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In this thesis I investigated the status of the Mediterranean Sea ecosystem and 

the sustainability of its marine resources using an interdisciplinary approach, which 

combined data integration and modelling approaches. Results highlighted a series of 

commonalities for Mediterranean marine ecosystems: they indicate that ‘small pelagic 

fishes’, mainly European pilchards and anchovies, both with high biomasses and high 

proportions in catches, are important structuring species for the Mediterranean 

ecosystem (at regional, sub-regional and local scales). ‘Large pelagic fishes’ are the main 

keystone species for both the past and current Mediterranean ecosystem configuration, 

while ‘sharks’ and ‘medium pelagic fishes’ played a key role in the past, but their 

ecological role is currently replaced by benthopelagic and benthic cephalopods. In 

addition, the ‘Mediterranean monk seal’ “Monachus monachus”, where it still occurs, is 

the species with the highest TL followed by ‘piscivorous cetaceans’ and ‘large pelagic 

fish’.  

Looking at temporal ecosystem dynamics, biomass trends and ecological 

indicators (e.g., community biomass, trophic levels of the community, catch and 

diversity indicators) reveal that the combined effect of excessive fishing pressure and 

changes in primary productivity altered the Mediterranean marine ecosystem over time, 

especially reducing the proportions of top predators (e.g., pinnipeds, large pelagic fish) 

and mid trophic level organisms (e.g., small pelagic fishes) and increasing the abundance 

of groups at lower trophic levels (e.g., invertebrates). The Western and the Adriatic Seas 

are the most degraded ecosystems with biomasses declines among all the species 

compartments assessed (from forage fish to sharks/rays and skates, except for 

invertebrates that remained stable in time). The Ionian Sea was found to be the area with 

less biomass changes historically in comparison with available survey data. Even at a 

more local scale (Amvrakikos Gulf), both ecological indicators and biomass trends 

highlight a degradation of the demersal compartments of the food web but a relative 

stability of the pelagic ones mainly due to high eutrophication levels.  

Fishing pressure and changes in primary production (PP) play an important role 

in driving species temporal dynamics; yet, PP seems to be the strongest driver upon the 

Mediterranean Sea ecosystem. Fisheries data (mainly catch and effort) are found to be 

under-reported and under-estimated at regional, sub-regional and local scale. For 
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example, fishing mortalities (and so landings data obtained from Food and Agriculture 

Organization [FAO] fisheries statistics) of three most important commercial species 

(European pilchard ‘Sardina pilchardus’, anchovy ‘Engraulis encrasicolus’ and hake 

‘Merluccius merluccius’) were in fact observed in early decades (1950s), in all the 

Mediterranean sub-regions, between 5 and 10 times inferior from the average reference 

values reported in stock assessment for these fish stocks in the Mediterranean Sea. Even 

in the assessment of the Italian fisheries, the reconstructed total catches were 2.6 times 

the landings officially reported by the FAO on behalf of Italy for the same period and 

same area, with unreported commercial landings (from both industrial and artisanal 

sectors) contributing 50% to the total catch (in relation to FAO reporting) and discards 

contributing another 7%.  

In Europe, several models and associated indicators exist that could be used in 

support of European policies (MSFD); yet, Ecopath with Ecosim (EwE) is the most 

applied tool for modelling marine and aquatic ecosystems and the one that can produce 

the largest number of indicators useful for the Marine Strategy Framework Directive 

(MSFD). Since anthropogenic pressures are rapidly expanding in the basin, this work 

constitutes an important first step to advance further in the regional assessment of the 

Mediterranean Sea ecosystem and to inform conservation plans and management 

actions. 
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En esta tesis he investigado el estado ambiental del mar mediterráneo y la 

sostenibilidad de sus recursos marinos mediante un enfoque interdisciplinario que 

combina la integración de datos y la modelización de ecosistemas. Los resultados ponen 

de relieve una serie de puntos en común de los ecosistemas marinos mediterráneos: el 

grupo de “peces pelágicos de tamaño pequeño”, principalmente compuesto por sardinas 

y boquerones, con grandes biomasas y capturas, es un grupo importante en relación con 

la estructura del ecosistema mediterráneo (a nivel regional, sub regional y a escalas 

locales). El grupo de “peces pelágicos de gran tamaño” destaca por ser importante como 

grupo clave del ecosistema, tanto en el pasado como en el presente, mientras que el 

grupo de “tiburones” y “peces pelágicos de tamaño medianos” han jugado un rol 

ecológico clave en el pasado, pero éste es actualmente reemplazado por los grupos de 

peces bentopelágicos y cefalópodos bentónicos. Además, la foca monje del mediterráneo 

“Monachus monachus”, en aquellas zonas donde todavía existe, es la especie con el nivel 

trófico más alto, seguida por el grupo de “cetáceos que se alimentan de peces” y “peces 

pelágicos de gran tamaño”. 

En cuanto a la dinámica temporal del ecosistema, las tendencias de la biomasa y 

de los indicadores ecológicos (por ejemplo, la biomasa de la comunidad, los niveles 

tróficos de la comunidad, las capturas y los indicadores de diversidad) revelan que el 

efecto combinado de una presión pesquera excesiva y los cambios en la productividad 

primaria ha alterado el ecosistema marino del mediterráneo a través del tiempo, 

especialmente en cuanto a una reducción de las proporciones de los depredadores 

superiores (por ejemplo, pinnípedos, y peces pelágicos de gran tamaño) y organismos 

de niveles tróficos mediados (por ejemplo, peces pelágicos de tamaño pequeño), y el 

aumento en abundancia de grupos de organismos en niveles tróficos inferiores (por 

ejemplo, invertebrados). El mar mediterráneo occidental y el mar adriático son los 

ecosistemas más degradados con bajadas de biomasas para todas las especies evaluadas 

(desde los peces pelágicos de tamaño pequeño a los tiburones y rayas, con excepción de 

los invertebrados que se mantienen estables en el tiempo). El mar jónico es el área con 

menos cambios históricos en términos de biomasa en comparación con los datos 

disponibles de muestreos. Incluso a una escala más local (en el Golfo de Amvrakikos), 

tanto los indicadores ecológicos como las biomasas evidencian una degradación de los 
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compartimentos demersales de la red trófica, aunque se observa una relativa estabilidad 

de los compartimentos pelágicos, principalmente debido a los altos niveles de 

eutrofización. La presión pesquera elevada y los cambios en la producción primaria (PP) 

juegan un papel importante en la dinámica temporal de las especies; sin embargo, 

cambios en la PP parecen ser los principales impulsores de la dinámica temporal en el 

ecosistema del mar mediterráneo.  

Los datos pesqueros (principalmente la captura y el esfuerzo pesquero) se 

encuentran sub-estimados y consecuentemente sub-registrados a escala regional, sub-

regional y local. Por ejemplo, la mortalidad por pesca (y por tanto los datos de 

desembarque que se obtienen de las estadísticas de pesca de la Organización para la 

Agricultura y la Alimentación [FAO]) de tres de las especies comerciales más 

importantes (Sardina europea 'Sardina pilchardus', anchoa 'Engraulis encrasicolus' y 

merluza "Merluccius merluccius') para las primeras décadas de este estudio (1950), y en 

todas las sub-regiones mediterráneas analizadas, era entre 5 y 10 veces inferior a los 

valores de referencia promedio registrados en evaluaciones del stock de estas 

poblaciones en el mar mediterráneo. Incluso en la evaluación de las pesquerías italianas, 

la reconstrucción de las capturas totales muestra que las capturas totales son 2,6 veces 

mayores que los desembarques registrados oficialmente por la FAO durante el mismo 

período y la misma zona, con desembarques comerciales no declarados (de los sectores 

industriales y artesanales) que contribuyen el 50 % de la captura total (en relación a los 

informes de la FAO) y los descartes que contribuyen otro 7%.  

En Europa, existen varios modelos e indicadores asociados que podrían ser 

utilizados en apoyo de las políticas europeas de gestión medioambiental, como la 

Directiva Marco sobre la Estrategia Marina (MSFD); sin embargo, Ecopath with Ecosim 

(EwE) es la herramienta más aplicada para la modelización de los ecosistemas marinos 

y acuáticos y la que puede producir un mayor número de indicadores útiles para la 

MSFD. Dado que las presiones antropogénicas se están expandiendo rápidamente en la 

cuenca mediterránea, este trabajo constituye un primer paso importante para avanzar 

en la evaluación regional del estado ambiental del ecosistema marino mediterráneo y 

para informar a los planes de conservación y acciones de manejo presentes y futuros.
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En aquesta tesi he investigat l'estat ambiental del mar mediterrani i la 

sostenibilitat dels seus recursos marins mitjançant un enfoc interdisciplinari que 

combina la integració de dades i la modelització d'ecosistemes. Els resultats posen en 

relleu una sèrie de punts en comú dels ecosistemes marins mediterranis: el grup de 

"peixos pelàgics de mida petita", principalment compost per sardines i seitons, amb 

grans biomasses i captures, és un grup important en relació amb l'estructura de 

l'ecosistema mediterrani (tant a nivell regional, sub regional i a escales locals). El grup 

de “peixos pelàgics de gran mida” destaca per ser important com a grup clau de 

l'ecosistema, tant en el passat com en el present, mentre que el grup dels “taurons” i 

“peixos pelàgics de mida mitjana” han jugat un paper ecològic clau en el passat, però 

aquest és actualment reemplaçat pels grups de peixos bentopelàgicos i cefalòpodes 

bentònics. A més, el vell marí del mediterrani “Monachus monachus”, en aquelles zones 

on encara existeix, és l'espècie amb el nivell tròfic més alt, seguida pel grup de "cetacis 

que s'alimenten de peixos" i "peixos pelàgics de grans dimensions". 

Pel que fa a la dinàmica temporal de l'ecosistema, les tendències de la biomassa 

i dels indicadors ecològics (per exemple, la biomassa de la comunitat, els nivells tròfics 

de la comunitat, les captures i els indicadors de diversitat) revelen que l'efecte combinat 

d’una pressió pesquera excessiva i els canvis en la productivitat primària ha alterat 

l'ecosistema marí mediterrani a través del temps, especialment pel que fa a una reducció 

de les proporcions dels depredadors superiors (per exemple, pinnípedes, i peixos 

pelàgics de grans dimensions) i organismes de nivells tròfics mitjans (per exemple, 

peixos pelàgics de mida petita), i l'augment en abundància de grups d'organismes en 

nivells tròfics inferiors (per exemple, invertebrats). El mar mediterrani occidental i el mar 

adriàtic són els ecosistemes més degradats amb baixades de biomasses per a totes les 

espècies avaluades (des dels peixos pelàgics de mida petita als taurons i ratjades, amb 

excepció dels invertebrats que es mantenen estables en el temps). El mar jònic és l'àrea 

amb menys canvis històrics en termes de biomassa en comparació amb les dades 

disponibles de mostrejos. Fins i tot a una escala més local (en el Golf de Amvrakikos), 

tant els indicadors ecològics com les biomasses evidencien una degradació dels 

compartiments demersals de la xarxa tròfica, encara que s'observa una relativa estabilitat 

dels compartiments pelàgics, principalment a causa dels alts nivells d'eutrofització. La
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pressió pesquera elevada i els canvis en la producció primària (PP) juguen un paper 

important en la dinàmica temporal de les espècies; però, els canvis en la PP semblen ser 

els principals impulsors de la dinàmica temporal de l'ecosistema del mar mediterrani. 

Les dades pesquers (principalment la captura i l'esforç pesquer) es troben 

subestimats i conseqüentment registrats de forma errònia a escala regional, sub regional 

i local. Per exemple, la mortalitat per pesca (i per tant les dades de desembarcament que 

s'obtenen de les estadístiques de pesca de l'Organització per a l'Agricultura i 

l'Alimentació [FAO]) de tres de les espècies comercials més importants (Sardina europea 

“Sardina pilchardus”, anxova “Engraulis encrasicolus” i lluç “Merluccius merluccius”) per a 

les primeres dècades d'aquest estudi (1950), i en totes les sub regions mediterrànies 

analitzades, era entre 5 i 10 vegades inferior als valors de referència mitjana registrats en 

avaluacions de l'estoc d'aquestes poblacions al mar mediterrani. Fins i tot en l'avaluació 

de les pesqueries italianes, la reconstrucció de les captures totals mostra que les captures 

totals són 2,6 vegades més grans que els desembarcaments registrats oficialment per la 

FAO durant el mateix període i per la mateixa zona, amb desembarcaments comercials 

no declarats (dels sectors industrials i artesanals) que contribueixen al 50% de la captura 

total (en relació als informes de la FAO) i els descarts que contribueixen un altre 7%.  

A Europa hi ha diversos models i indicadors associats que podrien ser utilitzats 

en suport de les polítiques europees de gestió mediambiental, com la Directiva Marc 

sobre l'Estratègia Marina (MSFD); de totes formes, Ecopath with Ecosim (EwE) és l'eina 

més aplicada per a la modelització dels ecosistemes marins i aquàtics i la que pot produir 

un major nombre d'indicadors útils per a la MSFD. Atès que les pressions 

antropogèniques s'estan expandint ràpidament a la conca mediterrània, aquest treball 

constitueix un primer pas important per avançar en l'avaluació regional de l'estat 

ambiental de l'ecosistema marí mediterrani i per informar els plans de conservació i 

gestió presents i futurs.
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MAJOR PRESSURES ON THE MARINE ENVIRONMENT  

Covering 71% of the Earth's surface, the oceans are important to humankind in 

multiple ways: they are key in regulating global climate and biochemical processes 

(Rahmstorf 2002) and, hosting a variety of complex marine ecosystems, they provide 

important good and services (e.g., seafood, leisure and recreation; Worm et al. 2006, 

Halpern et al. 2012). Until recently, because of their magnitude, the oceans were thought 

to offer inexhaustible marine resources (Costanza et al. 1999). However, as human 

populations kept growing and migrating along the coasts (~40% of the world's 

population lives within 100 km of the coast; Agardy et al. 2005, Ferrario et al. 2014), many 

resources and associated habitats have diminished and/or have been altered by the 

pressure of increased human activities (Halpern et al. 2015). Among major threats 

affecting marine ecosystems are fisheries and aquaculture, pollution, eutrophication, 

climate change and species invasions (Figure 1: Halpern et al. 2008, Halpern et al. 2015). 

 

 

Figure 1. Cumulative human impact to marine ecosystems as of 2013 (source: Halpern, 2015). Impact scores 

are based on 19 anthropogenic stressors. Colours are assigned to 10-quantiles in the data, except the highest 

scores which are the top 5% of scores. Areas of permanent sea ice are shaded white and the area within 

maximum sea ice extent is masked to indicate where scores are less certain because change in sea ice extent 

could not be included. 

Global fisheries, by removing target and non-target species and deteriorating 

marine habitats, are one of the major responsible of significant and profound ecological 

changes in the structure and function of marine ecosystems (Pauly et al. 1998, Worm et 

al. 2006). The collapse of cod stocks off the coasts of New England and eastern Canada 

(Myers & Worm 2003), the large decline of sardines across the Pacific Ocean (Chavez et 

al. 2003), the declines of sharks in the northwest Atlantic Ocean (Myers et al. 2007) or the 
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depletion of sea turtles in the Carribean Sea (McClenachan et al. 2006) are only few 

examples of the detrimental direct and indirect impact of fisheries on marine resources 

(Pauly et al. 2002). Nevertheless, despite clear evidences of taxa collapses throughout the 

world, fishing effort continues to increase well beyond sustainable levels (Pauly et al. 

2002, Watson et al. 2013), pressuring not only historical fishing grounds (e.g., continental 

shelves) but also reaching new untouched areas of the oceans (e.g., high seas and deep 

sea floors, Swartz et al. 2010). 

Moreover, global aquaculture (of both farmed fish and shellfish) has more than 

doubled in the past 15 years (FAO 2016). Even though aquaculture is often perceived as 

a pressure relief for ocean fisheries in sustaining world fish supplies, several concerns 

still remains in its management practices and its impact on marine ecosystems (Naylor 

et al. 2000). For example, the large use of wild fish for feeding farmed carnivorous species 

or the reduction of wild fish supply through habitat modification (Naylor & Burke 2005) 

are factors that are continuously of concern for marine ecosystems and their resources. 

Marine pollution, consisting of contaminants as persistent organic pollutants, 

oils, radionuclides, heavy metals, pathogens, litters and debris (Williams 1996),  did not 

receive much attention until recently when clear signs of negative impacts were 

observed on ecosystems and organisms (Islam & Tanaka 2004). Despite the fact that 

monitoring and regulating pollution have been identified as fundamental to sustainably 

manage and preserve marine resources, work is still needed to properly tackle this issue 

(Williams 1996). In fact, regardless of the existence of international legislations on marine 

pollution (e.g., the 1972 Convention on the Prevention of Marine Pollution by Dumping 

Wastes and Other Matter and the 1978 Protocol to the International Convention for the 

Prevention of Pollution from Ships (MARPOL)), many nations are still producing large 

pollution loads which are directly or indirectly negatively impacting the ocean (Derraik 

2002). 

Marine eutrophication occurs when large quantities of nutrients enter in the 

ecosystems mainly from riverine discharges, agriculture and atmospheric deposition 

from burning fossil fuels (Smith et al. 1999). A major threat caused by eutrophication is 

the formation of so called “dead zones”, areas characterized by decreased levels of 

dissolved oxygen (DO) in bottom waters that induce hypoxia and in worst cases anoxia 
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events (Diaz & Rosenberg 2008). The most known and studied areas where dead zones 

occur are the Baltic, Kattegat, Black Sea, Gulf of Mexico, and East China Sea. Since global 

population is expected to keep growing, energy use and agricultural production are 

expected to intensify, increasing levels of eutrophication, hypoxia and thus the 

formation of dead zones (Diaz & Rosenberg 2008). 

Over the past 30 years, oceans, acting as the planet’s sink, have absorbed most of 

the added atmospheric temperature and carbon dioxide produced by green gas 

emissions and other human activities with the result that currently oceans are warmer 

(increase of ~0.1°C per decade) and more acidic (decrease of ~0.02 pH per decade) (Bakun 

1990, Overland et al. 2010). These changes have already altered the structure and 

function of marine ecosystems; for example, by decreasing ocean productivity, 

increasing ocean acidification, altering food web dynamics, reducing abundance of 

habitat-forming species, shifting species distributions, and increasing the greater 

incidence of diseases (Hoegh-Guldberg & Bruno 2010).  

Global warming together with shipping and aquaculture are also the major 

causes of increasing invasive species into our oceans. The impacts of invasive species on 

marine ecosystems are diverse and mostly related to the modification of marine habitats 

either by displacing or removing native species, or community structure and food webs 

changes, or the alteration of fundamental processes, such as nutrient cycling and 

sedimentation (Ruiz et al. 1997). Some studies have also showed a negative effect of 

invasive species on fisheries by diminishing catches and some also on human health by 

causing disease (Weber et al. 1994, Bax et al. 2003).  

ECOSYSTEM BASED MANAGEMENT  

As anthropogenic pressures are rapidly increasing, understanding how stressors 

interact with each other and influence marine ecosystems and how such dynamics affect 

the sustainability of goods and services they provide is of urgent importance (Halpern 

et al. 2012). Up to now, a large body of studies have focused on the impact of a single 

stressor on specific compartments of marine and coastal environments; however, 

following the collapse of many marine resources worldwide and the difficulties to 

properly manage them individually, a move toward an “Ecosystem-Based 

Management” (EBM) approach has been identified as a necessary step (Pikitch et al. 
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2004). This approach recognizes the need to assess the ecosystem as a whole, rather than 

focusing on single resources, and considering the impact of multiple stressors on the 

system, instead of individual ones, for responsible resource management decisions to be 

made (Pikitch et al. 2004).  

Despite the fact that the EBM concept is relatively new to management plans, the 

foundations of EBM are deep-rooted within many international agreements. For 

example, the Commission for the Conservation of Antarctic Marine Living Resources 

(CCAMLR), in 1980, described it as an approach that: 

“takes into account all the delicate and complex relationships between organisms (of all 

sizes) and physical processes (such as currents and sea temperature) that constitute the Antarctic 

marine ecosystem” (19) 

while the United Nations Convention on Biological Diversity (CBD) in 1982 defined it 

as: 

“a strategy for the integrated management of land, water and living resources that 

promotes conservation and sustainable use in an equitable way” [20] 

Only recently (2005), though, the Communications Partnership for Science and 

the Sea (COMPASS) gave a more in-depth inclusive definition of EBM: 

“an integrated approach to management that considers the entire ecosystem, including 

humans. The goal of EBM is to maintain an ecosystem in a healthy, productive and resilient 

condition so that it can provide the services humans want and need. EBM differs from current 

approaches that usually focus on a singlespecies, sector or activity or concern; it considers the 

cumulative impacts of different sectors” [21] 

Because of the failure in managing individual species, the EBM approach has 

seen increased popularity in many management initiatives with the result that its 

implementation is now taking place in several different sectors (e.g., forestry, fisheries) 

with sector-specific variations (e.g., Ecosystem Approach to Fisheries) (Levin et al. 2009). 

In particular, international regulations such as the Convention of Biological Diversity, 

[CBD], the Reykjavık Declaration of 2001, the European Marine Strategy Framework 

Directive [MSFD; 2008/56/EC], and the Intergovernmental Platform on Biodiversity and 

Ecosystem Services (IPBES), are pushing policies towards the integration of effective and 

operational EBM procedures, using robust and appropriate tools. Some of these tools are 
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modelling frameworks and indicators (Fulton et al. 2011). As highlighted in these 

regulations, in fact, indicators can be used to evaluate whether an ecosystem and its 

services are well maintained and sustainably used (Layke 2009, Walpole et al. 2009, TEEB 

2010) and can help translating ecosystem impacts and changes into management 

measure (Shin et al. 2010a, Rombouts et al. 2013). 

In the marine environment, several efforts have been undertaken to evaluate 

marine ecosystem structure and their response to human activities through the use of 

key indicators (Link et al. 2010, Shin et al. 2010b, Coll et al. 2016). At the European level, 

for example, these initiatives have been carried out to assist the European Marine 

Strategy Framework Directive [MSFD; 2008/56/EC], the environmental pillar of the 

European marine policy. The MSFD aims at assessing the status of an ecosystem under 

anthropogenic pressures and the required interventions to bring the system back to its 

desired good status, making human activities sustainable, since this is one of the 

objectives of the MSFD. In particular, the Directive requires Member States (MSs) to take 

the necessary measures to achieve or maintain Good Environmental Status (GEnS; Borja 

et al. 2011) in the marine environment, by the year 2020 at the latest, through the 

assessment of descriptors and indicators related to biological, physico-chemical 

characteristic of the system and associated pressures (e.g., fishing, hazardous sub-

stances, hydrological alterations, litter and noise, and biological disturbance such as 

introduction of non-indigenous species) (Cardoso et al. 2010). 

ECOSYSTEM MODELLING AS A KEY TOOL TO EBM 

 The development and application of ecosystem models have increased in the last 

decades (Plagányi 2007) because they are recognised as powerful tools to quantify 

baseline conditions of marine ecosystems, estimate the impact of pressures and the 

suitability of management measures, integrate scarce survey datasets and, ultimately, 

provide explicit support to decision-making processes complementing single species 

modelling approaches (Fulton & Smith 2004, Shin et al. 2004, Christensen & Walters 

2005, Fulton 2010). Different types of modelling techniques exist that can describe and 

assess the whole ecosystem, and can consider the different components that characterize 

it including human and/or climate impacts (Christensen & Walters 2004, Shin et al. 

2010c, Fulton et al. 2011).   
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These models include: (a) whole ecosystem models that take into account all 

trophic levels in the ecosystem and are mainly represented by Atlantis (Fulton & Smith 

2004) and the Ecopath with Ecosim (EwE) software (Christensen & Walters 2004); (b) 

individual based models (IBMs) that track fate of single species or, in some instances, 

multi species (e.g., OSMOSE; Shin et al. 2004) through their life cycle with the 

assumption that their behaviour has an effect on the population’s dynamics; and (c) 

minimally realistic models (MRM), that represent a limited number of species that have 

important interactions with a target species of interest and include MSVPA (Multi-

Species Virtual Population Analysis; Sparre 1991), GADGET (Taylor & Stefansson 2004), 

CCAMLR predator-prey models (Mori & Butterworth 2006). In recent years, also, under 

the growing need to provide guidance for biodiversity conservation and ecosystem-

based management, hydrological, hydrodynamic and biogeochemical models have been 

coupled with multi-species models (Travers et al. 2009, Kaplan et al. 2012). These so 

called end-to-end (E2E) models combine physico-chemical oceanographic processes 

with ecological processes into a single modelling framework (Figure 2) (Travers et al. 

2009) to better represent/understand the whole food web while accounting for dynamic 

forcing effects of anthropogenic impacts (e.g., fishing) and climate (Cury et al. 2008). 

Coupling can been achieved in different ways (Travers et al. 2007). For example, 

hydrodynamic models have been linked to bioenergetics-population dynamic models to 

examine how climate forcing propagates through the food web (Megrey et al. 2007) or 

hydrodynamic-biogeochemical models have been coupled to food web models 

(Beecham et al. 2015) to better assess the dynamics of the entire ecosystem. The coupling 

between these different model-classes should, in principle, be two way interactions, 

meaning that there is always feedback between the different environmental processes. 

When this happens models represent at best the nature of the processes. When the 

feedback is offline (one way interaction) instead, coupling is applied to reduce the 

computational effort while still achieving a valid approximation of the processes 

(Beecham et al. 2015).  
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Figure 2. Marine ecosystem model types (boxes) and way of coupling between them (arrows). End to End 

model encompasses all of the models as it is represented by the the dashed arrow (source: this thesis). 

When developing and applying an ecosystem model, several problems may rise, 

generally associated with the accuracy and the uncertainty of model inputs and outputs 

(Fulton et al. 2003, Jørgensen 2008). One of the main criticisms to ecosystem models is in 

fact related to the large complexity of the system (Fulton et al. 2003, Plagányi 2007) that 

make model predictions highly uncertain. Despite the fact that ecosystem models are 

highly complex by nature and uncertainty remains high, they are considered the best 

tools capable of answering ecosystem related questions. Since erroneous conclusions 

may be drawn if ignoring food web dynamics and the forces driving them, the 

advantages of applying such models can outweigh their potential pitfalls (Fulton et al. 

2003). In any case, the issue of uncertainty is generally overcome by testing the 

robustness of model outputs (through a calibration process, for example) against a range 

of other models or against survey data. This approach permits the identification of weak 

components across different levels of complexity, underlying system and model 

assumptions (Fulton 2001).  

ECOPATH WITH ECOSIM APPROACH  

The Ecopath with Ecosim (EwE) approach (Christensen & Walters 2004) is used 

in this thesis to build Mediterranean ecosystem models and simulate dynamic changes 

of species/functional groups and catches over time. This software combines ecosystem 
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trophic mass balance (biomass and flow) analysis (Ecopath) with dynamic (Ecosim) and 

spatial-dynamic (Ecospace) modeling capabilities (Christensen & Walters 2004, 

Christensen et al. 2014, www.ecopath.org). Since its origins (Polovina 1984), this 

modeling tool has advanced considerably (Coll et al. 2015, Steenbeek et al. 2016, 

Villasante et al. 2016), making it, now, one of the most suitable tools for exploring 

changes in marine biodiversity/ecosystem services (Sukhdev 2008) and for ecosystem-

approach to fisheries and marine resources (Coll et al. 2015, Villasante et al. 2016). This 

is also reflected by the number of ecosystem models (~500) using the EwE approach that 

are currently published (Colléter et al. 2015) throughout the world.  

The software has three main modules: Ecopath that is a mass balance model that 

provides a static description of an ecosystem at a given time period (Christensen & 

Walters 2004), describing all the principal autotrophic and heterotrophic species 

individually or by aggregating them into functional groups (species with similar trophic 

role). Ecosim, the tropho-dynamic simulation module, that has the capability to conduct 

multispecies simulations to explore changes in ecosystem structure and functioning, the 

impact of fishing and policy exploration (Christensen & Walters 2004). Ecospace, the 

spatial-temporal dynamic module, that represents the dynamics of marine 

species/functional groups over a two-dimensional space grid (Walters et al. 1999) linking 

the habitat attributes of an ecosystem (e.g., depth, temperature, pH, bottom type) to the 

trophic dynamics established in the food web (Christensen et al. 2014). Details about the 

available programing environments, recent developments and limitations of the EwE 

approach can be found extensively described in the literature (Christesen and Walters 

2004; Steenbeek et al. 2016). 

EwE has been widely used to understand various aspects of ecosystem based 

management. For example, assessing the structure and functioning of marine 

ecosystems (e.g., Heymans et al. 2004) from freshwater estuarine, coastal, to deep sea 

habitats (e.g., Harvey et al. 2003, Tsagarakis et al. 2010, Tecchio et al. 2013); performing 

ecosystem comparisons through the use of modelled derived indicators (e.g., Heymans 

et al. 2014); evaluating ecosystem-wide impacts of fishing strategies (e.g., Ainsworth et 

al. 2008), environmental changes (e.g., Mackinson et al. 2009, Mackinson 2014) and 

invasive species (Langseth et al. 2012, Libralato et al. 2015); analysing management 
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options for marine resources (e.g., Lynam & Mackinson 2015) and describing 

bioaccumulation of toxins in the food web (e.g., Booth & Zeller 2005). 

ECOLOGICAL INDICATORS 

Ecosystem models can be used to derive useful ecological indicators to 

inform/support management decisions (Shin et al., 2010a, Shin et al., 2010b). In the 

marine research field, and particularly in the context of EBM, several efforts have been 

undertaken to define, test and evaluate indicators capable of capturing the status of 

marine ecosystems against changes in pressures (Shin et al. 2010a, Halpern et al. 2012, 

Rombouts et al. 2013). These initiatives have been carried out to assist several 

international organizations/regulations (e.g., the European Marine Strategy Framework 

Directive [MSFD; 2008/56/EC]; the Convention of Biological Diversity [CBD]; the UNEP 

Marine and Coastal Strategy (UNEP, 2011); the Intergovernmental Platform on 

Biodiversity and Ecosystem Services [IPBES]), with the aim of improving and/or 

maintaining the state of the environment and monitoring the rate of progress in 

achieving ecological objectives or targets. 

Accordingly to Rice (2003), there are approximately 200 indicators (from cellular 

to ecosystem level) that can describe marine ecosystem health and that can be tractable 

and meaningful to all stakeholders (scientists, policy makers, the media, and the general 

public). These indicators include both empirical and model-based indicators. In 

particular, empirically-based indicators are used as proxies to indicate community 

response to change (e.g., state of fish stocks for fisheries management: Rice & Rochet 

2005,  or benthic community structure for habitat quality assessment: Borja & Dauer 

2008), while model-based indicators are primarily developed and used to resolve 

ecosystem management questions (e.g., impact of specific pressures on marine 

ecosystems [Cury et al. 2008, Coll et al. 2016]; socio-economic and governance issues 

[Ehler 2003, Rice & Rochet 2005]; cumulative impacts of multiple human activities 

[Halpern et al. 2012, Coll et al. 2016]). 

In this context and with the goal of informing management processes, in this 

thesis I use the EwE modelling approach to calculate modelled-derived indicators for 

the Mediterranean Sea ecosystem. The selection of the indicators follows mainly the 

work of IndiSeas (“Indicators for the Seas”; www.indiseas.org; see e.g., Shannon et al. 
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[2014] and Coll et al. [2016]), an international initiative that has developed and assessed 

ecological indicators for cross ecosystem comparisons to inform on the impacts of fishing 

on marine ecosystems woldwide. Among these indicators, are fisheries and ecology-

based indicators (e.g., Shin et al., 2010), biodiversity and conservation indicators 

(Shannon et al. 2014, Coll et al. 2016), environmental (Fu et al. 2015), and socioeconomic 

and governance indicators (e.g., Bundy et al. in press). A summary of the initiative can 

be found at www.indiseas.org and in Shin et al. (2012).   

THE MEDITERRANEAN SEA 

The Mediterranean Sea extends from 30°N to 45°N and from 6°W to 36°E, and 

constitutes the world’s largest (2 522 000 km2) and deepest (average 1460 m, maximum 

5267 m) enclosed sea on Earth. It is connected to the Atlantic Ocean via the Strait of 

Gibraltar in the west, to the Black Sea via the Bosporus, and the Dardanelles in the north-

east and to the Red Sea via the Suez Canal in the south-east (Figure 3).  

 

Figure 3. The Mediterranean Sea with the bathymetry profile (in meters (m)). 

Overall, the basin is considered oligotrophic with some exceptions along coastal 

areas due mainly to river discharges (Barale & Gade 2008) and frontal mesoscale activity 

(Siokou-Frangou et al. 2010). Phosphorous, rather than nitrogen, is the limiting nutrient 

especially towards the eastern basin (Krom et al. 1991). Biological productivity decreases 

from north to south and west to east whilst an opposite trend is observed for temperature 

and salinity. In particular, the mean sea surface temperature varies between a minimum 

of 14–16°C (west to east) in winter and a maximum of about 20–26°C (w-e) in the summer 
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(with the exception of the shallow Adriatic Sea where the range is between the 8–10°C 

in winter and 26–28°C in summer) (Barale & Gade 2008). Evaporation greatly exceeds 

precipitation and river runoff decreases from west to east, causing sea surface height to 

decrease and salinity to increase eastward (Bethoux 1980, Garrett et al. 1993). The 

Mediterranean Sea has a topographically diverse continental shelf that generally varies 

from south (mainly narrow and steep) to north (wider areas). In some instances, though, 

narrow shelves can be also found in some coasts of Turkey, in the Aegean, Ligurian and 

northern Alboran Seas, while extended shelves are also present in the Tunisian shelf and 

near the Nile Delta (Pinardi et al. 2006). Shelf waters represent 20% of the total 

Mediterranean surface, and the rest is open sea (Coll et al. 2010).  

Despite the fact that the Mediterranean Sea covers only 0.32% of the world ocean 

volume, it shows a relatively high marine species richness and a high rate of endemism 

(Coll et al. 2010). However, individual species abundance remains quite low, suffering 

from a degree of dwarfism, related to the general oligotrophic nature of the 

Mediterranean, that decreases again from northwest to southeast (Sonin et al. 2007). 

Currently, approximately 17 000 species have been recorded in the basin (Bianchi 

& Morri 2000, Coll et al. 2010): of these, at least 26% are prokaryotic (Bacteria and 

Archaea) and eukaryotic (Protists) marine microbes. The phytoplankton community is 

composed predominantly of Coccolithophores, Dinoflagellata and Bacillariophyaceae 

and includes more than 1 500 species. Among microzooplankton, foraminifera is the 

main group with more than 600 species. Still, it is within the Animalia group that the 

majority of the species are described (~11 500) with the greatest contribution coming 

from the Crustacea (13.2%) and Mollusca (12.4%) (Coll et al. 2010). Among the 

vertebrates, there are 650 marine species of fishes of which approximately 80 are 

elasmobranchs and the rest are mainly from actinopterygians (86%) (Coll et al. 2010). 

Nine species of marine mammals (five Delphinidae, and one each to the Ziphiidae, 

Physeteridae, Balaenopteridae, and Phocidae) and three species of sea turtles (the green 

Chelonia mydas, the loggerhead Caretta caretta and leatherback Dermochelys coriacea turtle) 

are encountered regularly in the Mediterranean Sea. Among the seabirds, 15 species 

frequently occur in the Mediterranean Sea, 10 gulls and terns (Charadriiformes), four 

shearwaters and storm petrels (Procellariiformes), and one shag (Pelecaniformes) (Coll 
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et al. 2010). These estimates make the Mediterranean Sea one of Earth’s hotspot areas for 

marine biodiversity (Coll et al. 2010, Costello et al. 2010); unfortunately, because of the 

extensive alteration throughout history of combined multiple human stressors, such as 

fishing practises, habitat loss and degradation, eutrophication, and the introduction of 

alien species (Coll et al. 2012, Micheli et al. 2013), the basin is also among the most 

impacted ecoregions of the world (Costello et al. 2010, Halpern et al. 2015).  

These pressures have resulted in major alterations of Mediterranean marine 

ecosystems with signs of biodiversity loss observed throughout the food web, from top 

to bottom (Lotze et al. 2006, Lotze et al. 2011).  Previously common species, such as the 

monk seal (Monachus monachus) (Panou et al. 1993), short-beaked common dolphin 

(Delphinus delphis) (Bearzi et al. 2003), Atlantic bluefin tuna (Thunnus thynnus) 

(MacKenzie et al. 2009) and several shark species (Ferretti et al. 2008), are currently 

endangered or critically endangered (Hilton-Taylor 2000, Bearzi 2012, Karamanlidis & 

Dendrinos 2015). In addition, the Posidonia oceanica, the most common and endemic sea 

grass species of the Mediterranean Sea, is showing alarming signs of disappearance, 

especially in the northern parts of the basin (Marbá et al. 1996).  

A number of regional organisations, agreements and initiatives are involved in 

the protection of the Mediterranean marine biodiversity and ecosystem and in the 

maintenance of a sustainable economic development. Among all, the most important 

ones are the Barcelona Convention - including its seven implementing protocols and the 

United Nations Environment Programme (UNEP)’s Mediterranean Action Plan (MAP) 

-, the Agreement on the Conservation of Cetaceans in the Black Sea, Mediterranean Sea 

and contiguous Atlantic area (ACCOBAMS), the Food and Agriculture Organization 

(FAO) with several sectoral agreements and initiatives - such as the FAO Compliance 

Agreement, the General Fisheries Commission for the Mediterranean (GFCM) and the 

International Commission for the Conservation of Atlantic Tunas (ICCAT) -, the 

Convention on Biological Diversity and other biodiversity related agreements and 

conventions - such as the Bern Convention -, and the EU’s sectoral and environment 

policies (e.g., MSFD) and regional programmes and initiatives like the EU 

Mediterranean Strategy. Yet, despite the presence of such frameworks, agreements and 

initiatives, difficulties exist in governing and managing Mediterranean marine 
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resources. The major cause behind it is related to the socio-political complexity of the 

region, being surrounded by twenty one countries from Europe, Asia and Africa, all 

having highly different political and cultural systems and associated legal jurisdictions. 

As a consequence of this complexity and lack of regional management strategies that 

take this complexity into account, Mediterranean ecosystems keep degrading and many 

marine species are over-exploited or depleted (Papaconstantinou & Farrugio 2000, 

Colloca et al. 2013, Tsikliras et al. 2013, Vasilakopoulos et al. 2014).  
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1.1 Thesis Objective (Thesis Outline) 

The overarching objective of this thesis is to contribute to the scientific 

component needed to advance an ecosystem-based management approach in the 

Mediterranean Sea. This thesis adopts an interdisciplinary approach, combining data 

integration, modelling approaches and the analysis of the model-based indicators, to 

investigate the status of the Mediterranean Sea ecosystem and the sustainability of its 

marine resources in order to inform future conservation and management actions.  

To achieve the overall objective, this thesis is organized around five main topics: 

a review about the use of ecological models to assess marine ecosystem status in support 

of European policies (Chapter 2.1); the reconstruction of Italy’s marine fisheries removals 

and fishing capacity (Chapter 2.2); and the development and use of an ecosystem 

modelling approach to: a) assess ecosystem health changes of a semi-enclosed 

embayment of the Mediterranean Sea (Chapter 2.3); b) develop a quantitative description 

of the whole Mediterranean marine ecosystem in two periods of time representing past 

and present conditions (Chapter 2.4); and c) evaluate historical impact of environmental 

and fisheries drivers on the whole Mediterranean marine ecosystem (Chapter 2.5). 

Annexes 1-5 compile the original peer reviewed articles (and supplementary materials) 

that have resulted from this PhD thesis (4 published and 1 submitted for publication), 

while Annex 6 lists additional peer-reviewed publications which I contributed as co-

author (6 published or accepted).  

Specific objectives of each chapter: 

CHAPTER 2.1: ECOLOGICAL MODELS TO ASSESS MARINE ECOSYSTEM 

STATUS IN SUPPORT OF EU POLICIES  

Since the European Union’s Marine Strategy Framework Directive (MSFD) seeks 

to achieve, for all European seas a “Good Environmental Status” (GEnS, Borjia et al., 

2011) by 2020, and ecological models are currently one of the strongest approaches used 

to predicting and understanding the consequences of anthropogenic and climate-driven 

changes in the natural environment, the objectives of the chapter were to:  

 review the current capabilities of the modelling community to inform on 

indicators outlined in the Marine Strategy Framework Directive (MSFD), 
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focusing on biodiversity (D1), food webs (D4), non-indigenous species (D2) and 

seafloor integrity (D6) descriptors of the MSFD;  

 assess which models were able to demonstrate the linkages between indicators 

and ecosystem structure/function and the impact of pressures on state and 

indicators; 

 and report on gaps in model capability and suggest needs for development. 

This chapter highlighted EwE as the modelling toolbox associated with the 

largest number of model‐derived biodiversity indicators that could be used to support 

the MSFD. For this reason, this modelling approach was chosen and applied in this thesis 

to the Mediterranean Sea as shown in Chapters 2.3, 2.4 and 2.5. 

CHAPTER 2.2: RECONSTRUCTION OF ITALY’S MARINE FISHERIES  

An important step when building an ecosystem model is the collection of 

biological, environmental and human related data. This chapter developed a method for 

reconstructing long time series of catches for one of the most important fisheries of the 

Mediterranean Sea, the Italian fisheries.  This work was conducted as part of an overall 

effort to reconstruct global fisheries catches (Pauly & Zeller 2016) by the Sea Around Us 

(www.seaaroundus.org), which also included other Mediterranean countries (Coll et al. 

2014; Pauly et al. 2014; Tsikliras et al. 2007; Ulman et al. 2013).  

Thus, using all available data sources and accounting for reported and 

unreported commercial landings, recreational and subsistence landings and discards, 

this Chapter estimated for the 1950-2010 period: 

 catches for all marine Italian fishing sectors; 

 fishing capacity for major Italian fishing fleets; and 

 total catch per unit of effort. 

