands (Antarctica)

M. NEVES 1, A. R. PEREIRA 1, G. VIEIRA 1, M. RAMOS 2, M. HIDALGO 2, D. TOMÉ 2

1 Centro de Estudos Geográficos, Universidade de Lisboa, Lisboa, Portugal
2 Departamento de Física, Universidad de Alcalá, Alcalá de Henares, Madrid

Abstract: Ice action (forced by the movement of floating ice caused mainly by waves and tides) was identified as an important process in the genesis and evolution of shore platforms on sub-polar coastal regions (Trenhaile, 1983; Dione & Brodeur, 1988; Stephenson, 2000). However, its erosion consequences were not yet been accurately quantified. The distribution and geomorphological characteristics of South Shetland Islands shore platforms, particularly those of Livingston Island, were described by Hannon (1983). This researcher also identified the major role played by floating ice in the evolution of the coastal features in areas not exposed to the storm wave environment of Antarctic Ocean. However, no further research on this subject and on those islands was carried out. The aim of the present research is to not only to clearly identify the ice action connected with the tide levels variation in the erosion of rock surfaces but also, to quantify it. The TMEM (Traversing Micro-Erosion Meter) is one of the few field equipments that can provide very accurate erosion data of rock surfaces for periods that can extend from a month to over a decade. It has an accuracy of 0.001 mm and the use of this equipment in a West Atlantic coast environment has given so far excellent results (Neves, 2004; 2005; Neves et al., 2001, 2003). Two experimental areas were chosen in different islands of the South Shetland Group - Deception and Livingston Island - and in different outcrops, but both relatively sheltered from wave action. Deception Island is an active shield volcano with 109 km² located between latitudes 62° 34′ - 63° 01′ S and longitudes 60° 29′ - 60° 45′ W. This island has a horseshoe shape that almost totally encloses a 7-10 km in diameter bay known as Port Foster with a narrow - 500m wide and less than 20m deep - connection to the open sea. The bay results from the flooding by seawater of a volcanic caldera. The sea waves action in the inner bay is meaningless and, for that reason, this is a perfect place to isolate other processes of shore platform development. A rock platform located in the inner part of the bay, near Punta Murinette, was chosen. Cut in the Pendulum Cove Formation, mainly composed of tuff cone and maar deposits (Smellie, 2002), locally the shore platform shows a well consolidated stratified lagilli tuffs with abundant accessory clasts forming an almost flat, but very irregular in the detail, rock surface. A TMEM station was installed in 30 January 2007, at 1.3m above chart data (Figure 1). Livingston Island is located between latitudes 62° 27′ - 62°48′ S and longitudes 59° 45′ - 61° 15′ W around 25 km north of Deception Island. With 845 km² it is the second largest one of the South Shetland Island Group. Even though the most perfect shore platforms exist in the Byers Peninsula, it was not possible in this campaign to install there a monitoring area. Nevertheless, the NW sector of the Hurd Peninsula, was also a very suitable area for the aim of the present research, because not only it is protected from the storm waves by the western part of Livingston Island, as it faces a large sheltered bay - South Bay - with a constant supply of ice blocks, coming from the surrounding glaciers, that are pushed there by the predominantly western winds. The outcrops there are included in the turbiditic Miers Bluff Formation (López-Martín et al. 1992). The TMEM station