In the near future, Mediterranean catch reconstructions will be integrated in the 

modelling effort developed for the Mediterranean Sea, as in Chapters 2.4 and 2.5, to 

reduce data gaps and better capture the impact of fishing pressure on the Mediterranean 

marine ecosystem. 
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CHAPTER 2.3: ECOSYSTEM HEALTH FOR A MEDITERRANEAN SEMI-

ENCLOSED EMBAYMENT  

Using the ecosystem modelling approach Ecopath with Ecosim (EwE; 

Christensen & Walters 2004), this chapter assesses and quantifies the health status of a 

semi-enclosed embayment of the Mediterranean Sea, the Amvrakikos Gulf (Ionian Sea).  

With this chapter I wanted to highlight the importance of assessing also local 

ecosystem dynamics (in this case an embayment of the Mediterranean Sea) and 

associated stressors that might or not differ from the regional scale model. Thus, a food 

web model of the Amvrakikos Gulf ecosystem for the 1980 was built and fitted to time 

series from 1980 to 2013. The aim of the study was to:  

 investigate temporal dynamics of marine resources in the last three decades 

considering the effect of changes in rivers run off, development of fish farming 

and changes in fisheries as the major anthropogenic drivers affecting the system; 

and 

 assess structural and functional changes of the Amvrakikos Gulf, using model 

derived indicators obtained from temporal simulations. 

CHAPTER 2.4: MODELLING THE MEDITERRANEAN MARINE ECOSYSTEM  

Using the EwE modelling framework, and the Ecopath food web model in 

particular (Christensen & Walters 2004), this chapter assesses the Mediterranean marine 

ecosystem structure and function as a whole. In particular two EwE food web models 

for the 1950s and 2000s periods were built to investigate: 

 the main structural and functional characteristics of the Mediterranean food-web 

during these two time periods;  

 the key species/functional groups and interactions;  

 the role of fisheries and their impact; and  

 the ecosystem properties of the Mediterranean Sea in comparison with other 

European Regional Seas. 

The main challenge of this chapter is to represent the Mediterranean Sea 

ecosystem as whole, which is characterized by different biological and environmental 

characteristics, and to retrieve/integrate available regional data. However, due to the 

complexity of the region, a sub-regional approach was also developed to investigate the 
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food web structural and functional properties at two geographical levels: the sub-

regional (dividing the Mediterranean Sea in four areas: Western Mediterranean Sea, 

Adriatic Sea, Ionian and Central Mediterranean Sea and Aegean and Levantine Sea) and 

the regional level (considering the whole Mediterranean Sea). 

CHAPTER 2.5: HISTORICAL CHANGES OF THE MEDITERRANEAN SEA 

ECOSYSTEM 

In order to inform future management policies and develop plausible scenarios, 

this chapter quantifies temporal dynamics of marine species in the Mediterranean Sea 

ecosystem as a whole and by sub-region as indicated above, evaluating past and current 

dynamics and status. The specific goals are to investigate:  

 temporal evolution of the Mediterranean marine ecosystem from 1950 to 2011 by 

fitting the Mediterranean food web model (previously developed in chapter 2.4) 

to available time series, developing a hind-cast scenario analysis, which includes 

changes in primary productivity, fisheries activities and food web dynamics; and  

 structural and functional changes of the Mediterranean Sea ecosystem using 

specific modelled-derived indicators from 1950 to 2011 using the hind-cast 

scenario analysis of the best fitted model.
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Abstract 

The European Union’s Marine Strategy Framework Directive (MSFD) seeks to achieve, 

for all European seas, “Good Environmental Status” (GEnS), by 2020. Ecological models 

are currently one of the strongest approaches used to predicting and understanding the 

consequences of anthropogenic and climate-driven changes in the natural environment. 

We assess the most commonly used capabilities of the modelling community to provide 

ECOLOGICAL INDICATORS 58 (2015) 175-191 

 

doi: 10.1016/j.ecolind.2015.05.037 



   

2.1 Ecosystem models in support of EU policies 

 
 

34 
 

information about indicators outlined in the MSFD, particularly on biodiversity, food 

webs, non-indigenous species and seafloor integrity descriptors. We built a catalogue of 

models and their derived indicators to assess which models were able to demonstrate: 

(1) the linkages between indicators and ecosystem structure and function and (2) the 

impact of pressures on ecosystem state through indicators. Our survey identified 44 

ecological models being implemented in Europe, with a high prevalence of those that 

focus on links between hydrodynamics and biogeochemistry, followed by end-to-end, 

species distribution/habitat suitability, bio-optical (remote sensing) and multispecies 

models. Approximately 200 indicators could be derived from these models, the majority 

of which were biomass and physical/hydrological/chemical indicators. Biodiversity and 

food webs descriptors, with ∼49% and ∼43% respectively, were better addressed in the 

reviewed modelling approaches than the non-indigenous species (0.3%) and sea floor 

integrity (∼8%) descriptors. Out of 12 criteria and 21 MSFD indicators relevant to the 

abovementioned descriptors, currently only three indicators were not addressed by the 

44 models reviewed. Modelling approaches showed also the potential to inform on the 

complex, integrative ecosystem dimensions while addressing ecosystem fundamental 

properties, such as interactions between structural components and ecosystems services 

provided, despite the fact that they are not part of the MSFD indicators set. The 

cataloguing of models and their derived indicators presented in this study, aim at 

helping the planning and integration of policies like the MSFD which require the 

assessment of all European Seas in relation to their ecosystem status and pressures 

associated and the establishment of environmental targets (through the use of indicators) 

to achieve GEnS by 2020. 

Resumen 

La Directiva Marco sobre la Estrategia Marina (DMEM) de la Unión Europea pretende 

alcanzar el "buen estado medioambiental" (BEE) de todos los mares europeos en el 2020. 

Los modelos ecológicos son actualmente uno de los enfoques más potentes que se 

utilizan para predecir y entender las consecuencias de cambios antropogénicos y 

climáticos en el medio natural. En este artículo evaluamos las capacidades más utilizadas 

en la modelización para proporcionar información sobre los indicadores contenidos en 

la DMEM, en particular sobre los descriptores de biodiversidad, redes alimentarias, 
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especies no indígenas e integridad del fondo marino. Hemos construido un catálogo de 

modelos con sus indicadores para evaluar qué modelos son capaces de demostrar: (1) 

los vínculos entre indicadores y la estructura y función del ecosistema y (2) el impacto 

de las distintas presiones sobre el estado de los ecosistemas usando indicadores. Este 

estudio ha identificado 44 modelos ecológicos que se están aplicando en Europa; hay 

una gran prevalencia de modelos que se centran en la relación entre la hidrodinámica y 

la biogeoquímica, seguidos de otros modelos “de principio a fin” (end-to-end), de 

distribución de especies/hábitats, de bio-óptica (teledetección) y de múltiples especies. 

Con estos modelos se pueden calcular aproximadamente unos 200 indicadores, la 

mayoría de los cuales están relacionados con biomasa o con aspectos 

físicos/hidrológicos/químicos. Los descriptores de biodiversidad y redes tróficas, con el 

~49% y ~43% respectivamente, están mejor estudiados en los modelos revisados que los 

de especies no indígenas (0,3%) y los de integridad del fondo marino (~ 8%). De los 12 

criterios y 21 indicadores pertinentes para los descriptores que mencionamos antes de la 

DMEM, en la actualidad sólo 3 indicadores no son abordadas por ninguno de los 44 

modelos analizados. Los modelos muestran también la posibilidad de informar sobre la 

complejidad del ecosistema de un modo global, y al mismo tiempo analizar las 

propiedades fundamentales de los ecosistemas, como por ejemplo las interacciones entre 

los componentes estructurales y los servicios que proporcionan los ecosistemas, a pesar 

de que estas interacciones no son parte de los indicadores establecidos por la DMEM. El 

catálogo de modelos e indicadores presentado en este estudio tiene por objetivo ayudar 

en la planificación e integración de políticas como la DMEM, que requiere analizar el 

estado de los ecosistemas y las presiones en todos los mares europeos y establecer 

objetivos ambientales (a través de indicadores ) para lograr el BEE en 2020. 
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1. Introduction 

The use of robust and appropriate indicators that can assess whether an 

ecosystem and its services are well maintained and sustainably used (Layke, 2009; 

Walpole et al., 2009; TEEB, 2010) has been recognised as an essential step for the practical 

implementation of conservation and management policies (Rombouts et al., 2013). 

Several efforts have been undertaken at a European scale to evaluate marine ecosystem 

structure and their response to human activities, using key indicators to assess and 

sustain “Good Environmental Status” (GEnS; Borja et al., 2011). These initiatives have 

been carried out to assist the Marine Strategy Framework Directive (MSFD, 2008/56/EC; 

European Commission, 2008), the main European Directive that focuses on marine 

waters and aims at assessing the status of an ecosystem under anthropogenic pressures 

and the required interventions to bring the system back to its desired good status, 

making human activities sustainable, since this is one of the objectives of the MSFD. To 

achieve GEnS, 11 descriptors, 29 associated criteria and 56 indicators (from biological, 

physico-chemical indicators as well as pressure indicators—including hazardous 

substances, hydrological alterations, litter and noise, and biological disturbance such as 

introduction of non-indigenous species) have been identified (Cardoso et al., 2010; 

European Commission, 2010) (Tables 2 and 4). 

Despite the fact that several attempts have been made to assess the 

environmental status of marine waters in an integrative manner (Borja et al., 2011; 

Halpern et al., 2012; Tett et al., 2013), significant gaps still exist on understanding marine 

ecosystem structures and functions and their response to human pressures 

(Katsanevakis et al., 2014; Borja et al., 2013). Currently, ecological models have been 

recognised as powerful tools to evaluate ecosystem structure and function and predict 

the impacts of human activities (Fulton and Smith, 2004; Shin et al., 2004; Christensen 

and Walters, 2005; Plagányi, 2007; Fulton, 2010) and climate change (Tomczak et al., 

2013; Chust et al., 2014) on marine  systems. Thus, this study aims to assess the most 

commonly used capability of the modelling community to inform on indicators outlined 

in the EU MSFD (2008/56/EC), focusing particularly on biodiversity related descriptors: 

biological diversity (D1), non-indigenous species (D2), food webs (D4), and seafloor 

integrity (D6). To date, there has been no thorough evaluation of the capabilities of 
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ecological models to provide information as explicitly outlined by the MSFD indicator 

structure, this task has been only partially undertaken (e.g., Reiss et al., 2014). With this 

work, we aim to fill in this knowledge gap by providing an inventory of models in EU 

regional seas that could assess MSFD indicators associated with biodiversity, non-

indigenous species, food webs and seafloor integrity. For this reason, we have built a 

model catalogue ranging from lower to higher trophic levels, including those that 

successfully couple the two compartments and associated ecosystem processes. This 

inventory, developed as part of the DEVOTES FP7 Project (http://www.devotes-

project.eu/), serves to highlight the vast potential of model-derived indicators that can 

be associated with MSFD descriptors and aims to provide a thorough assessment of their 

relevance and degree of “operationality.”  

Yet, we acknowledge that this study does not aim to serve as review of all the 

existing models available in the literature, but instead highlight a process of exploring 

modelling potential to support specific European policies. Because of the nature of these 

issues, though, similar case studies conducted elsewhere are likely to lead to similar 

outcomes, conclusions, and recommendations (e.g., because of similar/same model 

availability and/or process understanding). Thus, this work emphasises several types of 

ecological modelling and derived indicators that exist at EU level stressing how such 

diversity of modelling approaches could be useful to support management policies and 

the limitations that still occur to achieve this task. 

In particular, this study is divided into six sections, comprising (1) catalogue 

structure; (2) a general overview of model characteristics; (3) model potential to address 

MSFD GEnS descriptors and indicators (including the ability to address biodiversity 

components and habitat types); (4) geographical coverage of models; (5) ability to 

address pressures; and (6) gaps in models type/modelling capability and needs for 

further development. 

2. Catalogue structure 

The catalogue has been built primarily with models/areas targeted by the 

DEVOTES partners (which represent 23 research institutions from EU and non EU 

countries), yet with an effort to integrate available models/areas from other inventories 

(e.g., the MEECE project http://www.meece.eu/Library.aspx) and scientific literature. 

http://www.devotes-project.eu/
http://www.devotes-project.eu/
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The catalogue has been structured with several fields following the MSFD 

Commission Decision 2010/477/EU (European Commission, 2010) and grouped into six 

main categories: 

i. Model/Indicator properties with the following sub-categories: 

a. MSFD descriptor/indicator, descriptor/indicator outlined in the directive 

b. Model derived indicator (MDI), indicator resultant from model output 

c. MDI type defined as 1. Static (e.g., snapshot of the indicator at a precise 

period of time), 2. Dynamic (e.g., indicator which changes in time) or 3. 

Spatial dynamic (e.g., indicator which changes in time and space) 

d. MDI status of development defined as 1. Operational, when the indicator 

is developed, tested and validated (e.g., it could be either an indicator 

used by the Member States (MS) for national environmental monitoring; 

or in EU/International Conventions’ monitoring programmes; or 

validated with observed/survey data although not necessarily approved 

by any national/international law or convention); 2. Under development, 

an indicator proposal exists, but not yet validated in field/real data (e.g., 

indicator not yet used for MS national environmental monitoring or for 

EU/International Conventions’ monitoring programmes; or not yet 

validated with survey data); 3. Conceptual, an indicator idea, supported 

by theoretical grounds, although no practical measure/metric is yet 

available (e.g., indicator not yet tested) 

e. MDI target/reference values and unit defined as thresholds/limits 

representing boundaries between an acceptable and unacceptable status 

f. Model name referring to the label used to identify a particular model 

g. Model type referring to model characteristics/properties and/or to the 

technique used to assess specific ecosystems 

h. Data requirements referring to data needed to run a certain model 

i. Confidence/uncertainty referring to the ability of models to assess 

uncertainty for the input/output data and it is defined as the type of 

statistical analysis used to evaluate it 

j. Source Scientific literature and or Institutional report supporting selected 
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MDI/models entries 

ii. Model/MDI in relation to MSFD Descriptors: referring to models and MDI broad 

capability to address the 11 descriptors of the directive (D1–D11). 

iii. Model/MDI correspondence with MSFD Biodiversity Indicators: referring to 

models and MDI assessed in relation to their capability to provide information 

for the specific indicators listed under the criteria of the four descriptors 

(D1/D2/D4/D6) as officially outlined in the European Commission (2010). 

iv. Model/MDI correspondence with biodiversity components referring to which 

biodiversity components (e.g., microbes, phytoplankton and fish) the indicator 

was related to or was evaluated with. Categories adopted for biodiversity 

components followed those of the European Commission (2010) and EU 

Commission Staff Working Paper (CSWP, 2012). 

v. Model/MDI coverage of specific habitat types and geographical range/scale 

referred to whether an MDI was related to certain habitats and geographical 

areas. Categories adopted for Habitat Types followed those of the European 

Commission (2010) and EU Commission Staff Working Papers (CSWP, 2011, 

2012). Concerning geographical coverage, we have adopted well-established 

international criteria for smaller scale subdivisions or ecological assessment areas 

in order to increase the spatial detail on the information collected (e.g., the 

International Council for the Exploration of the Sea (ICES) and General Fisheries 

Commission for the Mediterranean (GFCM) subdivisions). 

vi. Model/MDI relation to specific pressures: referring to whether there was 

scientific evidence of a relationship between a pressure and a specific indicator. 

Indicators were related to pressures either as responsive/sensitive to, or affected 

by a given pressure (state indicators, e.g., mainly through changes in trends) or 

indicators were actually pressure indicators themselves. The considered 

pressures follow the list of pressures and impacts of Annex 3 of the MSFD. 

3. Model characteristics  

The model catalogue revealed that currently 44 models have been applied with 

outputs relevant to MSFD descriptors (Table 1). These ecological models being used to 

describe or understand ecosystem processes can be categorised under seven types of 
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modelling approaches described below: 

3.1. Biogeochemical models 

The bulk properties of biogeochemical fluxes in marine ecosystems are combined 

with information on physical forcing, chemical cycling and ecological structure to 

simulate the response of lower trophic level groups (phytoplankton and zooplankton) 

to environmental conditions, including climate variability and change (Gnanadesikan et 

al., 2011; Jørgensen and Fath, 2011). Such models typically have very simplified 

representations of biological organisms, and associated trophic structure (Anderson, 

2005). 

3.2. Multispecies models 

These models represent populations of dynamically interacting species or 

functional groups. Some models also resolve multiple stages or size-classes within 

populations (Christensen and Walters, 2004; Hollowed et al., 2000; Shin and Cury, 2001). 

Focus of these models is on understanding the implication of the indirect interactions in 

ecosystems that result from the complex networks of direct predator–prey interactions 

in marine communities. The models aim to represent, for example, top-down or bottom-

up effects along marine food chain ranging from primary producers (e.g. 

phytoplankton) to top predators (e.g., marine mammals), or the role of indirect 

competitive interactions among species (Fung et al., 2015). Effects of exploitation by 

fisheries and environmental change are also frequently described by these models. 

3.3. Species Distribution Models (SDM)/Habitat Suitability Models (HSM) 

SDM combine observations of species occurrence or abundance with 

environmental explanatory variables to develop ecological and evolutionary 

understanding and to predict distribution across selected habitats (Elith and Leathwick, 

2009; Reiss et al., 2014). HSM relate field observations to a set of environmental variables 

(e.g., reflecting key factors of the ecological niche like climate, topography, geology) to 

produce spatial predictions on the suitability of locations for a target species, community 

or biodiversity (Hirzel et al., 2006). A new generation of SDM/HSM – i.e. dynamic 

bioclimatic envelope models – now provide greater links to the mechanistic 

understanding of niche ecology. Such models typically include additional model 

components that describe physiological responses of species to the environment, 
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population dynamics and dispersal, to further constrain the distribution of suitable 

habitat and provide more realistic species distribution projections (Cheung et al., 2011). 

3.4. Meta-community models 

Meta-community is a set of interacting communities which are linked by the 

dispersal of multiple, potentially interacting species. In this context, meta-community 

models are theoretical frameworks describing specific mechanistic processes in order to 

predict empirical community patterns.  They deal mainly with species composition and 

abundance and their variation within a meta-community (Hugueny et al., 2007). 

3.5. Bio-optical models 

The optical properties of biological materials, such as phytoplanktonic or 

heterotrophic unicellular organisms, are analysed and then modelled to predict 

distributions of biological communities over wide spatial areas (with remote sensing 

data) or in terms of expected depth limitations that can be inferred from modelling 

studies. Bio-optical models are based on various fundamental theories of optics which 

apply to a single particle making use of a set of equations/algorithms (Morel and 

Maritorena, 2001; IOCCG, 2006). 

3.6. Hydrodynamic–biogeochemical models 

These are mainly coupled hydrodynamic and biogeochemical models to capture 

global scale patterns in physical–chemical components affecting lower trophic level 

groups (e.g., phytoplankton and zooplankton) (Gnanadesikan et al., 2011; Jørgensen and 

Fath, 2011). 

3.7. End-to-end models 

In recent years, hydrodynamic-biogeochemical models (or just biogeochemical 

models) have been coupled with multispecies models. These so called end-to-end (E2E) 

models combine physico-chemical oceanographic processes with organisms ranging 

from low trophic level (LTL) to higher trophic level organisms (HTL) into a single 

modelling framework (Travers et al., 2009). 

Of the models reported in this study, more than half were coupled ecological 

models (Table 1). The most common type of models currently in the catalogue were 

hydrodynamic-biogeochemical models (36%) followed by end-to-end (18%), species 

distribution/habitat suitability, bio-optical and multispecies (14% each), biogeochemical 
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and meta-community (2% each) models (Table 1).  

In the framework of ecological studies, physical–biological interactions are the 

main factors that can better describe ecosystem properties and the spatial and/or 

temporal evolution in function of relevant pressures identified, climate change or 

anthropogenic impacts. This is reflected in the choice of modelling approaches and in 

the growing need to couple different types of models within a single modelling 

framework (Travers et al., 2009; Rose et al., 2010). This is particularly true if the models 

are intended to predict changes and provide guidance in a framework of biodiversity 

conservation and ecosystem-based management (Travers et al., 2009; Kaplan et al., 2012). 

Recent software developments, within the current (DEVOTES) and former EU 

projects (e.g., MEECE http://www.meece.eu/), have shown that these models 

(hydrodynamic-biogeochemical and multispecies models) can be coupled to run 

together. This represents a powerful tool for scenario testing of climate change and 

anthropogenic impacts simultaneously. There is a growing trend for E2E modelling, 

which includes anthropogenic and physical drivers behind observed changes, 

identifying both direct and indirect causes (Fulton, 2010; Shin et al., 2010b; Travers-

Trolet et al., 2014), and so better facilitates the setting of targets and implementation of 

management measures (Cury et al., 2008; Kaplan et al., 2012).  

Fig. 1 illustrates the capacity of the seven model types to represent the different 

components of marine ecosystems, including or excluding, human components and/or 

climate impacts. Coupled (both E2E and hydrodynamic-biogeochemical models) and 

bio-optical (remote sensing) models included in this catalogue were primarily spatially 

dynamic and 5 out of 30 models were also dynamic. The remaining models were mainly 

static with only 5 out of 14 models presenting dynamic and spatial modules as well 

(Table 1). This is an important and interesting result since spatial-dynamic models are 

able to provide greater capacity for forecasting of ecosystem dynamics, although they 

require a more data intensive calibration (e.g., the initial testing and tuning of a model) 

and validation (e.g., the comparison/fitting of model with a data set representing “local” 

field data) approaches (Jørgensen, 2008). 

A total of 201 model-derived indicators (see S1 of supplementary materials) were 

included in this catalogue, of which more than half were considered to be “operational” 
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(64%), while the majority of the remainder were still “under development” (33%), with 

only a few “conceptual” approaches (3%) presented (Table 2). We acknowledge that 

some indicators might have changed their status since the time of this survey (e.g., some 

indicators “under development” may have been assessed and now classified as 

“operational”) but for the purpose of this work we decided to keep them in the status of 

development that they were reported during the survey.  

Fig. 1. Illustration of models capacity to describe the ecosystem, from specific processes integrating 

biological compartments and the associated abiotic environment to the entire ecosystem including, or not, 

human components or climate impacts. In particular, 1 and 7 – refer to biogeochemical and coupled 

physical–biogeochemical models; 2 and 3 – refer to multispecies models (either at species or at food web 

level); 4 – Species distribution/Habitat Suitability; 5 – meta-community models and 6 – bio-optical models. 

E2E models encompass all of them. 

Ecopath with Ecosim (EwE) was notably associated with the largest number of 

model-derived biodiversity indicators (Table 2). However, the majority of these 

biodiversity indicators were biomasses of species or groups of species at different trophic 

levels of the food web. For ease of characterisation/evaluation, model-derived indicators 

were grouped into seven major categories (see Table 3 for the detailed list). 
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Table 1 

Summary table of models library showing models’ name, acronym, data type (SP: spatial; DY: dynamic; ST: static), number of model derived indicators 

and uncertainty (VOD: validated with observed data; VOD*: some of the indicators still need to be validated with observed data; NA: not available; 

STAT: statistical analysis; BOOT: bootstrap; PE: pedigree). 

 

# Model name Model acronym Type of the model Coupled Data type Model derived 

indicators 

Uncertainty 

1 European Regional Seas Ecosystem Model   (ERSEM) ERSEM Biogeochemical No SP-DY 2 VOD 

2 Black Sea chlorophyll and coloured dissolved/detrital BS-Chl & CDM Bio-optical models (remote sensing) No SP-DY 4 VOD* 

 matter (Chl & CDM) model       
3 Black Sea model of downwelling radiance (BS-PAR Model) BS-PAR Bio-optical models (remote sensing) No SP-DY 1 VOD 

4 Black Sea Particle Size Distribution (PSD) model BS-PSD (PSC) Bio-optical models (remote sensing) No SP-DY 3 VOD 

5 Black Sea spectral Primary Production (SPP)  model BS–SPP Bio-optical models (remote sensing) No SP-DY 1 VOD* 

6 Black Seal Inherent Optical Properties model   (IOPs) BS-IOPs Bio-optical models (remote sensing) No SP-DY 3 VOD 

7 North Sea Optical Properties  (NSOP) NSOP Bio-optical models (remote sensing) No DY 1 STAT 

8 1D General Ocean Turbulence Model (GOTM) and GOTM-ERSEM-EwE End to end Yes DY 6 NA 

 European Regional Seas Ecosystem Model (ERSEM) and       
 Ecopath with Ecosim  (EwE)       

9 Princeton Ocean Model (POM) and Black Sea Integrated POM-BIMS-ECO-EwE End to end Yes DY 3 NA 

 Modelling System-Ecosystem (BIMS-ECO) and Ecopath       
 with Ecosim (EwE)       

10 Regional Ocean Model System (ROMS) and Eastern ROMS-BioEBUS-OSMOSE End to end Yes SP-DY 5 NA 

 Boundary Upwelling Systems (BiOEBUS)   and       
 Object-oriented Simulator of Marine ecOSystems       
 Exploitation model (OSMOSE)       

11 Regional Ocean Model System (ROMS) and N2 P2 Z2 D2 

biogeochemical model and Object-oriented Simulator of 

ROMS-N2 P2 Z2 D2 -OSMOSE End to end Yes SP-DY 12 NA 

 Marine ecOSystems Exploitation model (OSMOSE)       
12 Norwegian Sea Ecosystem, End-to-End NORWECOM.E2E End to end Yes SP-DY 6 NA 

13 Ecological ReGional Ocean Model (ERGOM) and Modular ERGOM + MOM + Fish End to end Yes DY 2 VOD 

 Ocean Model (MOM) and Fish Model       
14 ECOSystem Model (ECOSMO) and Stochastic Multi-Species ECOSMO-SMS End to end Yes SP-DY 2 NA 

 model (SMS)       
15 European Regional Seas Ecosystem Model (ERSEM) and ERSEM-POM-OSMOSE End to end Yes SP-DY 10 NA 

 Princeton Ocean Model (POM) and Object-oriented       
 Simulator of Marine ecOSystems Exploitation model       
 (OSMOSE)       

16 Hubbell’s neutral model of biodiversity (HNM) HNM Meta-community No ST 1 NA 

17 Ecopath with Ecosim  (EwE) EwE Multispecies No ST-DY-SP 136 PE-VOD* 

18 North Sea Threshold general additive models (NS tGAM) NS tGAM Multispecies No DY 4 BOOT 

19 Population-Dynamical Matching Model (PDMM) PDMM Multispecies No DY 1 VOD 

20 Bay of Biscay Qualitative trophic model BoB Qualit Multispecies No ST 1 NA 

21 Length-based multispecies model (LeMANS) LeMANS Multispecies No DY 2 VOD 

22 Stochastic Multi-Species model (SMS) SMS Multispecies No DY 2 VOD 

23 Proudman Oceanographic Laboratory Coastal Ocean POLCOMS-ERSEM Physical Yes SP-DY 6 NA 

 Modelling System (POLCOMS) and European Regional Seas  (hydrodynamic)–biogeochemical     
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 Ecosystem Model (ERSEM)       
24 3D General Estuarine Transport Model (GETM)   and GETM-ERSEM    Physical             Yes   VOD* 

 European Regional Seas Ecosystem Model   (ERSEM)    (hydrodynamic)–biogeochemical     
25 Princeton Ocean Model (POM) and Black Sea Integrated POM-BIMS-ECO   Physical             Yes                   DY                

44 
NA 

 Modelling System-Ecosystem (BIMS-ECO)    (hydrodynamic)–biogeochemical     
26     St. Petersburg Eutrophication Model (SPBEM) SPBEM       Physical      Yes SP-DY 7 VOD 

         (hydrodynamic)–biogeochemical     
27     European Regional Seas Ecosystem Model (ERSEM) and ERSEM-POM       Physical      Yes SP-DY 11 NA 

     Princeton Ocean Model (POM)        (hydrodynamic)–biogeochemical     
28     3D General Estuarine Transport Model (GETM)   and GETM-ERGOM       Physical      Yes SP-DY 8 VOD* 

     Ecological Regional Ocean Model (ERGOM)        (hydrodynamic)–biogeochemical     
29     BAltic Sea Long-Term large-Scale Eutrophication Model BALTSEM        Physical      Yes SP-DY 7 VOD 

     (BALTSEM)        (hydrodynamic)–biogeochemical     
30     Biogeochemical Flux Model (BFM) and Princeton Ocean BFM-POM        Physical      Yes SP-DY 5 NA 

     Model (POM)        (hydrodynamic)–biogeochemical     
31     Black Sea Ecosystem Model BSEM        Physical      Yes SP-DY 13 VOD*-STAT 

          (hydrodynamic)–biogeochemical     
32     Ecological ReGional Ocean Model (ERGOM) and Modular ERGOM + MOM        Physical      Yes SP-DY 7 VOD 

     Ocean Model (MOM)         (hydrodynamic)–biogeochemical     
33     ECOSystem Model (ECOSMO) ECOSMO        Physical      Yes SP-DY 6 NA 

          (hydrodynamic)–biogeochemical     
34     MOHID and Pelagic Biogeochemical Model (LIFE) MOHID-LIFE        Physical      Yes SP-DY 4 VOD* 

          (hydrodynamic)–biogeochemical     
35     Nucleus for European Modelling of the Oceans (NEMO) and NEMO-BFM        Physical      Yes SP-DY 10 NA 

     Biogeochemical Flux Model (BFM)         (hydrodynamic)–biogeochemical     
36     Regional Ocean Model System (ROMS) and Eastern ROMS-BioEBUS        Physical      Yes SP-DY 6 NA 

     Boundary Upwelling Systems (BiOEBUS)         (hydrodynamic)–biogeochemical     
37 Regional Ocean Model System (ROMS) and N2 P2 Z2 D2    

biogeochemical model 

ROMS-N2 P2 Z2 D2        Physical  

       (hydrodynamic)–biogeochemical 

     Yes SP-DY 12 NA 

38    Swedish Coastal and Ocean Biogeochemical model (SCOBI) RCO-SCOBI        Physical       Yes SP-DY 7 VOD 

    and Rossby Center Ocean circulation model (RCO)         (hydrodynamic)–biogeochemical     
39    Ecological Niche Factor Analysis  (ENFA) ENFA        SDM/Habitat Suitability Models        No ST 1 NA 

40   Bay of Biscay Habitat suitability based on Generalised BoB GAM        SDM/Habitat Suitability Models        No ST 1 NA 

   Additive Models (GAM)       
41   Bay of Biscay Habitat suitability based on Generalised BoB GLM        SDM/Habitat Suitability Models        No ST 1 NA 

    Linear Models (GLM)       
42   Habitat suitability based on MaxEnt (Maximum Entropy) MaxEnt        SDM/Habitat Suitability Models No ST 2 NA 

43   Niche-Trait Model (NTM) NTM        SDM/Habitat Suitability Models No ST 1 NA 

44   Process-driven habitat model PDH        SDM/Habitat Suitability Models No ST 1 NA 

 
  
 
 
 
 

4 

SP-DY                      16 
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Not surprisingly, biomass indicators constituted the largest group with 

approximately 57% followed by diversity indices (13%) and physical, hydrological and 

chemical indicators (12%). Regarding targets and/or reference values associated with 

model-derived indicators, the catalogue highlights that only few models in few areas 

had assigned target or reference values, despite the fact that the majority were 

considered “operational” (i.e. developed, tested and validated). This is the case of fully 

developed models for which validated outputs exist (e.g., BSEM by Dorofeev et al., 

2012), but under policy contexts such as the MSFD, lack tested and validated reference 

values or targets compliant with specific legal requirements. 

Also, very few of the reported models have been used to clearly assess the effects 

of measures to meet the targets that will eventually be established. For instance, 

multispecies models have been applied in the Ionian Sea and in the North Sea 

ecosystems to assess the reduction in fishing effort as a measure to (a) bounce back 

common dolphin populations (e.g., EwE model by Piroddi et al.,  2011); (b) assess the 

response of selected biodiversity indicators (e.g., PDMM by Shephard et al., 2013; Fung 

et al., 2013, or EwE model by Lynam and Mackinson, in press); (c) test the effect of 

selective fishing on community biodiversity conservation (e.g., LeMANS model by 

Rochet et al., 2011) and implemented in the Bay of Biscay (e.g., OSMOSE model by 

Chifflet et al., 2014) to evaluate the effect of different fishing scenarios on small pelagic 

fish  stocks. 

In addition, not all the models were able to address uncertainty; the majority 

(61%) lacked an approach to determine confidence intervals/range of uncertainty or 

required further validation work for indicators. This is a reflection, as mentioned above, 

of the type of data present in the catalogue which are more spatial-dynamic than static 

and for which validation is more difficult to obtain. From the models that reported 

addressing uncertainty (39%), data comparison and data validation (e.g., model outputs 

fitted to surveyed data) was the most common method reported (Table 1). 

4. Model potential to address descriptors and indicators for 

biological descriptors 

In terms of supporting the MSFD, ecological models can be the most effective 

means to model relationships between activities, pressures, state and thus indicators 
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(Jørgensen, 2008; Jørgensen and Fath, 2011). This is because of the integrative character 

of these modelling approaches that often consider many ecosystem components from 

abiotic factors to biotic interactions and processes. The 44 models available in the 

catalogue were capable of addressing indicators in 8 of the 11 descriptors of the MSFD 

(Table 2) although, due to the focus of this survey which primarily dealt with the four 

biodiversity related descriptors, their modelling potential was stronger for two of these 

biodiversity descriptors: biological diversity (D1) and food webs (D4). Nevertheless, 

human induced eutrophication (D5), hydrographical conditions (D7) and commercial 

fish and shellfish (D3) were well addressed by the models in this catalogue. Within the 

biodiversity related descriptors, non-indigenous species (D2) and seafloor integrity (D6) 

were the most poorly addressed by the models currently in the catalogue (Table 2). 

However, Pinnegar et al. (2014) shows how EwE models can be useful in assessing the 

response of an ecosystem to the introduction of invasive species (D2). Similarly, 

increasing the spatial resolution of many of the current models would further improve 

our understanding of the direct effect of fishing and other activities (such as 

decommissioning of oil rigs or development of a wind farm) on seafloor integrity (D6). 

In several cases, models have been used to investigate the impacts of trawling and test 

fisheries scenarios (e.g., high resolution ERSEM-POM model, Petihakis et al. (2007)). 

However, most of the models considered in this catalogue do not explicitly include 

descriptions of these types of pressures on the marine environment, they do not link to 

benthic habitat layers, and their understanding of pressures and impacts is in many cases 

still limited by scarce empirical information (Hooper and Austen, 2014). 

Typically, a single model was capable of addressing more than one MSFD 

descriptor and sometimes up to six, as is the case of EwE (Table 2). As a result, the same 

model may be noted for having indicators in multiple stages of development (e.g., 

operational, under developed or conceptual) either across descriptors or within the same 

descriptor. This is because the reported status of development relates not to the model 

itself but to the different indicators that can be derived from the model. The potential of 

the available models to address MSFD indicators specifically those within biological 

descriptors was evaluated by extracting the number of indicators (outlined in the 

European Commission (2010)) that each model can inform on (Table 2).  
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All models could address multiple indicators, from the set of 21 MSFD indicators 

under these 4 descriptors. In fact, 20 models in the catalogue had the potential to address 

at least half of these indicators. Despite the high potential of the models to address MSFD 

indicators, not all of the available model-derived indicators were fully operational (see 

Section 2 for definition and Table 4). 

The mean percentage of operational model-derived indicators across all MSFD 

indicators was 64%. Our analysis also revealed that there were three indicators required 

under the biodiversity descriptors for which no model-derived indicators were available 

in the catalogue (Table 4): D1C3-I2: population genetic structure; D2C2-I1: Ratio between 

invasive non-indigenous species and native species and D2C2-I2: Impacts of non-

indigenous invasive species at the level of (1) species, (2) habitats and (3) ecosystem.  

Additionally, it is noteworthy that the potential of modelling approaches to 

address ecosystem fundamental properties such as D1C8I1 “Interactions between 

structural components” and D1C8I2 “Services provided” (Table 4) was high. These 

aspects, despite being clearly mentioned in the European Commission (2010), were not 

part of the MSFD indicators set, most probably due to the difficulty in defining them 

through specific indicators. Nevertheless, the majority of the model-derived indicators 

included in this catalogue (189 out of the 201) have the potential to inform on these 

complex, integrative ecosystem dimensions. In any case, although the catalogue shows 

the potential of models to address Ecosystem Services (ES, sensu Liquete et al., 2013), the 

survey performed cannot inform adequately on the capacity of the indicators to support 

policy-makers’ use of these ES concepts.  

This is a current limitation of the MSFD set of indicators (Table 4) which does not 

clearly require the assessment of ecosystems services, despite the fact that in 2011, as a 

party of the Convention on Biological Diversity (CBD), the European Union (EU) 

adopted a new strategy (the Biodiversity Strategy to 2020), which integrates ES as key 

elements for the conservation approach to biodiversity (Maes et al., 2012). The role of ES 

in supporting conservation initiatives and socio-economic activities calls for action to 

monitor, quantify and value trends in these services, so as to ensure that they are 

adequately considered in decision making processes.
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Table 2 

Models’ capability per the 11 Marine Strategy Framework Directive descriptors (D) assessed by the number of indicators provided by each model (for names, see Table 1). The 

development status of the indicators is indicated (op: operational, ud: under development, co: conceptual). The last column summarises the number of MSFD official indicators 

(European Commission, 2010) of D1, D2, D4 and D6 (check Table 4) that the model-derived indicators can inform on. a New proposals for Descriptor 4 Food Webs, not yet 

considered under the set of Indicators outlined in the EU Commission Decision (European Commission, 2010). 
 

 D1 

Biological 

D2 

Non-ind. 

D3 

Commercial 

D4 

Food 

D5 

Eutrophication 

D6 

Seafloor 

D7 D8 

Hydrological Contaminants 

D9 

Contaminants 

D10 

Marine 

D11 

Energy/ 

# MSFD indicators 

addressed under 

diversity species fish webs   

utrophica.  

integrity alterations in food litter noise D1, D2, D4, D6 

           1 BALTSEM 7op   5op 3op  2op    16 

2 BFM-POM 5op   3op 2op  2op    14 

3 BSEM 6op/7ud 1op/1ud  1op/7ud 4ud  3op    9 

4 EwE 82op/82ud/7co 1ud 53op/57ud/4co 82op/82ud/7co 13op/14ud/2co 17op/25ud/4co     13 (+1a) 

5 ECOSMO 6op   3op 2op  3op    14 

6 ECOSMO-SMS 2ud  2ud 2ud       8 

7 ENFA 1op  1op 1op       14 

8 ERGOM + MOM 7op   5op 3op  2op    16 

9 ERGOM + MOM + fish 2op  2op 2op       7 

10 ERSEM 2ud   2ud 1ud      12 

11 ERSEM-POM 11op   6op 3op  5op    14 

12 ERSEM-POM-OSMOSE 10ud  10ud 10ud       9 

13 BoB GAM 1op  1op 1op       16 

14 GETM-ERGOM 8ud   2ud 4ud  6ud    14 

15 GETM-ERSEM 16ud   5ud 8ud 2ud 11ud    19 

16 BoB GLM 1op  1op 1op       16 

17 GOTM-ERSEM-EWE 6ud  4ud 6ud    3ud   8 

18 HNM 1co   1co 1co 1co     16 

19 BS-IOPs 3ud   2ud 3ud      8 

20 LeMANS 2op  2op 2op       7 

21 MaxEnt 2op 1op 1op 2op       17 

22 MOHID–LIFE 4op   3op 3op  1op    10 

23 NEMO-BFM 10ud   7ud 4ud  3ud    17 

24 NSOP 1ud   1ud 1ud      8 

25 NStGAM 4ud  2ud 4ud 1ud      10 

26 NORWECOM.E2E 6op   3op 2op  3op    14 

27 NTM 1ud   1ud  1ud     9 

28 PDMM 1op  1op 1op       7 

29 POLCOMS-ERSEM 6op   3op 2op  3op    14 

30 POM-BIMS-ECO 4op   3op 2op  1op    14 

31 POM-BIMS-ECO-EWE 3ud  3ud 3ud       9 

32 PDH 1ud   1ud  1ud     11 

33 BS-PSD (PSC) 3ud   3ud 3ud      5 

34 BoB Qualit 1co  1co 1co       8 (+1 a) 

35 RCO-SCOBI 7op   5op 3op  2op    16 

36 BS-Chl & CDM 4ud   4ud 4ud      6 

37 BS-PAR 1ud          3 



2.1 Ecosystem models in support of EU policies 
               
 

50 
 

38 BS-S PP 1ud   1ud 1ud      3 

39 ROMS-BioEBUS 6op   3op 2op  3op    14 

40 ROMS-BioEBUS-OSMOSE 5ud  5ud 5ud       9 

41 ROMS-N2 P2 Z2 D2 12op   8op 5op  4op    13 

42 ROMS-N2 P2 Z2 D2 -OSMOSE 12op  12op 12op       11 

43 SMS 2op  2op 2op       7 

44 SPBEM 7op   5op 3op  2op    16 

                         Number of models per descriptor       44                            3                        17                                     43                               26                           5                                      17                                                    0                              1                 0                        0        
 

 
 
 
 
 

Table 3 

The model-derived indicators grouped into 7 major categories, based on what the indicators inform on, with their overall 

percentages in the DEVOTES Catalogue of model-derived indicators. 
 

 

 
 

 

 

 

 

 Type of indicators  % 

1 Biomass  57 

2 Diversity indicators  Biodiversity indices (e.g. Kempton diversity 

index, trophic level of the community) and 

species/habitat diversity, proportions in 

community 

13 

3 Primary or secondary production  9 

4 Spatial distribution indicators Species spatial distribution 6 

5 Species life-history Traits such as for e.g. length, weight or life 

span 

1 

6 Ecological Network Analysis (ENA) indicators Flows, energies and efficiencies 2 

7 Physical, hydrological and chemical  Describing either habitat integrity or 

pressures 

12 
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To do so, a clear linkage needs to be established between biodiversity and 

ecosystem functioning and the diversity and complexity of the benefits they provide, i.e. 

the ecosystems services (be it provisioning, regulating or cultural), in order to allow the 

development of operational indicators. Yet, the indicators available are not 

comprehensive and are often inadequate to characterise ES; data are often either 

insufficient or the linkages are poorly understood to support the use of these indicators 

(Liquete et al., 2013). 

4.1. Biodiversity components and habitats 

Habitats and species are key attributes of biological diversity and their 

occurrence, distribution and abundance is used as criteria to assess the ecosystem status 

(Table 5). To attain GEnS for D1, as stated in the MSFD, “no further loss of biodiversity 

at ecologically relevant scale should occur, and, if it does, restoration measures should 

be put in place”. The definition of GEnS is dependent on the ecological relevance and is 

approached at different scales of complexity, from species to habitats, communities and 

ecosystem (see Borja et al., 2013). Biodiversity components indicated in the MSFD 

include microbes, phytoplankton, zooplankton, angiosperms, macroalgae, benthic 

invertebrates, fishes, cephalopods, marine mammals, reptiles and birds, with specific 

subgroups within the last four categories. Their inclusion in ecological models listed in 

the catalogue was highly heterogeneous. Operational model-derived indicators 

concerned mainly fish, phytoplankton, zooplankton, benthic and pelagic invertebrates 

and marine mammals (total 64, 45, 31, 23, and 17, respectively) (Fig. 3), while the 

remaining biodiversity components were covered with less than 10 indicators each.  

This reflects the traditional focus of marine ecosystem modelling, driven mainly 

by the wide spread use of low trophic level models related to the bottom-up forcing of 

production, and in parallel, motivated by fisheries oriented policies and conservation 

interests in particular species (Rose et al., 2010; Shin et al., 2010b). As expected, the 

various models have used similar components differently and, depending on their final  

goal, the resolution of the biodiversity components differed greatly: from single to multi-

species models, inclusion of single or multiple functional groups and integrating both 

LTL and HTL key organisms (e.g., Oguz et al., 1999; Lewy and Vinther, 2004; Schrum et 

al., 2006; Coll et al., 2008; Rossberg et al., 2010; Lassalle et al., 2011; Mateus et al., 2012; 
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Tsiaras et al., 2012). Of the models catalogued, only Hubbell’s neutral model and the 

Population-Dynamical Matching Model (PDMM) resolve biodiversity at species level, 

and only the PDMM does so through the entire marine food chain (Fung et al., 2013). 

EwE model-derived indicators, either operational, conceptual or still under 

development, have been used to model all types of biodiversity components (excluding 

microbes), with fish being the most frequently assessed group (25%) followed by benthic 

invertebrates (15%), marine mammals (12%) and cephalopods (11%).             

 

Fig. 3. Number of model-derived indicators available per biodiversity component. For each biological 

group the indicators are organised by columns according to their development status: operational, under 

development and conceptual. The different colours and patterns identify the models providing the 

indicators. 
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          Table 4 

Model derived indicators and models available per MSFD descriptor/indicator for biodiversity related descriptors (D1, D2, D4, D6), with particular emphasis on the number 

of operational indicators (op) out of the indicators available for each MSFD indicator. 
 

MSFD 

descriptor 

Criteria MSFD 

indicator 

Model derived indicators 

DEVOTES catalogue 

from Comments 

   Operational/available Number of  
   indicators models  

D1 C1 I1  Distributional range 33 op/45 27  
D1 C1 I2 Distributional pattern within range 4 op/10 15  
D1 C1 I3 Area covered by the species (for sessile/benthic species) 1 op/2 5  
D1 C2 I1 Population (1) abundance and/or (2) biomass 93 op/163 37  
D1 C3 I1 Population demographic characteristics: (1) body size; (2) age class structure; 14 op/37 15  

  (3) sex ratio; (4) fecundity rates; (5) survival/mortality rates; (6) other    
D1 C3 I2 Population genetic structure No indicators  available No models  available D1 Biodiversity/C3 Population condition 

D1 C4 I1  Distributional range 6 op/9 21 The exact same indicators are proposed as 

     suitable to address both I1 and I2 from D1C4 

     Com. Dec. 

D1 C4 I2 Distributional pattern 6 op/9 21  
D1 C5 I1 Area 6 op/7 20 Nearly the same indicators as in D1C4 are also 

     reported as suitable to address both I1 and I2 

     from D1C5 Com. Dec. 

D1 C5 I2 Volume 4 op/4 15  
D1 C6 I1 Condition of the typical (1) species and (2) communities 89 op/174 39  
D1 C6 I2 Relative (1) abundance and/or (2) biomass 11 op/25 7  
D1 C6 I3 (1) Physical, (2) hydrological and (3) chemical   conditions 12 op/39 23  
D1 C7 I1 Composition of ecosystem components: (1) habitats and (2) species 96 op/168 39  
D1 C7 I2 Relative proportions of ecosystem components: (1) habitats and (2) species 100 op/186 43  
D1 (C8) I1 Interactions between structural components 108 op/198 44 Not defined under Com. Dec. list but in its  text. 

D1 (C8) I2 Services provided 105 op/183 39  
D2 C1 I1 Trends in: (1) abundance; (2) temporal occurrence; (3) spatial distribution 2 op/4 3  
D2 C2 I1 Ratio between invasive non-indigenous species and native species No indicators  available No models available D2 Non-indigenous species/C2 Environmental 

     impact of invasive non-indigenous  species 

D2 C2 I2 Impacts of non-indigenous invasive species at the level of (1) species, (2) No indicators  available No models available  
  habitats and (3) ecosystem    

D4 C1 I1 Performance of (1) key predator species determined from their productivity; (2) 3 op/7 19  
  other trophic group    

D4 C2 I1 (1) Large fish (by weight); (2) other species 18 op/40 10  
D4 C3 I1 Abundance trends of functionally important selected: (1) groups with fast 100 op/181 42  

  turnover rates; (2) groups/species that are targeted by human activities or that are    
  indirectly affected by them; (3) habitat-defining groups/species; (4)    
  groups/species at the top of the food web; (5) long-distance anadromous and    
  catadromous migrating species; (6) groups/species that are tightly linked to    
 

D4 

 
(C4)  

specific groups/species at another trophic level 
(not defined)  

 
None operational/3 

 
2 

 
D4 Food webs: new proposals 
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D6 C1 I1 Biogenic substrate: (1) type; (2) abundance; (3) biomass; (4) areal extent 2 op/5 6  
D6 C1 I2 Extent of seabed significantly affect by human activities for the different None operational/1 1  

  substrate types    
D6 C2 I1 Presence of particularly sensitive and/or tolerant   species None operational/1 1  
D6 C2 I2 Multi-metric indexes assessing benthic community condition and functionality, 1 op/4 6  

  such as (1) species diversity and (2) richness, (3) proportion of opportunistic to    
  sensitive species    

D6 C2 I3 Proportion of (1) biomass or (2) number of individuals in the macrobenthos 17 op/38 3  
  above some specified length/size    

D6 C2 I4 Parameters describing the characteristics of the benthic community None operational/1 1  
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The microbial component, as reported in the catalogue, was only evaluated by 

ERSEM-POM in the Aegean Sea and under development by NEMO-BFM in the Baltic 

Sea. When models were organised according to model type, multispecies models 

assessed the majority of biodiversity components with the exception of microbes that 

were mostly evaluated by coupled hydrodynamic–biogeochemical models (Fig. 3). The 

predominant habitat types that should be assessed within the evaluation of the status 

under the MSFD are water-column, seabed and ice habitats, with ecological models 

referring to one or several of these habitats. In our catalogue, of all predominant habitats, 

water-column was the most comprehensively evaluated habitat, either on its own, or in 

relation to the other two habitats.  

Table 5 

Number of model-derived indicators for each biodiversity component per habitat type (only habitats 

addressed by the models are included). 
 
 

Biodiversity 

components 

Seabed    Water 
column 

   ICE 

 Littoral rock Shallow Shelf  Marine 
water: 

Marine 
water: 

Marine 
water: 

Variable Ice-
associated  and 

biogenic 
sublittoral sublittoral  coastal shelf oceanic salinity habitats 

 reef mixed mud     estuarine  
  sediment      water  

Microbes     1 1   1 

Phytoplankton  9 1  4 42 13 2 4 

Zooplankton 1 10 1  3 34 12 1 2 

Angiosperms      12 7   
Macroalgae 1    1 11 1   
Invertebrates 1 11 1  1 45 15  1 

Fish          
Coastal fish     2     
Pelagic fish     12 18 12  1 

Pelagic 
elasmobranchs     1 2 2   
Demersal fish     7 13   1 

Demersal 
elasmobranchs      1 11   
Other 1 14    34 11   

Cephalopods          
Coastal/shelf 
pelagic  13  27 6  
Other    7 1  

Marine 
mammals       

Toothed 
whales  13 1 23 2  
Baleen whales    1 1  
Seals    3 1 1 

Other 1   8 6  
Reptiles       

Sea turtles    10 1  
Birds          

                          Inshore pelagic feeding                                      13                                                           13 

                                  Offshore pelagic feeding                                                                                      1                             1 

                                      Other                                                                                                                                                            10                             5                                                                   
  

 

There were only two instances where seabed habitats were evaluated on their 

own. Ice-associated habitats were assessed by hydrodynamic–biogeochemical and 

multispecies models while seabed habitats were evaluated in multispecies and 

SDM/Habitat suitability/Community models. Multispecies as well as coupled (both 

hydrodynamic–biogeochemical and E2E) models were mainly used for the assessment 
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of species or groups of species/organisms that can be linked to water-column habitats. 

Examining the intersection between model-derived indicators and habitats, the water 

column was the most widely covered habitat, specifically the continental shelf where all 

components of biodiversity were covered (Table 5). The marine oceanic water column 

was also widely covered; however, in this case microbes were not evaluated. In estuaries, 

only phytoplankton and zooplankton were assessed, which were also the main 

components modelled in ice-associated habitats. In the seabed habitat, shallow 

sublittoral mixed sediments were the most commonly evaluated with model-derived 

indicators assessing 7 out of the 11 biodiversity components. Invertebrates were mainly 

studied in relation to the water column over the continental shelf although they are also 

considered in models that include a benthic component, for example, ERSEM. The least 

addressed biodiversity components were microbes, coastal fish, pelagic elasmobranchs, 

baleen whales, seals and offshore pelagic birds. When looking at habitat representation 

in model-derived indicators, ice associated habitats, estuarine water column and shelf 

sublittoral mud were seldom covered (Table 5). 

5. Models geographical coverage 

Ecological models can be applied to many different areas with adequate 

customization (Henry et al., 2012; Mateus et al., 2012). The models in the catalogue have 

not been applied with the same spatial scale in all European regional seas (Fig. 2). The 

majority of reported indicators related to the Mediterranean Sea, representing more than 

half of the indicators entered in the catalogue (137), followed by the North-East Atlantic 

Ocean (78), Black Sea (29), Baltic Sea (18), non-EU regional seas (11) and EU scale (2). The 

EwE software was the most widely used model and has been applied in each EU regional 

sea area and most sub-regions; the second most commonly used model was ECOSMO, 

which has been implemented for the Baltic Sea, the North-East Atlantic Ocean and one 

non-EU regional sea (Barents Sea).  

In most regional seas, the proportion of model-derived indicators considered 

operational was high (ranging between 60 and 80%), except for the Black Sea where a 

suite of ecological models had been developed but using model-derived indicators still 

under development (about 70%) at the time of the assessment. Conceptual models were

 mainly reported for the North-East Atlantic region. As stated by the MSFD, Member 
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States (MS) need to cooperate to ensure a coordinated effort in the study and 

development of management strategies for the different marine regions and sub-regions. 

This is the case for ecological models developed for understanding and forecasting the 

marine ecosystem response to pressures. This catalogue demonstrates that the 

geographical coverage of ecological models in European marine waters is extensive and 

that the assessment of the environmental status can benefit considerably from greater 

use of ecological modelling. However, the use of differing models in different regions 

constrains the possibility of comparisons and inference of robust conclusions on 

causalities and scenarios (Chust et al., 2014). 

 

Fig. 2. Geographical distribution and spatial coverage of the models in the catalogue, when applicable. 

ECOSMO, ROMS-BioEBUS and ROMS-BioEBUS-OSMOSE are not displayed since are occurring in areas 

(Barents Sea and Benguela) outside the European Seas. EU Hubbell’s neutral model and Maxent since they 

are applied to all EU regional seas are not represented. 

6. Addressing pressures with models 

Models are powerful tools for scenario testing of climate and anthropogenic 

impacts both separately and simultaneously (Jørgensen and Fath, 2011). All 44 available 
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models included in the present catalogue, have been used to address at least one 

pressure or its impact on state of the ecosystem or its components. Most of the model-

derived indicators compiled in the catalogue are state indicators (91%), meaning that 

they inform on the condition of the ecosystem, its components or its functioning, while 

reflecting the impacts of single or multiple pressures in the environment. The majority 

do not provide a direct measure of the pressure(s) affecting the system, so they can only 

indirectly be associated to the pressures mentioned above. And despite strong scientific 

evidence for the overall cause–effect relationships between many of these pressures and 

the state of the ecosystem (Shin et al., 2005, 2010a; Fulton, 2011), the identification and 

quantification of the pressure(s) cannot be achieved through these indicators. On the 

other hand, a few of the indicators produced by the models are actually pressure 

indicators (9%), which means that they act as proxies for relevant pressures. 

For instance, temperature or pH can act as a proxies for climate change; nutrients 

concentration and oxygen levels as proxies for eutrophication; biomass of an invasive 

species (e.g., Mnemiopsis leidyi, Dorofeev et al., 2012) as a proxy for non-indigenous 

species pressure; and also ‘Inverse fishing pressure’ which measures the total fishing 

pressure on an ecosystem using landings over biomass, could be considered as a proxy 

for exploitation rate and therefore a potential pressure indicator (Shin et al., 2010). Of all 

the pressures listed in the MSFD, ‘Interference with the hydrological regime’ was the 

most frequently addressed (in terms of numbers of models), with all 44 models reported 

and currently being used in monitoring or research associated with this pressure (Fig. 

4). The ‘Input of nutrients and organic material’ and ‘Marine acidification’ (pH change) 

followed as pressures that could be addressed by more than half of the models. On the 

other hand, ‘Non-indigenous species’, ‘Marine litter’ and ‘Underwater noise’ were the 

least addressed pressures by the type of models included in our survey, with just four 

models able to inform on the responses to one, or maximum two, of these pressures. 

The pressures ‘Physical loss of marine habitat’ and ‘Physical damage to marine 

habitats’ (combined as ‘sum of Physical damage’ in Fig. 4), could primarily be addressed 

using E2E, multispecies and SDM/Habitat suitability types of models. The Meta-

community model could also produce indicators related to these pressures. A total of 20 

models provided 114 indicators to address these pressures, with EwE able to provide 95
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 of these indicators. Such indicators were mostly state indicators, primarily related to 

biomass of different trophic levels, with a small number also relating to species 

distribution, primary and secondary production. Two physico-chemical indicators from 

the GETM-ERSEM model were the only pressure indicators reported: denitrification 

layer depth and oxygen penetration depth. ‘Underwater noise’ and ‘Marine litter’ were 

both addressed by the same two models (GOTM-ERSEM-EwE and EwE), and through a 

similar set of model-derived indicators (in a total of 19 state indicators), all relating to 

top predator biomass such as large fish, marine mammals, reptiles and seabirds. This is 

a common thread for many of the pressures acting particularly on higher trophic groups 

and therefore their impacts are better evidenced by models encompassing such trophic 

levels. 

Fig. 4. Capability of models in the DEVOTES catalogue to address pressures outlined in the Marine Strategy 

Framework Directive (Annex III); the number of models available per major type of pressure is indicated: I 

– physical disturbance type of pressures; II – contamination by hazardous substances; III – nutrient and 

organic matter enrichment; IV – biological disturbance; and V – climate related pressures.  

The pressure ‘Interference with the hydrological processes’ could be addressed 

by 190 indicators from all models in our catalogue. Such changes in hydrological regime 

(namely thermal and salinity), were perceived as pressures related closely to climate 
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change, although climate change is also accounted for by other pressures such as ‘Marine 

acidification’. In this sense, the large majority of the state indicators in the catalogue were 

reported as able to reflect the impact of these regime-shifts with strong ecological 

implications throughout the food web. Only 19 are pressure indicators, essentially 

physical–chemical indicators derived from coupled models with physical 

(hydrodynamic)–biogeochemical modules. The EwE food web and the BS-PAR bio-

optical (remote sensing) were the other type of models providing two of these pressures 

indicators (respectively, ‘1/(landings/biomass)–Inverse fishing pressure’ and ‘Habitat 

condition–water transparency’). The pressures ‘Contamination by synthetic 

compounds’, ‘Contamination by non-synthetic substances & compounds’ and ‘Acute 

pollution’ (represented as ‘Sum of contamination Pressures’ in Fig. 4) were addressed by 

a total of 17 models of different types (multispecies, meta-community, SDM/habitat 

suitability and coupled models).  

Up to 132 model-derived indicators were identified, with the EwE model able to 

provide the highest number. The majority of these were indicators of biomass with a 

small proportion of indicators relating to energy flow and primary/secondary 

production. One pressure indicator ‘1/(landings/biomass)–Inverse fishing pressure’ has 

also been reported under this pressure type. The majority of the 25 models assessing 

‘Inputs of nutrients and organic matter’ (Fig. 4) were spatial-dynamic coupled models 

(both E2E and hydrodynamic–biogeochemical) and, less frequently, biogeochemical, 

multispecies and bio-optical models. The total number of indicators that could address 

this pressure is 42, focusing on various measures of primary production and parameters 

relating to zooplankton. Only two of them are pressure indicators: ‘Population size (as 

biomass) of a non-indigenous species–Mnemiopsis leidyi’ and ‘Habitat condition as water 

transparency’. ‘Non-indigenous species’ were only addressed by two models, the BSEM 

physical (hydrodynamic)–biogeochemical coupled model and the EwE food web model, 

through the indicators ‘Population size (as biomass) of a non-indigenous species – 

Mnemiopsis leidyi’ and ‘Alien shrimps biomass”, respectively.  

A total of 17 models, essentially food web and coupled models, have been 

applied in the context of ‘Selective extraction of living resources’ (encompassing 

extraction of fish and shellfish through direct catch, by-catch and discards and extraction 
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of maërl, seaweed harvesting and the extraction of any other species) (Fig. 4). Overall, 

143 indicators were associated collectively with these models. The majority of these were 

indicators of biomass, being associated with the EwE model. Only one pressure indicator 

was reported (‘1/(landings/biomass)–Inverse fishing pressure’) from EwE. ‘Marine 

acidification (pH change)’ was currently addressed by 25 models (Fig. 4), essentially 

coupled models (both E2E and hydrodynamic–biogeochemical) with a dynamic or 

spatial-dynamic nature, but also multispecies, bio-optical models, and biogeochemical 

models. A total of 56 indicators capable of assessing the effects of this pressure, relating 

also to climate change, could be derived by these models. These indicators are 

predominantly related to biomass of lower trophic groups and primary production.  

Finally, other pressures not listed in the MSFD Annex III, related to climate and 

inter-annual meteorology, were also mentioned by the modellers, reporting 18 models 

that could provide 30 indicators responsive to such pressures. The majority were state 

indicators, such as low trophic groups biomass, but also some production, diversity or 

species life-history indicators. As pressure indicators, six physical–chemical proxies of 

climate pressures were mentioned (see S1 in the online version). 

7. Gaps and development needs 

This work summarises the current capabilities of the modelling community to 

provide information about indicators outlined in the MSFD, particularly on biodiversity, 

food webs, non-indigenous species and seafloor integrity. The cataloguing of models 

and their derived indicators presented in this study aim to help the planning and the 

implementation of objectives defined in the MSFD particularly in relation to which 

models and indicators exist and the missing components to support such policy. 

This is particularly important in the MSFD framework that requires the 

assessment of all European Seas in relation to their ecosystem status and pressures 

associated, and the establishment of environmental targets (through the use of 

indicators) to achieve GEnS by 2020. Overall it was evident from the analysis of the 

model catalogue that some descriptors (and their requirements) within the MSFD (Table 

4) are best assessed by modelling (e.g., D4 food webs), while other indicators are better 

assessed by “traditional” empirically derived ecological indices. For instance, many 

models potentially addressing D6 (seafloor integrity) lacked specific indicators of 
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substrate type or seabed extent (Table 4) mainly because of their inability to express 

benthic habitat as some form of component. D2 (non-indigenous species) is currently 

poorly addressed by the models even though some of them would have the capability 

to provide useful indicators for this descriptor. Similarly indicators for D8 

(contaminants), D9 (contaminants in food), D10 (marine litter), D11 (underwater noise) 

outlined by the European Commission (2010) are not currently addressed by any of the 

models reported here; however, these descriptors were not the target of our survey. 

Three indicators related to the four biodiversity related descriptors (D1, D2, D4, 

D6) had no model-derived indicator in the catalogue (Table 4): 

•        D1 Biodiversity/C3 Population condition.  

o         I2 Population genetic structure 

•  D2 Non-indigenous species/C2 Environmental impact of invasive non-

indigenous species 

o I1 Ratio between invasive non-indigenous species and native species 

o I2 Impacts of non-indigenous invasive species at the level of (1) species, 

(2) habitats and (3) ecosystem. 

With respect to the gaps addressed to pressures, the majority of models require 

further work to show how sensitive and specific to pressures they are. Underwater noise, 

marine litter and contamination by microbial pathogens are poorly addressed by 

existing models and those that have been reported to produce indicators that are 

sensitive to these pressures require further development. It is emphasised that this 

summary of model use does not reflect model adequacy, data quality or the overall 

quality and effectiveness of the monitoring and research programmes under which the 

models are applied. 

Focusing on model features, two main gaps were identified that require further 

development: one related to the setting of targets, and the other to uncertainty associated 

with model results. Targets exist when objectives have been clearly identified and their 

translation into operational performance metrics agreed to, which involves a socio-

political decision process that occurs independently of model development. If the 

models have been developed independently of such processes, which is the case for most 

of the models listed in the study, targets for selected variables may not be available 
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(despite the indicator being operational) reflecting the context in which they have been 

developed. Thus, because the models in the catalogue were not developed with the aim 

of supporting MSFD, and because the MSFD does not set clear targets or aims, it is not 

surprising that model developers often reported difficulties in setting targets and/or 

reference values for their models. 

Two main barriers were identified. First, the process of association of ecologically 

meaningful targets to model outputs (derived indicators) without a clear vision of where 

and what the model would be used for in a specific MSFD context. Second, the level of 

demand required by the targets: should thresholds and/or reference values reflect the 

good condition of the assessed component in isolation (for e.g., for each indicator used) 

or reflect a compromise between ecological integrity and the use of the marine 

environment, as implicit in the MSFD GEnS definition?  

The level at which GEnS should be defined, either at indicator or at the descriptor 

level, or even for all eleven descriptors together, will influence the way thresholds setting 

is perceived and established (Borja et al., 2013). This will ultimately affect the final 

assessment as discussed in depth in Claussen et al. (2011) and Borja et al. (2013). For the 

last point, it can be argued that there is not enough information at this stage for model 

developers to set meaningful targets for MSFD purpose. Therefore, threshold setting 

should be guided by clear objectives and end goals as achievable targets and these are 

not known at present.  

In this context, several initiatives have been created to support and address, at 

least partly, most of the issues arise above; for example FP7 projects such as MEECE 

(completed) and DEVOTES (in progress) have been developed to explore the use of 

ecological models in assessing ecosystem status and in support of decision making and 

EU policy. More recently, MIDAS, a modelling inventory database with models 

currently in use by the European Commission, allows the assessment of how models are 

used and/or support impact assessments at EU level. 

In addition, not all the models were able to address uncertainty; the majority 

lacked confidence intervals or an approach to evaluate uncertainty of the model outputs. 

Marine system models are indeed becoming increasingly complex and sophisticated, but 

far too little attention has been paid to model errors and the extent to which model 
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outputs actually relate to ecosystem processes (Allen et al., 2007). Further developments 

on this would produce more robust assessments and forecasts and therefore more 

reliable indicators. 

European geographical coverage is also very heterogeneous with several 

identified marine areas with enormous potential for improvement. Also certain habitats 

(e.g., ice-associated habitats or continental shelf sublittoral mud) and biodiversity 

components (e.g., microbes) are underrepresented in the modelling approaches 

presently in the catalogue. As mentioned before, this is mostly due to the emphasis that 

has been given historically to particular flag species, commercially important organisms 

or particularly endangered species/habitats. However, the relative importance of 

modelling such components can change according to the system studied. Current gaps 

should, therefore, be evaluated on a regional scale basis.  

Looking at current modelling gaps from a regional seas perspective, one of the 

limitations observed is the focus of the participants in the review process that may have 

shown a bias in the selection of models/model types. An example of this is Atlantis, a 

E2E model not currently operational in Europe, or the Bioenergetics and Dynamic 

Energy Budget (DEB) type of models currently not included in this catalogue but widely 

used in the regions covered by DEVOTES (Teal et al., 2012). These models describe how 

individuals acquire and utilise energy, in addition to how physiological performance is 

influenced by environmental variables, and can serve as a link between different levels 

of biological organisation (Nisbet et al., 2000, 2012). Considering them would thus 

increase the potential to address MSFD Descriptors/Indicators that focus particularly on 

properties at the individual level and physiological level, usually responding to 

pressures whose impacts operate or can primarily be detected at that scale (e.g., 

biological disturbance, such as food resource depletion; contamination; or effects of 

climate change, namely marine acidification). 

In addition, regional model runs identified the need to improve the existing 

models with regards to species diversity (e.g., adding certain species or refining 

subgroups), spatial resolution for selected species and for better description of the direct 

effect of anthropogenic pressures on ecosystems. Model response towards the impact of 

certain pressures still requires further testing. Relevance of certain pressures differs 
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across regional marine areas. Broadly speaking, those that could benefit from further 

research are for physical damage to marine habitats, underwater noise, marine litter, 

contamination by radio-nuclides, introduction of microbial pathogens, extraction of 

species (maërl, seaweed and others), marine acidification, acute pollution events and 

nutrient and organic matter  enrichment. 

Data availability is also a constraint. This could partially explain why the number 

of ‘under development’ indicators is still quite high suggesting that this requires 

particular efforts to increase the potential to address MSFD descriptors.  

To assess the environmental status descriptors adequately, the gap analysis 

conducted here highlights that further refining of the current models and their 

associated indicators as well as the adoption of new modelling techniques are needed. 

The information (data) needs for model development and the results provided (outputs), 

is very heterogeneous. Two main modelling approaches can be distinguished:  statistical 

(i.e. SDMs) and mechanistic (i.e. multispecies and biogeochemical models) (Kendall et 

al., 1999). In general terms, spatial mechanistic models require large amounts of 

computational resources, and can only be applied when demographical, physiological, 

and life traits of species are well known. On the other hand, statistical (i.e. SDMs) 

modelling studies often neglect dispersal-limitation and advection, although they can 

play an important role on spatial distribution, while spatial dynamical models minimise 

the role of environmental factors on species distribution (Robinson et al., 2011). Taking 

a balanced view between the importance of dispersal-limitation and of niche partitioning 

on the species spatial distribution, we suggest that research efforts should focus on 

integrating the two mechanisms into ecological modelling. 

Finally, in some instances, the gaps identified may not need to be filled. This is 

the case for component(s) and/or pressure(s) considered ‘un-manageable’ (e.g., the target 

for zooplankton biomass or distribution). However, given the complex interactions 

within ecosystems, management of some components may have unexpected effects on 

‘unmanageable’ components. Thus, ecological models should be developed to 

encompass all components, to the extent that they are known, wherever possible.  

See original publication in Annex 1 
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Abstract 

 
Italy has the highest catches of all countries fishing in the Mediterranean Sea. Despite 

the availability of fisheries statistics at the national level, reported catch amounts account 

only for a portion of total fisheries removals. This study aims to provide an estimate of 

1) catches for all marine fishing sectors; 2) fishing effort in the major Italian fishing fleets; 

and 3) catch per unit of effort from 1950 to 2010. Catches were estimated using a catch-

reconstruction approach that looked at all types of fisheries removals: from reported and 

unreported landings (from both industrial and artisanal fisheries) to recreational 

landings and discards. The reconstructed total catch for the 1950-2010 time period was 

2.6 times the amount reported by the FAO on behalf of Italy. Illegal, unreported and 

unregulated (IUU) landings constituted 53.9% of the reconstructed total catch, followed 

by reported catches (38.8%) and unreported discards (7.3%). Industrial fisheries were 

dominant, with 79.1% of the reconstructed total removals, followed by the artisanal catch 

(16.8%), with recreational (3.2%) and subsistence (0.9%) fisheries making very small 

contributions. Catch per unit of effort declined since the early 1950s. Our study is the 

first that estimated total Italian fisheries removals and fishing capacity using a holistic 

approach; such approach is particularly important in areas like the Mediterranean Sea, 
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where the multi-species and multi-gear nature of fisheries make the assessment of 

single-species fisheries resources and their management difficult. 

 

Resumen 

 
Italia cuenta con las mayores capturas de todos los países que pescan en el mar 

Mediterráneo. A pesar de la disponibilidad de estadísticas pesqueras a nivel nacional, 

las capturas registradas representan sólo una parte del total de las extracciones 

pesqueras. Este estudio tiene como objetivo proporcionar una estimación de 1) las 

capturas de todos los sectores de pesca marina; 2) la explotación pesquera (o esfuerzo) 

de las grandes flotas italianas; y 3) las capturas por unidad de esfuerzo entre 1950 y 2010. 

Las capturas se han estimado utilizando una reconstrucción que contempla todo tipo de 

extracción por pesquerías: desde desembarques declarados y no declarados (tanto de 

pesquerías industriales como artesanales) hasta desembarques recreativos y descartes. 

Las capturas totales reconstruidas del período 1950-2010 representan 2,6 veces la 

cantidad reportada por la FAO en nombre de Italia. Los desembarcos por pesca ilegal, 

no declarada y no reglamentada (INDNR) constituyeron el 53,9% de las capturas totales 

reconstruidas, seguido por las capturas declaradas (38,8%) y los descartes no declarados 

(7,3%). La pesca industrial domina estas cifras, con el 79,1% de las extracciones 

reconstruidas totales, seguida por la captura artesanal (16,8%), y con muy pequeñas 

contribuciones de la pesca recreativa (3,2%) y de subsistencia (0,9%). La captura por 

unidad de esfuerzo disminuyó desde principios del decenio de 1950. Nuestro estudio es 

el primero que calcula el total de las extracciones pesqueras italianas y la capacidad de 

pesca utilizando un enfoque holístico. Este enfoque es particularmente importante en 

áreas como el mar Mediterráneo, donde las múltiples especies y la diversidad de artes 

pesqueras hacen difícil la evaluación y gestión de recursos pesqueros de forma mono-

específica.
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1. Introduction 

The Mediterranean Sea has been described as “under siege” due to the effects of 

multiple stressors such as fishing, habitat loss and degradation, pollution, 

eutrophication, and the incidental introduction of alien species (Coll et al., 2011). Fishing 

is one of the strongest pressures, and has caused changes in ecosystem structure, 

declines in major fish stocks and in overall biodiversity in many parts of the 

Mediterranean Sea (Colloca et al., 2011; Farrugio et al., 1993; Papaconstantinou and 

Farrugio, 2000; Vasilakopoulos et al., 2014). Although the exploitation of marine 

resources has a long history in the Mediterranean basin (Thompson, 1947), fisheries 

research and management has only developed post-World War II, particularly in the 

northwest of the basin (Farrugio et al., 1993). Italian fisheries are among the most 

important fisheries in the Mediterranean, constituting, according to the Food and 

Agriculture Organization of the United Nations (FAO) statistics, roughly 30% of its all 

catches. In recent decades, the Italian fishing industry has faced declines, both in terms 

of catch, due to a decrease in the major fisheries resources (4th Multi-Annual Guidance 

Plans; MAGPs),  and  also  in fishing effort, as a result of European Commission 

regulations, which attempt to adjust the  fishing  fleet  to  the  available  fishing resources 

(Iborra Martin, 2006). In contrast, since the late 1980s, there has been a steady increase in 

farmed fish production. The majority of mariculture production consists of 

Mediterranean mussels (Mytilus galloprovincialis) and Manila clams (Tapes philippinarum), 

followed by gilt-head seabream (Sparus aurata) and European seabass (Dicentrarchus 

labrax) (Cataudella and Spagnolo, 2011; OECD, 2010). The present reconstruction is 

solely concerned with marine capture fisheries of finfish and invertebrates (excluding 

sponges, turtles, jellyfish and marine mammals), and thus does not address aquaculture 

trends and associated issues. 

Given the growing emphasis on ecosystem-based management issues in fisheries 

(Pikitch et al., 2004), a comprehensive understanding of total fisheries removals and 

fishing capacity is fundamental to understanding the ecosystem resources trends and 

thus contribute to policy on future resource use. This, however, becomes challenging in 

a Mediterranean country whose statistical reports of catch and effort are often unreliable, 

and where actual catches are often underestimated (European Commission, 2003; 
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Garibaldi, 2012; Garibaldi and Kebe, 2005; Moutopoulos and Koutsikopoulos, 2014). 

Commercially valuable species often go directly to public markets and regional auctions, 

and these catches often are not included in the official records and hence go unreported 

(OECD, 1994). Also, there is limited monitoring and enforcement, especially with regard 

to illegal nets and mesh sizes, the landing and marketing of undersized fish, and 

compliance with restrictions on fishing season and areas (OECD, 1994). Available 

fisheries statistics exist at the national level, i.e., from the Italian National Statistical 

Institute (ISTAT) and the Institute for Economic Research in Fishery and Aquaculture 

(IREPA), and the data from these two organizations are sent to FAO. These reported 

catches account only for part of total fisheries removals and have never been harmonized 

and/or compared with estimates of total fisheries removals. This is particularly true for 

small-scale fisheries, whose catches are generally underestimated, and for recreational 

and subsistence fisheries, which are often not accounted for in countries’ official statistics 

(Pauly, 2006; Pauly et al., 2014). 

As part of an overall effort to reconstruct global fisheries catches (Zeller et al., 

2007) by the Sea Around Us (www.seaaroundus.org; Pauly, 2007), which also includes 

Mediterranean countries (Coll et al., 2014; Pauly et al., 2014; Tsikliras et al., 2007; Ulman 

et al., 2013), this study aims to provide estimates of fishing capacity for the major Italian 

fishing fleets and catches for all marine fishing sectors from 1950 to 2010, using all 

available data sources and accounting for reported and unreported commercial 

landings, recreational and subsistence landings and discards. Reconstructed catches and 

effort presented here are for the whole of Italy. Results by sub-regional seas: 1) Ligurian; 

2) Northern, Central and Southern Tyrrhenian; 3) Ionian; 4) Northern, Central and 

Southern Adriatic Sea; 5) Sicilian and 6) Sardinian waters can be found in Piroddi et al. 

(2014). 

2. Materials and methods 

2.1 Study area 

Italy is located in southern Europe and covers an area of approximately 301,270 

km2. It includes the Italian peninsula, Sicily and Sardinia (the two largest Mediterranean 

islands), and 71 other smaller islands. The country consists of 21 regions, 15 of which are 

coastal (Fig. 1). The territorial waters extend to 12 nautical miles from the coast and have 
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a surface area of 7210 km2 and the continental shelf has a surface area of 201310 km2 

(Iborra Martin, 2006). The Italian Exclusive Economic Zone (EEZ), as delineated by Claus 

et al. (2014) (see also www.vliz.be), covers nearly 538,000 km2. Due to its central 

Mediterranean Sea location, four of the seven Mediterranean Sea subdivisions surround 

the peninsula: the Tyrrhenian and Ligurian Sea in the west, the Ionian Sea in the south 

and the Adriatic Sea in the east. This geographic positioning leads to important 

biophysical differences of the waters around Italy. For example, the distribution of the 

continental shelf is very uneven; it is very broad and shallow in the Adriatic Sea, but 

changes to very narrow shelves with steep slopes in the other seas (Cataudella and 

Spagnolo, 2011; Francalanci, 1993). Also, the waters range from being highly eutrophic 

in the northern Adriatic Sea to oligotrophic in most other areas. The diversity of these 

biophysical conditions also leads to a high biodiversity: Italian waters host important 

commercial species such as the Atlantic bluefin tuna (Thunnus thynnus), charismatic 

megafauna such as the endangered Mediterranean monk seal (Monachus monachus) and 

habitat-forming species, such as seagrass (Posidonia oceanica) (Giakoumi et al., 2013; 

MacKenzie et al., 2009; Reijnders et al., 1997). 

Italy has a population of 61 million people (ISTAT, 2012), over half of which 

reside in coastal regions (Cori, 1999; ISTAT, 2012). Fishing occurs along the entire 

coastline and catches are landed at over 800 sites (Cataudella and Spagnolo, 2011; Iborra 

Martin, 2006; OECD, 2010). Despite their marginal contribution to the national economy, 

both in terms of income and employment opportunities, fisheries play a fundamental 

role in certain regions (e.g., in Sicily). The Italian fishing industry is characterized by the 

predominance of small and older vessels, a diversity of fishing gear, and consequently a 

diverse array of multi-species catches (Cataudella and Spagnolo, 2011; FAO, 2010; 

OECD, 2010). The commercial fisheries are represented by the following types of fleets: 

bottom trawlers, mid-water trawlers, purse seiners, longliners, dredges, multi-purpose 

vessels and an artisanal fishery.  

2.2 Italian fisheries management 

A comprehensive fisheries management scheme was initiated in 1982 with the 

Law 41/1982; prior to that, only certain restrictions such as minimum mesh size, 

minimum legal landing size, and closed areas were mandated by national authorities. 
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With the introduction of Law 41/1982, national triennial plans were established. In 

particular, all professional fishing vessels had to possess a license managed by the 

Directorate General for Fishery and Aquaculture of the Ministry of Agriculture Policy. 

The license includes characteristics of the vessel (e.g., the name of the vessel, the EU 

number, GT), limitations of fishing areas, gear use and spatial licensing (e.g., over-seas 

and ocean-going fishing, Mediterranean fishing, and in-shore coastal fishing; OECD, 

2010). Currently, the licensing scheme limits fishing effort mainly in the form of temporal 

restrictions which are set each year in relation to spawning seasons.  

In addition, the closure is compulsory for the eastern fishing grounds and 

voluntary in the western grounds. Starting in 1996 and re-enforced in 2000, a seasonal 

closure was also initiated for tuna. In addition, in 1992, the European Union (EU) put a 

2.5 km limit on the length of driftnets; in 1998, the EU fully banned the use of driftnets 

in the Mediterranean Sea and the northeast Atlantic Ocean, which became fully effective 

on January 1, 2002. Additionally, in 1994, the EU established a set of restrictions for the 

main gear types (EU Rule 1626/94) to preserve fisheries resources in the Mediterranean 

Sea. For instance, the operation of trawls and seines was prohibited within three nautical 

miles (nm) from the coast except for “special fisheries” for which derogation by the 

national legislation was put in place. For example, the “Bianchetto” (juvenile of Sardina 

pilchardus), “Rossetto” (Aphia minuta mediterranea) and “Cicerello” (juvenile of 

Gymnammodytes cicerelus) fisheries operate only in winter (January 15–March 15 as a rule) 

for a period of 60 days. 

These fisheries have a long history at the local level and are one of the most 

important small-scale activities with large socio-economic impacts. Since 2010, the EU 

has banned these fisheries (small trawling boats using mesh size <40 mm) throughout 

the Mediterranean for their unsustainability, stating that only vessels of other gear types 

with a proper management plan would be allowed to fish (Reg. (CE) n. 1967/2006). 

In Italy, to date, no quotas or TACs (total allowable catch) have been established, 

except for sedentary species such as clams or highly migratory species such as Atlantic 

bluefin tuna, due to the multi-species nature of the fisheries, which does not allow fishers 

to easily shift their target species from one to the other (Cataudella and Spagnolo, 2011; 

Iborra Martin, 2006; OECD, 2010). Also, few fisher consortia exist in the country, such as 
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for the management of molluscs (CO.GE.MO) and of small-scale fisheries (CO.GE.PA.), 

introduced by the Italian Ministry, to empower fishers and local fishing enterprises to 

manage and regulate specific stocks in limited areas (Spagnolo, 2006). 

 

Fig. 1. Italy with its coastal regions (LI: Liguria; TO: Toscany; LA: Lazio; CAM: Campania; CAL: 

Calabria; SI: Sicily; SA: Sardinia; BA: Basilicata; PU: Apulia; MO: Molise; AB: Abruzzo; MA: Marches; 

ER: Emilia Romagna; VE: Veneto; FVG: Friuli Venezia Giulia) and the four surrounding sub-regionals 

seas: Ligurian; (Northern, Central and Southern) Tyrrenian; Ionian and (Northern, Central and 

Southern) Adriatic Sea. For the scope of the report Sicilian and Sardinian waters have been considered 

separately. 

2.3 Catch reconstruction approach 

The reconstruction of Italy’s total fisheries catches for the 1950–2010 period was 

completed by following the same approach as described and applied in Zeller et al. 

(2007). Since this method is well known and well described, refer to Zeller et al. (2007) 

for a more detailed description. 

2.4 Data sources 

A general description of data sources used in the reconstruction is detailed in 
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Table 4. In particular, we presented the fishing sectors considered, years of data 

availability, associated references, anchor points and estimated uncertainty (see below). 

2.4.1 Official landings 

The baseline used for reported catches was the time-series of capture production 

from the two Italian national statistical organizations (ISTAT and IREPA) which were 

compared to the FAO FishStat database. Two other FAO databases were also used: the 

global capture production dataset available for 1950–2010 and the regional dataset from 

the General Fisheries Commission for the Mediterranean (GFCM) available for 1970–

2010 (FAO, 2012). Since the two trends were identical for the same time period (1970–

2010) we decided to use and present here only the FAO global dataset, which had longer 

time series. As previously mentioned, ISTAT and IREPA were the responsible 

authorities which collected the data.  

In particular, the official catch statistics were first provided by ISTAT from 1950 

to 2001, and only recently the Italian Ministry of Agriculture and Forestry Policies 

(MIPAAF) transferred management of the fishery sector to IREPA from 2005 onwards. 

In 2000, IREPA, before becoming the official national fisheries statistical organization, 

under a mandate of MIPAAF, and with respect to European legislative requirements, 

took the coordinating role of optimizing the fisheries statistical scheme to obtain detailed 

and harmonized fisheries data collection along the entire Italian coast. This new survey 

methodology collects other relevant data on important aspects of the fisheries, namely, 

total landings per species; prices obtained by species; fishing effort; fishing hours; and 

fishing typologies. This is carried out on a weekly basis by ‘local observers’ from within 

the fisheries sector, i.e., biologists, ship owners, ex-fishers, and business consultants 

distributed along the major Italian fishing ports (of which there are approximately 800). 

The structure of our reconstruction data followed the spatial allocation outlined 

in Table 1. Here, the Adriatic and the Tyrrhenian Seas were split into Northern, Central 

and Southern sections to account for their large extent and for significant differences in 

reported landings. Sicilian and Sardinian waters were considered separately for the 

same reason (Fig. 1). Among the sub-regional divisions, Sicily, followed by Central 

Adriatic, and South and North Tyrrhenian had the most incomplete catch datasets (Fig. 

2). Due to this sub-regional division, gaps and inconsistencies with the data were easier 
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to address and correct (most of the time to species-level) through literature searches. In 

particular, using the scientific literature (Cappuccinelli, 2005, 2011), we were able to 

reconstruct the last 11 years of the catches of European anchovy (Engraulis encrasicolus) 

and European pilchard (S. pilchardus) around the coasts of Sardinia (Supplementary 

materials, Fig. S1). 

 

 

 

 

 

 

 

 

 

We were also able to complement our compiled dataset or officially reported 

landings, i.e., the integration of IREPA and ISTAT datasets, with catch data of Atlantic 

bluefin tuna, frigate tuna (Auxis thazard), Atlantic bonito (Sarda sarda) and swordfish 

(Xiphias gladius), using the ICCAT statistical database for the main Italian sub-regions. 

In particular, we tried to use a conservative approach by taking into account the 

maximum landing estimates for each of these taxa from each dataset. The difference 

between ICCAT and IREPA–ISTAT catches regarding these large pelagic fishes and the 

reconstructed trends are displayed in Fig. S2.  

In addition, once completed, each regionally compiled dataset of reported 

landings (corresponding to each of the six sub-regional divisions) was sent for validation 

to national experts (from local Universities: Universita’ degli Studi di Sassari/Genova, 

respectively, in Sardinia and Liguria; from the National Research Council (CNR): 

Ancona and Mazaro del Vallo; and/or from local research institutes: Arpat Toscana). 

The taxonomic breakdown of the commercial species used in the reconstruction 

was taken from ISTAT and IREPA (Supplementary materials, Table S1). Most of the 

species were commonly represented, although in a few occasions, some adjustments 

were made, for example, ‘goatfishes’ were one group for ISTAT, which IREPA split into 

Table 1.  

Catch allocation reconstruction following ISTAT-IREPA structure. 

Sub-regional division Coastal regions 

1. Ligurian Liguria 

2. Tyrrhenian   

- Northern Tuscany 

- Central Lazio 

- Southern Campania and Calabria West 

3. Ionian  Calabria East; Apulia West; Basilicata 

4. Adriatic   

- Northern 
Emilia Romagna; Veneto; Friuli Venetia 

Giulia 

- Central Abruzzi; Marches; Molise; Emilia Romagna 

- Southern Apulia East 

5. Sardinian Sardinia 

5. Sicilian Sicily 
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red mullet (Mullus barbatus) and striped red mullet (Mullus surmuletus). In these cases, 

we decided to use the most detailed list of species, and apply the proportion of presence 

observed in one source to the other list. In addition, due to the high amount of the very 

uninformative group ‘marine fishes nei’ in the data, we decided to split this group into 

several species and/or groups of species according to the catch composition in the data 

disseminated by FAO on behalf of Italy. Thus, the reported data were allocated to 82 

species or taxa for this reconstruction (Table S1). 

2.4.2 Fishing effort 

Fishing effort (here in kW days−1) was estimated by taking the product of the 

number of fishing vessels, kW per vessel (inferred from their GT), and the number of 

days spent fishing. This information was obtained from ISTAT and IREPA. From 1950 

to 1983, the type of vessels reported by ISTAT consisted of only four groups: trawlers, 

gillnetters, longliners and ‘various gears’. From 1984 to 2001, vessel classification was 

extended to incorporate four additional groups: mid-water trawlers, purse seiners, 

dredges, and multiple-use vessels. From 1996, IREPA assigned the following 

classifications to vessel-type: 

• Trawl; 

• Purse seine; 

• Mid-water trawl; 

 

Fig. 2. Number of species per each sub-regional division present in the IREPA dataset  

with catch values greater than 25%, 50%, 75% and 100% compared to the ISTAT dataset. 
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• Mechanical dredges (hydraulics dredge); 

• Longlines (drifting or fixed longlines with vessel length >12m); 

• Artisanal fishery (fixed gears such as set nets, hooks and traps with vessel 

length <12 m); 

• Passive multi-use vessels (fixed gears with vessel length >12m); 

• Multi-technique vessels (both fixed and mobile gears). 

This classification takes into account the high degree of multi-gear use by the 

Italian fishing fleets and their wide dispersal rate along the entire coastline. More than 

80% of vessels are authorized to fish with a variety of fishing gears, particularly for 

small-sized vessels, due to their limited range, which forces them to depend on the 

seasonal availability of coastal resources. Similar to the reported catches, there were 

some discrepancies between the two primary sources (ISTAT and IREPA) for the 

number of fishing vessels and GT values, as a result, the more detailed list of fleets (in 

this case, from IREPA) was used.  

The data began in 1984 and in order to include estimates for the missing years 

(1950–1983) in the absence of effort data from earlier years, the proportion of observed 

fleets for earlier years was taken as the same as for 1984. The reason why we decided to 

keep the same proportion as 1984, and not the average ratio between 1984 and 2010, was 

due to the reduction in effort observed in the country from the mid-1980s onward, 

mainly as a result of EU regulations and declines in marine resources. The number of 

days at sea and number of fishers were available only from 1996 to 2010 through the 

IREPA dataset; thus, to estimate the missing years (1950–1995), we maintained kept the 

ratio of days at sea and the ratio of fishers per type of fleet observed in 1996. GT was 

used to estimate fishing power in kW for each vessel using the equation developed by 

Anticamara et al. (2011), i.e., kW = 11.26 GT0.71, which expresses the relationship between 

GT and kW as an exponential relationship. As for days at sea and number of fishers, GT 

was available per type of fleets only for the period 1996–2010 and thus it was 

extrapolated for the missing years as the average ratio of GT in the observed time period. 

Changes in technology have increased fishing capacity on board the same vessel over 

time (Pauly and Palomares, 2010). To account for improvements in technology that are 

not be captured by kW as a measure of effort, a technological “creep factor” of 1% was 
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applied since 1980 (Table 2), as derived from the empirical relationship by Pauly and 

Palomares (2010). 

Finally, we calculated catch per unit of effort (CPUE) expressed as kg kW−1 days−1 

by dividing the total reconstructed catches by the total reconstructed effort for the whole 

of Italy. For comparison, we also calculated CPUE using the official catch statistics (FAO) 

divided by the total reconstructed effort. 

2.4.3 Unreported landings I: Recreational catches 

While recreational fishing can be practiced both at sea and from land, the present 

study concerns only boat-based recreational activities, and therefore excludes shore-

based angling, spear fishing and shellfish collection. Until 2010, recreational catches had 

never been assessed or included in national fishery statistics. To fulfill recent EU 

legislative requirements, the Italian Ministry of Agriculture and Forestry (MIPAAF) first 

surveyed recreational fishing activities (particularly the number of fishers and gear 

types).  To date, there are only a few sources of information regarding Italian recreational 

fisheries. The first preliminary assessment was conducted in 1996 by Anagnopoulos et 

al. (1998), who described recreational fisheries in Italy and Greece with respect to their 

fleet size, number of fishers, landings, and fishing effort, here used as anchor points for 

1996. Based on more recent sources of information (Cisneros-Montemayor and Sumaila, 

2010; Gaudin and De Young, 2007; Gordoa et al., 2004; Pawson et al., 2007), three 

additional anchor points representing the number of fishers for the years 1989, 1993 and 

2003, were developed. Population statistics for the 1950–2010 period were extracted from 

Table 2. 

Technological coefficients of fishing vessels by gear type as reported by (Pauly and Palomares 2010). 

 

  Technological coefficient 

Vessel type 1950-1980 1981-1995 1995-2010 

Trawlers 0.5 1 1.8 

Mid water trawlers 0.5 1 1.8 

Dredges 0.5 1 1.4 

Purse seiners 0.5 1 1.8 

Artisanal 0.5 1 1.3 

Multiple gears 0.5 1 2.5 

Longliners 0.5 1 2.8 
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ISTAT (2012) and used to indirectly estimate total recreational catches by local residents. 

For instance, we used the percentage of observed number of fishers (from the four 

anchor points) in the total population (1989: 2.2%; 1993: 2.7%; 1996: 2.6% and 2003: 2.7%) 

to establish a time series of number of recreational fishers for the missing years. Thus, 

for the 1950–1988 period, it was assumed that 2.2% of the total population fished 

recreationally, while for 1990–1992, 1994–1995 and 1997–2002, we interpolated the 

estimates of the four anchor points, and for the last period (2004–2010), the percentage 

observed in 2003 (2.7%) was held constant to 2010. We assumed that the proportions of 

recreational fishing fleets for each sub-regional division observed in 1996 were constant 

throughout the years (Table S2), and that two fishers per boat caught 1.6 t year−1 of fish 

(Anagnopoulos et al., 1998), to derive total Italian boat-based recreational catches from 

1950 to 2010. To allocate recreational catches to species-level, we used the ratio found in 

Anagnopoulos et al. (1998) for each sub-divisional region (Table S3). Also, since there is 

also an illegal aspect to the recreational fisheries, (e.g., undersized fish, catch above the 

permitted limits, etc., Table S4), an additional illegal component was estimated (see 

below for further details). 

2.4.4 Unreported landings II: Illegal, subsistence catches and discards 

 In Italy, as in many other parts of the Mediterranean Sea (Coll  et al., 2014; Ulman 

et al., 2013), unreported commercial catches are almost always associated with illegal 

fishing activities and are thus of concern. In Italy, the most common infringements 

include the use of illegal fishing gears, trawlers operating closer to shore than permitted, 

fishing in ‘no take’ marine protected areas, and the catching of ‘bianchetto’ or other 

undersized specimen (ISMEA, 2006). Although the approach carried out by IREPA, with 

observers inspecting landings at the main harbors along the Italian coasts, should 

minimize the quantity of unreported landings, we decided to search for additional 

information coming from NGO reports and from Italian newspaper accounts and TV 

documentaries. The most widely-known and ‘observed’ illegal fishing activity along the 

entire Italian coast is the use of driftnets. At the end of the 1980s, the driftnet fishery was 

the largest fishery in the Mediterranean Sea with over 700 vessels, driftnets of up to 40 

km in length and annual reported catches of 5000 t of swordfish and 1000 t of tuna 

(Tudela, 2004). Despite the maximum length limit of 2.5 km prescribed by the EU in 1992, 
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approximately 650 driftnet boats continued operating with nets measuring on average 

between 10 and 12 km (Tudela, 2004).  

The unreported catches from 1992 to 2001 were assumed to be based on a 

constant number of 650 vessels from 1992 to 1998 (Tudela, 2004) and 299 vessels (Cornax, 

2007) from 1999 to 2001, 5% of which operated from Liguria, 49% in the Tyrrhenian Sea, 

31% from Sicily, 7% from Sardinia as well as from the Ionian Sea. A catch rate per vessel 

of 7 t year−1 of swordfish and 1.4 t year−1 of tunas was assumed based on Tudela (2004) 

and Cornax et al. (2006). From 2002 onwards, after driftnet fishing was officially banned, 

surveys conducted by different NGOs in major Italian ports identified over 150 driftnet 

boats still in operation (fish were landed at night to avoid controls). Also, in 2008, the 

journalist Sabrina Giannini conducted a series of interviews with fishers, and 

documented the illegal driftnet activities for an Italian TV program (“Report: Mare 

Nostrum: sfruttamento marino”). To estimate these unreported driftnet catches for the 

2002–2010 period, the following sources were used: OCEANA (Cornax, 2007; Cornax 

and Pardo, 2009; Cornax et al., 2006), RSPCA in collaboration with Humane Society 

International and the Whale and Dolphin Conservation Society (2005), and the interview 

conducted by Sabrina Giannini. The number of boats observed (∼150) was kept constant 

for the 2002–2010 period and a constant catch rate per boat of 2 t year−1 of swordfish and 

0.5 t year−1 of tunas was used. 

Regarding other illegal activities occurring in the artisanal, industrial and 

recreational fisheries, only recently have Italian media/newspapers begun to report on 

them. The majority of this news refers to the confiscation of illegal gear by the Italian 

Coast Guard, and only a few accounts refer to quantities of confiscated species (Table 

S4). Since 2010, the Italian Coast Guard has started to report on illegal operations at sea 

and on land. We used the information from the Italian Coast Guard database, combined 

with direct interviews conducted with LT Commander Alessio Morelli, Head of the 

Fisheries National Control Unit-Coast Guard, to derive a rough estimate of illegal 

activity in the area. We were not able to identify any sources of data relating to personal 

consumption (i.e., the subsistence fishery). Thus, to develop such an estimate indirectly, 

and in a conservative manner, we used and held constant the lowest value (1 kg fisher−1 

day−1) estimated by Coll et al. (2014) for the Spanish subsistence fishery (since Spain 
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shares similar fish consumption patterns and maritime policies), and applied this to 

Italian commercial fishers per fleet type and the number of fishing days per type of fleet, 

per year and per each sub-division. Italian discards for the 1950–2010 period were 

estimated using two main anchor points, one by Vassilopoulou (2012) and the other by 

the European Commission (2011a). Additional scientific papers were used in regards to 

local studies (Table S5). Due to the multi-species nature of Italian fisheries, which allows 

for the catching of several species at the same time, the high demand of seafood in local 

markets, and the high enforcement costs required for the monitoring of restrictions, 

fishers rarely discard fish, but retain and land their by-catch, which is an important 

component of unreported landings. The rates of by-catch and discards were determined 

by the type of fleet of each sub-regional division and the total catch per type of fleet 

(Table S5). We then separated the retained by-catch from discards, using data in the 

literature, of which, approximately 60% was retained and 40% discarded (Sánchez et al., 

2007; Sartor et al., 2003). 

2.4.5 Uncertainty 

We assessed the uncertainty associated with the reconstruction using a scoring 

procedure, utilizing uncertainty criteria developed and used by the Intergovernmental 

Panel on Climate Change (Mastrandrea et al., 2010) to assess uncertainty of input data 

used in their assessments, which were further calibrated using the results of Monte Carlo 

simulation in Ainsworth and Pitcher (2005) and Tesfamichael and Pitcher (2007). In 

particular, this approach consisted of assigning a score, ranging between 1 (very low 

evidence or less robust data) and 4 (very high evidence and robust data), to the 

reconstructed catch data of each fishing sector for three different decades (1950–1969; 

1970–1989; 1990–2010) (See Table 3 and Table S6 in Supplementary materials). Average 

scores (and hence percentage confidence intervals) for each time period were derived 

through catch-weighted averaging of sector scores. This scoring procedure was 

previously used in a ‘blind’ scoring session for 22 Pacific Island countries and territories 

(Zeller et al., 2015) in which each score was independently (blind) given by three 

separate research staff. This procedure showed little differences between scorers, and 

generally reflected the score given by the lead researcher who had conducted each 

island’s reconstruction. Hence, for Italy, the leading author scored each sector for each 
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of the three time periods, as she was most familiar with the underlying data sources and 

their level of reliability or trustworthiness. 

       Table 3.  

Score’ for evaluating the quality of time series of reconstructed catches, with their confidence intervals. 

*(IPCC criteria from Figure 1 of Mastrandrea et al. (2010), which note that “confidence increase” [and hence confidence 

intervals are reduced] “when there are multiple, consistent independent lines of high-quality evidence”). 

3. Results 

3.1 Reconstructed total catches 

The reconstructed total catch for the 1950–2010 period exceeded by a factor of 2.6 

the official catches reported by the FAO on behalf of Italy. Of this, approximately 79% 

was caught by industrial fisheries, 17% by artisanal fisheries, 3% by recreational fisheries 

and <1% by subsistence fisheries, while discards (7% of the total) were predominately 

(95%) from industrial fisheries (Fig. 3a). Reconstructed total catches were relatively 

stable throughout the 1950s and 1960s, averaging about 700,000 t year−1, before 

increasing between 1971 and 1979 to 1.1 million t year−1. Thereafter, the annual catch 

plateaued at an average of 1.06 million t year−1 until 1986, then sharply decreased to 

676,000 t year−1 by 1990. Annual catches remained steady in the early 1990s, with a small 

increase to 741,000 t in 1998, before again sharply decreasing and continuing the 

declining trend to the end of the time series in 2010, when catches were just 374,000 t 

(Fig. 3a).  

Catches consisted of 92 taxa, of which 65 were identified to species, including 

higher pooled groups such as ‘marine fishes nei’ and ‘marine invertebrates nei’. In terms 

of total tonnage, catches were dominated by small pelagic fishes, notably European 

anchovy (E. encrasicolus), which accounted for 18.1% of all catches (Fig. 3b). The second 

most important taxon, in terms of tonnage (at least in earlier decades) was the European 

Score -% +% Corresponding IPCC criteria* 

 

4 Very high 10 20 High agreement & robust evidence 

3 High 20 30 High agreement & medium evidence or medium agreement & 

robust evidence 

2 Low 30 50 High agreement & limited evidence or medium agreement & 

medium evidence or low agreement & robust evidence.  

1 Very low 50 90 Less than high agreement & less than robust evidence 
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pilchard (S. pilchardus), which accounted for 12.5% of total catches overall, but has since 

declined substantially (Fig. 3b). The remaining taxa, grouped by family, contributing the 

most to the catches were molluscs (12.4%), Scombridae (9.0%), Sparidae (7.4%), 

crustaceans (5.6%), Carangidae (4.0%) and sharks and rays (3.9%; Fig. 3b). 

3.2 Official landings 

For the reported landings, we compared our assessment with the two national 

sources of statistics (ISTAT and IREPA) and the FAO, and found that data sets were 

similar only for the last six years (2005–2010, Fig. 4), which corresponds to the period 

when IREPA became the official national statistical source. Most of the catches per 

species and per sub-regional division in the ISTAT dataset were on at least 30–40% lower 

than the one provided by IREPA. In particular, when comparing the years 2000 and 2001 

between the two national sources, of the 58 taxa in the IREPA dataset, 49 had catch values 

greater than 25%, 43 greater than 50%, 33 greater than 75% and 26 greater than 100%, 

while the remaining had similar values between the two sources.  

Table 4 

Italian reconstruction of the catches highlighting the fishing sector considered, the period of data available 

(Time), the source, anchor points, and estimated uncertainty. 

 

 

These data were visibly higher (on average more than two times higher) than the 

data reported to FAO for the same time period which ranged from 171,000 to 430,000 t 
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year−1. Overall, there was a slight decrease in national reported landings between 1950 

and the beginning of the 1960s, followed by an increase in the middle of the 1980s and a 

general and continuous decline to 2010. This differs from the trend in the FAO data 

which increases steadily in 1950 with a peak in 1985 and then fairly steadily declines in 

2010 (Fig. 3a). 

Fig. 3. Reconstructed total catches for the whole of Italy: a) by fishing sector and discards, with reported 

FAO catches overlaid as black line graph for 1950–2010 period; and b) by taxa (the ‘Others’ grouping 

contains 82 taxa). 

European anchovies and European pilchards were the main fish species reported 

in the national data throughout the different sub-regions, which began to decline in the 

beginning of 1980s (Fig. 3b). All the other major taxa, (e.g., Scombridae, Mollusca, 

Sparidae and Carangidae) presented similar trends with declines commencing from the 

1980s or beginning of 1990s (Fig. 3b).  

3.3 Fishing effort and catch per unit 

of effort 

Results indicated that artisanal vessels 

dominated in terms of vessels numbers, 

followed by trawlers and multiple gears (Fig. 

5a). Trawlers, on the other hand, had the 

highest fishing effort, in term of cumulative 

engine power (kWdays−1), followed by purse 

seiners and artisanal fisheries (Fig. 5b). With 

regards to all fishing fleet and their trends, 

number of vessels and fishing effort, decreased 

over time, after the maximum from the late 1970s to mid-1980s (with only multiple gears 

having their highest peak in the 1990s) and a steady decline thereafter. The CPUE trend 

Fig. 4. Italian national catch data coming 

from the two national sources, ISTAT 

(dotted line) and IREPA (dark line), for the 

1950–2010 period in comparison with the 

ones reported to FAO (grey line). 
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showed a continuous decline since the 1950s with a maximum of ∼9kg kW−1 days−1 in 

the early 1950s and a minimum of ∼3kg kW days−1 in the late 2000s (Fig. 6). 

Fig. 5. For the whole of Italy: a) reconstructed total number of fishing boats; and b) reconstructed total 

fishing effort (kW 10-6 days−1) per gear type. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Unreported landings: Recreational fisheries 

The estimated recreational catches for 1950–2010 were around 1.45 million t, 

which increased from 19,200 t in 1950 to 29,800 t in 2010 with a pronounced growth 

during the last three decades (Fig. 3a). The Adriatic Sea accounted for 597,000 t (41.4%); 

the Tyrrhenian Sea sub-division 497,000 (34.3%); the Ligurian 194,000 t (13.4%); Sardinia 

77,300 t (5.3%); Sicily 68,100 t (4.7%) and Ionian Sea 16,700 t (1.2%). The major species 

caught in Italy by the recreational sector were tuna (Scombridae) with 232,000 t (15.4%), 

bogue with 155,000 t (10.7%), Atlantic bonito with 107,000 t (7.4%) and Mediterranean 

horse mackerel (Trachurus mediterraneus) with 97,300 t (6.7%). 

3.5  Unreported landings: Subsistence catches 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Catch per unit of effort (kg kW−1 days−1) for the whole of Italy 

for the 1950–2010 period using the reconstructed catches and effort 

time series (black line) and catches reported by the FAO on behalf of 

Italy with the reconstructed effort (dotted line). 

a) b) 
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The estimated subsistence catches for the 1950–2010 time period averaged 6400 t 

year−1, with a maximum of 9100 t in 1982 and minimum of 4000 t in 2010, contributing 

only 0.9% of the reconstructed total catch (Fig. 3a). In this case, the Central Adriatic Sea 

and Sicily had the highest removals, with approximately 91,400 t (23%) and 85,600 t 

(22%), respectively. Given our assumption of same catch compositions for subsistence 

catches and reported landings, the subsistence catch was assumed to consist mainly of 

European anchovy (13.5%), European pilchard (10.7%) and molluscs (14.8%). 

3.6  Unreported commercial catches and discards 

The estimated unreported catches for the illegal driftnet fishing fleet for the 1992–

2010 period totaled 49,130 t, which consisted to 83% of swordfish and 17% of tuna 

species. The regions in which this illegal activity was prevalent were the South 

Tyrrhenian Sea and Sicily, which contributed 46% and 31% of the 49,130 t, respectively. 

Also, an illegal component from other industrial fishing fleets and the artisanal sector 

was added. In particular, a total of approximately 6 million t was estimated for the 

period 1950–2010, of which 76% and 24% came from industrial and artisanal fisheries, 

respectively. Retained unreported by-catch per fleet type and per subdivision for the 

period 1950–2010 accounted for approximately 5 million t, averaging about 82,500 t 

year−1, most of which came from industrial fisheries (95%) and from the Central Adriatic 

(∼1.6 million t; 33%) and Sicily (1.2 million t; 25%). The major by-catch taxa were clams 

(Bivalvia; 604,000 t; 12.0%), sharks (Selachimorpha; 446,000 t; 8.9%), jacks (Trachurus 

spp.; 335,000 t; 6.7%) and rays (Rajidae; 283,000 t; 5.6%). Discards, on the other hand, 

were 3.4 million t. Since we applied a proportional rate to separate the retained by-catch 

from discards, the same patterns were observed for the regional subdivisions and 

discarded taxa. Discards and by-catch from bottom trawling represented the largest 

component, totaling 3.8 million t (Fig. 3a). 

3.7 Uncertainty 

The ranges of uncertainty estimated for the reconstructed total catches showed 

wider confidence intervals in the first two estimation periods (1950–1969; 1970–1989) and 

a reduction only in the last period (1990–2010; Fig. 7).  
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4. Discussion 

This study represents the 

first attempt to estimate total 

fisheries removals for the whole of 

Italy in the Mediterranean Sea, for 

the period 1950–2010. Our 

reconstructed total catches were 2.6 

times the landings officially 

reported by the FAO on behalf of 

Italy for the same period and same sea. This difference was mainly caused by poor 

reporting of commercial catches, with unreported commercial landings (from both 

industrial and artisanal sectors) contributing 50% to the total catch (in relation to FAO 

reporting) and discards contributing another 7%. This gap in the official national 

statistics (mainly related to the earlier period of the ISTAT datasets) was previously 

observed by other studies (AdriaMed, 2003; Cataudella and Spagnolo, 2011) which 

documented that about 30–40% of catches remained unreported, and pointed to changes 

in data collection, systematic approach and absence of data verification and/or analysis 

as the causes of this discrepancy. Our reconstruction agrees with these studies, with an 

even higher discrepancy for industrial fisheries (53%). We recognize that, because of the 

nature of our approach used here, which requires assumption-based inferences and 

interpolations, uncertainties remain (see below), for example in our estimates of 

underreported catches or in the disaggregation of the taxonomic catch composition and 

further studies should be conducted to reduce this uncertainty. However, we believe 

that our approach is justified by the unacceptability of the alternative, yet common 

default approach, of interpreting non-reported or missing data components as zero 

removals (Pauly et al., 1998). Thus, by documenting and justifying each step of our 

approach, our study represents the first important step towards the integrated 

understanding of total fisheries removals for all of Italy. 

Our reconstructed commercial catches and fishing effort showed a remarkable 

decline starting around the 1980s as a consequence of the decline of the living marine 

resources (Arneri, 1996; Iborra Martin, 2006), the increase in fishing costs (e.g., fuel; 

 

Fig. 7. Estimated reconstructed total catches with 

confidence intervals. The values of the error bars are 

displayed for each time period (1960 for 1950–1969, 1980 for 

1970–1989, and 2000 for 1990–2010). 
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Sacco, 2011) and the EU regulations to reduce fishing capacity (Iborra Martin, 2006). In 

Italy, it has been observed that, after the 1980s, catches rapidly declined, primarily as a 

result of a decrease in the biomass of small pelagic fishes, particularly European anchovy 

and European pilchard (Iborra Martin, 2006) and many other important demersal and 

pelagic fish stocks (Arneri, 1996; Iborra Martin, 2006). An indicator of the 

overexploitation of the marine resources in the region is also given by our reconstructed 

CPUE trend, which steadily declined since the early 1950s, while the opposite trend is 

obtained if one uses official catch statistics. Some caution should be applied when 

interpreting these data. In fact, despite evidence of marine resource reductions in Italian 

waters, it is worth emphasizing how high uncertainties still exist for fishing effort (e.g., 

number of days at sea and the number of observed vessels), particularly for early years, 

and catch data. Unfortunately, at the time this research was undertaken, no information 

was available to fill these gaps. Recent efforts have been undertaken regionally to 

address at least partly this issue (e.g., EVOMED, 2011), and thus further development of 

this work is required. 

Our study highlights the importance of artisanal fisheries in Italy, which is 

similar to other parts of the Mediterranean (Coll et al., 2014; Piroddi et al., 2011; Tudela 

2004; Ulman et al., 2013). However, while artisanal fisheries had the largest number of 

vessels (around 60% of all Italian fishing vessels), from a catch volume perspective, 

trawlers caught the most, and, despite accounting for only 21% of the fishing boats, they 

had the greatest impact on commercial and non-commercial taxa in the region (Pranovi 

et al., 2000; Sánchez et al., 2007; Sartor et al., 2003). As for the increase of multiple gears 

observed here, this might be an artifact derived from the different criteria of grouping 

vessels, as done by IREPA in past years. In fact, vessels were roughly aggregated by 

prevalent fishing gear, and whenever their prevalent gear was not obvious, they were 

included in the “multiple gear” category. 

Besides reported commercial catches, the recreational fisheries were assessed; 

since no official/reported time series of catches exist, this fishing sector was considered 

unreported from 1950 to 2010. In Italy, only a few sources of information are available 

(Anagnopoulos et al., 1998; Cisneros-Montemayor and Sumaila, 2010; Gaudin and De 

Young, 2007; Gordoa et al., 2004; Pawson et al., 2007), and thus, for a few regions, high 
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uncertainty still exists with regards to total catch. Since this sector has increased in Italy, 

particularly in the north-west (Anagnopoulos et al., 1998; Pawson et al., 2007), more 

effort should be invested to assess the impact of recreational fisheries on marine 

resources and ultimately to refine the estimates of the total Italian catch. 

Illegal catches and unreported catches (including discards), despite being a 

serious issue in Italian fisheries, have never been previously assessed. We consider these 

components the least studied among all the different Italian fishery sectors, and with the 

highest uncertainty. Since they are key components for understanding and evaluating 

the impact of fishing on commercial and non-commercial taxa (Zeller et al., 2007) specific 

studies (e.g., structured interviews with fishers) should be implemented to properly 

assess them. Despite these caveats, our study indicates that unreported catches are very 

significant, accounting for over half of total fisheries removals. These results are in line 

with other catch reconstruction studies conducted in the Mediterranean Sea that have 

shown high percentages of unreported and illegal catches in their assessment of fisheries 

removals, e.g., 40% in Spain (Coll et al., 2014), 35% in Greece (Tsikliras et al., 2007), 63% 

in Turkey (Ulman et al., 2013).  

In Italy, one of the major causes of illegal/unreported catches is the continuous 

use of prohibited driftnets. The loss of revenue due to changes in fishing gears is 

probably the major reason behind such constant fishing practice (swordfish and tuna 

species are important and high valued products of the Italian market); in fact, the profits 

that one driftnet boat could obtain are generally 25% higher than the net added value 

from an average vessel (Spagnolo and Sabatella, 2004). Regarding other illegal activities, 

no historical information was found. In 2010, the Italian Coast Guard started collecting 

and reporting infringements at sea and on land in relation to the use of illegal gears or 

undersized species (European Commission, 2011b). Unfortunately, this database is still 

an under-representation of what is happening along the Italian coastline (Alessio Morelli 

pers. comm.) and therefore our reconstruction might not reflect entirely the situation 

occurring in the region. Subsistence catches present another limitation in terms of an 

existing fishing sector for which no direct data are available. Specific studies focusing on 

this component are fundamental in order to improve our estimate of total catch removal 

of the Italian fisheries. Unreported discards is another aspect of under-reported resource 
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mortality, and are considered pressing issues for marine conservation and fisheries 

management (Caddy, 2009; Hall and Mainprize, 2004). In Italy, studies on discards and 

by-catch have increased in recent years, partly due to the implementation of the EU Data 

Collection Regulation [Commission Regulation (EC) No 1639/2001; currently, Data 

Collection Framework, Council Regulation (EC) No 199/2008] and partly also to the 

establishment of the ecosystem approach to fisheries (EAF) (Garcia, 2003; Tsagarakis et 

al., 2013). However, limited studies still exist or have been found in the area that 

differentiate between the proportions of retained by-catch and of discards per gear type, 

thus more effort should be dedicated to fill this gap. Required also would be detailed 

information on survival rates of discarded species by gear type. Our results show that, 

on average, retained by-catch accounts for 11% and discards for 7% of total removals, 

with bottom trawling having the highest impact followed by longline and dredges. 

These percentages agree with other studies conducted in the Mediterranean Sea, which 

have looked at the contribution of discards and by-catch and estimated a range on 

average between 10% and 20% (Coll et al., 2014; Tsagarakis et al., 2013; Ulman et al., 

2013). 

5. Conclusion 

Our estimates of total fisheries removals for the whole of Italy (1950–2010) 

illustrated a decrease in catch and effort that began in the mid-1980s and continued until 

2010. This overall pattern aligns with FAO and national statistics trends, highlighting a 

severe degradation of marine resources in the region. Yet, our results exceed the 

officially reported amount by a factor of 2.6, which suggests substantial problems in the 

collection and reporting of actual catch data and quite a considerable amount of under-

reported catches. Such prevalence of under-reported catches highlights significant 

management, monitoring and enforcement shortcomings. Official catch statistics are in 

fact used in stock assessments for policy making decision, and the exclusion of under-

reported catches (or total fisheries removal) could bias the resulting scientific advice 

given to policy-makers. Since the impact of fisheries is considered one of the most 

pressuring threat affecting marine life, their underestimation poses a serious concern not 

only to the conservation of valuable marine resource but also to the success of future 

fisheries. Despite the limitations explained above, the estimates of total fisheries 
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removals presented in this study represent an improvement over official estimates, and 

should be taken into account when dealing with fisheries management, despite the 

substantial uncertainty associated with the present estimates. With many key fish stocks 

declining, it is necessary for fisheries management to fully capture how much the 

resources have been and are being removed and from which sector, so that appropriate 

decisions for the future can be made (Pauly et al., 2014). Our study is the first that 

attempted to estimate the Italian fisheries removals using a holistic approach; these 

methods are particularly important in areas like the Mediterranean Sea, where the multi-

species and multi-gear nature of fisheries make the assessment of single-species fisheries 

resources and their management difficult and likely inappropriate. 

See original publication in Annex 2 
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Abstract 

 

Marine and coastal ecosystems are important for human wellbeing in multiple ways and 

yet they are subject to increasing anthropogenic stressors which pose serious threats to 

their health status. In this context, we used an ecosystem modeling approach to assess 

and quantify the health status of a semi-enclosed embayment of the Mediterranean Sea, 

the Amvrakikos Gulf (surface: 405 km2; maximum depth: 60 m) (Ionian Sea). In 

particular, we built a food web model of the Gulf ecosystem for the 1980 and we fit it to 

time series from 1980 to 2013. The aim of the study was to: (1) investigate dynamics of 

marine resources in the last three decades considering the effect of changes in rivers run 

off, development of fish farming and dynamics of fisheries as the major anthropogenic 

drivers affecting the system; (2) assess structural and functional changes of the Gulf, 

using model derived indicators obtained from temporal simulations. Results indicated 

that the strongest drivers in the Amvrakikos food web were changes in nutrients and 

organic matter mostly from the loads of two local rivers. Trends in ecological indicators, 

which explained changes in the structure of the Gulf, highlighted a degradation of the 

demersal compartments of the food web and a relative stability of the pelagic ones 

mainly due to high eutrophication levels. By including several ecosystem drivers into 
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the model, the present study is intended as a tool for assessing Amvrakikos ecosystem 

health and for developing future management policies in the Gulf. 

 

Resumen 

 

Los ecosistemas marinos y costeros son importantes para el bienestar humano por 

múltiples razones, y sin embargo, están sujetos a crecientes impactos antropogénicos que 

plantean serias amenazas de salud ambiental. En este contexto, hemos utilizado la 

modelización ecológica basada en el ecosistema para evaluar y cuantificar el estado de 

salud ambiental de una bahía semi-cerrada del Mar Mediterráneo, en el Golfo de 

Amvrakikos (superficie: 405 km2, profundidad máxima: 60 m) (Mar Jónico). En 

particular, hemos desarrollado un modelo de red trófica del ecosistema  durante los años 

80 y lo hemos calibrado con series temporales de datos desde 1980 a 2013. Los objetivos 

concretos del estudio han sido: (1) investigar la dinámica de los recursos marinos en las 

últimas tres décadas considerando como principales impulsores de los cambios 

ambientales el efecto sobre el ecosistema de los cambios en la escorrentía de los ríos, el 

desarrollo de la acuicultura y las pesquerías; y (2) evaluar los cambios estructurales y 

funcionales en el ecosistema utilizando una serie de indicadores obtenidos a partir de 

simulaciones temporales realizadas con el modelo ecológico. Los resultados indicar que 

los principales impulsores de la red trófica del Golfo de Amvrakikos fueron los cambios 

en la cantidad de nutrientes y materia orgánica en la escorrentía de los ríos locales. La 

evolución de los indicadores ecológicos, los cuáles se utilizan para explicar los cambios 

en la estructura del ecosistema, han evidenciado una degradación de los 

compartimentos demersal de la red trófica, principalmente debido a los altos niveles de 

eutrofización, y una relativa estabilidad en los compartimentos pelágicos. Mediante la 

inclusión de varios impulsores de cambio ambiental en el modelo ecológico, el presente 

estudio ilustra la utilidad del modelo ecológico como una herramienta para evaluar la 

salud ambiental del ecosistema marino de la bahía de Amvrakikos y para desarrollar 

futuras políticas de gestión en la zona. 
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1. Introduction 

Marine ecosystems are increasingly impacted worldwide by a series of threats 

that include overfishing (e.g., Pauly et al., 2005), aquaculture (e.g., Naylor et al., 2000), 

eutrophication (e.g., Diaz and Rosenberg, 2008), habitat loss and degradation (e.g., 

Dobson et al., 2006), climate change (e.g., Overland et al., 2010), pollution (e.g., Islam and 

Tanaka, 2004) and species invasion (e.g., Libralato et al., 2015). Possible irreversible 

impacts and synergies among these threats are posing doubts on the long term 

sustainability of goods and services currently provided by marine ecosystems (Halpern 

et al., 2012), with the result that many national and international regulations (e.g., 

European Marine Strategy Framework Directive, [MSFD; 2008/56/EC]; Convention of 

Biological Diversity, [CBD]) are intervening to assess, control and reduce stress induced 

by the aforementioned threats. Yet, while a large body of studies focus on the impact of 

a single factor on specific compartments of marine and coastal environments, the 

assessment of cumulative and cascading effects of different threats remains poorly 

studied as well as the trade-offs that might rise when managing them in an integrated 

framework (Link et al., 2010). For this reason, there has been a growing interest to 

develop more comprehensive tools capable of assessing the effects of anthropogenic 

impacts within a single common framework (Halpern et al., 2008; Libralato and Solidoro, 

2009; Travers et al., 2009) in order to facilitate the setting of targets and implementation 

of management measures (Cury et al., 2008; Kaplan et al., 2012; Piroddi et al., 2015). The 

development of ecosystem models, despite requiring a large amount of 

multidisciplinary data to be accurate, has increased in the last decades (Heymans et al., 

2014; Piroddi et al., 2015) mainly driven by a worldwide movement toward ecosystem-

based management approach (Levin et al., 2009; Pikitch et al., 2004). Ecosystem 

modeling approaches are particularly valuable in the context of European policies like 

the MSFD which requires an integrative assessment of the health status of marine and 

coastal ecosystems in relation to the cumulative effect of different pressures (Cardoso et 

al., 2010). In the following Directive, the assessment of ecosystem status and the setting 

of reference values and targets to achieve “Good Environmental Status” (GEnS) should 

be done through the use of indicators (Borja et al., 2014) which are already, at least partly, 

important ecosystem model outputs (Piroddi et al., 2015). Model derived indicators can 
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in fact serve to evaluate whether an ecosystem and its services are well maintained and 

sustainably used so that the suitable management measures can be proposed (Piroddi et 

al., 2015; Shin et al., 2010). 

Here we assessed the health status of the Amvrakikos Gulf (Greece, Fig. 1) which 

has been defined an ideal “natural laboratory” for ecosystem assessments (Bearzi et al., 

2008) due to its small size, its semi-enclosed morphology (Katselis et al., 2013), its 

richness of charismatic megafauna (Bearzi et al., 2008) and because it provides several 

goods and services (EC, 2009). The Gulf is the final receptor of freshwater and nutrient 

loads from surrounding areas and from two important rivers, hosts several aquaculture 

sites (mostly fish farms active since the end of the 80s), and its resources are exploited 

by local small-scale fisheries. Nevertheless, despite being protected by national, 

European and international regulations for its diverse wildlife and wetlands (EC, 2009; 

Gonzalvo et al., 2014), the Gulf has undergone in the past decades through severe 

changes that have degraded rapidly the entire ecosystem (Katselis et al., 2013; Spyratos, 

2008). It has indeed become seasonally hypoxic/anoxic (Kountoura and Zacharias, 2013) 

resulting in more than 50% of habitat loss on the seafloor (Ferentinos et al., 2010). Under 

such complex scenario, the Gulf represents a perfect case-study for applying ecosystem 

modeling approach and its model can be possibly of interest for other world's 

ecosystems facing similar pressures. The aims of our work were twofold: (1) investigate 

the dynamics of marine resources in the Amvrakikos Gulf from 1980 to 2013 considering 

the effect of rivers run off, fish farms and fisheries as major anthropogenic drivers 

affecting the system and (2) look at structural and functional changes of the ecosystem 

using model derived indicators obtained from temporal simulations. 

2. Materials and methods 

2.1 Study area 

The Gulf of Amvrakikos (Fig. 1) is a semi-enclosed embayment of approximately 

405 km2 (excluding marshes and lagoons), situated in north-western Greece that 

communicates with the Ionian Sea through the Preveza Channel: a narrow (minimum 

width of 370m) and shallow (< 5 m at the shallowest point and ~ 20 m at the deepest) 3 

km-long corridor. Its fjord-like hydrographic regime, because of a shallow sill, reduces 

deep water exchange with the open sea; the mean depth of the Gulf is approximately 30 
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m (its maximum is 60 m), with a seabed mostly covered by mud or sand (Ferentinos et 

al., 2010). Surface salinity fluctuates widely but remains low throughout the year (17–

35%: Friligos et al., 1997) while sea-surface temperatures range between 9.0 °C and 30.6 

°C (Friligos et al., 1997; Panayotidis et al., 1994). Water quality of the Gulf is influenced 

by the runoff of two rivers (Louros and Arachthos), located in the northern shore 

(Friligos et al., 1997; Kountoura and Zacharias, 2013), which is controlled by dams 

operating since 1953 and 1980 for Louros and Arachthos respectively (Ferentinos et al., 

2010). Moreover, the Gulf is affected by fish farms, agriculture, livestock and discharges 

from domestic sewage from coastal towns and villages (Ferentinos et al., 2010; Gonzalvo 

et al., 2014). In the last 20–30 years, the deeper layers of the water column have become 

seasonally hypoxic/anoxic, with the western side seasonally hypoxic and the eastern 

seasonally anoxic (Kountoura and Zacharias, 2013), while the epipelagic layers are still 

characterized by abundant marine life (Bearzi et al., 2008; Gonzalvo et al., 2014; 

Panayotidis et al., 1994). 

 

Fig. 1. The Amvrakikos Gulf map with depth profile and the location of fish farms represented by black lines. 

Commercial fisheries operating in the study area include only small-scale fisheries 

working mainly with set nets (i.e., trammel and gill nets). According to the Royal Fishing 

Law 23.3/8-4-53 trawling and purse-seining are prohibited within the Gulf all year round 



 

 

2.3 A Mediterranean semi-closed embayment 

 
 

102  

since 1953. Currently the active fishing fleet includes ~ 280 boats fishing exclusively inside 

the Gulf and targeting mainly European pilchard (Sardina pilchardus), red mullet (Mullus 

barbatus), sand steenbras (Lithognathus mormyrus), caramote prawn (Penaeus kerathurus), 

common cuttlefish (Sepia officinalis), mugilidae and Solea spp. (EC, 2009; Koutsikopoulos 

et al., 2008). 

2.2 The food web model 

A food web model was constructed for the Amvrakikos Gulf using the Ecopath 

with Ecosim (EwE) software version 6 (Christensen et al., 2008). In Ecopath, all principal 

autotroph and heterotroph species can be represented either individually or aggregated 

into functional groups considering their ecological roles. Ecopath, the static module of 

the software that permits definition of initial conditions for the dynamic module Ecosim 

(Christensen and Walters, 2004), is based on two main equations. In the first one, the 

biological production of each functional group is equal to the sum of fishing mortality, 

predation mortality, net migration, biomass accumulation, and other unexplained 

mortality as follows: 

(P/B) i · Bi = Yi +  ∑j [Bj · (Q /B) j · DCji ]  +  Ei  +  BAi  +  (P/B) i · Bi (1  −  EEi)   (1)  

where (P/B) is the production to biomass ratio for a certain functional group (i), 

Bi is the biomass of a group (i), Yi the total fishery catch of group (i), (Q/B)j is the 

consumption to biomass ratio for each predator (j), DCji is the proportion of the group 

(i) in the diet of predator (j), Ei is the net migration (emigration – immigration), BAi is 

the biomass accumulation for the group (i), EEi is the ecotrophic efficiency, and (1-EEi) 

represents mortality due to factors other than predation  and fishing. 

In the second equation, the consumption (Q) of each functional group (i) is equal 

to the sum of production (P), respiration (R), egestion (GS) and unassimilated food 

(GS·Q). 

Qi = Pi + Ri + GSi · Qi  (2) 

 

The implication of these two equations is that the model is mass-balanced; under 

this assumption, Ecopath uses and solves a system of linear equations estimating 

missing parameters (see also Christensen and Walters (2004) and Pauly et al. (2000)). In 

Ecosim the system of algebraic equations of Ecopath (Eq. (1)) is used to set up a system 

of differential equations to estimate biomass fluxes as follows: 
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     (3) 

where dBi/dt is the biomass growth rate of group (i) during the interval dt, gi is the net 

growth efficiency (production/consumption ratio), Ii is the immigration rate, Mi and Fi 

are natural and fishing mortality rates of group (i), ei is emigration rate (Christensen and 

Walters, 2004). Consumption rates (Qji) are calculated in Ecosim based on the “foraging 

arena” theory where Bi's are divided into vulnerable and invulnerable fractions to 

account for hiding and other behavior strategies adopted by animals for balancing 

predation risk with foraging (Ahrens et al., 2012). In particular, Ecosim describes the 

interactions between each predators (j) and prey (i) by attributing a vulnerability term 

(vij) for each of these interactions. This vulnerability parameter sets the maximum 

increase in predation mortality a given predator can cause on a given prey. Low values 

of vulnerability (close to 1) mean that prey production determines the predation 

mortality (‘bottom-up’ control) while high values of vulnerability (e.g., 100) mean that 

predator biomass determines how much prey is consumed (top-down control) 

(Christensen and Walters, 2004). Mixed effect (vulnerability = 2) is set as the default value 

in Ecosim.  

Also, in Ecosim, trophic interactions can be described as flow rates using the 

following formula: 

Flow rate = aij/Aij ·vij·Pj  (4) 

where aij is the “rate of effective search” parameter, Aij the restricted area where 

predator j forages on prey i, vij vulnerable prey biomass and Pj the predator abundance. 

This equation recognizes that predators search for prey only over restricted foraging 

arenas and that the vulnerable prey biomass is distributed only over such areas 

(Christensen et al., 2008). 

2.3 Model parameterization and functional groups 

The Ecopath model constructed for the Amvrakikos Gulf represents an annual 

average of the years 1980–1981, being this the first years of available time series of catches 

(1980–2011) and river discharge (1981–2008). To describe both high trophic level (HTL) 

and low trophic level (LTL) organisms/compartments, a total of 34 functional groups 

were considered, including marine mammals (1), seabirds (3), sea turtle (1), fishes (15), 



 

 

2.3 A Mediterranean semi-closed embayment 

 
 

104  

invertebrates (6), benthos (1), zooplankton (1), bacterioplankton (1), primary producers 

(1), fish farms (1) and detritus (3). Biomasses (expressed as tonnes of wet weight per km2) 

for benthic invertebrates, phytoplankton and zooplankton were available from scientific 

literature and for seabirds species also through global international databases (Birdlife 

www.birdlife.org and the Sea Around Us Database www.searoundus.org). Common 

bottlenose dolphins (Tursiops truncatus) biomass was available for the years 2003–2013 

(Bearzi et al., 2008, Gonzalvo, unpulished data). To estimate the biomass of 1980 we used 

the study of Gonzalvo et al. (2014) on population abundance changes during the last 20 

years based on fishers interviews. Surveys or stock assessments to estimate biomass of 

commercially important groups (functional groups 6–20 and 22–26 in Table S1) were not 

available for the area. Thus, for each of these functional groups, Catch per Unit of Effort 

(CPUE) estimates were used as a proxy of their relative biomass, assuming 

proportionality between CPUE and biomass (Myers and Worm, 2003; Watson et al., 

2013). CPUEs, expressed as tonnes kW—1year—1, were calculated by dividing the 

reconstructed catches by the total reconstructed effort (see section below). Despite being 

abundant in the Gulf, no biomass estimate was available for jellyfish, thus it was 

estimated from the model by imposing EE equal to 0.95 under the conservative 

assumption that most of its production was used in the system, reducing possibilities to 

overestimate its abundance and effects (Christensen and Pauly, 1998; Pauly et al., 2009). 

In order to represent over time nutrients and organic matter loads affecting the 

eutrophication state of the system, we incorporated in the model fish farms and 

particulate organic matter (POM) as functional groups. The biomass of fish farms was 

represented as the total fish produced from the cages and was available from late 1980s 

from the Fisheries Department of Preveza Prefecture. Thanks to detailed local 

information on cage productivity, feed given, average feed composition and feed loss 

(Fisheries Department of Preveza Prefecture), we quantified organic matter and nutrient 

released from cages (Lupatsch and Kissil, 1998) from 1981 to 2008.  

Organic matter release from cages were represented by opportunely setting 

unassimilated fraction (including also uneaten feed) and detritus fate (to POM) for the 

fish farm functional group and forcing its biomass with fish farm production over time. 

POM initial biomass was derived from biochemical oxygen demand (BOD) estimates in 
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water samples while net migration parameter from river and human-related discharges 

was used to represent annual input to the Gulf (Albanis et al., 1995; Katselis and Ramfos, 

2015; Zacharias et al., 2009). Abiotic data consisted of monthly total river outflows of 

Louros and Arachthos (1980–2008) and was provided by the Public Power Corporation 

SA. Moreover, nutrient released by the rivers and by fish farm cages were used to 

determine nutrient inputs to the Gulf. We considered nitrogen as limiting nutrient 

(typical for coastal shallow ecosystems; Libralato and Solidoro, 2009) and used its 

estimated dynamics as forcing function for phytoplankton primary production. 

Bacterioplankton was included in the model to mimic main biogeochemical cycles and 

possible oxygen consumption due to organic matter degradation. Bacterioplankton 

biomass and rates, not available for the study area, were taken from similar ecosystems 

(Harvey et al., 2003; Libralato and Solidoro, 2009). 

P/B and Q/B ratios for finfish and invertebrates were estimated using empirical 

equations (Christensen et al., 2008) or were taken from 2003 to 2007 for a fraction of the 

total number of fishing vessels. To estimate total catch for the 1979–2007 period we first 

searched in the literature for total fishing fleet size. Based on  public sources of data 

(Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 

2001; EC, 2009), six anchor points representing the number of fishing vessels for the years 

2011, 2009, 2001, 2000, 1991 and 1980 were found. To get  the overall trend of fishing fleet 

size for the 1979–2011 period we used the six anchor points and interpolated the 

estimates of the anchor points for the missing years following the same approach  as 

described and applied in Zeller et al. (2007). We then estimated the total catch by species 

for 1979–2007 for the entire Amvrakikos from literature and expressed as annual rates 

(year—1) (Table S1). 

A diet composition matrix was constructed using either field studies (e.g., 

stomach contents) or diet data obtained from the literature for the same species in similar 

ecosystems (Table S2). For some functional groups, when the information was lacking, 

we also integrated the outputs parameters (DC, P/B, Q/B) of previously built EwE 

models available for the Ionian Sea (Moutopoulos et al., 2013; Piroddi et al., 2010; Piroddi 

et al., 2011) and the adjacent Adriatic Sea (Coll et al., 2009b). In the case of fish farm, P/B 

and Q/ B represented respectively the production of fish and the consumption of feed 
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per year from the cages while the diet was opportunely set in order to represent the feed 

coming from outside the system (Katselis and Ramfos, 2015; Zacharias et al., 2009).  

Catch data was reconstructed from a number of different sources. In particular, 

catch by species and total catch was available from the Preveza Department of Fisheries 

from 1979 to 2001 and from Koutsikopoulos et al. (2008) and local fishers interviews, 

from 2003 to 2007, for a fraction of the total number of fishing vessels. To estimate total 

catch for the 1979–2007 period we first searched in the literature for total fishing fleet 

size. Based on public sources of data (Preveza Department of Fisheries; Conides et al., 

2001; Conides and Papaconstantinou, 2001; EC, 2009), six anchor points representing the 

number of fishing vessels for the years 2011, 2009, 2001, 2000, 1991 and 1980 were found. 

To get the overall trend of fishing fleet size for the 1979–2011 period we used the six 

anchor points and interpolated the estimates of the anchor points for the missing years 

following the same approach  as described and applied in Zeller et al. (2007). We then 

estimated the total catch by species for 1979–2007 for the entire Amvrakikos fishing fleet 

using the catch/vessel ratio given by the Department of Fisheries of Preveza and applied 

it to the reconstructed fishing vessels time series. Fishing effort (kW) was estimated for 

the 1979–2011 period by taking the product of the reconstructed number of fishing 

vessels, kW per vessel (calculated using GT; EC, 2009), and the number of days spent 

fishing (Koutsikopoulos et al., 2008). Also, to account for improvements in technology 

not captured by kW as a measure of effort, a technological “creep factor” of 1% was 

applied since 1980 (Table 2), as derived from the empirical relationship by Pauly and 

Palomares (2010). Since no discards data were available for the Gulf, we assumed same 

discard ratio provided by Moutopoulos et al. (2013) for an ecosystem model of the 

neighboring open waters of the Ionian Sea. A detailed description of the functional 

groups, data to parameterize the model and associated references are listed in Tables S1, 

S2, S3 of Supplementary materials. 

2.4 Model and data quality 

In order to assess the quality of the model we reported the overall pedigree index, 

that ranges from 0 to 1 (see Table 1). The pedigree is calculated on the basis of the 

presumed quality of data entered in the model with larger weight for local experimental 

data and lower weight for parameters derived from other models or extrapolated from 
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other systems. Low overall pedigrees (0.1–0.3) imply a model constructed with low-

precision data and/or with data coming from areas outside the studied region, while 

higher values (close to 1) indicate a model constructed with locally-derived data 

(Christensen et al., 2008; Morissette, 2007). The highest pedigree values observed in 

Ecopath models ranged be- tween 0.7 and 0.8 (Christensen et al., 2008; Morissette, 2007). 

2.5 Ecosim fitting procedure 

We used Ecosim to fit the model to observed time-series of data using the sum of 

squares (SS) deviations between predicted and observed data as a metric for assessing 

model performance (Christensen et al., 2008). The time-series used to fit the model were 

mainly biomasses, catch per unit effort (CPUE) and catches for those functional groups 

with available information (Table S3) while main forcings were fishing effort over time, 

nutrient loads and organic matter (estimated from biochemical oxygen demand [BOD] 

measurements) coming from fish farms, rivers run off and other diffuse sources (Fig. 2a 

and b). The fitting procedure followed the same methodology as described and applied 

in Mackinson et al. (2009), which consisted of 7 general steps: 

1) Baseline model: trophic interactions with default vulnerabilities (vij = 2; mixed 

effect), no environmental or fishery data were used to drive the model;  

2) Baseline and trophic interactions: trophic interaction modifications were included 

while no environmental or fishery changes were used. In particular, different of 

vulnerabilities were tested (5, 10, 15, 20, 25, 30); 

3) Baseline and environment: different environmental drivers such as the limiting 

nutrient (in our case nitrogen) and BOD trends coming from rivers and fish farms 

(Figure 2) were used to force primary production and POM concentrations. No 

fishery data were used to drive the model; 

4) Baseline, trophic interactions and environment: no fishery data were used; 

5) Fishery: Fishing effort was included as a model driver (Figure 2). Trophic 

interactions were set as default and no environmental data were used; 

6) Changes in trophic interactions and fishery: no environmental data was used; 

7) Trophic interactions, environment and fishery were jointly included in the model as 

drivers. 
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Fig. 2. a. Changes in nutrients concentration (black line) and biogeochemical oxygen demand (gray line); 

b. fishing effort (kW/10— 6/days) used as main drivers for the fitting procedure. 

To select the best model, at each step, the Akaike’s information criterion (AIC) 

that takes into account the predictive accuracy (sum of squares, SS) and complexity 

(number of parameters, trophic interactions and environmental drivers e.g., PP) of the 

model, was calculated (Mackinson et al., 2009).  

In addition, once the best model was chosen, to account for anoxia/hypoxia in the 

system, a 'mediation function’ was applied (Christensen et al., 2008). In Ecosim, the 

mediation function allows a third variable (in our case bacterioplankton) to influence the 

trophic interaction between two other variables (here seabirds and marine mammals 

with each of their prey) by altering either the area (Aij), the rate of effective search (aij) 

or the vulnerability exchange rate (vij). In our case, we applied the mediation function 

to change both Aij and vij together to assess if, in the presence of oxygen depletion in 

bottom layers, available preys would concentrate in a shallower stratum making them 

more available to predators (seabirds and marine mammals). Given that oxygen is not a 

modeled state variable, we used bacterioplankton dynamics as a proxy for oxygen 

depletion. This permits to evaluate if an increase in POM in the system through fish 

farms and river runoff, would affect bacterioplankton and oxygen concentrations with 

effects on bottlenose dolphins and seabirds abundance by increasing prey abundance at 

the surface due to the reduction of O2 on the seafloor. 

2.6 Model analysis 

The Amvrakikos food web was represented graphically with a flow diagram that 

included information on trophic levels, biomasses and estimated flows (Fig. 3). 

Ecosystem structure and exploitation status of the Gulf were assessed through a series 

of indicators (Table 1) derived from network analysis and ecological studies. 
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Table 1 

Detailed description of the ecological indicators examined in this paper with acronyms, typology (state or 

trend), definitions and/or references. 

 

Ecological Indicator Acronym 
State (S); 

Trend (T) 
Definition and/or references 

Total system throughput  TST S 
Sum of all the flows (consumption, export, respiration, detritus). It indicates whole 

ecosystem size (Christensen et al., 2008) 

Total primary 

production/total system 

respiration  

TPP/TR S 

It relates to community energetic attributes of ecosystem maturity. In the early stages 

of ecosystem development primary production (TPP) is expected to exceed 

respiration (TR) (values greater than 1). As the system matures the ratio is expected to 

move towards 1 (Christensen et al., 2008) 

Total primary 

production/total biomass 
TPP/TB S 

It relates to community energetic attributes of ecosystem maturity. As system 

matures, biomass accumulates, therefore TPP/TB ratio is expected to be high in 

developing systems and diminish as the system mature (Christensen et al., 2008) 

Finn’s Cycling Index  FCI S Percentage of flows recycled in the food web and path length (Finn, 1976) 

Ascendancy  A S 
Measurement of system growth and development of network links (Monaco and 

Ulanowicz, 1997) 

Overhead  O S 
Energy in reserve of an ecosystem that reflects system’s strength when it is under 

unexpected perturbations (Ulanowicz, 1986) 

System omnivory index  SOI S 

Weighted average of the variance of the TL of consumer’s prey. It is an index of 

trophic specialization showing how feeding interactions are distributed between 

trophic levels (Libralato, 2008) 

Mean Transfer Efficiency  TE S 
Efficiency in which energy is transferred between TLs, calculated as the geometric 

mean of TE for each of the integer trophic levels II to IV (Christensen et al., 2008) 

Trophic levels  TL S (Christensen et al., 2008) 

Trophic level of the 

catches  
TLC S (Christensen et al., 2008) 

Primary production 

required  
%PPR S, T 

Calculated as primary production required divided by the total primary production 

of the system to sustain the catch. Used to evaluate the sustainability of fisheries 

(Pauly and Christensen, 1995; Tudela et al., 2005) 

Kempton’s index of 

biodiversity  
Q T 

Expresses biomass species diversity by considering those organisms with trophic 

levels 3 or higher (Kempton and Taylor, 1976) 

Total pelagic versus total 

demersal biomass 
P/D T 

Ratio between small pelagic species (plankton feeder group) and the piscivores 

species (predator and benthic groups) (Caddy, 1993, 2000) 

Mean trophic level of the 

community  
mTLco T 

Excluding those functional groups with TL=1 and calculated as the weighted average 

of the TL of all the species within the ecosystem (Shannon et al., 2014) 

Mean trophic level of 

groups with TL between 2 

and 3 

mTL2-3 T  

Mean trophic level of 

groups with TL >3.25 
mTL3.25 T 

In our case excluding marine mammals, seabirds and sea turtles (mTL3.25; Pauly and 

Watson, 2005) 

Mean trophic level of top 

predators  
mTLTP T In our case including marine mammals and seabirds 

Mean trophic level of the 

catches  
mTLc T Weighted average of the TL of fisheries target species (Pauly et al., 1998) 

Fishing in Balance index FIB T 
Ratio between the energy required to sustain the fishery landings and the baseline 

value (the first year of the time series, Pauly et al., 2000) 
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3. Results 

3.1 Mass-balancing 

To obtain mass balance we adjusted the input parameters of those functional 

groups (#10) with EE values >1. In particular, for pelagic fish, Sardina pilchardus, other 

clupeidae, other benthopelagic fish, benthopelagic cephalopods, other crustaceans, 

benthic invertebrates and zooplankton we adjusted the diet matrix, being the data with 

higher uncertainty. For example, the predation caused by pelagic fish on Sardina 

pilchardus and other clupeidae was decreased because too high (from 35% to 25% and 

from 0.5% to 0.2% respectively), while the consumption of benthopelagic cephalopods 

on crustaceans group was overestimated and was reduced by redistributing the 

proportions in the predator's diet. Crustacean, bivalve and gastropod biomasses were 

the only biomasses that had to be modified from the original input data: the values taken 

from closed systems (see Section 2) were indeed too low and had to be increased.  

Once balanced, ecotrophic efficiencies (EE) showed high values for the majority 

of the functional groups, indicating that total mortality in the system was mainly driven 

by predation and fishing. The gross food conversion efficiency (P/Q) and the respiration 

over assimilation (R/A) were within the expected ranges (Christensen et al., 2008). The 

resulting output parameters and the final diet matrix are shown in Table S1, S2 and S3 

in Supplementary materials.  

3.2 Model analysis 

3.2.1 Trophic levels 

Trophic flows, trophic levels and relative biomasses of the Amvrakikos Gulf 

ecosystem are represented in Fig. 3, Table 2 and Table S1. In particular, the highest 

trophic levels (TL) were observed for Tursiops truncatus (TL=4.07), pelagic fish (mainly 

large pelagics, TL=4.05) and demersal fish 3 (mainly large demersals, TL=3.91). In 

contrast, annular seabream (Diplodus annularis), European sardine (Sardina pilchardus), 

European sole (Solea vulgaris), mullidae, demersal fish 2 (mainly sparidae species), 

mugilidae, other crustaceans zooplankton, benthic invertebrates, bivalves and 

gastropods and bacterioplankton had lower TL values ranging between 2.13 and 2.99. It 

should be also noted that loggerhead sea turtle (Caretta caretta) presented a quite low TL 

(3.27) due to the presence of discarded fish in its diet as it was observed in the Gulf 
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(Zbinden et al., 2011; Gonzalvo direct observation) and in neighboring areas (White,  

2004). 

3.2.2 Time series fitting 

The best performances in fitting observed data were obtained when trophic 

interactions as well as fishing and environmental variables were included all together in 

the fitting procedure. The best model, which was the one with the lowest AICc, 

explained 78% of the variance of the data (Table 3). Environmental drivers in 

combination with trophic interactions were able to explain the majority of the variability 

observed in the ecosystem (77.2%) while fishing marginally contributed with a 1.8%. 

Different vulnerabilities were also tested and the largest improvement was 

obtained with 30 trophic interactions. The best model reflected quite well the biomass 

trends for the apex predators of the Amvrakikos Gulf. In particular, Ecosim was able to 

predict Tursiops truncatus, Phalacrocorax carbo and Pelican crispus abundance trends for 

the surveyed periods (Fig. 4). A slight improvement was found for seabirds when the 

Table 2 

Summary statistics and network analysis indicators for the Amvrakikos Gulf food web. 
 

Indicators Units 

Summary statistics 

Sum of all consumption 4421 t·km-2year-1 

Sum of all exports 960 t·km-2year-1 

Sum of all respiratory flows 1806 t·km-2year-1 

Sum of all flows into detritus 4605 t·km-2year-1 

Total system throughput 11792 t·km-2year-1 

Mean trophic level of the catch 2.77  

Gross efficiency (catch/net p.p.) 0.004  

Total primary production 2583 t·km-2year-1 

Total primary production/total respiration 1.43  

Proportion of primary production required to sustain 

fisheries (PPR%= PPR/PP*100) 
8 % 

Primary production required to sustain fisheries (PPR) 575 t·km-2year-1 

Total primary production/total biomass 10.43  

Total biomass (excluding detritus) 247.66 t·km-2 

Total catch 9.53 t·km-2year-1 

Network analysis   

System Omnivory Index 0.27  

Finn's cycling index 15.85 % 

Ascendancy 34.5 % 

Overhead 65.5 % 

Mean Transfer Efficiency  13.8 % 

Pedigree Index   

Pedigree 0.57  



 

 

2.3 A Mediterranean semi-closed embayment 

 
 

112  

mediation function was incorporated in the model, assuming an increased availability 

of prey on the surface of the water column. 

Table 3 

Model fits following the seven steps proposed by Mackinson et al. (2009) including trophic interactions, 

fishery and environmental drivers. Vulnerabilities are shown only for those models with the lowest Akaike 

Information Criterion (AICc). The “best” model (shown in italics) was the one yielding the lowest AICc. 
 

Steps vulnerabilities min SS AICc %improved 

1. Baseline  0 524.9 71.3   

2. Baseline and trophic interactions 5 524.9 81.4 -14.2 

3. Baseline and environment 0 453.0 51.6 37.6 

4. Baseline, trophic interactions and 

environment 30 211.9 16.2 77.2 

5. Fishery 0 519.9 70 1.8 

6. Trophic interactions and fishery 3 501.1 71.1 0.2 

7. Trophic interactions, environment and fishery 30 218.6 15.7 78.0 

For bottlenose dolphins, on the other hand, the trend improved when a decrease 

in prey and feeding area was assumed. For forage fish species like Sardina pilchardus the 

model reproduced quite well the fluctuations in CPUE observed between 1980 and 2004, 

while predicted trends between 2005 and 2007 were overestimated. A similar scenario 

was also observed for mugilidae. A good reproduction of CPUE time series data was 

shown for Trachurus trachurus, Diplodus annularis, mullidae and benthopelagic 

cephalopods. For these groups, however, the increase in biomass observed in the early 

2000s was not picked up by the model. Ecosim was not able to represent well the 

fluctuations observed for Penaeus kerathurus. As for the other commercially important 

groups only few data points (from 2003 to 2007) were available resulting also in a poor 

fit (S4 in Supplementary material). 

Regarding landings, Ecosim generally underestimated observed values, had 

difficulties in capturing the changes in catches although trends were vaguely captured 

for the majority of the groups (Fig. 5). 

3.2.3 Ecological indicators 

Ecological state indicators calculated by Ecopath for the Amvrakikos Gulf (Table 

2) revealed that the main flows in the system were flow to detritus (39%) and 

consumption (37%) followed by respiration (15%) and exports (8%). In addition, 

indicators addressing community energetics and cycling of nutrients such as the ratio 

between total primary production (PP) and total respiration (R) (Christensen, 1995; 

Odum, 1969), primary production/biomass ratio (PP/B) and the SOI (System Omnivory 
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Index) suggested the system to be at an intermediate-low level developmental stage.  The 

FCI (Finn's Cycling Index), the mean transfer efficiency (TE) and overhead showed 

relatively high values while ascendancy was quite low. Fishing indicators such as the 

primary production required (PPR) of the Gulf and the mean trophic level of the catches 

were respectively 8% and 2.77. The pedigree index of the model was 0.57. 

 

Fig. 3. Flow diagram of the Amvrakikos Gulf ecosystem (early 1980s). Each functional group is shown as a 

circle, with size approximately proportional to the log of its biomass. All the functional groups are 

represented by their trophic levels (y-axis) and linked to each other by predator-prey relationships expressed 

as light gray lines. 

Trends in ecological indicators calculated by Ecosim revealed changes through 

time in the structure of the Amvrakikos Gulf ecosystem (Fig. 6). In particular, trophic 

level indicators mTLco and mTL2—3 increased since the beginning of 1980s. Similar trend 

was observed also for the ratio between pelagic and demersal species. The other two 

trophic level indicators, mTL3.25 and mTLTp, showed clear decrease in time, with mTL3.25 

though increasing again from middle of 2000s. Kempton's biodiversity index fluctuated 

in time with a certain stability and no clear trend. On the contrary, mean trophic level of 

the catches (mTLc), fishing in balance index and relative PPR decreased since the 

beginning of the studied period. 

4. Discussion 

A food web model was implemented for the Amvrakikos Gulf ecosystem with 

the aim of reproducing and quantifying main energy and matter flows in the system and 

dominant food–web dynamics. To do so, we integrated in the model the most important 

HTL and LTL organisms/compartments characterizing the ecosystem and we 
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represented the major pressures, both from anthropogenic and environmental sources 

(e.g., river run off, fish farming and fishing), affecting the Gulf.  

Some uncertainties, which are discussed below, are still present in this model, 

particularly when looking at temporal changes in diet composition, discards and 

biomass of commercially important species. Although further research effort should 

increase its accuracy, we consider that the model presented here exploits at best the 

available information and data, sheds light in many factors affecting the complex 

ecosystem of the Amvrakikos Gulf and provides key ecosystem information that can be 

useful also for other Mediterranean coastal enclosed ecosystems (e.g., lagoons and 

gulfs/bays). 

4.1 Model quality and limitation 

Our Ecopath model fell within the medium-high range of the pedigree index 

estimated by Morissette (2007), who assessed globally the quality of 150 EwE models. 

The robustness of the baseline period (1980s) was mainly due to available survey data 

for several species/functional groups (e.g., seabirds and LTL organisms -phytoplankton, 

benthic invertebrates, zooplankton) of the ecosystem. Yet, data deficiencies still exist. 

The major gaps were related to poor quality of fisheries data (effort, catch and discards), 

which limited the reconstruction of the relative biomass of commercially important 

functional groups and the trends associated to their biomass and catch. In Greece, as well 

as in many other Mediterranean areas (Pauly et al., 2014), fisheries statistics are generally 

incomplete and have low reliability (Moutopoulos and Koutsikopoulos, 2014; Tsikliras 

et al., 2007) since it is not rare that fishermen deliberately misreport their catches to avoid 

stricter regulations or higher taxation (Bearzi et al., 2006), as it has been also observed in 

our study area. A recent study by Moutopoulos and Koutsikopoulos (2014) analyzing 

the landings as well as the fishing effort data per fishing gear reported by the Hellenic 

Statistical Authority over the period 1982–2010, showed abrupt changes of both recorded 

species and species landings per subarea, spurious correlations of landings among 

different species groups and misreporting of fishing gear and/or of fishing vessel 

characteristics.  

Other limiting factors were related to kW or other measures of fishing capacity 

(tonnage, length over all, number of boats) which are not necessarily good estimates of 
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real fishing effort (Lleonart and Maynou, 2003): meteorological, economic and legislative 

conditions that hamper fishing are not considered to change over time, whereas they 

might be all important factors in determining exerted effort. 

 

Fig. 4. Predicted (solid lines) versus observed (dots) biomass (t/km2) for the main functional groups of the 

Amvrakikos ecosystem for the period 1980-2013. For the megafauna (Tursiops truncatus, Phalacrocorax carbo, 

Pelicanus crispus) the predicted model is also shown with the inclusion of mediation function (dotted line). 

No discard data were available for the study area. Despite the fact that further 

effort should be conducted to evaluate the impact of discards on commercial and non-

commercial taxa, several studies have shown how discard rates in Greek small-scale 

fishery are relatively low and with a small impact on marine resources (Tsagarakis et al., 

2013; Tzanatos et al., 2007; Vassilopoulou, 2012). Not surprisingly, therefore, fishery 

components in our model have the highest uncertainty. This limits the accuracy of our 

results, particularly in relation to CPUE trends that were used to calibrate the model. 
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Unfortunately, this uncertainty is common to many Mediterranean areas (Coll et al., 

2008; Moutopoulos et al., 2013; Piroddi et al., 2010) where stock assessments or surveys 

are not in place or inaccessible and where fisheries statistics are in most cases 

erroneously recorded (Moutopoulos and Koutsikopoulos, 2014). Despite these 

limitations, reconstructed CPUE trends, being the only form of available data, are the 

most commonly used to represent relative biomass (Coll et al., 2008; Piroddi et al., 2010). 

Here, to limit this uncertainty, we tried to incorporate best available fisheries statistics 

complemented with local fishers interviews. Fishers’ ecological knowledge (FEK) is 

gaining attention for understanding and evaluating changes in the structure and 

function of marine ecosystems (Bunce et al., 2008; Saenz-Arroyo et al., 2005). FEK data, 

obtained from fishers interviews, can be transformed into quantitative data (e.g., 

numerical trends) using different techniques (e.g., fuzzy logic: Ainsworth et al., 2008; 

Brotz et al., 2012) in order to ease their implementation in ecosystem modelling 

approaches (Ainsworth, 2011).  

Thus, we recognize that further interviews should be conducted to fill knowledge 

gaps and possibly move toward more realistic data, increasing model accuracy. Yet, with 

the data currently available, our model represents the best approximation to provide an 

integrated understanding of the Amvrakikos Gulf marine ecosystem. 

4.2 Model analysis 

4.2.1 Time series fitting 

The model was able to reproduce available time series of biomass and catch data 

when applying nutrient, organic matter and fishing effort as main drivers. Changes in 

nutrient loads, however, seemed to be the strongest driver, explaining around 38% of 

the variability in the food web of the Gulf, highlighting the importance of bottom-up 

forces in the dynamics of this ecosystem. The explicit representation of establishment 

and development of fish farm from 1980 to today permitted to highlight that, during the 

last decades, fish farms represented a secondary contribution to nutrients and organic 

matter to the Gulf, whereas the two main rivers were the main drivers of the Gulf 

eutrophication. The strong demand for irrigation waters to the surrounding agricultural 

farms and the consequent runoff of minerals represented also important non-point 

contribution (Spyratos, 2008). 
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When looking at overall dynamic changes of the main functional groups of the 

Amvrakikos Gulf for the period 1980–2013, the model showed a relative stability of the 

species/functional groups at the top of the food web and fluctuations with sign of 

decrease for the ones at the bottom, which is in accordance with previous studies 

pointing at eutrophication and contaminants as the main reason for such differences 

(Ferentinos et al., 2010; Koutsikopoulos et al., 2008). Only 2–3 decades ago the Gulf 

occasionally had hypoxic conditions at depths greater than 40 m (HCMR, 1988); 

currently the situation has worsened and these conditions are observed in waters up to 

23 m of depth (EC, 2009). This trend constitutes a serious concern not only for demersal 

and benthic species but also for those on top of the food web, with effects beyond trophic 

interactions. For instance, Gonzalvo et al. (2015) have documented epidermal lesions on 

the main top predator of the Gulf, the bottlenose dolphin, suggesting environmental, 

such as the increase of local temperature (Philandras et al., 2008) and salinity (Feidas et 

al., 2007), as well human-related stressors (e.g., pollution) as their likely  cause. 

Contaminants influencing dolphins’ reproductive rates might also be the reason why 

this species, the only marine mammal present in the Gulf, remains currently stable 

(Gonzalvo, unpublished data) and not increasing since the only potential “dolphin 

predator” in the area is small-scale fishing fleet but evidences of by-catch were rarely 

observed in the Gulf. The only two species that seem to thrive in this type of ecosystem, 

showing an increase in population, are the Phalacrocorax carbo and the Pelican crispus. The 

most likely causes for such positive trend, as observed in other European wetlands 

(Cowx, 2013), are attributed to the legal protection granted to both species and their 

habitats and the presence of hot-spot areas for fish-eating birds (i.e. lagoons, fish farms) 

(BirdLife International, 2004; Liordos et al., 2014). 

No significant results were obtained for the catches of the main commercially 

important groups of the ecosystem. This could be attributed, as mentioned above, to 

misreporting of fisheries statistics in terms of both catches and fishing fleet composition, 

but also to illegal, unregulated and unreported catches. Although fishery is the 

secondary most important component driving the system (after riverine nutrients and 

organic loads), as shown in this study, this poses a serious handicap for understanding 

the dynamics of the fishing fleet and generally of the ecosystem. 
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Fig. 5. Predicted (solid lines) versus observed (dots) catches (t/km2/year) for the main commercially 

important functional groups of the Amvrakikos ecosystem. 

4.2.2 Ecological indicators 

The results obtained from our baseline model (year 1980), mainly regarding type 

of flows and cycling indices, already indicated the Amvrakikos Gulf to be an immature 

and perturbed system, typical of “closed” ecosystems (e.g., like estuaries, lagoons and 

bays) where bottom-up processes drive the system, and where possibly high levels of 

community stress are induced by anthropogenic and environmental forces. These results 

are in line with the estimates obtained for other large eutrophic ecosystems with similar 

historical evolutions (Ferentinos et al., 2010) and general patterns such as the Black and 

the Baltic Seas (Akoglu et al., 2014; Tomczak et al., 2012). These three semi-enclosed 

systems share, indeed, similar patterns as they have undergone in the last decades 

through severe ecosystem changes such as: (a) eutrophication with frequent 

hypoxia/anoxia events, mainly caused by the increasing concentration of human 

activities in the coastal zone such as industrial and agricultural waste (Akoglu et al., 

2014; Readman et al., 1993; Tomczak et al., 2012), (b) local environmental changes such 

as the increase in the average annual air temperature (Philandras et al., 2008) and the 
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reduction of the mean annual rainfall (Feidas et al., 2007) and (c) increasing fishery 

activities (Akoglu et al., 2014; Koutsikopoulos et al., 2008; Tomczak et al., 2012). Further 

similarities are found in their high levels of total primary production per unit of surface 

(t km-2 year-1; Amvrakikos Gulf: 2583; Black Sea: 3483; Baltic Sea: 2434) and low levels of 

the mean TL of the catches (Amvrakikos Gulf: 2.78; Black Sea: 3.07; Baltic Sea: 3.3). Also, 

it is noteworthy not only the importance of small pelagic fish in the fisheries landings of 

all three areas, but also the dominance of these forage fish due to high levels of 

productivity in the epipelagic layers of the water column (Ferentinos et al., 2010; Oguz 

and Gilbert, 2007; Tomczak et al., 2012). The high values of total primary production and 

eutrophication levels in Amvrakikos, which are comparable to those of most eutrophic 

and heavily polluted gulfs of Greece, such as Saronikos and Thermaikos Gulfs 

(Nikolaidis et al., 2005), are indicative of the fragile health status of the Gulf of 

Amvrakikos. 

Trends in ecological indicators gave some explanations on changes in the 

structure of the Amvrakikos Gulf across the 1980– 2013 period. In particular, when 

looking at ecosystem indicators such as the mean trophic level of the community, those 

groups with TL between 2 and 3, and the ratio between pelagic and demersal groups, a 

consistent pattern was delineated with increasing trends from the beginning of 1980. 

These positive trends over time reflected an increase of small pelagics and some of their 

predators (e.g., seabirds) and a decrease of demersal groups that might be related to the 

synergetic effects of nutrient enrichments and overfishing (Caddy, 1993; Libralato et al., 

2004). However, since local fishery resulted to have a marginal role in the Gulf's food 

web and on its dynamics, a dominant effect of overfishing appears unlikely while 

eutrophication seems to be the only major player affecting the system. 

Regarding catch related indicators, both the mean trophic level of the catches, the 

FIB index and PPR/PP decreased over time. Similar trend in the FIB index has been 

observed in another heavily degraded and highly eutrophic ecosystem as the Adriatic 

Sea suggesting a progressive deterioration of the ecosystem over time with a contraction 

of the fishery sector (Coll et al., 2009b). In particular, these trends might be a symptom 

of crisis in the local artisanal fishery, rather than overfishing, as observed in other areasf 

the Mediterranean Sea (Coll et al., 2009a; Coll et al., 2007; Piroddi et al., 2010). 
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Fig 6. Ecological and network indicators (Kempton's index of biodiversity (Q); Pelagic/Demersal  ratio 

(P/D); Mean trophic level of the community (mTLco); Mean trophic levels of groups having trophic level 

between 2 and 3 (mTL2—3); Mean trophic levels of groups having trophic level >3.25 (mTL3.25; excluding 

marine mammals, sea turtles and seabirds); Mean trophic level of top predators (mTLTP); Mean trophic level 

of the catches (mTLc); Fishing in balance index (FIB); Primary production required/PP (%PPR)) calculated 

from Ecosim model for the period 1980–2013. The estimated trends (solid line) are shown with the value of 

the slope and the coefficient of variation (R2) for the regression model. 
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This crisis is also manifested by the fact that younger generations do not see any 

future in fisheries and that the traditionally oriented fishing community is rapidly 

changing (Gonzalvo et al., 2014). Moreover, the observed P/D trend might indicate a shift 

in the ecosystem trophic state (i.e., eutrophication; Caddy, 1993) that mime the 

overfishing effects (Libralato et al., 2004). Observed changes in biomasses, catches, FIB 

and PPR, however, seemed not to have influenced the Kempton's Q diversity index that 

shows relative stability over time (Fig. 6) suggesting rearrangement of species densities 

and interactions in a way to maintain system biodiversity, possibly indicating that the 

system as a whole is still resilient to large driver changes. A completely different 

question is for how long this increasingly fragile ecosystem will be showing such 

resilience unless some adequate management measures are implemented. 

5. Conclusion 

The construction of a food web model enabled us to assess and quantify changes 

in the structure of the Amvrakikos ecosystem and the cumulative impacts of the major 

factors affecting the system. Our results highlighted a general degradation of the 

demersal compartments of the food web and a relative stability of the pelagic ones 

mainly due to high eutrophication levels, which was confirmed by ecological indicators. 

The notorious degradation of the Gulf of Amvrakikos, particularly acute during the past 

20 years, calls for action and is urgently needed if we want to preserve this increasingly 

fragile ecosystem. In order to produce a more accurate picture of the ecosystem 

dynamics of the Gulf, future initiatives should be dedicated to improve data deficiencies 

and to farther develop temporal simulations. Robust hind cast simulations are necessary 

in order to forecast ecosystem dynamics and explore different management policies and 

future scenarios.  

See original publication in Annex 3 
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Abstract 

 

An ecosystem modelling approach was used to understand and assess the 

Mediterranean marine ecosystem structure and function as a whole. In particular, 2 food 

web models for the 1950s and 2000s were built to investigate: (1) the main structural and 

functional characteristics of the Mediterranean food web during these 2 time periods; (2) 

the key species/functional groups and interactions; (3) the role of fisheries and their 

impact; and (4) the ecosystem properties of the Mediterranean Sea in comparison with 

other European regional seas. Our results show that small pelagic fishes, mainly 

European pilchards and anchovies, prevailed in terms of biomasses and catches during 

both periods. Large pelagic fishes, sharks and medium pelagic fishes played a key role 

in the 1950s ecosystem, and have been replaced in more recent years by benthopelagic 

and benthic cephalopods. Fisheries showed large effects on most living groups of the 

ecosystem in both time periods. When comparing the Mediterranean results to those of 

other European regional seas modelling initiatives, the Mediterranean stood alone in 

relation to the type of flows (e.g. Mediterranean Sea, flow to detritus: 42%; other EU seas, 
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consumption: 43−48%) driving the system and the cycling indices. This suggested higher 

levels of community stress induced by intensive fishing activities in the Mediterranean 

basin. This study constitutes the first attempt to build an historical and current food web 

model for the whole Mediterranean Sea. 

Resumen 

 

En este estudio se ha utilizado un enfoque de modelización ecológica basado en el 

ecosistema para describir y evaluar la estructura del ecosistema marino del 

Mediterráneo en su conjunto. En particular, se han desarrollado dos modelos de redes 

tróficas representativos de los años 1950 y 2000 y se han analizado: (1) las principales 

características estructurales y funcionales de la red trófica del Mediterráneo durante 

estos dos períodos de tiempo; (2) las especies / grupos e interacciones tróficas clave; (3) 

el rol de la pesca y su impacto; y (4) las propiedades ecológicas del ecosistema marino 

del Mediterráneo en comparación con las que presentan otros mares europeos. Los 

resultados muestran que los peces pelágicos de tamaño pequeño, principalmente 

sardinas y anchoas, prevalecen en términos de biomasa y capturas durante ambos 

períodos. Además, los peces pelágicos de gran tamaño, los tiburones y los peces 

pelágicos de tamaño medianos juegan un rol ecológico clave en el ecosistema durante 

los años 1950, y este rol se ve sustituido en los últimos años por los peces bentopelágicos 

y los cefalópodos bentónicos. La actividad pesquera tiene un impacto importante en la 

mayoría de los grupos ecológicos del modelo en ambos períodos. Al comparar los 

resultados del Mediterráneo con los de otras iniciativas de modelización de mares 

europeos, los resultados muestran la singularidad del mar Mediterráneo en relación con 

el tipo de flujos tróficos del sistema y el reciclaje de materia y energía (por ejemplo, el 

mar Mediterráneo, el flujo trófico hacia los detritos es de 42% en relación con el total, en 

otros mares de la UE el consumo es de 43-48%). Estos resultados evidencian un nivel 

mayor de estrés en el ecosistema Mediterráneo causado por las actividades pesqueras, 

muy intensas en esta región. El estudio constituye el primer intento de desarrollar un 

modelo de red trófica marina del ecosistema del Mediterráneo en su conjunto 

representativa de una época pasada y presente.
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Introduction 

Marine ecosystem models have been progressively employed worldwide to 

investigate the structure and functioning of marine systems and the effects of 

anthropogenic pressures such as fishing, climate change and pollution on marine 

ecosystems (Christensen & Walters 2004, Shin et al. 2004, Fulton 2010). Understanding 

the mechanisms behind diverse ecological networks (e.g. trophic interactions and flows) 

and the roles of human activities on marine structure and function is critical when 

managing marine resources (Cury et al. 2003). The development of ecosystem models to 

explore ecosystem functions and responses to anthropogenic and/or environmental 

changes has been driven by the so called ‘ecosystem-based management’ (EBM) 

approach, which aims at managing the whole ecosystem rather than focusing on a single 

resource, helping researchers and policy makers to answer questions for responsible 

resource management decisions (Pikitch et al. 2004). Currently, among the most used 

ecological modelling tools for EBM in the aquatic environment is the software package 

‘Ecopath with Ecosim’ (EwE, Christensen & Walters 2004; www.ecopath.org). EwE 

models have been widely used to describe the structure and functioning of marine 

ecosystems, evaluate the effects of anthropogenic activities and environmental changes 

and explore fishing management policy options (Coll et al. 2009a, Piroddi et al. 2011, 

Heymans et al. 2012). Here we applied the EwE approach to describe and assess the 

Mediterranean marine ecosystem structure and functioning as a whole. 

The Mediterranean Sea is a semi-enclosed basin with unique characteristics: it is 

oligotrophic (Barale & Gade 2008), highly diverse in species richness (Coll et al. 2010) 

and yet is considered a sea ‘under siege’ due to multiple uses and stressors (Coll et al. 

2012). Twenty-one countries in Europe, Asia and Africa surround and share this 

enclosed sea. Their different cultural, social and economic characteristics pose significant 

challenges to sustainable management of Mediterranean marine resources. As a 

consequence of this complexity and lack of management strategies that take this 

complexity into account, the Mediterranean ecosystem has degraded, and many marine 

species are overexploited or depleted (Papaconstantinou & Farrugio 2000, Lleonart & 

Maynou 2003, Colloca et al. 2013, Tsikliras et al. 2013b, Vasilakopoulos et al. 2014).  
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Thus, there has been an urgent need to employ EBM as a complementary 

management framework to address current and future threats to the Mediterranean 

marine ecosystems. Several research activities have already been conducted in the region 

to address this issue at the basin scale. In particular, Coll et al. (2012) and Micheli et al. 

(2013) investigated the cumulative impacts of specific anthropogenic threats to 

Mediterranean marine biodiversity. Here, we applied a different approach, that is, the 

description of the structure and functioning of the whole Mediterranean ecosystem in 

terms of trophic linkages, trophic flows and biomasses, and between 2 post-World War 

II decades. Compared to Coll et al. (2012) and Micheli et al. (2013), who used spatial 

analysis and expert knowledge to assess the impacts on the ecosystem, our study 

quantifies the trophic interactions and effects of pressures (e.g. in this case fishing) 

occurring in the whole area, using the best available data to date.  

A recent study by Coll & Libralato (2012) highlighted that more than 40 EwE 

models describing local or regional Mediterranean ecosystems exist (including lagoons, 

marine reserves and coastal and shelf areas), but none of these past efforts focussed on 

the Mediterranean Sea as a whole. This is likely due to the complexity of building such 

an ecosystem model while being able to capture the differences in environmental and 

biological characteristics of the Mediterranean region, and due to difficulties regarding 

data mining and integration.  

Therefore, our study is the first attempt to comprehensively model the 

Mediterranean basin. Studies like this one become critically important in support of 

policies like the Marine Strategy Framework Directive (MSFD; 2008/56/EC), the main 

European Directive on marine waters that requires the assessment of all European seas 

at regional scales in relation to their ecosystem status and associated pressures, and the 

establishment of environmental targets (through the use of indicators) to achieve ‘Good 

Environmental Status’ by 2020 (Cardoso et al. 2010). 

Specifically, in this study we investigated (1) the main structural and functional 

characteristics of the Mediterranean food web during 2 different time periods, i.e. the 

1950s and 2000s; (2) the key species/ functional groups and interactions for both time 

periods; (3) the role of fisheries and their effects; and (4) the ecosystem properties of the 
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Mediterranean Sea in comparison with other European regional seas, namely the North 

Sea, Baltic Sea and Black Sea, which have already been modelled at the regional basin 

scale (Tomczak et al. 2012, 2013, Akoglu et al. 2014, Mackinson 2014). 

Materials and methods 

Mediterranean Sea 

The Mediterranean Sea extends from 30° to 45° N and from 6° W to 36° E, and 

constitutes the world’s largest (2 522 000 km2) and deepest (average 1460 m, maximum 

5267 m) enclosed sea. It is connected to the Atlantic Ocean via the Strait of Gibraltar in 

the west, to the Black Sea via the Bosporus and the Dardanelles in the north-east, and to 

the Red Sea via the Suez Canal in the south-east (Fig. 1). Overall, the basin is considered 

oligotrophic with some exceptions along coastal areas due mainly to river discharges 

(Barale & Gade 2008) and frontal mesoscale activity (Siokou-Frangou et al. 2010). 

Phosphorus, rather than nitrogen, is the limiting nutrient, especially towards the eastern 

basin (Krom et al. 1991). Biological productivity decreases from north to south and west 

to east, whereas an opposite trend is observed for temperature and salinity. In particular, 

the mean sea surface temperature varies between a minimum of 14−16°C (west to east) 

in winter and a maximum of ca. 20−26°C (west to east) in the summer (with the exception 

of the shallow Adriatic Sea, where the range is between 8−10°C in winter and 26−28°C 

in summer) (Barale & Gade 2008). Evaporation greatly exceeds precipitation, and river 

runoff decreases from west to east, causing sea surface height to decrease and salinity to 

increase eastward (Coll et al. 2010). The Mediterranean Sea has a topographically diverse 

continental shelf that generally varies from south (mainly narrow and steep) to north 

(wider areas). In some instances, however, narrow shelves can also be found on some 

coasts of Turkey, in the Aegean, Ligurian and northern Alboran Seas, while extended 

shelves are also present on the Tunisian shelf and near the Nile Delta (Pinardi et al. 2006). 

Shelf waters represent 20% of the total Mediterranean surface, and the rest is open sea 

(Coll et al. 2010).  

Mediterranean marine species richness is relatively high; to date, approximately 

17 000 species have been recorded in the Mediterranean Sea, with a gradient of species 

richness that decreases from northwest to southeast (Bianchi & Morri 2000, Coll et al. 



 

 

2.4 Modelling the Mediterranean Sea ecosystem 

 
 

 
130 

 

2010, 2012). Of these 17 000 species, at least 26% are prokaryotic (Bacteria and Archaea) 

and eukaryotic (protists) marine microbes. The phytoplankton community is composed 

predominantly of coccolithophores, dinoflagellates and Bacillariophyceae and includes 

more than 1500 species. Among microzooplankton, foraminiferans comprise the main 

group, with more than 600 species. However, the majority of species are described 

within the Animalia (~11 500 species), with the greatest contribution coming from the 

Crustacea (13.2%) and Mollusca (12.4%) (Coll et al. 2010). Among the vertebrates, 650 

species of marine fishes have been recorded, of which approximately 80 are 

elasmobranchs and the rest are mainly actinopterygians (86%) (Coll et al. 2010). Nine 

species of marine mammals (5 Delphinidae, 1 Ziphiidae, 1 Physeteridae, 1 

Balaenopteridae and 1 Phocidae) and 3 species of sea turtles (the green turtle Chelonia 

mydas, the loggerhead Caretta caretta and the leatherback Dermochelys coriacea) are 

encountered regularly in the Mediterranean Sea. Among seabirds, 15 species frequently 

occur in the Mediterranean Sea, including 10 gulls and terns (Charadriiformes), 4 

shearwaters and storm petrels (Procellariiformes)  and 1 shag (Pelecaniformes) (Coll et 

al. 2010). 

 

Fig. 1. Mediterranean Sea, showing depth profile (darker shading indicates greater depth) and the 4 Marine 

Strategy Framework Directive (MSFD) areas: Western Mediterranean Sea (W); Adriatic Sea (A); Ionian and 

Central Mediterranean Sea (I); Aegean and Levantine Sea (E). 
 

Ecosystem modelling approach 

Two food web models of the entire Mediterranean Sea were constructed using 

the EwE software version 6 (Christensen et al. 2008) representing annual average 
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biomasses and trophic flows for the 1950s and the 2000s. The analysis was restricted to 

Ecopath, the static component of the software that describes the ecosystem and its 

resources at a precise period in time (Christensen & Walters 2004). In Ecopath, all 

principal autotroph and heterotroph species can be represented either individually or 

aggregated into functional groups considering their ecological roles.  

The EwE model is based on 2 main equations. In the first one, the biological 

production of a functional group is equal to the sum of fishing mortality, predation 

mortality, net migration, biomass accumulation and other unexplained mortality as 

follows: 

(P/B)i · Bi = Yi +  ∑j [Bj · (Q /B) j · DCji ]  +  Ei  +  BAi  +  (P/B) i · Bi (1  −  EEi) (1) 

where P/B is the production to biomass ratio for a certain functional group i, Bi 

is the biomass of a group i,  Yi is the total fishery catch rate of group i, (Q/B)j is the 

consumption to biomass ratio for each predator j, DCji is the proportion of group i in the 

diet of predator j, Ei is the net migration rate (emigration − immigration), BAi is the 

biomass accumulation rate for the group i, EEi is the ecotrophic efficiency, and (1 − EEi) 

represents mortality other than predation and fishing. 

In the second equation, the consumption (Q) of a functional group (i) is equal to the sum 

of production (P), respiration (R) and unassimilated food (GS · Q). 

Qi  = Pi + Ri  + GSi · Qi                                                                            (2) 

The implication of these 2 equations is that the model is mass balanced; under this 

assumption, Ecopath uses and solves a system of linear equations (1 for each functional 

group present in the system) estimating the missing parameters. To ensure the mass 

balance, we applied a manual mass-balanced procedure following a top-down 

approach, adjusting the input parameters of those groups ‘out of balance’ (EE > 1), 

occurring when total energy demand placed on those groups either by predation or 

fishing exceeds total production. In particular, we changed those parameters associated 

with higher uncertainty, i.e. diet matrix, P/B and, to a lesser extent, biomass (Christensen 

& Walters 2004). The ecological models were considered balanced when (1) estimated 

EE values were <1; (2) gross food conversion efficiency (P/Q) was < 0.5; and (3) 

respiration over assimilation (R/A) was <1 (Christensen & Walters 2004). 
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Parameterization and functional groups 

Two food web models were constructed for the decades of 1950 and 2000, 

respectively. The reason for choosing these 2 time periods was related to best data 

collection in the case of the last decade and available catch time series (starting in the 

1950s) and biogeochemical/stock assessment model outputs (e.g. biomasses for 

phytoplankton and fish stocks) for the first decade. To best represent the entire 

Mediterranean Sea ecosystem, while still considering sub-regional differences in 

environmental and biological characteristics, both models were divided in 4 sub-models 

following the 4 sub-regional divisions defined by the Marine Strategy Framework 

Directive (MSFD; 2008/56/EC): (1) Western Mediterranean Sea (W); (2) Adriatic Sea (A); 

(3) Ionian and Central Mediterranean Sea (I); (4) Aegean and Levantine Sea (E) (Fig. 1). 

To separate each MSFD area within the full single Mediterranean model, we 

assigned a habitat area which corresponds to the fraction of the total area where the 

functional groups occur. In particular, if a functional group occurs throughout the total 

Mediterranean Sea, the biomass is scaled by a factor of 1; otherwise biomass is scaled by 

the fraction of the Mediterranean Sea area occupied (see Tables S1 & S2 in the 

Supplement Materials). To define functional groups, we used all available data to 

parameterize the model and ecological traits of species to establish the groups (see 

Tables S1−S4 in the Supplement). 

We divided marine mammals into ‘piscivorous cetaceans’ (mainly dolphins), 

‘other cetaceans’ (mainly whales) and ‘pinnipeds’ (monk seal Monachus monachus). 

Fishes were divided into ‘sharks’, ‘rays and skates’, ‘deep-sea fishes’ (mainly 

mesopelagic, bathypelagic and bathydemersal), pelagic fishes and demersal fishes. 

Pelagic and demersal fishes were further divided in ‘small’ (common total length < 30 

cm), ‘medium’ (30−89 cm) and ‘large’ (≥ 90 cm) following a similar approach used by 

Christensen et al. (2009), which simplified the definition of the fish groups (e.g. 

piscivores, benthivores and herbivores) in the model parameterization but still 

considered fish based on their asymptotic length, feeding habitats and vertical 

distribution characteristics. Invertebrate species were separated into ‘benthopelagic’ and 

‘benthic cephalopods’, ‘bivalves and gastropods’, ‘crustaceans’, ‘jellyfishes’, ‘benthos’ 
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and ‘zooplankton’. Primary producers were divided in ‘phytoplankton’ and ‘seagrass’. 

Each MSFD area had the same functional group categories except for highly 

migratory species such as the ‘other cetaceans’ group, the ‘large pelagic fishes’ (e.g. tuna 

species and swordfish Xiphias gladius) and the ‘sea turtles’ that were allowed to move 

and feed in all 4 areas. ‘European hake’ Merluccius merluccius, ‘European pilchard’ 

Sardina pilchardus and ‘European anchovy’ Engraulis encrasicolus were considered 

individually due to their importance as commercial species, and thus individual groups 

were created to represent these species within the model. A total of 103 functional groups 

were described to represent the whole Mediterranean Sea model. 

For each group, 5 input parameters were estimated: biomass (B), production rate 

per unit of biomass (P/B), consumption rate per unit of biomass (Q/B), diet composition 

(DC) and fisheries catch rate (Y). The biomass of each functional group, expressed as 

tonnes (t) of wet weight per km2, was obtained from field surveys, estimated from 

empirical equations of population reconstruction or assessed by biogeochemical models. 

For the scope of this work, we searched mainly for data available at regional scales 

(either from survey campaigns or from other model outputs), and when this information 

was not available, local case studies were used instead (e.g. ‘seagrass’ biomass; see 

Tables S1 & S2 in the Supplement). For the 1950s model, which lacked surveyed data, 

the biomasses of commercially important groups (functional groups 6 to 21 in Table 1) 

were estimated from stock assessments (e.g. International Commission for the 

Conservation of Atlantic Tunas ICCAT; https://www. iccat.int/en/pubs_CVSP.htm for 

the large pelagic fishes) or by applying a logistic growth model (Schaefer 1954) as in 

previous studies (Walters et al. 2008, Piroddi et al. 2010). In particular, this last method, 

also called surplus production model, expressed as: 

Nt +1 = Nt + rNt (1 - Nt/k) - Ct  (3) 

allows estimating the size of a given population/stock (N ) at certain time (t) knowing 

the historical catch time series (Ct), the intrinsic rate of population growth (r; obtained 

from Fishbase, Froese & Pauly 2010) and the carrying capacity (k). 

‘Phytoplankton’ biomass was taken from the outputs of a biogeochemical model 

developed for the entire Mediterranean Sea (Macias et al. 2014), while ‘zooplankton’ was 
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obtained from a global database available from the National Oceanic and Atmospheric 

Administration (www.st.nmfs.noaa.gov). For the other functional groups, information 

was available either through the literature (e.g. ‘pinnipeds’ and ‘sea turtles’) or 

reconstructed from global databases (e.g. seabird biomass from the Sea Around Us 

Project; www.seaaroundus.org). The P/B and Q/B ratios were estimated using empirical 

equations (Christensen et al. 2008) or taken from the literature and were expressed as 

annual rates (t km−2 yr−1) (Tables S1 & S2 in the Supplement).  

A diet composition matrix was constructed using either field studies (e.g. 

stomach contents) or diet data obtained from the literature for the same species in similar 

ecosystems (Table S3 in the Supplement). For highly migratory species (‘large pelagic 

fishes’, ‘other cetaceans’ and‘sea turtles’) and ‘seabirds’ groups, we accounted for a 

percentage of the diet being outside the marine ecosystem, assuming that those species 

also move outside the studied system for feeding (Coll et al. 2006, 2007, Christensen et 

al. 2008, Piroddi et al. 2010). In some instances, we integrated parameters (B, DC, P/B 

and Q/B) from previously built EwE models for different areas of the Mediterranean Sea 

(Adriatic Sea: Coll et al. 2007, 2009c; Catalan Sea: Coll et al. 2006, 2008, Tecchio et al. 2013; 

Ionian Sea: Piroddi et al. 2010, 2011, Moutopoulos et al. 2013; Aegean Sea: Tsagarakis et 

al. 2010; Gulf of Lions: Banaru et al. 2013; Tunisia: Hattab et al. 2013). In particular, the 

output of these models was used as a starting point for the reconstruction of those 

parameters for which information was lacking. Detailed descriptions of the functional 

groups and data used to parameterize the model are given in Tables S1−S5 in the 

Supplement. 

The official landing data by species and by country were taken from the United 

Nation’s Food and Agriculture Organization (FAO) database (FishStat: http:// 

data.fao.org/database?entryId=babf3346-ff2d-4e6c- 9a40-ef6a50fcd422) and available 

from 1950 to 2010. This time series was then complemented with data (available per 

country) from the Sea Around Us database (www.seaaroundus.org) to assign species to 

fishing fleet. We considered 6 commercial fisheries defined by gear types: bottom 

trawlers, bottom dredges, mid-water trawlers, purse seiners, long liners and the artisanal 

fisheries.  
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Species were assigned to the 

following gear types by assuming 

the same proportion per year as 

observed in the Sea Around Us 

database (data accessed in 

November 2013). In the case of 

Italy, which is surrounded by 3 of 

the 4 MSFD areas, we used a 

detailed reconstruction of catches 

(Piroddi et al. 2014) available for 

sub-regional seas (MFSD area: [1] 

Ligurian; [2] Northern, Central and 

Southern Tyrrhenian; [3] Ionian; [4] 

Northern, Central and Southern 

Adriatic Sea; [3] Sicilian; and [4] 

Sardinian waters), while for 

Greece, which has waters both in 

the Ionian and in the Eastern 

Mediterranean Sea, we used the 

same proportions as calculated by Tsikliras et al. (2007, 2013a).  

A recreational fishery was also included in the analysis using data coming from the Sea 

Around Us database (in the case of Italy and Spain) and from literature reviews 

(Anagnopoulos et al. 1998, Gordoa et al. 2004, Pawson et al. 2007, Cisneros-Montemayor 

& Sumaila 2010). We estimated the percentage of discards and the species discarded 

using reports and scientific papers available in the literature (Megalofonou 2005, EC 

2011, Vassilopoulou 2012, Tsagarakis et al. 2013) and data from previous EwE 

Mediterranean models available cited above. Fisheries landings and discards, expressed 

as annual rates (t km−2 yr−1), for both models and for each sub-region are shown in Tables 

S8−S11 in the Supplement. A list of functional groups and fisheries included in both 

models, together with their abbreviations, is given in Table 1 and in Table S5. 

Table 1. Functional groups and fisheries included in 

the models together with their abbreviations.  
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Pedigree index and model quality 

The pedigree of the data refers to the uncertainty associated with the input values 

of the model. In general, higher pedigrees are associated with higher levels of data 

quality and with data coming from the study areas. Ecopath can take the pedigree values 

for all of the data entered in the model (e.g. biomass, P/B, Q/B, diets) into account and 

can calculate an overall pedigree index, ranging from 0 to 1. Lower pedigree values 

imply a model constructed with low precision data and with data coming from areas 

outside the studied region, while higher values indicate a model constructed with locally 

derived data (Morissette 2007, Christensen et al. 2008). Thus, to assess the quality of our 

input data, we calculated the overall pedigree index for both models. In addition, the 

pedigree was also used to guide the balancing procedure of both models, such that the 

lower pedigree inputs were the first to be modified while balancing the models. 

Model analysis and indices 

Trophic flows in terms of total production, consumption, respiration, catches and 

flow to detritus were estimated to represent ecosystem structure and exploitation status 

(Odum 1969, Ulanowicz 1986, Christensen & Pauly 1993). In particular, the following 

indicators were evaluated: (1) Total system throughput (TST), calculated as the sum of 

all flows as an indication of the whole ecosystem size. (2) Total primary production/total 

system respiration (TPP/TR) and total primary production/total biomass (TPP/TB), as a 

metric of system maturity. (3) Finn’s cycling index (FCI), as the percentage of flows 

recycled in the food web (Finn 1976), and the predatory cycling index (PCI), as the 

percentage of production recycled after the removal of detritus (Christensen et al. 2008). 

(4) Ascendancy (A), as a measurement of system growth and development of network 

links (Monaco & Ulanowicz 1997). (5) Overhead (O), as the energy in reserve of an 

ecosystem that reflects the system’s strength when it experiences unexpected 

perturbations (Ulanowicz 1986). (6) System omnivory index (SOI), based on the average 

omnivory index (OI), which is calculated as the variance of the trophic levels (TLs) of a 

consumer’s prey groups indicating predatory specialization (Christensen & Pauly 1993). 

(7) Mean transfer efficiency (TE), as the efficiency in which energy is transferred between 

TLs. The mean TE is calculated as the geometric mean of TE for each of the integer TLs 
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II to IV. (8) TL of each functional group expressed as: 

i
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jij TLDCTL  
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1         (4) 

where j is the predator of prey i, DCji is the fraction of prey i in the diet of each 

predator j, and TLi is the TL of prey i. By definition, TL I is attributed to primary 

producers and detritus, TL II to herbivores, TL III to first order carnivores and TL IV to 

second-order carnivores. (9) TL of the catches (TLC), as: 
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where Yi refers to the landings of species (group) i.  

(10) Primary production required (PPR) to sustain the catch, to evaluate the 

sustainability of fisheries (Pauly & Christensen 1995). 

To better represent trophic flows, TLs and biomasses of the Mediterranean 

marine ecosystem, we used 2 different graphical representations: a flow diagram and a 

Lindeman spine (Lindeman 1942, Ulanowicz 1995). In the Lindeman spine, primary 

producers and detritus (both with TL = 1) were separated to better represent the different 

flows going to the different compartments. To highlight differences in total biomass and 

mean TL of the community, we also plotted these 2 variables for each MSFD area for the 

2 time periods. 

Mixed trophic impact and keystone species analyses 

The mixed trophic impact (MTI) analysis, expressed as: 

         MTIij  =  DCij  − FCji    (6) 

where DCij is the diet composition term expressing how much j contributes to 

the diet of i, and FCji is the proportion of predation on j that is due to i as a predator, 

allows the quantification of the impacts that a theoretical change of a unit in the biomass 

of a group (including fishing activities) would have on other groups in the ecosystem 

(Christensen et al. 2008). It can assess both direct and indirect trophic impacts in the food 

web, which are either positive or negative, indicating an increase or decrease in the 
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quantity of the affected group. Here we looked at the MTI for each MSFD area and for 

the 2 different time periods. In addition, and building from the MTI analysis, the 

keystoneness index (KS) assesses the potential roles of each functional group as 

keystones in the system. Normally, keystone species are species with a relative low 

biomass but whose biomass changes would have a disproportionately large effect on the 

ecosystem structure (Power et al. 1996). Here, for both time periods, we used the index 

proposed by Libralato et al. (2006): 

         KSi   = log (i × 1/pi)   (7) 

where i is the overall effect expressed as the square root of the sum of mij square 

(with mij being the relative impact of a slight increase in biomass of impacting group i 

on biomass of impacted group j), and pi is the contribution of the functional group to the 

total biomass of the food web. 

Comparison with other European regional seas models 

In an effort to support the MSFD, we compared a selection of ecological, fishing 

and network analysis indicators derived from the Mediterranean Sea model with those 

obtained from Ecopath models built for other European regional seas: the North Sea 

(Mackinson 2014), the Baltic Sea (Tomczak et al. 2012, 2013) and the Black Sea (Akoglu 

et al. 2014). This comparative analysis was done to obtain an overview, at the European 

scale, of similarities and differences between these exploited ecosystems. We are aware 

that a few limitations in confronting these models may occur due to differences in model 

criteria and construction (e.g. definition of certain groups, time periods), and for this 

reason we present model results with structural differences of the models for a better 

interpretation of the analysis. In addition, only those indicators more robust to model 

configurations (e.g. TST, mean TL of the catch, PPR to sustain fisheries, ascendancy and 

overhead; see Table 2 for the complete list of indicators), as previously assessed by 

Moloney et al. (2005) and Heymans et al. (2014), were used for the comparison. 

Results 

Functional group input, data quality and mass balancing 

Each MSFD area had 26 living groups (i.e. excluding detritus and discards), if we 

also consider the 3 migratory groups as part of each area. 
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Of those 26 groups, the main mass balancing problems were encountered among 

‘other small’ and ‘medium’ pelagic fishes, ‘small’ and ‘medium’ demersal fishes, 

‘European pilchard’ and ‘anchovy’, ‘benthopelagic cephalopods’, ‘crustaceans’, 

‘benthos’ and ‘zooplankton’, with EE values >1. To obtain mass balance for these groups, 

we primarily adjusted the diet matrix as the data source with higher uncertainty. For 

instance, the predation caused by ‘large pelagic fish’ on ‘European pilchard’ and 

‘anchovy’, ‘medium’ and ‘other small’ pelagic fishes and ‘benthopelagic predators’ diets. 

Biomasses of ‘crustaceans’ and ‘bivalves and gastropods’ were the only biomasses that 

were modified from the original input data. The biomasses of these groups were indeed 

too low and had to be increased. This is a common problem in prebalanced EwE models, 

where invertebrate biomass estimates are frequently too low to support predation 

mortality (Christensen et al. 2008). 

Fig. 2. Flow diagram of the Mediterranean Sea ecosystem (in the 2000s) with the Western part being at the 

far left followed by the Adriatic, the Ionian and the Eastern (see Fig. 1). Each functional group is shown as a 

circle whose size is approximately proportional to the log of its biomass. All functional groups are 

represented by their trophic levels (TL; y-axis) and linked to each other by predator−prey relationships 

expressed as light grey lines. Coloured boxes define the main functional groups: marine mammals (purple); 

pelagic fishes (blue); demersal fishes (orange); sharks/rays and skates (yellow); deep-sea fishes (dark blue); 

seabirds (red); invertebrates (brown); sea turtles (light green); primary producers (dark green); detritus 

groups (black). Individual flow diagrams of the 4 Marine Strategy Framework Directive (MSFD) areas are 

presented in Table S6. 

Once balanced, EE values were high for the majority of the functional groups, 

indicating that total mortality in the system was mainly driven by predation and fishing. 

The gross food conversion efficiency (P/Q) and the respiration over assimilation (R/A) 

were within the expected ranges (Christensen et al. 2008).  
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The resulting output parameters and the final diet matrix are shown for each 

model in Tables S1−S4 in the Supplement. Pedigree indices were different for each time 

period and increased from the 1950s (0.391) to the 2000s (0.594). Individual results of the 

pedigree index can be found in Table S7 in the Supplement. 

TLs and flows 

Trophic flows, TLs and relative biomasses of the Mediterranean Sea ecosystem 

for the 2000s model are represented in Fig. 2 and in Table S6 (flow diagrams) in the 

Supplement. In the latter, flow diagrams are separated for each MSFD area. Functional 

groups are illustrated by their TLs ranging from 1 (primary producers) to 4.22 (marine 

mammals); the highest TLs were found for ‘piscivorous cetaceans’ and ‘monk seals’ (TL 

≥ 4). The other marine mammal group, ‘other cetaceans’, showed a TL of 3.53 (mainly 

because of the presence of ‘zooplankton’ and ‘benthopelagic cephalopods’ in their diet). 

‘Seabirds’, despite being considered a top predator, showed a relatively low TL due to 

the presence of discards (mainly small pelagic fishes, Oro & Ruiz 1997, Bozzano & Sardà 

2002) in their diet. Similarly, ‘sea turtles’ might have a higher TL than estimated by the 

model, but their diet also includes discards (Tomas et al. 2001, Gómez de Segura et al. 

2003, Casale et al. 2008), and thus, they presented a fairly low TL (2.68) in the model. 

This is an artifact of EwE that considers discards as a detritus group with TL = 1 and thus 

tends to lower the TL of those groups that feed considerably on discards (Christensen et 

al. 2008), as previously seen in other food web models of Mediterranean areas (Coll et 

al. 2006, 2007, Piroddi et al. 2010). For the fish groups, ‘large pelagic fishes’ showed a 

relatively high TL (3.94), followed by ‘European hake’ (between 3.86 and 3.73), ‘large 

demersal fishes’ (between 3.68 and 3.56), ‘sharks’ (between 3.85 and 3.64) and ‘rays and 

skates’ (between 3.41 and 3.27). ‘Medium’ and ‘other small’ pelagic fishes were given a 

TL between 3.28 and 3.19 and between 3.14 and 2.89, respectively. ‘European pilchard’ 

and ‘European anchovy’ had TL values ranging between 3.25 and 3, while the lowest 

TLs were observed for ‘medium’ and ‘small’ demersal fishes and ‘deep-sea fishes’ 

(between 3.04 and 2.80). Of the remaining functional groups, ‘benthopelagic’ and 

‘benthic cephalopods’ and ‘jellyfish’ reached TL> 3, ‘crustaceans’ showed values 

between 2.79 and 2.63, and ‘zooplankton’, ‘bivalves and gastropods’ and ‘benthos’ had 
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TL values close to 2. Looking at the 4 MSFD areas, comparing total biomass and mean 

TL of the community, the Adriatic and the Western Mediterranean Sea were the areas 

with the highest total biomass, followed by the Ionian and Eastern Seas (Fig. 3). During 

the 2000s, the mean TL of the community (TLco) differed considerably whether 

calculated using TLco ≥ 1 or TLco > 1 (i.e. excluding detritus and primary producers). 

For TLco≥ 1, the Adriatic was the area with highest mean TLco (1.86) followed by the 

Ionian (1.56), Eastern (1.5) and Western Mediterranean (1.49). For TLco > 1, the Western 

had the highest TLco (2.36), followed by the Eastern (2.34), Ionian (2.28) and Adriatic 

Seas (2.18) (Fig. 3). Several differences in TLs were also found between the 2 modelled 

time periods, with declines observed particularly in the Ionian and Eastern 

Mediterranean Sea in the 2000s compared to the 1950s (Fig. 4). However, to be able to 

assess changes in TL of the community in the Mediterranean Sea, a more accurate 

analysis is needed (such as fitting the model to 

time series data that will reduce the noise around 

the parameters; Christensen & Walters 2004). 
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In the Lindeman spine analysis (Fig. 5), similar patterns were observed for both 

time periods. Most trophic flows fell within TL I, II and III, and TL I was the pool that 

generated the majority of the total system throughput (1950s: 78.4% and 2000s: 79.3%) 

followed by TL II, with 20.2% for the 1950s and 19.6% for the 2000s. In both time periods, 

primary producers and TL II organisms had the highest biomasses, and comparing the 

2 decades, a decline in biomasses was observed in the 2000s versus the 1950s particularly 

for those groups having TLs higher than III. In both systems, exports as catches were 

mainly concentrated within TL III. 
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Fig. 5. A Lindeman spine representation of trophic flows (t·km
-2

·year
-1

) and biomasses 

(t·km
-2

) for the entire Mediterranean Sea ecosystem (a: year 1950 and b: year 2000s).   
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Trophic impact and keystone species 

For a better interpretation of the 

MTI analysis, results are presented 

separating each MSFD area (Fig. 6). 

Several general patterns can be observed 

in all 4 areas. Among all MSFD areas, 

most predators had a direct negative 

impact on their prey through their diet 

preferences; functional groups 

negatively impacted themselves due to 

cannibalism/within group competition; 

demersal functional groups had a 

greater impact (either negatively or 

positively) on the majority of the other 

groups than pelagic functional groups, 

and ‘zooplankton’ and ‘phytoplankton’ 

groups most positively affected all other 

groups in the system (e.g. through a 

bottom-up effect). MTI analysis in both 

time periods revealed changes in the 

role of ‘pinnipeds’ in the West, Adriatic 

and Ionian Seas, with a higher impact in 

the food web during the 1950s and 

almost no impact in the 2000s. In the 

Eastern Mediterranean, where the 

species still occurred in greater numbers, the impact on the food web was greater in 

2000s than in the other 3 MSFD areas but still reduced compared to the 1950s. Similar 

trends were observed for ‘piscivorous cetaceans’ in all MSFD areas, where the group had 

a large effect in the 1950s but because of their reduced biomass, only had a limited effect 

in the 2000s. For fishes, ‘European anchovy’ and ‘European pilchard’similarly affected 

. 
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the Mediterranean food web with greater positive impact on top predators, pelagic 

fishes and fisheries (particularly mid-water trawlers and purse seiners). Interestingly, 

‘sharks’ were negatively impacting marine mammals either through direct competition 

for the same resources or niche overlap. Overall, lower TL organisms, namely ‘benthos’, 

‘crustaceans’ and particularly ‘seagrass’, positively affected the rest of the food web. 

Results also revealed that the role of fisheries in the different MSFD areas has changed 

with time, growing in impact from 1950s to 2000s, and affecting several groups in the 

different food webs. In general, if only the commercially exploited functional groups 

were considered, results showed a greater impact of bottom trawlers, mid-water 

trawlers and purse seiners (Fig. 7b).  

 

Fig. 7. Cumulative impact (either direct or through a cascade effect) of each fishing gear on (a) all functional 

groups of the ecosystem and (b) all commercially important species/groups of the ecosystem (see Table 1, 

numbers 6 to 14 and 16 to 21), in the different Marine Strategy Framework Directive (MSFD) areas (see Fig. 

1) and for each studied period. The cumulative impacts were calculated from the mixed trophic impact 

calculations. Negative values on the x-axis represent negative impact to a positive change in fishery harvest. 
 

More specifically, bottom trawlers and dredges had large negative impacts on targeted 

demersal species (mainly demersal fishes and ‘molluscs’) and on ‘sea turtles’ (incidental 

catches), while longline fisheries had large negative impacts on ‘large pelagic fishes’ 

(target species) and, through incidental catches, on ‘sea turtles’, dolphins and ‘seabirds’. 

Mid-water trawlers and purse seiners showed negative impacts on targeted small 

pelagic fishes and, through direct competition for the same resources, on marine 

mammals and ‘seabirds’. When all functional groups in the ecosystem were included in 

the analysis, artisanal fisheries seemed to be the fleets with greater negative impact, 

particularly in the Western, Ionian and Eastern Mediterranean Seas (Fig. 7a). 
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Recreational fisheries had a negative impact on ‘large pelagic fishes’ and ‘sharks’ in the 

Western, Adriatic and Ionian Seas and on ‘medium’ and ‘small’ demersal and ‘medium‘ 

and small pelagic fishes in the Eastern Mediterranean. The results obtained from the 

keystoneness analysis (Fig. 8 and Table S6 in the Supplement) revealed that in the 1950s 

ecosystem, ‘large pelagic fishes’ had the highest overall keystoneness role followed by 

‘sharks’ and ‘medium pelagic fishes’ groups, whereas in the 2000s ecosystem, ‘medium 

pelagic fishes’ were replaced by ‘benthic’ and ‘benthopelagic cephalopods’. Interestingly 

lower TL groups (e.g. ‘zooplankton’, ‘phytoplankton’ and ‘benthos’) were also identified 

in both time periods as keystone groups, probably caused by their overall low biomass 

and high P/B (characteristic of oligotrophic systems) and important role in the 

ecosystem. In both time periods, marine mammals, in particular ‘pinnipeds’ and 

‘piscivorous cetaceans’, appeared within the least important keystone groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Relative total impact (εi) versus keystoneness (KSi) showing the role of species/groups 

in the ecosystem for both time periods (1950s and 2000s). The size of the circles is proportional 

to the species/group biomass. Functional groups that showed a decline in their keystone role in 

comparison to the 1950s are shown in red. For abbreviations, refer to Table 1. 
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Comparison among European regional seas 

The statistics and main indicators calculated from the whole Mediterranean Sea 

ecosystem model representing the 2000s were compared with other modelled European 

regional seas for the same or similar period (Table 2). The TST revealed that the main 

flows driving the Mediterranean Sea were flow to detritus (42%) and exports (39%) 

followed by consumption (15%) and respiration (5%). In the Baltic, North and Black Seas, 

on the other hand, consumption seemed to be the flow with the highest importance 

(around 43−48%) followed by flow to detritus (22−30%), respiration (20−23%; in the Black 

Sea, this flow constituted the second most important flow, with 29%) and exports (1−6%).  

Table 2. Summary statistics for the Mediterranean Sea food web model in comparison with the North Sea, 

Baltic Sea and Black Sea. 
 

Indicators Mediterranean 

Sea 

(this study) 

North Sea 

(Mackinson et al. 

2014) 

Baltic Sea 

(Tomczak et al. 

2012) 

Black Sea 

(Akoglu et al. 

2014) 

Units 

Main ecosystem features 

Area 

 

2512000 

 

570000 

 

240000 

 

150000 

 

km2 
Studied period 2000s 1991 2000s 1995−2000 Year 

Functional groups 103 68 21 10 No. 
Main indicators 

Sum of all consumption 

 

923 

 

6157 

 

3435 

 

4500 

 

tkm−2  yr−1 

Sum of all exports 1320 105 476 490 tkm−2 yr−1 

Sum of all respiratory flows 290 2658 1851 2990 tkm−2 yr−1 

Sum of all flows into detritus 1467 3867 2246 2230 tkm−2 yr−1 

Total system throughput 4000 12786 8007 10210 tkm−2 yr−1 

Mean trophic level of the catch 3.08 3.7 3.30 3  

Gross efficiency (catch/net 

primary production) 

 

0.00026 

 

0.00226 

 

0.0016 

 

0.001 

 

Total primary production 1610 2609 2434 3483 tkm−2 yr−1 

Total primary production/total 

respiration 

5.55 0.98 1.26 1.16  

Primary production required to 

sustain fisheries (PPR, considering 

primary production) 

1.46 5.88 52.57 28.93 % 

Total primary production/total 

biomass 

37.67 4.71 22.54 90  

Total biomass (excluding detritus) 42.74 554 108 38.7 t km−2 

Connectance index 0.10 0.22 0.22 2.5  

System omnivory index 0.27 0.23 0.15 0.116  

Predatory cycling index 10.96 – 0.41 – % 

Finn’s cycling index 4.98 20.24 6.98 15.01 % 

Mean transfer efficiency 9.2 30.2 12 7.4 % 

Ascendancy 42.9 20.6 30.82 31.7 % 

Overhead 57.1 79.4 69.18 68.3 % 
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Looking at ecological indicators addressing community energetics and cycling of 

nutrients, under Odum’s theory (Odum 1969), our results suggest that the 

Mediterranean Sea ecosystem is at an early developmental stage. This was visible, for 

example, in the ratio between total primary production (PP) and total respiration (R) 

(Odum 1969, Christensen 1995) or in the primary production/biomass ratio (PP/B). On 

the other hand, the indicators from the other European Seas suggested that systems fell 

within an intermediate-low level developmental stage. For the SOI, despite the low 

general values, the Mediterranean Sea showed the highest value, while in relation to the 

2 cycling indices, the Mediterranean basin had the highest values in PCI and the lowest 

in FCI. For each European regional sea, ascendancy was relatively low, whereas 

overhead was high. As for fishing indicators, the PPR% of the Mediterranean was 0.81%, 

the lowest among the other seas, while TLc was 3.04 in the Mediterranean Sea, similar 

to the Black Sea and lower in comparison to the other European Seas with higher TL 

values (between 3.3 and 3.7). 

Discussion 

This study constitutes the first attempt to build an historical and current food 

web model for the whole Mediterranean Sea with the challenging effort to integrate 

available spatial and temporal (in terms of comparing the 1950s and 2000s) biological 

data and modelling outputs in a coherent manner. We acknowledge that data gaps still 

exist, for example on temporal changes in diet composition, temporal estimates of 

discards and biomasses of non-commercially important species and deep sea organisms. 

Thus, further efforts should be made to reduce this uncertainty and increase the quality 

of these models. 

Quality of the models 

As expected, the 1950s model showed a lower pedigree index, scoring in the 

lower range (0.164−0.676) when compared to the 150 balanced EwE models previously 

assessed globally by Morissette (2007). This is because the 1950s model was constructed 

using mainly data obtained from other modelling approaches (e.g. biogeochemical 

models to estimate phytoplankton biomasses and stock recruitment models to estimate 

biomass of fish stocks; refer to Table S5 in the Supplement for details of each functional 
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group). Models that have tried to represent the past have always been associated with 

higher uncertainty, as was observed in other studies (Coll et al. 2008, 2009c, Piroddi et 

al. 2010, Christensen et al. 2014, Macias et al. 2014), and their outputs should be always 

taken with caution. To limit this uncertainty, we tried to use models for which outputs 

have been tested and when possible validated (Macias et al. 2014), or that have been 

widely utilized to assess temporal biomasses as done for fish stocks (e.g. surplus 

production models; Walters et al. 2008, Piroddi et al. 2011). In contrast, the 2000s model, 

due to its higher data quality, showed a relatively higher pedigree. This was due to the 

availability, in more recent years, of survey data (e.g. trawl surveys such as the MEDITS 

campaign) and the increase in biodiversity assessments (e.g. Coll et al. 2010) that have 

improved the level of knowledge in the basin. Nevertheless, data deficiencies exist, 

particularly in African and Arabic countries, where survey data remain either 

inaccessible or absent. Despite these limitations, the models developed in this study 

represent an important step towards an integrated understanding of the Mediterranean 

Sea marine ecosystem structure and function. 

Biomasses, trophic flows and TLs 

Results presented here show how the Mediterranean Sea is mainly dominated, 

in terms of biomass, by lower TL organisms, particularly ‘benthos’, ‘zooplankton’ and 

‘phytoplankton’. These groups dominate most of the system flows and, as observed at 

smaller scales in other Mediterranean food web models (Coll et al. 2006, 2007, Tsagarakis 

et al. 2010, Moutopoulos et al. 2013, Torres et al. 2013), constantly appear as important 

key species. This is probably because of the relatively low biomass at higher TLs and a 

relatively high mean TE overall in the food web, in line with previous studies (Pauly & 

Christensen 1995, Coll & Libralato 2012). This phenomenon is called the ‘Mediterranean 

paradox’ for the fact that despite the oligotrophic condition of the basin that constrains 

the reproduction and feeding of zooplankton, the ecosystem is capable of producing a 

relatively high fish abundance (Sournia 1973, Macias et al. 2014). In addition, the high 

TEs have been suggested as a sign of overexploitation of the Mediterranean Sea due to 

high production exports (Coll et al. 2009b). Marine mammals and large pelagic fishes, 

on the other hand, are the top predators of the Mediterranean marine ecosystem. In 
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particular, the Mediterranean monk seal Monachus monachus is the species with the 

highest TL followed by ‘piscivorous cetaceans’ and ‘large pelagic fishes’. These 

outcomes are very interesting since the Mediterranean monk seal and several dolphin 

populations (e.g. the short-beaked common dolphin Delphinus delphis) have dramatically 

declined over the centuries because of a variety of anthropogenic pressures (e.g. fisheries 

interactions, habitat loss and pollution) and are now classified either as Critically 

Endangered (the Mediterranean monk seal is almost extinct), Endangered, or Vulnerable 

by the International Union for Conservation of Nature (IUCN) Red List of Threatened 

Animals (UNEP/MAP 1994, Johnson & Lavigne 1998, Reeves & Notarbartolo di Sciara 

2006, Bearzi et al. 2008, Piroddi et al. 2011). Large pelagic fishes (mainly tuna species and 

swordfish), the main keystone group in our modelling approach, have consistently been 

exploited for thousands of years in the Mediterranean Sea, and these species are also at 

low levels of abundance (Abdul Malak et al. 2011). This severe decline in biodiversity at 

the top of the food web particularly in recent decades (Briand 2000, Bearzi et al. 2008, 

Coll et al. 2008, 2009c, Piroddi et al. 2010, 2011, Lotze et al. 2011), as also shown in our 

study by their reduced biomass levels, could have induced a cascade effect throughout 

the food web, with effects on the complexity, connectivity and robustness of the system 

against further species loss (Briand 2000, Heithaus et al. 2008, Lotze et al. 2011, Piroddi 

et al. 2011). Defined as umbrella, sentinel, keystone or flagship species, they reflect 

ecosystem changes and degradation over time, as is also clear from our keystone and 

MTI analysis, and ensuring their survival would lead to ways of enhancing marine 

ecosystems and ensure sustainable human activities (Bossart 2006, Boyd et al. 2006, 

Trites et al. 2006, Sergio et al. 2008). 

Ecological role of species and changes with time 

The results of our keystone analysis for both time periods also revealed changes 

over time in other important keystone species. After ‘large pelagic fishes’, ‘sharks’ and 

‘medium pelagic fishes’ have played a key role in the past ecosystem, replaced in more 

recent years by ‘benthopelagic cephalopods’. This is not the first time that cephalopods 

have been identified as a keystone group in Mediterranean food webs (Coll et al. 2006, 

Tsagarakis et al. 2010, Banaru et al. 2013, Hattab et al. 2013, Torres et al. 2013). This 
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functional group, the role of which in the overall structure and functioning of marine 

ecosystems remains poorly understood, has an important trophic position (being both 

predator and prey), and because it can proliferate in highly exploited ecosystems, it 

constitutes a key element of present marine food webs (Pierce et al. 2008, Coll et al. 2013). 

As for ‘sharks’, particularly large predatory sharks, several studies have pointed at 

strong declines in species over the last centuries mainly due to intensive overexploitation 

(both for consumption and as discarded species; Megalofonou 2005, Ferretti et al. 2008, 

Maynou et al. 2011, Coll et al. 2014a). The present study suggests that these species were 

important in the past Mediterranean ecosystem and confirms a diminishing role within 

the current food web as a consequence of a reduction in their abundance. 

Small and ‘medium’ pelagic fishes, both with high biomasses and high 

proportions in catches, show an important role in the Mediterranean ecosystem as 

structuring species of the food web (Coll et al. 2006, 2007, Piroddi et al. 2010, Tsagarakis 

et al. 2010). Yet, our results highlight how these organisms, despite being essential for 

transferring energy from lower to higher TL organisms (Cury et al. 2000, Pikitch et al. 

2014), have diminished considerably between the 2 time periods and between sub-

regions, causing a reduction in their ecological role. 

Fishing impact and the quality of data 

From the MTI analysis, bottom trawling and dredges were the fisheries with the 

widest impact on the food web, particularly on the demersal community. This has been 

observed in sub-areas of the Mediterranean Sea representing continental shelf and upper 

slopes (Coll et al. 2006, 2007, Banaru et al. 2013, Hattab et al. 2013). Therefore, our results 

highlight the effect of bottom trawlers and dredges on marine resources and ecosystems 

of the Mediterranean Sea as an important issue that should be addressed if sustainable 

management of fisheries is to be achieved within the region (Puig et al. 2012).  

The impacts of artisanal fisheries on the ecosystem have also increased over time, 

particularly in the Ionian and Eastern Mediterranean Seas, and are probably caused by 

increased fishing effort in the EU, northern African and Arabic countries (Anticamara et 

al. 2011). This also has clear implications for the management of marine resources in the 

Mediterranean Sea because the artisanal fleet dominates the fishing activity in many 
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Mediterranean countries but is poorly monitored. 

Overall, our results show that over time, fisheries have exerted a negative 

pressure on the food web as a consequence of increased and intensive overexploitation. 

Yet, several interpretations of these results could be drawn: first, fisheries might not 

display a greater negative impact (than the one presented here) on commercially 

important species because of the inclusion in the analysis of developing countries (e.g. 

North African and Arabic countries) and developed countries together. Completely 

different spatio-temporal patterns/trends characterize these 2 sides of the Mediterranean 

Sea that might lead to a masking effect scenario. A reflection of this is visible in the 

increased impact of artisanal fisheries in the Ionian and Eastern Mediterranean Seas, 

possibly as a consequence of increased fishing effort in southern Mediterranean 

countries. This distortion might also be caused by discards, which we kept constant in 

time due to lack of information, and by Illegal, Unregulated, and Unreported (IUU) 

activities that, despite being a serious issue in the Mediterranean Sea (Ulman et al. 2013, 

Coll et al. 2014b), were not included in this study due to the lack of a global estimate for 

the Mediterranean Sea.  

Also, recreational catches are not included in national fishery statistics, and only 

recently a European Union legislation (Council Regulation [EC] No. 1224/2009) has 

required the survey of recreational fishing activities. Since only few sources of 

information exist, which have been incorporated into the model, catches may well have 

been underestimated. Using fisheries statistics supplied to the FAO by individual 

countries could be another limiting factor. Several studies have indeed confirmed that 

most of these statistics largely underestimate their likely true catch by a factor of 2 or 

more (Zeller & Pauly 2007, Pauly et al. 2014). This could be particularly true for the 

Southern Mediterranean, where mechanisms to collect fisheries data are less available 

(FAO 2010) and for some Mediterranean countries where this factor is even higher 

(Pauly et al. 2014).  

An unrealistic scenario is also observed regarding mid-water trawling in the 

Eastern Mediterranean Sea, where this gear shows an impact on marine resources, 

despite the fact that it does not operate in most of the Eastern Mediterranean countries 
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(Sacchi 2011). Obviously this is an error in the Sea Around Us project database, which at 

the time it was accessed was still under development. These caveats represent the major 

weaknesses of the Mediterranean fisheries data, and some caution should be taken when 

interpreting the data. Currently, a database on global fisheries reconstruction from 1950 

to 2010, which aims at looking at all types of fisheries removals (from reported and 

unreported landings to recreational landings and discards) is being constructed, 

including Mediterranean countries (Le Manach et al. 2011, Ulman et al. 2013, Coll et al. 

2014b, Pauly et al. 2014). In the near future, this information on catch reconstructions 

could be integrated in modelling efforts to reduce the limitations explained above, and 

to capture better the fishing pressure on current and past Mediterranean marine 

ecosystems. 

Similarities and differences among European regional seas 

The relative total biomass per km2 and per each individual sea reveals that the 

Adriatic and Western Mediterranean are the areas with the highest biomass followed by 

the Ionian and Eastern Mediterranean. This confirms a decrease gradient of richness 

from west to east, as observed in other studies (Bosc et al. 2004), influenced by changes 

in environmental parameters (e.g. productivity, temperature and salinity) that define 

and characterize the Mediterranean Sea. Comparing our results to other European seas 

illustrates that European regional seas are quite diverse. In particular, the Mediterranean 

Sea stands alone in relation to the type of flows that drive the system and the cycling 

indices that suggest higher levels of community stress induced by intensive fishing 

activities, as previously illustrated (Costello et al. 2010). 

In regards to ecosystems development, the Mediterranean Sea appears to be in 

an early development stage, different from the other systems, probably because the 

ecosystem has been perturbed continuously over a long period of time. Indeed, when 

ecosystems develop, biomasses and complexity tend to increase and mature, whereas 

when they are disturbed, e.g. by fishing, they show the opposite trend and stay ‘young’ 

(Odum 1969). One similarity with the other EU ecosystems is given by the TLs of the 

catches, which are low in the Mediterranean Sea, in the Black Sea and recently in the 

Baltic Sea (e.g. herrings and sprats have replaced the collapsed Eastern Baltic cod Gadus 
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morhua in the landings; Tomczak et al. 2012), highlighting the importance of small 

pelagics in the fisheries activities of these areas. Although differences may have occurred 

in the way models were constructed (such as the number of functional groups and links), 

these outcomes are in line with other studies that pointed at differences in physical and 

biological features (from highly eutrophic with frequent hypoxia events to moderately 

eutrophic and productive or relatively oligotrophic regions; Coll et al. 2010, Tomczak et 

al. 2012, Mackinson 2014) as the reasons for these differences in diversity among 

European regional seas (Barale & Gade 2008, Narayanaswamy et al. 2013). 

Concluding remarks 

Overall, our study is the first to provide a basis for understanding and 

quantifying the structure and functioning of the whole Mediterranean Sea ecosystem, 

including main marine organisms, from low to high TLs, and considering fishing 

activity. This is also the first Ecopath model that tries to integrate sub-regions within a 

unified model to take into consideration differences in biological and environmental 

characteristics. The construction of 2 food web models (for the past and for current years) 

enabled us to assess changes in the food web and impacts (in this case fishing) affecting 

the system. However, further developments of spatial and temporal hind- and forecast 

analysis are necessary to further model the dynamics of the ecosystem (such as 

movements of species within and between areas and large migrations) and evaluate the 

exploitation status of the Mediterranean Sea and explore different management policies 

and future scenarios. Temporal simulations to hindcast food web dynamics have been 

developed in regional areas of the Mediterranean Sea such as the Catalan Sea (Coll et al. 

2008), the Adriatic Sea (Coll et al. 2009c) and the Ionian Sea (Piroddi et al. 2010). 

Quantifying the impact of important threats (e.g. climate change and fishing pressure) 

on a system that is considered ‘under siege’ (Coll et al. 2012) becomes critically important 

for ensuring the sustainability of marine resources and the services they provide to 

humans, and the conservation of this vulnerable ecosystem. This is a step further for the 

regional assessment of the Mediterranean Sea ecosystem. 

See original publication in Annex 4 
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Abstract 

 

The Mediterranean Sea has been defined as a sea “under siege” because of intense 

pressures from multiple human activities; yet there is still a lack of information on the 

cumulative impact of these stressors on the ecosystem and its resources. In this study, 

we evaluate how the historical trends of various ecosystems groups or species have been 

impacted by changes in environmental productivity combined with fishing pressure. We 

do this for the whole Mediterranean Sea, using a food web modelling approach. Results 

indicate that both fishing pressure and changes in primary production (PP) played an 

important role in driving species dynamics; yet, PP seems to have been the strongest 

driver upon the Mediterranean Sea ecosystem. The food web model is able to 

satisfactorily reproduce historical trajectories of biomasses and catches of several species 

and functional groups over time, suggesting that the combined effect of an intensive 

fishing pressure and changes in the environment have modified the Mediterranean 

SUBMITTED to SCIENTIFIC REPORTS 
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marine ecosystem. In general, we observe a reduction of biomasses of important fish 

stocks (e.g., forage fish) and top predators (e.g., large pelagic fish and pinnipeds) while 

biomass increased for organisms at the bottom of the food web (e.g., invertebrates). 

Ecological indicators, such as community biomass, trophic levels of the community, and 

catch and diversity indicators reflect such ecosystem changes and show an overall 

degradation over time. Although further efforts are needed to improve the modelling 

approach, this study constitutes an important step toward a regional assessment of the 

Mediterranean Sea ecosystem as a whole, and may contribute to inform and implement 

conservation plans and management actions. 

Resumen 

El mar Mediterráneo se ha definido como un mar "en estado de sitio" debido a las 

intensas presiones de múltiples usos y factores de estrés de origen antropogénico. Sin 

embargo, pocos estudios se han desarrollado para cuantificar el impacto acumulado 

sobre el ecosistema y sus recursos de estas amenazas. En este estudio se ha evaluado 

como los cambios temporales de varios grupos o especies del ecosistema han sido 

impactados por cambios en la produccion primaria en combinación con la presion 

pesquera. Este es el primer estudio que realiza dicho analisis para el Mediterráneo en su 

conjunto. Los resultados indican que tanto la presión pesquera como los cambios en la 

producción primaria (PP) juegan un rol importante en la descripción de la dinámica 

temporal; sin embargo, el cambio en PP parece ser el principal impulsor del cambio en 

el Mar Mediterráneo. El modelo ecológico aquí desarrollado es capaz de reproducir a 

nivel temporal la información disponible sobre varias especies en términos de biomasa 

y captura, lo que sugiere que el efecto combinado de la presión pesquera excesiva y los 

cambios en la producción primaria han modificado el ecosistema marino de forma 

notable. Los principales efectos de estos cambios a nivel del ecosistema han sido la 

reducción de la biomasa de las poblaciones de peces predadores (por ejemplo, peces 

pelágicos de gran tamaño) y otros depredadores apicales (por ejemplo, pinnípedos) y el 

aumento de organismos de tamaño menor que se sitúan en posiciones bajas de la red 

trófica (por ejemplo, invertebrados). Los indicadores ecológicos como la biomasa de la 

comunidad, los niveles tróficos medios y la diversidad también son capaces de reflejar 

el deterioro general del ecosistema en el tiempo. Cabe destacar que, aunque se requiere 
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un mayor esfuerzo para mejorar el modelo ecológico desarrollado en este estudio, los 

resultados constituyen un importante paso adelante para contribuir a la evaluación 

regional del estado de salud ambiental del ecosistema del Mar Mediterráneo y podrian 

ser utilizados para informar y implementar futuros planes de conservación y gestión. 
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Introduction 

Marine ecosystems around the world are increasingly pressured by a diversity of 

human stressors, which include fisheries and aquaculture impacts, pollution, climate 

change, habitat loss and degradation, and species invasions (Halpern et al. 2008, Côté et 

al. 2016). Since human stressors change over time (Halpern et al. 2015), the assessment 

of their temporal cumulative effects has been poorly studied and remains a challenging 

task (Côté et al. 2016). Because these stressors are rapidly increasing, understanding how 

human interactions, the environment, and marine species interact and influence each 

other, and how such dynamics affect the sustainability of goods and services they 

provide, is of urgent importance. Currently this is a priority of many national and 

international regulations/initiatives (e.g., European Marine Strategy Framework 

Directive [MSFD; 2008/56/EC]; Convention of Biological Diversity, [CBD], 

Intergovernmental Platform on Biodiversity and Ecosystem Services [IPBES]) which aim 

to contribute to the preservation and sustainability of biodiversity use, ensuring long-

term human well-being and sustainable development.  

In support of these regulations, new comprehensive scientific tools have been 

developed with the goal of integrating the effects of the above-mentioned human and 

environmental stressors into a single common framework in order to better guide policy 

decisions (Halpern et al. 2008, Travers et al. 2009, Collie et al. 2014). Particularly in the 

context of ecosystem-based management approach (EBM), which assesses ecosystem 

dynamics rather than focusing on single resources and managing a single threat, there 

has been a growing use of ecosystem models. These tools are improving their ability to 

predict complex system dynamics considering the impact of multiple pressures 

(Christensen & Walters, 2011) and assessing different policy objectives sought by 

management authorities (Levin et al. 2009, Collie et al. 2014, Piroddi et al. 2015c). 

Through hind-cast and forecast scenarios, ecosystem models allow to quantitatively 

assess the role of different stressors on ecosystem dynamics and calculate model-based 

indicators able to evaluate whether an ecosystem and its services are maintained and 

used sustainably. Model-based indicators can complement data-based indicators 

(Shannon et al. 2014) and have been widely developed and used to capture the impact 

of specific pressures on marine ecosystems (Cury et al. 2008, Coll et al. 2016), such as 
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fishing or eutrophication, and more recently to assess socio-economic and governance 

issues (Ehler 2003, Rice & Rochet 2005), as well as the cumulative impacts of multiple 

human activities (Halpern et al. 2012, Coll et al. 2016), informing management processes 

(Levin et al. 2009, Shin et al. 2010a).   

This study applies the Ecopath with Ecosim (EwE) food web model approach to 

the Mediterranean Sea ecosystem as a whole, with the aim to evaluate temporal 

responses of species abundances and ecosystem dynamics to the combined effect of 

historical changes in primary productivity patterns and fisheries. The Mediterranean Sea 

is a highly diverse marine ecosystem that hosts 7-10% of the world’s marine biodiversity 

(Bianchi & Morri 2000, Coll et al. 2010), and is “under siege” by historical and current 

impacts of combined multiple human stressors (Coll et al. 2012), mainly fishing practises, 

habitat loss and degradation, eutrophication, and more recently, the introduction of 

alien species and climate change effects (Coll et al. 2010, Costello et al. 2010, Coll et al. 

2012). Since the intensity of these stressors is increasing throughout the Mediterranean 

basin, temporal analyses are increasingly needed in order to inform effective current and 

future marine policies and management actions. In this study, we first quantify temporal 

dynamics of marine species in the Mediterranean Sea ecosystem as a whole, evaluating 

their historical dynamics. We then calculate a series of ecological indicators to analyse 

past ecosystem dynamics.  

Our specific goals are to investigate: 1) the temporal evolution of the 

Mediterranean marine ecosystem from 1950 to 2011 by developing a hind-cast scenario 

analysis that includes primary productivity, fisheries activities and food web dynamics; 

and 2) the structural and functional changes of the Mediterranean Sea ecosystem using 

specific model-based indicators. 

Studies such as the present are essential in support of European policies like the 

Marine Strategy Framework Directive (MSFD; 2008/56/EC) that requires EU member 

states to assess the environmental status of their territorial waters developing strategies 

to achieve ‘‘Good Environmental Status (GES)’’ by 2020. They can also support regional 

policies like the UNEP’s Mediterranean Action Plan (MAP) that aims at moving towards 

an ecosystem based management approach (EBM) for both EU and non-EU 

Mediterranean countries.  
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This study sets a baseline to further develop ecosystem analyses in order to 

facilitate the implementation of management policies and explore future plausible 

scenarios. 

Materials and methods 

The baseline food web model of the Mediterranean Sea 

 We used a previously developed food web model (Piroddi et al. 2015a) 

constructed with the Ecopath with Ecosim approach (EwE) using the Ecopath mass-

balance module (Christensen & Walters 2004) representing the whole Mediterranean 

ecosystem in the 1950 decade. We used the Ecopath model as a baseline to run temporal 

hind-cast (1950-2011) analyses, assessing the response of the Mediterranean marine 

ecosystem to changes in primary productivity and fishing effort. The baseline Ecopath 

model consisted of 103 functional groups, ranging from phytoplankton and 

invertebrates to top predator species, and it was divided in four sub-models representing 

the four MSFD areas: 1) Western Mediterranean Sea (W); 2) Adriatic Sea (A); 3) Ionian 

and Central Mediterranean Sea (I); and 4) Aegean Sea and Levantine Sea (E) to account 

for sub-regional differences in environmental and biological characteristics of the 

ecosystem (Fig 1). 

Fig 1. A representation of the Mediterranean Sea with the bathymetry and the four MSFD areas: Western 

Mediterranean Sea (W); Adriatic Sea (A); Ionian and Central Mediterranean Sea (I); Aegean and Levantine 

Sea (E). 

The food web model had the following key input variables: biomass (B), 

production/biomass ratio (P/B), consumption/biomass ratio (Q/B), diet composition, and 

fisheries catches and discards. The main trophic structure of the Mediterranean Sea EwE 
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model is shown in Figure 2 and species and/or functional groups included in the model 

are listed in Table S1. A full description and sources of information of the input and 

output parameters of the baseline Ecopath model are available in Piroddi et al. (2015a) 

and are presented in S2-S3 Tables in the Supporting Information.  

A set of pre-balancing (PREBAL; Link 2010) analyses are presented in Figure S4 

with the purpose of showing the coherency of the basic input parameters with respect 

to general rules/principles of ecosystem ecology. In particular, these rules include: 1. 

biomass estimates by functional group in the model, which span 5–7 orders of 

magnitude when arranged against their trophic levels; 2. slope of biomass (on a log scale) 

by functional group, which declines by 5–10% across all the taxa when arranged against 

trophic levels; 3. vital rates (P/B; Q/B) across taxa/trophic levels, which decline with 

increasing trophic level (Link 2010, Heymans et al. 2016). The Ecopath model 

constructed in Piroddi et al. (2015a) included seven types of fishing fleets: trawlers, 

dredges, mid water trawlers, purse seiners, longliners, artisanal and recreational 

activities. 

 

Fig 2. Flow diagram of the Mediterranean Sea ecosystem (year 1950s) with the Western part being at the far 

left followed by the Adriatic, the Ionian and the Eastern. Each functional group is shown as a circle and its 

size is proportional to the log of its biomass. The functional groups are represented by their trophic levels 

(y-axis) and linked by predator-prey relationships shown as light grey lines. Numbers refer to functional 

group codes, which are reported in the legend, while those in red are graphically represented with a 

drawing. Numbers in the figure: 1. Piscivorous cetaceans; 2. Other cetaceans; 3. Pinnipeds; 4. Seabirds; 5. 

Sea turtles; 6. Large pelagics; 7. Medium pelagics; 8. European pilchard; 9. European anchovy; 10. Other 

small pelagics; 11. Large demersals; 12. European hake; 13. Medium demersals; 14. Small demersals; 15. 

Deep sea fish; 16. Sharks; 17. Rays and skates; 18. Benthopelagic cephalopods; 19. Benthic cephalopods; 20. 

Bivalves and gastropods; 21. Crustaceans; 22. Jellyfish; 23. Benthos; 24. Zooplankton; 25. Phytoplankton; 26. 

Seagrass; 27. Detritus; 28. Discards. 
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In this study, these fleets were adapted due to a lack of time series of data 

regarding the number of vessels and gross tonnage (GT) for some of the fleets, which are 

important for estimating historical fishing effort. In particular, while recreational fishery 

was retained from the previous model, main commercial fisheries were divided in: 1. 

trawlers (which included trawlers and dredges); 2. purse seiners; 3. longliners and 4. 

artisanal fisheries. This new fishing fleets configuration was created to follow the same 

structure as in Sacchi et al., (2011), the main source of information for temporal time 

series data of number of vessels and gross tonnage (GT) for the above-mentioned fleets 

for each Mediterranean country for the period 1990-2010. For Italy and Greece, we were 

able to get longer time series data using detailed reconstructions respectively from 

Piroddi et al. (2015a) for the 1950-2010 period, from Stergiou et al. (2007) for 1964-1989, 

and Moutopoulos et al. (2014) for 1990-2010.  

To estimate an overall trend of number of fishing vessels for the 1950-2010 period, 

for those countries with missing years, we assumed same trends as observed by Greer 

(2014) who reported the number of fishing vessels for each country of the world for 1950-

2010. GT was extrapolated, for the missing years, as the average ratio of GT in the 

observed time periods, while number of days spent fishing were kept as the ratio of days 

at sea observed respectively in Sacchi et al., (2011) for the majority of the countries, 

Piroddi et al., (2015a) for Italy, and Moutopoulos et al., (2014) for Greece. For Spanish 

and Italian trawlers, we complemented our trends with data from EVOMED (2011), a 

European project that assessed the evolution and technological improvement of fishing 

capacity for the major countries of the Mediterranean Sea for the early 1900-2010 period.  

Fishing effort (kW*days-1) was calculated as the product of the number of fishing 

vessels kW per vessel (inferred from their GT), and the number of days spent fishing. To 

account for improvements in technology (e.g., mobile phone, GPS, sonar, radio) that 

were not captured by kW as a measure of effort (Figure S5), a conservative technological 

“creep factor” of 1% as observed by Damalas et al., (2015) and EVOMED (2011) was 

applied from 1980 to 1995 while for the remaining periods (1950-1979 and 1996-2010) a 

0.5% and ~ 1.9% (this value varied with gear type; see S6 Table) were respectively used 

following the work of Pauly and Palomares (2010). 
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Temporal dynamic modelling and model derived indicators 

The dynamic module of the EwE software, Ecosim (Walters et al. 1997, 

Christensen & Walters 2004), uses a set of differential equations to estimate biomass 

fluxes for each species and/or functional group of the ecosystem as follows: 

             iiiii

j j

ii BeFMIQijQjigdtdB                                           (1) 

where dBi/dt is the biomass growth rate of group (i) during the interval dt, gi is the net 

growth efficiency (production/consumption ratio), Ii is the immigration rate, Mi and Fi 

are natural and fishing mortality rates of group (i), ei is emigration rate, and Bi the 

biomass (Christensen & Walters 2004). Calculations of consumption rates (Qij) are based 

on the “foraging arena” theory (Ahrens et al. 2012) where the biomass of prey i is divided 

between a vulnerable and a non-vulnerable fraction. This is represented as: 

 

Qij=                                                                                                                                                                          (2) 

 

where vij and v’ij is the vulnerability and expresses the rate with which prey move 

between being vulnerable and not vulnerable, respectively, aij is the effective search rate 

for i by j, Ti and Tj are the relative feeding time for prey and predator, Sij are the seasonal 

or long term forcing effects, Mij are the mediation forcing effects and Dj are the effects 

of handling time as a limit to consumption rate. One important feature in Ecosim is the 

use of a vulnerability term for each interaction between a predator and a prey. Low 

values of vulnerability (close to 1) indicate that prey production determines the 

predation mortality (phenomenon also known as ‘bottom-up’ control) and that the 

predator is close to carrying capacity, while high values of vulnerability (e.g., 100) 

indicate that predator biomass determines how much prey is consumed (top-down 

control) and that predators are far away from carrying capacity (Christensen & Walters 

2004).  Mixed effect (vulnerability = 2) is set as the default value in Ecosim.  

The Ecosim approach was used here to fit the model to observed time-series of 

data using the sum of squares (SS) ratio between predicted and observed data as a metric 

for assessing model performance (Christensen et al. 2008). We used survey biomasses 

and catches for those functional groups with available information to compare predicted 

and observed data (S1). In particular, biomass time series for sea turtles, pinnipeds, 

 

vij· aij· Bi·Bj· Ti· Tj· Sij· Mij/Dj 

vij·+ v’ij· T· Mij + aij· Mij· Bj· Sij·Tj/Dj 
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benthic invertebrates and deep sea fish were taken from scientific literature, whereas for 

demersal species (functional groups nº 12-14; 16-19 and 21 in Figure 2), European 

anchovy, European pilchard and large pelagic fishes, we used scientific surveys (e.g., 

MEDITS trawl survey and MEDIAS acoustic survey) and stock assessments data (S2). 

Catch data was taken from the United Nation’s Food and Agriculture Organization 

(FAO) database (FishStat: http://data.fao.org/database) available from 1950 to 2010. 

These time series were complemented with data (available per country) from the Sea 

Around Us Project (www.searoundus.org) to assign species to fishing fleet.  

When applying the fitting procedure, we noticed that the baseline fishing 

mortality (Ecopath baseline in 1950s) for the most commercially important target species 

(European pilchard, anchovy and hake) was relatively low (between 0.02 and 0.05) 

compared to the reference levels reported in the literature (Patterson 1992, Colloca et al. 

2013, Vasilakopoulos et al. 2014). This initially caused a very low reaction of these species 

to changes in historical fishing effort and primary productivity. To correct these 

estimates and reflect a more appropriate fishing mortality for these three species, we 

used the reconstruction of the catches of the Sea Around Us Project and, in particular, 

for each country of the Mediterranean Sea, we considered the proportion of catch of 

these species relative to the total catch and applied it respectively in each of our sub-

areas.  

To fit the temporal dynamic model accounting for data quality/reliability in 

available time series, we weighted the time series using a factor either of 0.5 or 1 (0 

indicating that time series are not considered in the calculation of SS and 1 indicating 

that they are fully considered; Christensen et al. 2008). For all catch time series and for 

European pilchards and anchovies biomass in the Ionian and Eastern Mediterranean 

Seas, we used a weight of 0.5, while the rest of the time series were assigned a weight of 

1. This was done to consider questionable catch statistics reporting (as identified in 

previous research studies [Ulman et al. 2013, Coll et al. 2014, Pauly et al. 2014, Piroddi et 

al. 2015b]), and to consider poor data availability for forage fish in the Ionian and Eastern 

Mediterranean Sea (i.e., long time series of European anchovies and pilchards were 

available only for the Aegean: Jardim et al. 2015, and the Strait of Sicily: Patti et al. 2004, 

Fiorentino et al. 2013). The choice of using these weights (0.5 and 1) puts less/more 
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emphasis on selected species/functional groups of the ecosystem; still, since there are 

different methods to determine weighting factors (Heymans et al. 2016), further work 

should be developed to assess the outcome of the fit procedure using alternative weights.  

Fishing effort (Figure S5) and primary production (PP) anomaly over time were 

used as main forcing time series to drive the model. The PP anomaly results from an 

Ecosim automated procedure that searches for time-series relative values of annual 

production (expressed as P/B ratio) of producer groups. This routine considers that if 

primary production changes over time then the total amount of energy that enters in the 

ecosystem changes, causing a cascading-up effect that increases or decreases food 

availability through the ecosystem (Preikshot 2007). Once estimated by Ecosim, the 

predicted relative PP anomaly was tested against the relative PP time-series data 

obtained from a biogeochemical model (GETM-ERGOM: Macias et al. 2014) for the same 

time period using the Spearman’s rank-order correlation test (suitable for non-

parametric data). Also, we re-run the Ecosim model using the relative PP time-series 

data from the biogeochemical model to compare and assess the model fit and results 

using the two different PP time series data (relative PP anomaly from Ecosim, and 

relative PP data from the biogeochemical model). As for fishing effort, since our 

reconstruction was done up to 2010 but the majority of our biomass time series were 

available until 2011, we decided to keep fishing efforts observed in 2010 constant until 

2011.  

The fitting procedure consisted of seven general steps (Table 1) following the 

same approach as described and applied by Mackinson et al. (Mackinson 2014). This 

method uses the Akaike Information criterion (AIC) (Akaike 1974, Burnham & Anderson 

2003):                                          

          AIC = nlog (minSS/n) + 2k                  (3) 

where n is number of observations, minSS is the minimum sum of squares 

resulting from the comparison of predicted with observed datasets, and k is the number 

of parameters, to test statistical hypotheses related to changes in predator-prey dynamics 

(also called vulnerabilities: Vs); changes in primary production (PP anomaly, 

considering the number of PP spline points (sPP) for smoothing the time series); impact 

of fishing and possible combinations of the above-mentioned factors (Table 1). The AIC 



 

 

2.5 Historical changes of the Mediterranean Sea ecosystem 

 
 

168  

is a tool used for model selection that penalizes for fitting too many parameters, and 

which is used to choose the “best” model (the one yielding the lowest AIC) considering 

a good fit and the least number of estimated parameters to do so. In this study, we used 

the second-order Akaike Information Criterion (AICc) calculated as follow:  

                                                 AICc = AIC + 2k(k-1)/(n-k-1)                                                 (4)            

to  account for small sample sizes (n of observations) in the dataset.  

In our case, the fitting procedure was conducted five times: individually for the four sub-

models (Western, Adriatic, Ionian and Eastern Mediterranean) as the majority of the 

functional groups are restricted to one sub-area only, and one extra time for the model 

representing the whole basin to fit highly migratory species (‘large pelagics’ and ‘sea 

turtles’ groups) that are allowed to move and feed in all four areas. 

Once the temporal dynamic fitting procedure was completed, we used the “best” 

fitted models to calculate model-based indicators by sub-area and for the whole 

Mediterranean Sea. To be able to compare these indicators with available ones from 

other regional seas, model-based indicators were selected from a list of indicators 

previously tested and assessed by international initiatives, mainly IndiSeas (“Indicators 

for the Seas”; www.indiseas.org; see e.g., Shannon et al., (2014) and Coll et al., (2016)). 

The list of indicators that were selected is presented in Table 2. Once estimated, we used 

the Spearman’s rank correlation to assess the significance and correlation between our 

suite of ecological indicators and time. 

Table 1. Model fits following the seven steps proposed by Mackinson et al., (Mackinson 2014), which include 

trophic interactions, fishery and environmental drivers (here changes in primary productivity). 
 

# Steps Description 

1 Baseline 
Trophic interactions with default prey-predator vulnerabilities (vij=2; mixed 

effect). No environmental or fishery data are used to drive the model. 

2 Baseline and trophic interaction 
Trophic interactions with different vulnerabilities. No environmental or 

fishery changes are used to drive the model.  

3 Baseline and environment 
The “PP anomaly” is used to drive the model. No fishery data are used to 

drive the model. 

4 
Baseline, trophic interactions 

and environment 
No fishery data are used. 

5 Fishery 
Fishing effort is included as model driver. Trophic interactions are set as 

default and no environmental data are used. 

6 Trophic interaction and fishery No environmental data are used. 

7 
Trophic interactions, 

environment and fishery 
All the components are jointly included in the model as drivers. 
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Addressing uncertainty  

The Monte Carlo routine built into EwE (Christensen & Walters 2004) was 

applied in Ecosim to assess sensitivity of Ecosim's output to the basic Ecopath input 

parameters (B, P/B, Q/B, EE), drawing input parameters from a normal distribution 

centered on the base Ecopath value and using a defined coefficient of variation, in this 

case set to 0.1 (Christensen et al. 2008, Coll & Steenbeek 2014). Here, we run 1000 

iterations, and the range of outputs (the 5th and 95th percentile) were plotted for both the 

fitted results (in our case time series of biomasses) and the model-based ecological 

indicators. 

Table 2. Detailed description of modelled derived indicators with acronyms, definitions and references. 

Ecological Indicator Acronym Definition and references 

Community biomass Cm 

Index calculated at community level as the sum of the biomass 

only for those groups fitted to time series data (Unit: t/km2) 

(Heymans et al. 2014). 

Kempton Q species diversity index Qi 

Expresses biomass species diversity by considering those 

organisms with trophic levels 3 or higher (Kempton & Taylor 

1976, Ainsworth & Pitcher 2006). 

Mean trophic level of community mTLco 

TL of the modelled community spans the whole ecosystem 

(living groups) (Shin et al. 2010b) including all functional 

groups (fitted and not fitted). 

Mean trophic level of groups with 

TL >3.25 
mTL3.25 

Calculated as the mTLco but including all functional groups 

(fitted and not fitted), excluding only marine mammals, 

seabirds and sea turtles (mTL3.25; Pauly & Watson 2005)  

Total Catch TC Sum of all catches (Unit: t/km2/year) (Bundy et al. 2010). 

Trophic level of the catch  TLC 

TL of the catch for all retained species. Retained species are 

species caught in fishing operations, although not necessarily 

targeted by a fishery and which are retained because they are 

of commercial interest (i.e. not discarded) (Shin et al. 2010b). 

 

Results 

Time series from the model fitting  

The most statistically significant results in our model fitting exercise were 

obtained when trophic interactions, fishing and the primary productivity changes were 

included together in the model run (Step 7 in Table 3). Differences were found among 

the five areas with the “best” fitted models (lowest AICc) explaining between 50% and 
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69% of the variance of the data (Table 3). By looking at each area separately, the Ionian 

Sea sub-model was the one that showed the smallest improvement of prediction 

capabilities (thus the AICc estimates declined the least), while the Eastern followed by 

the Western Mediterranean were the areas with the biggest improvement from the 

baseline AICc estimates. Both fishing and primary productivity drivers, when 

considered individually, were able to enhance the fit of all areas by ~16% to ~50% (when 

using the predicted PP anomaly) and by ~10% to ~37% when using fishing effort (steps 

3 and 5 in Table 1). The addition of trophic interactions to changes in PP anomaly alone 

(step 4 in Table 1) provided the second largest improvement for the Western, Ionian and 

the whole Mediterranean Seas (AICc reduced further by ~10%). For the Adriatic Sea this 

was obtained with the addition of trophic interactions to fishing effort (step 6 in Table 

1). Also, different vulnerabilities were tested, and the largest enhancement was obtained 

using high vulnerabilities (step 7 in Table 3) for both the four sub-models (maximum 

predator prey-interactions or Vs: #24) and the additional Mediterranean model as a 

whole (maximum predator prey-interactions or Vs: #2).  

When we checked for correlation between the PP anomaly resulting from the 

Ecosim fitting procedure and the PP from the biogeochemical model, in all the areas 

except for the Adriatic Sea both PP time series were positively correlated with high 

significance. On the contrary, the Adriatic Sea showed a negative correlation and highly 

significant (Table 4 and S7 Figure). Using the “best” fitted models, Ecosim reproduced 

satisfactorily the biomasses trends for some of the functional groups with available 

survey data in all sub-areas (Fig 3 and Fig 4). Overall, forage fishes (functional groups 

nº 8-9), demersal fishes (nº 12-14) and invertebrates (nº 18-19 and 21) showed a good fit 

in the different sub-models, while deep sea fish (nº 15) and benthos (nº 23) were the least 

well fitted (Fig 3, Fig 4 and S7 Figures). These latter groups are the ones with the fewest 

data points. A satisfactory fit was also shown for sharks and rays/skates groups (nº 16-

17), and, despite only few observed records, also for pinnipeds (nº 3) (Fig 3, Fig 4 and S8 

Figures).  

Based on the biomass trends by area, in the Western Mediterranean, the 

predicted time series suggested a decreasing pattern for the biomasses of several 

functional groups (Fig 3 and S8 Figure). European pilchard showed a decline from the 



 

 

2.5 Historical changes of the Mediterranean Sea ecosystem 

 
 

171  

beginning of our study period (1950), which became more pronounced in the last years 

of the surveyed period. A similar result was also observed for medium and small 

demersal fishes, and pinnipeds, although the model was not able to capture the sharp 

decline of these marine mammals in the 70s. As for sharks, rays/skates the model 

confirmed a decrease in trends until the end of the 1990s and a slightly increase in the 

2000s decade. For European anchovy and hake, Ecosim had difficulties reflecting 

observed variations in their biomass, although suggesting a decreasing trend for both 

species. 

 Table 3. Results of the temporally dynamic fitting procedure of the Ecopath model from 1950s to 2011 

following the procedure suggested by Mackinson et al., (Mackinson 2014) (Table 1). Vs is the number of 

vulnerabilities included in each iteration, sPP the number of primary production spline points (for 

smoothing of the time series) k is the number of parameters and %IF is the improved fit compared to 

the baseline AICc (#1). V and sPP are shown only for those models with the lowest Akaike Information 

Criterion (AICc). The “best” models (shown in bold and italics) are the ones yielding the lowest AICc 

and the one used to calculate model-based indicators. 
 

Steps Vs sPP min SS k AICc %IF 

1. Baseline 

West 0 0 191.0 0 -1768.0   

Adriatic 0 0 245.9 0 -1603.3   

Ionian  0 0 153.5 0 -1995.9   

Eastern  0 0 322.6 0 -1285.1   

Med 0 0 31.9 0 -227.9   

2. Baseline and trophic interactions 

West 1 0 190.9 1 -1766.7 -0.1 

Adriatic 1 0 245.9 1 -1601.3 -0.1 

Ionian  1 0 153.5 1 -1993.9 -0.1 

Eastern  1 0 322.6 1 -1283.3 -0.2 

Med 1 0 17.94 1 -226.1 -0.8 

3. Baseline and environment 

West  0 6 144.1 6 -2049.7 15.9 

Adriatic  0 28 156.1 28 -2037.2 27.1 

Ionian  0 32 62.6 32 -2863.6 43.5 

Eastern  0 28 167.2 28 -1931.4 50.3 

Med  0 10 7.8 10 -306.5 34.5 

4. Baseline, trophic interactions and environment 

West  23 3 103.0 26 -2357.7 33.4 

Adriatic  23 13 136.7 36 -2164.0 34.9 

Ionian  20 34 52.3 54 -3004.6 50.5 

Eastern  22 29 137.8 51 -2089.1 62.6 

Med  1 5 8.2 6 -308.9 35.6 

5. Fishery 

West 0 0 160.8 0 -1946.9 10.1 

Adriatic 0 0 172.7 0 -1985.7 23.8 

Ionian  0 0 75.2 0 -2738.6 37.2 

Eastern  0 0 211.6 0 -1736.6 35.1 

Med 0 0 11.6 0 -280.2 22.9 

6. Trophic interactions and fishery 

West 23 0 114.2 23 -2256.9 27.7 

Adriatic 23 0 121.9 23 -2315.5 44.4 

Ionian  23 0 62.9 23 -2876.7 44.1 

Eastern 20 0 189.9 20 -1811.7 40.9 

Med 2 0 9.5 2 -300.5 31.9 

7. Trophic interactions, environment and fishery 

West 22 5 60.1 27 -2917.2 65.0 

Adriatic 23 6 104.5 29 -2469.2 54.0 

Ionian  22 5 55.7 27 -2996.4 50.1 

Eastern 21 12 133.1 33 -2165.0 68.5 

Med  1 4 5.8 5 -353.8 55.3 
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A poor fit was observed for benthos and deep sea fish, 

where only few data points were available. A good 

reproduction of biomass time series was found for 

crustaceans and benthopelagic cephalopods where 

the model was able to follow the majority of the 

fluctuations in time (Fig 3 and S8 Figure). When the 

model was run using the PP from the biogeochemical 

model as an alternative primary productivity driver, 

we observed similar pattern (red dashed in Fig. 3 and 4) as the ones obtained using the 

PP Ecosim anomaly, and for certain species/functional groups (nº 8 and nº 21 in Fig.3) 

the fit improved. 

As for the Western Mediterranean, also in the Adriatic Sea, Ecosim suggested a 

more/less pronounced decline for demersal and pelagic fish and for some invertebrates 

(Fig 3 and S8 Figure). In particular, the model was able to capture the steep decline of 

pinnipeds observed in the area since mid-1970s and a less marked decrease of medium 

and small demersal fish observed in mid 1990s. Ecosim captured some of the pattern 

observed for European hake, sharks, rays/skates suggesting a decline of the groups until 

the end of the 1990s, followed by a slight increase or by fluctuations (in the case of 

European hake) in the last years of the studied period. An overall satisfactory match 

between predicted and available data was found for benthopelagic cephalopods where 

a decrease was captured since the beginning of the survey period, and for benthic 

cephalopods and crustacean where the model followed some of the fluctuation of the 

groups and a slight increase at the end of 2000s. Again, the model did not represent the 

trends well for deep sea fish (S8 Figure). Regarding forage fish, when we run the model 

using PP anomaly as driver, Ecosim was not able to reflect the decreasing biomass trend 

observed in European anchovies, while it was able to pick up a general decline for 

European pilchards. However, it was when we applied the PP from the biogeochemical 

model in the model run that Ecosim was able to follow the steep decline observed in 

European anchovies in mid 1970s and improve also slightly the decline of European 

pilchard. For the other species/functional groups, different trends were observed using 

the two different PPs particularly in the decades before the beginning of our time series 
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of observations (Fig 3 and S8 Figure). 

Fig 3. Representation of modelling fitting results for some functional groups occurring in the Western and 

Adriatic Seas for the period 1950-2011 (results for the rest of the groups are shown in S8 Figure). Predicted 

biomass (t·km-2) is shown as solid black lines, while observed data is represented as black dots. Functional 

groups codes correspond to those given in Fig 2. The predicted model (dashed red line) using modelled 

biogeochemical PP is also shown. Blue shadow represents the 95% percentile and 5% percentile obtained 

through the Monte Carlo routine. 
 

The Ionian Sea resulted to be the area with less biomass changes during the years 

with available survey data (Fig 4 and S8 Figure). Except for pinnipeds, where the model 

was able to pick up the decline since the late 1970, despite the presence of only few data 

points, all the other groups didn’t show any directional variation in time resulting 

mainly in a series of fluctuations. However, by looking at the overall time period (1950-

2011), the model suggested a small increase in biomass since the beginning of 1990s for 

small demersal fish and crustaceans. The model partly underestimated and was not able 

to capture the biomass trends for European pilchards and medium demersals (Fig 4 and 

S8 Figure), and it did not represent well the trend for benthos (S8 Figure). The use of PP 

from the biogeochemical model improved slightly the fit for crustaceans, sharks and 

benthopelagic cephalopods while maintaining the same pattern observed with the PP 

anomaly.  

In the Eastern Mediterranean, different trends among species/functional groups 

were detected (Fig 4 and S8 Figure). Ecosim represented relatively well the biomass 

declines of European pilchards and anchovies since the 1990s, despite underestimating 
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the high peaks observed at the beginning of this decade. The model was able to capture 

the biomass trends for European hake, sharks, small demersals, rays/skates, benthic 

cephalopods and crustaceans. All these groups showed similar patterns with signs of 

decrease in the 1990s and fluctuations afterwards. 

Fig 4. Representation of modelling fitting results for some functional groups occurring in the Ionian and 

Eastern Seas for the period 1950-2011 (results for the rest of the groups are shown in S8 Figure). Predicted 

biomass (t·km-2) is shown as solid black lines, while observed data is represented as black dots. Functional 

groups codes correspond to those given in Fig 2. The predicted model (dashed red line) using modelled 

biogeochemical PP is also shown.  Blue shadow represents the 95% percentile and 5% percentile obtained 

through the Monte Carlo routine. 

An underestimation of biomass by the model was predicted for medium 

demersal fish, benthopelagic cephalopods, deep sea fish and benthos where the model 

was not able to reproduce observed trends and fluctuations (Fig S8). A good fit, even 

though for only few data points, was found for pinnipeds where the model was able to 

represent the fluctuation of these 

marine mammals over time (Fig 4). 

The predicted trends obtained using 

PP from the biogeochemical model 

were similar to the ones found using 

the PP anomaly and for European 

hake, sharks, small demersals, benthic 

cephalopods and crustaceans the fit . 
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slightly improved. Ecosim was able to represent the decrease in biomass of large pelagic 

fish particularly since the 80s, while it failed to capture the fluctuation observed at the 

end of the 2000s in the whole Mediterranean model for the two highly migratory species 

for which we had survey data: large pelagics and sea turtles. In the case of the sea turtles, 

the model approximated the general increasing biomass trend of this reptile, but it failed 

to reproduce its fluctuations over time (Fig 5). We observed similar results with the PP 

from the biogeochemical model as a driver.  

The time series of catch trends estimated for the five areas, when compared with 

independent data, showed a general satisfactory match (Fig 6 and S9 Figure): the sub-

models overestimated or underestimated some fractions of the time series trends, but 

overall they were able to capture long-term trends similar to those observed (Fig. 6). 

In the Western Mediterranean, an increase (up to the end of the 1990s) and 

posterior decrease in catches were predicted for the majority of the groups with the 

exception of small pelagic fish, large demersal, and benthic cephalopods that continued 

to increase even afterwards. Non-significant trend was simulated for rays/skates, while 

the model was not able to reflect the trend observed for benthopelagic cephalopods. 

Regarding large pelagic fishes, catches predicted for the whole Mediterranean were 

similar to those observed until the 1980s, but the predicted catches did not reflect the 

increase observed in the last two decades (Fig 6a). 

In the Adriatic, as for the Western Mediterranean, the model simulated the 

decrease in catches observed in the beginning of the 1990s for the majority of the 

functional groups while it did not manage to pick up the sharp decline of European 

anchovies in mid 1970s, and of European hake and sharks in the 1990s (Fig 6b). In the 

Ionian Sea, predicted results reflected the increase in catches until the end of 2000s for 

the majority of the functional groups. For European hake, medium demersal benthic 

cephalopods, sharks and rays/skates, though, such increase turned into a decrease 

approximately around the 1990s (Fig. S9c). In the Eastern Mediterranean Sea, predicted 

results reproduced quite well the increase in catches for the majority of the functional 

groups until the 1990s and the decline afterwards and they also captured the continuous 

increase for benthopelagic cephalopods and small pelagic fishes. On the other hand, 

simulated results did not match the sharp decline of sharks observed since the 1980s in 
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the region (Fig. S9d). 

Fig 6. Predicted (solid lines) versus observed (dots) catches (t·km-2·year-1) for main commercially important 

functional groups of the Western Mediterranean (a) and Adriatic (b) ecosystems (1950-2011). Predictions 

obtained with the Mediterranean Sea model as whole for large pelagic catches are included in the Western 

Mediterranean plot (a. #6). Results for the Ionian and Aegean catches are shown in S9 Figure. 

Temporal model-based ecological indicators  

Trends in ecological indicators calculated from Ecosim temporal outputs showed 

different patterns if we looked at each sub-regional sea individually or at the 

Mediterranean ecosystem as a whole. For example, considering the entire 

Mediterranean Sea, a clear decreasing trend was observed in community biomass 

indicators like the forage fish biomass and, to less extent, for demersal fish, the 

Kempton’s biodiversity index and in all the trophic level indicators considered (TLco, 

TL≥3.25 and TL Catch) (Fig 7). On the contrary, an increase was predicted for 

invertebrate biomass while no clear trend was visible for sharks and rays/skates. Total 

catch was the only indicator that clearly increased in time (until 1990s) and that 

gradually decreased afterwards. These patterns were also reflected through the 

Spearman correlation test (Fig. 8). Considering sub-regional seas (S10-S13 Figures), we 

observed a clear decline of forage fish, demersal fish and sharks/rays-skates biomasses 

in the Western and Adriatic Seas, a fluctuation of these groups in the Ionian Sea while 



 

 

2.5 Historical changes of the Mediterranean Sea ecosystem 

 
 

177  

in the Eastern Mediterranean they respectively decreased, increased and fluctuated. 

Invertebrate biomass slightly decreased in the Adriatic Sea; fluctuated in the Western 

and Ionian Seas; and increased in the Eastern Mediterranean. The Kempton biodiversity 

index decreased in the Western and in the Ionian Sea, it showed a slight increase in the 

Adriatic while no clear trend was visible 

in the Eastern Mediterranean. Total catch 

increased in all the areas until the 

beginning of 1990s but in the Western 

and Ionian Seas started to fluctuate 

afterwards while in the Eastern and 

Adriatic Sea it gradually declined. As for 

the different trophic level indicators 

assessed, the mean TL of the community 

slightly increased in the Western 

Mediterranean and decreased in the 

other sub-regions, while the mean TL 

≥3.25 and mean TL catches decreased in 

all the seas except in the Eastern 

Mediterranean where they respectively 

fluctuated with no clear trend and 

slightly increased (S10-S13 Figures). 

When we tested the significance and 

correlation of our suite of temporal 

ecological indicators we noticed that in the Western and the Adriatic Seas the majority 

of the time series were negatively correlated with high significance (respectively 6 and 

7 out of 9 indicators; Fig 8). On the contrary, in the Ionian Sea and Eastern Mediterranean 

Sea, the community indicators (except for forage fishes in the Ionian that showed a weak 

negative correlation) were highly significant and positively correlated (Fig 8). Also, we 

observed no significant and weakly correlated trends for mean TL ≥3.25 and Kempton 

biodiversity index in the Eastern Mediterranean Sea.  
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Discussion 

This study quantified, for the first time for the whole Mediterranean Sea 

ecosystem, temporal patterns and responses of species/functional groups abundances to 

the historical combined effect of changes in primary productivity and fisheries.  

Model assumptions and limitations 

Modelling the Mediterranean Sea ecosystem is a challenging task, not only 

because of the complex dynamics that characterize this Large Marine Ecosystem (e.g., 

differences in environmental and biological features), but also because of the difficulties 

of gathering and integrating regional data (2015a). Several gaps have been already 

identified and described in the previous work of Piroddi et al. (2015a) which identified 

the lack of trophic information with a temporal dimension, lack of biomass estimates 

(especially of those non-commercially important species and deep-sea organisms), and 

lack of reliable catch data, particularly for southern Mediterranean countries. Also, lack 

in historical data series (particularly between 1950s and 1970s) and problems with data 

accessibility limit the development of EBM approaches (Coll et al. 2013, Katsanevakis et 

al. 2015, Piroddi et al. 2015a). Therefore, more efforts should be dedicated to improve 

data quality, and to make data better accessible for the region. This study includes the 

best available regional data (see Supplementary Information) and highlights, when 

necessary, gaps and difficulties encountered in the modelling process (see below). To 

account for the uncertainty around the model parameters, we applied a Monte Carlo 

routine to evaluate model outputs sensitivity (in our case for biomasses and model 

derived indicators) to data uncertainty. Considering input data uncertainty in model 

development is critical if the purpose of modelling is to inform policy/management 

processes (Collie et al. 2014, Heymans et al. 2016). Still, the majority of available 

modelling tools lack an approach to take uncertainty of modelled data (both input and 

output) (Allen et al. 2007, Piroddi et al. 2015c) into account. Although some time series 

were not well replicated and uncertainty analyses can be improved as higher quality 

data becomes available, our modelling exercise reproduced several surveyed datasets in 

a satisfactory way and, as such, it is to date the best available representation of historical 

trends from the Mediterranean Sea, and a first step towards the integrated and historical 

understanding of this complex ecosystem.  
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Historical ecosystem drivers of the Mediterranean Sea ecosystem 

Modelling results explained between 50% and 69% of the variability of available 

time series of data. Both fishing pressure and PP anomaly played an important role in 

improving the model fit. In addition, our results indicated that the PP anomaly, 

representing the temporal variation of the primary productivity of the system, was the 

strongest driver upon the Mediterranean Sea ecosystem. This confirms the results 

obtained from other studies (Coll et al. 2009a, Macias et al. 2014) that have shown how 

the Mediterranean Sea is driven by bottom-up processes where nutrient availability 

controls the biological characteristics of the region. The use of relative PP trends from a 

regional biogeochemical model helped validating our predicted PP anomaly trend and 

improved the temporal dynamics of selected species in the ecosystem (particularly for 

small pelagic fish). This was clearly visible, for example, in the Adriatic Sea where PP 

anomaly unsuccessfully reproduced the trends of European anchovies while PP from 

the biogeochemical model was able to capture the trends. This confirms the importance 

and need of coupling hydro-dynamic biogeochemical models with ecosystem models 

(such as EwE), particularly in complex areas like the Adriatic Sea that has different 

physical and biological oceanographic characteristics (e.g., eutrophic in the north, 

oligotrophic in the south; Polimene et al. 2006) and is also subjected to strong 

anthropogenic pressures (e.g., fishing) (Coll et al. 2009b, Steenbeek et al. 2013). Currently 

there is a growing interest in this coupling modelling framework (Travers et al. 2009, 

Rose et al. 2010) in order to improve our capability to predict future ecosystem changes, 

and provide guidance for the setting of targets and implementation of management 

measures (Kaplan et al. 2012, Piroddi et al. 2015c).  

Our study also highlights that fishing was an important driver affecting the 

dynamics of fish populations and invertebrates of the Mediterranean Sea ecosystem. 

This is in line with previous studies that highlighted the increasing impact of fishing in 

the Mediterranean Sea and the overexploitation of its marine resources (Lotze et al. 2006, 

Colloca et al. 2013, Vasilakopoulos et al. 2014, Tsikliras et al. 2015). Simulations, in fact, 

were able to reflect the impact of increased fishing effort in the basin starting, in all the 

four sub-areas, since the beginning of 1950. Nominal fishing effort showed decreasing 

trends only after 2000; the only exception was found in the Eastern Mediterranean Sea 
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where fishing effort showed a fluctuating trend in the 2000s decade. 

Historical trends of biomass, catch and ecological indicators 

We provide interesting results regarding temporal dynamics of major marine 

species/functional groups of the Mediterranean Sea ecosystem. In general, both biomass 

trends and ecological indicators revealed that the combined effect of excessive fishing 

pressure and changes in the primary productivity have altered the Mediterranean 

marine ecosystem over time, especially reducing the proportions of top predators (e.g., 

pinnipeds, large pelagic fish) and increasing the abundance of groups at lower trophic 

levels (e.g., invertebrates). This was already observed from west to east in other studies, 

for example, in the Catalan (Coll et al. 2006), Adriatic (Coll et al. 2009b, Lotze et al. 2011) 

and Ionian (Piroddi et al. 2010, Piroddi et al. 2011) Seas. Our results also show that forage 

fish species were observed to decrease, at a different time scale, in the majority of the 

studied Mediterranean sub-areas; with the only exception in the Ionian Sea where no 

clear trends were observed. These small pelagic fish (mainly European pilchard and 

anchovy) constitute the bulk of fish catches in the Mediterranean Sea, accounting for 

almost 40% of total landings (FAO 2012) and they are highly commercial. Therefore, an 

increase of fishing mortality, together with changes in productivity, have affected these 

stocks throughout the Mediterranean Sea. As for the Ionian Sea, the results obtained here 

should be taken with caution. Our fitting analysis for the majority of the 

species/functional group in this area didn’t show any clear trend besides fluctuations 

over time. These results for the Ionian Sea disagree with several studies that have shown 

decreasing trend in the abundance of many commercial and uncommercial species in 

the area (Patti et al. 2004, Machias et al. 2008, Piroddi et al. 2010). Poor model 

performance could be related to poor quality of the available data used in our study (e.g., 

for forage fish species, long time series were available only from Sicily), or to the fact 

that important additional factors were missing from our modelling analysis (e.g., 

changes in oceanographic and physical characteristics, quality of prey availability, etc.) 

that could be affecting Ionian Sea populations. This will need further research. Trends 

in demersal fish stocks also show signs of decrease, both at regional and sub-regional 

scale (specifically in the Western and Adriatic Sea), while sharks (which in our model 

were mainly represented by demersal species, see S1) and rays/skates seemed to have 
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declined in the Western and Adriatic regions, but not at the regional scale. Part of these 

results are in line with historical (Aldebert 1997) and recent studies (Ferretti et al. 2008, 

Colloca et al. 2013, Vasilakopoulos et al. 2014), which pointed to increased fishing 

pressure and lack in gear selectivity as the reason why 85% of the assessed demersal 

stocks (including demersal sharks, rays 

and skates) are currently overexploited. 

A clear sign of change in the structure of 

the Mediterranean Sea ecosystem is 

visible from results of the mean trophic 

level of the community, mean TL≥3.25 

and Q diversity index (which includes 

those species or groups with TL≥3) 

showing a decline since 1950s and 

reflecting the decline of large 

predators/fish stocks and increase of 

lower trophic level organisms. These 

results are in line with previous 

ecosystem assessments (Lotze et al. 2006, 

Coll et al. 2010), although it is important 

to bear in mind that these results were 

assessed considering both fitted and non-fitted groups. Caution should be taken when 

interpreting the results. Differences in ecological indicators were found among the 

different sub-regions, and we would like to stress the need to further develop these 

results. Regarding catches, the fitting procedure enabled us to detect issues related to 

landings data at the beginning of our survey period. Low fishing mortalities were 

observed in the 1950s, in each sub-area, for three very important commercial species 

(European pilchard, anchovy and hake). Mortalities for these species were between 5 

and 10 times lower than the average reference values reported for these fish stocks in the 

Mediterranean Sea (Patterson 1992, Colloca et al. 2013, Tsikliras et al. 2015). This 

confirms the hypothesis, already highlighted by several studies (EC 2003, Garibaldi 2012, 

Moutopoulos & Koutsikopoulos 2014, Pauly et al. 2014), of poor quality of fisheries 
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statistics, particularly in historical times (1950-1970). Part of this problem could be 

related to the different way fisheries data were collected and aggregated by the different 

countries and regional institutions (Katsanevakis et al. 2015). Poor data quality could 

also be explained by high intensity illegal, unreported and unregulated (IUU) fishing 

activities occurring in the region (Ulman et al. 2013, Coll et al. 2014, Pauly et al. 2014, 

Piroddi et al. 2015b) especially with regard to illegal nets and mesh sizes, the landing 

and marketing of undersized fish, and compliance with restrictions on fishing season 

and areas (Colloca et al. 2013). This highlights the need to utilize better catch data in 

modelling exercises in the Mediterranean Sea in order to account for more realistic 

fishing mortality estimates and trends, and guide/inform proper management decisions. 

Recent catch reconstruction efforts, which aim at considering all types of fisheries 

removals (from reported and unreported landings to recreational landings and 

discards), have been constructed and are now available (www.seaaroundus.org) for the 

different countries of the Mediterranean Sea (Pauly & Zeller 2016). Therefore, a 

necessary further step of this study should be the integration of such catch reconstruction 

in the input modelling parameters to compare results.  

Despite limitations, our model was able to reflect the temporal trends of fisheries 

across the Mediterranean Sea, with a general increase in the total catch and a decline in 

the mean TL catch. Such patterns could reflect that catch composition, with a highly 

diversified targeted species, continues to change in time as a result of fisheries expansion 

to further and deeper fishing grounds (Coll et al. 2014, Pauly et al. 2014). A different picture 

emerges when looking at total catches per sub-regional area, where clear signs of decrease 

are noticeable mainly in the Adriatic and the Eastern Mediterranean Sea and for the last 

simulation years also in the Western Mediterranean and Ionian Seas. These results are 

in line with previous studies that have pointed out excessive fishing mortality and food 

web degradation caused by fishing in the Eastern and Adriatic fisheries (Libralato et al. 

2010, Lotze et al. 2011, Tsikliras et al. 2015). On the other hand, the more stable catches 

observed in the Western Mediterranean and Ionian Sea could be the result of exploiting 

new species, as observed for the Mediterranean as a whole (Coll et al. 2014).   

The trophic level of the catches for the whole Mediterranean Sea and as well for 

the majority of the sub-areas (Western, Adriatic and Ionian Seas) presented a clear 
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‘fishing down’ effect (Pauly et al. 1998) that occurs when top predators and large sized 

fish are removed from the ecosystem and gradually replaced by lower trophic level 

organisms. Similar trends had been observed in the Mediterranean Sea, both at regional 

(Pauly et al. 1998), sub-regional (Tsikliras et al. 2015) and more local scale (Stergiou 2005 

, Shannon et al. 2014). The only exception was found in the Eastern Mediterranean Sea 

where, contrary to the rest of areas, a situation of fishing up was found. Accordingly to 

Stergiou and Tsikliras (2011), though, this might be a ‘false fishing up effect’ occurring 

when small pelagic fishes and invertebrates, with a low trophic level, and larger-size 

predators fish are both intensely fished and/or depleted.   

Management and conservation implications of our results and conclusions 

The Mediterranean has been exploited for centuries, suffering the impacts of 

continuous and multiple anthropogenic pressures (Coll et al. 2012, Micheli et al. 2013). 

Because of increasing signs of deteriorations and degradations at species-, community- 

and ecosystem levels (Coll et al. 2012, Colloca et al. 2013, Micheli et al. 2013), evidenced 

as well by this study, the basin is now of particular concern, and is a clear candidate for 

management actions to halt further decline and increase the sustainable use of marine 

resources (Katsanevakis et al. 2015). Hindcasting analyses, as performed in this study, 

allow assessing historical changes in the ecosystem and in its marine resources, and are 

necessary pieces of the tool kit needed to support management and conservation 

processes. Yet, to move toward more complete regional policy and conservation plans, 

several additional steps should be developed from this study in the near future.  

First, spatial-temporal analyses able to identify spatial patterns that can directly 

assist spatial management actions (e.g., by prioritizing specific areas of concern), and 

facilitate the communication between scientists and policy makers, environmental 

managers, conservationists and the general public (Micheli et al. 2013) are needed to 

contribute to the recent Maritime Spatial Planning Directive (MSPD) of the European 

Commission (EC 2014a). A first attempt has been made in a recent study by Liquete et 

al (in press), which assessed temporally and spatially the delivery of five marine 

ecosystem services for the whole Mediterranean basin using several modelling 

approaches, including EwE and the preliminary results of the present research.  

However, as pointed out by these authors more work is needed to be able to support 
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management decisions.   

Second, the integration of additional human stressors (e.g., aquaculture, invasive 

species, changes in climate) as driving forces of species dynamics is needed to increase 

the reliability of this modelling exercise since marine ecosystems are impacted by 

simultaneous cumulative threats (Coll et al. 2012, Micheli et al. 2013). Currently the 

recent MSPD, which include the EU's Blue Growth Strategy (EC 2014b) that supports 

sustainable growth in emergent marine sectors (e.g., aquaculture, coastal tourism, 

marine energies), is expected to impose further pressures on the Mediterranean Sea (Coll 

et al. 2012, Piante 2015).  

Third, the development of forecast scenarios, including different future 

management actions, is crucial for the implementation of management plans. Future 

scenarios should follow the Intergovernmental Panel on Climate Change (IPCC) 

projections on climate-induced changes in sea surface temperature. They should also 

consider the relevant elements of the Common Fisheries Policy (CFP) on commercially 

important stocks to exploit them at Maximum Sustainable Yield (MSY) levels and the 

reduction of fishing effort needed to develop effective and appropriate policy and 

conservation plans in the region (Colloca et al. 2013, Tsikliras et al. 2015).  

To conclude, with anthropogenic pressures rapidly expanding in the 

Mediterranean Sea, there is a serious concern that these may push the system beyond 

the “point of no-return”, with consequence for marine biodiversity and the economies 

that depend on it, seriously constraining the ecosystem service options available to 

future generations. Ecosystem modelling tools can play a key role as suitable tools to 

analyse the suitable options towards ensuring the coexistence of sustainable human 

activities and the protection of healthy marine ecosystems like the Mediterranean Sea. 

Temporal hind-cast analysis has enabled us to assess changes in the historical dynamics 

of species/functional groups inhabiting this system, quantifying the role and impact of 

changes in primary productivity and fishing pressure. This constitutes an important first 

step further to advance in the regional assessment of the Mediterranean Sea ecosystem 

to inform conservation plans and management actions.  

See Supplementary Information in Annex 5



 
 
 

111  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2.6 

Summary of Results 



 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

2.6 Summary of results 

 
 

187  

Chapter 2.1 

Models and modelled derived indicators potential to support the MSFD 

Of the models (#44) reported in this study, more than half were coupled 

ecological models (Table 1 of Chapter 2.1). The most common type of models currently 

in the catalogue were hydrodynamic-biogeochemical models (36%) followed by end-to-

end (18%), species distribution/habitat suitability, bio-optical and multispecies (14% 

each), biogeochemical and meta-community (2% each) models (Table 1 of Chapter 2.1). 

Coupled (both E2E and hydrodynamic-biogeochemical models) and bio-optical (remote 

sensing) models included in this catalogue were primarily spatially dynamic and 5 out 

of 30 models were also dynamic. The remaining models were mainly static with only 5 

out of 14 models presenting dynamic and spatial modules as well (Table 1 of Chapter 

2.1). Ecopath with Ecosim (EwE) was notably associated with the largest number of 

model-derived biodiversity indicators (Table 2 of Chapter 2.1). Not all the models were 

able to address uncertainty; the majority (61%) lacked an approach to determine 

confidence intervals/range of uncertainty or required further validation work for 

indicators. From the models that reported addressing uncertainty (39%), data 

comparison and data validation (e.g., model outputs fitted to surveyed data) was the 

most common method reported (Table 1 of Chapter 2.1). As for the model potential to 

support MSFD, the models were capable of addressing indicators in 8 of the 11 

descriptors of the MSFD (Table 2 of Chapter 2.1). Within the biodiversity related 

descriptors, which was the focus of the study, non-indigenous species (D2) and seafloor 

Integrity (D6) were the most poorly addressed by the models currently in the catalogue 

(Table 2 of Chapter 2.1). 

Regarding model based indicators, a total of 201 were included in this catalogue, 

of which more than half were considered to be “operational” (64%), while the majority 

of the remainder were still “under development” (33%), with only a few “conceptual” 

approaches (3%) presented (Table 2 of Chapter 2.1). Biomass indicators constituted the 

largest group with approximately 57% followed by diversity indices (13%) and physical, 

hydrological and chemical indicators (12%). The indicators concerned mainly fish, 

phytoplankton, zooplankton, benthic and pelagic invertebrates and marine mammals 

(total 64, 45, 31, 23, and 17, respectively) (Fig. 3 of Chapter 2.1), while the remaining 
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biodiversity components were covered with less than 10 indicators each. EwE model-

derived indicators, either operational, conceptual or still under development, have been 

used to model all types of biodiversity components (excluding microbes), with fish being 

the most frequently assessed group (25%) followed by benthic invertebrates (15%), 

marine mammals (12%) and cephalopods (11%). Looking at model type, multispecies 

models assessed the majority of biodiversity components with the exception of microbes 

that were mostly evaluated by coupled hydrodynamic–biogeochemical models (Fig. 3 of 

Chapter 2.1). The least addressed biodiversity components were microbes, coastal fish, 

pelagic elasmobranchs, baleen whales, seals and offshore pelagic birds. In relation to 

habitat, water-column was the most comprehensively evaluated habitat, specifically the 

continental shelf, while ice associated habitats, estuarine water column and shelf 

sublittoral mud were seldom covered (Table 5 of Chapter 2.1).  

The majority of reported indicators related to the Mediterranean Sea, 

representing more than half of the indicators entered in the catalogue (137), followed by 

the North-East Atlantic Ocean (78), Black Sea (29), Baltic Sea (18), non-EU regional seas 

(11) and EU scale (2). The EwE software was the most widely used model and has been 

applied in each EU regional sea area and most sub-regions; the second most commonly 

used model was ECOSMO, which has been implemented for the Baltic Sea, the North-

East Atlantic Ocean and one non-EU regional sea (Barents Sea). In most regional seas, 

the proportion of model-derived indicators considered operational was high (ranging 

between 60 and 80%), except for the Black Sea where a suite of ecological models had 

been developed but using model-derived indicators still under development (about 

70%) at the time of the assessment. 

Chapter 2.2 

Reconstructed total catches 

The reconstructed total catch for the 1950–2010 period exceeded by a factor of 2.6 

the official catches reported by the FAO on behalf of Italy. Of this, approximately 79% 

was caught by industrial fisheries, 17% by artisanal fisheries, 3% by recreational fisheries 

and <1% by subsistence fisheries, while discards (7% of the total) were predominately 

(95%) from industrial fisheries (Fig. 3a of Chapter 2.2). Reconstructed total catches were 

relatively stable throughout the 1950s and 1960s, averaging about 700,000 t year−1, before 
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increasing between 1971 and 1979 to 1.1 million t year−1. Thereafter, the annual catch 

plateaued at an average of 1.06 million t year−1 until 1986, then sharply decreased to 

676,000 t year−1 by 1990. Annual catches remained steady in the early 1990s, with a small 

increase to 741,000 t in 1998, before again sharply decreasing and continuing the 

declining trend to the end of the time series in 2010, when catches were just 374,000 t 

(Fig. 3a of Chapter 2.2). Catches consisted of 92 taxa, of which 65 were identified to 

species, including higher pooled groups such as ‘marine fishes nei’ and ‘marine 

invertebrates nei’. In terms of total tonnage, catches were dominated by small pelagic 

fishes, notably European anchovy (E. encrasicolus), which accounted for 18.1% of all 

catches (Fig. 3b of Chapter 2.2). The second most important taxon, in terms of tonnage 

(at least in earlier decades) was the European pilchard (S. pilchardus), which accounted 

for 12.5% of total catches overall, but has since declined substantially (Fig. 3b). The 

remaining taxa, grouped by family, contributing the most to the catches were molluscs 

(12.4%), Scombridae (9.0%), Sparidae (7.4%), crustaceans (5.6%), Carangidae (4.0%) and 

sharks and rays (3.9%; Fig. 3b of Chapter 2.2). 

Official landings 

In total, for the 1950–2010 period, Italian reported national landings ranged 

between approximately 220,000 and 721,000 t year−1. These data were visibly higher (on 

average more than two times higher) than the data reported to FAO for the same time 

period which ranged from 171,000 to 430,000 t year−1. Overall, there was a slight decrease 

in national reported landings between 1950 and the beginning of the 1960s, followed by 

an increase in the middle of the 1980s and a general and continuous decline to 2010. This 

differs from the trend in the FAO data which increases steadily in 1950 with a peak in 

1985 and then fairly steadily declines in 2010 (Fig. 3a of Chapter 2.2). European anchovies 

and European pilchards were the main fish species reported in the national data 

throughout the different sub-regions, which began to decline in the beginning of 1980s 

(Fig. 3b of Chapter 2.2). 

Fishing effort and Catch per unit of effort  

Results indicated that artisanal vessels dominated in terms of vessels numbers, 

followed by trawlers and multiple gears (Fig. 5a of Chapter 2.2). Trawlers, on the other 

hand, had the highest fishing effort, in term of cumulative engine power (kWdays−1), 
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followed by purse seiners and artisanal fisheries (Fig. 5b of Chapter 2.2). With regards 

to all fishing fleet and their trends, number of vessels and fishing effort, decreased over 

time, after the maximum from the late 1970s to mid-1980s (with only multiple gears 

having their highest peak in the 1990s) and a steady decline thereafter. The CPUE trend 

showed a continuous decline since the 1950s with a maximum of ∼9kg kW−1days−1 in the 

early 1950s and a minimum of ∼3kg kWdays−1 in the late 2000s (Fig. 6 of Chapter 2.2). 

Unreported landings – Subsistence catches 

The estimated subsistence catches for the 1950–2010 time period averaged 6400 t 

year−1, with a maximum of 9100 t in 1982 and minimum of 4000 t in 2010, contributing 

only 0.9% of the reconstructed total catch (Fig. 3a of Chapter 2.2). In this case, the Central 

Adriatic Sea and Sicily had the highest removals, with approximately 91,400 t (23%) and 

85,600 t (22%), respectively. 

Unreported landings – Unreported commercial catches and discards 

The estimated unreported catches for the illegal driftnet fishing fleet for the 1992–

2010 period totaled 49,130 t, which consisted to 83% of swordfish and 17% of tuna 

species. The regions in which this illegal activity was prevalent were the South 

Tyrrhenian Sea and Sicily, which contributed 46% and 31% of the 49,130 t, respectively. 

Also, an illegal component from other industrial fishing fleets and the artisanal sector 

was added. In particular, a total of approximately 6 million t was estimated for the 

period 1950–2010, of which 76% and 24% came from industrial and artisanal fisheries, 

respectively. 

Retained unreported by-catch per fleet type and per subdivision for the period 

1950–2010 accounted for approximately 5 million t, averaging about 82,500 t year−1, most 

of which came from industrial fisheries (95%) and from the Central Adriatic (∼1.6 million 

t; 33%) and Sicily (1.2 million t; 25%). The major by-catch taxa were clams (Bivalvia; 

604,000 t; 12.0%), sharks (Selachimorpha; 446,000 t; 8.9%), jacks (Trachurus spp.; 335,000 

t; 6.7%) and rays (Rajidae; 283,000 t; 5.6%). Discards, on the other hand, were 3.4 million 

t. Since we applied a proportional rate to separate the retained by-catch from discards, 

the same patterns were observed for the regional subdivisions and discarded taxa. 

Discards and by-catch from bottom trawling represented the largest component, totaling 

3.8 million t (Fig. 3a of Chapter 2.2). 
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Uncertainty 

The ranges of uncertainty estimated for the reconstructed total catches showed 

wider confidence intervals in the first two estimation periods (1950–1969; 1970–1989) and 

a reduction only in the last period (1990–2010; Fig. 7 of Chapter 2.2). 

Chapter 2.3 

Trophic levels 

The highest trophic levels (TL) were observed for Tursiops truncatus (TL=4.07), 

pelagic fish (mainly large pelagics, TL=4.05) and demersal fish 3 (mainly large demersals, 

TL=3.91). In contrast, annular seabream (Diplodus annularis), European sardine (Sardina 

pilchardus), European sole (Solea vulgaris), mullidae, demersal fish 2 (mainly sparidae 

species), mugilidae, other crustaceans zooplankton, benthic invertebrates, bivalves and 

gastropods and bacterioplankton had lower TL values ranging between 2.13 and 2.99.  

Time series fitting 

The best performances in fitting observed data were obtained when trophic 

interactions as well as fishing and environmental variables were included all together in 

the fitting procedure. The best model, which was the one with the lowest AICc, 

explained 78% of the variance of the data (Table 3 of Chapter 2.3). Environmental drivers 

in combination with trophic interactions were able to explain the majority of the 

variability observed in the ecosystem (77.2%) while fishing marginally contributed with 

a 1.8%. Different vulnerabilities were also tested and the largest improvement was 

obtained with 30 trophic interactions. The best model reflected quite well the biomass 

trends for the apex predators of the Amvrakikos Gulf. In particular, Ecosim was able to 

predict Tursiops truncatus, Phalacrocorax carbo and Pelican crispus abundance trends for 

the surveyed periods (Fig. 4 of Chapter 2.3). A slight improvement was found for 

seabirds when the mediation function was incorporated in the model, assuming an 

increased availability of prey on the surface of the water column. For bottlenose 

dolphins, on the other hand, the trend improved when a decrease in prey and feeding 

area was assumed. For forage fish species like Sardina pilchardus the model reproduced 

quite well the fluctuations in CPUE observed between 1980 and 2004, while predicted 

trends between 2005 and 2007 were overestimated. A similar scenario was also observed 

for mugilidae. A good reproduction of CPUE time series data was shown for Trachurus 
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trachurus, Diplodus annularis, mullidae and benthopelagic cephalopods. For these 

groups, however, the increase in biomass observed in the early 2000s was not picked up 

by the model. Ecosim was not able to represent well the fluctuations observed for Penaeus 

kerathurus. As for the other commercially important groups only few data points (from 

2003 to 2007) were available resulting also in a poor fit (S4 in Supplementary material). 

Regarding landings, Ecosim generally underestimated observed values, had 

difficulties in capturing the changes in catches although trends were vaguely captured 

for the majority of the groups (Fig. 5 of Chapter 2.3). 

Ecological Indicators 

Ecological state indicators calculated by Ecopath for the Amvrakikos Gulf (Table 

2 of Chapter 2.3) revealed that the main flows in the system were flow to detritus (39%) 

and consumption (37%) followed by respiration (15%) and exports (8%). In addition, 

indicators addressing community energetics and cycling of nutrients such as the ratio 

between total primary production (PP) and total respiration (R) (Christensen, 1995; 

Odum, 1969), primary production/biomass ratio (PP/B) and the SOI (System Omnivory 

Index) suggested the system to be at an intermediate-low level developmental stage. The 

FCI (Finn's Cycling Index), the mean transfer efficiency (TE) and overhead showed 

relatively high values while ascendancy was quite low. Fishing indicators such as the 

primary production required (PPR) of the Gulf and the mean trophic level of the catches 

were respectively 8% and 2.77. The pedigree index of the model was 0.57. Trends in 

ecological indicators calculated by Ecosim revealed changes through time in the 

structure of the Amvrakikos Gulf ecosystem (Fig. 6 of Chapter 2.3). In particular, trophic 

level indicators mTLco and mTL2—3 increased since the beginning of 1980s. Similar trend 

was observed also for the ratio between pelagic and demersal species. The other two 

trophic level indicators, mTL3.25 and mTLTp, showed clear decrease in time, with mTL3.25 

though increasing again from middle of 2000s. Kempton's biodiversity index fluctuated 

in time with a certain stability and no clear trend. On the contrary, mean trophic level of 

the catches (mTLc), fishing in balance index and relative PPR decreased since the 

beginning of the studied period. 

Chapter 2.4 

TLs and flows 
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The highest TLs were found for ‘piscivorous cetaceans’ and ‘monk seals’ (TL ≥ 4) 

while the other marine mammal group, ‘other cetaceans’, showed a TL of 3.53 (mainly 

because of the presence of ‘zooplankton’ and ‘benthopelagic cephalopods’ in their diet). 

‘Seabirds’, despite being considered a top predator, showed a relatively low TL due to 

the presence of discards (mainly small pelagic fishes, Oro & Ruiz 1997, Bozzano & Sardà 

2002) in their diet. Similarly, ‘sea turtles’ might have a higher TL than estimated by the 

model, but their diet also includes discards (Tomas et al. 2001, Gómez de Segura et al. 

2003, Casale et al. 2008), and thus, they presented a fairly low TL (2.68) in the model. For 

the fish groups, ‘large pelagic fishes’ showed a relatively high TL (3.94), followed by 

‘European hake’ (between 3.86 and 3.73), ‘large demersal fishes’ (between 3.68 and 3.56), 

‘sharks’ (between 3.85 and 3.64) and ‘rays and skates’ (between 3.41 and 3.27). ‘Medium’ 

and ‘other small’ pelagic fishes were given a TL between 3.28 and 3.19 and between 3.14 

and 2.89, respectively. ‘European pilchard’ and ‘European anchovy’ had TL values 

ranging between 3.25 and 3, while the lowest TLs were observed for ‘medium’ and 

‘small’ demersal fishes and ‘deep-sea fishes’ (between 3.04 and 2.80). Of the remaining 

functional groups, ‘benthopelagic’ and ‘benthic cephalopods’ and ‘jellyfish’ reached TL> 

3, ‘crustaceans’ showed values between 2.79 and 2.63, and ‘zooplankton’, ‘bivalves and 

gastropods’ and ‘benthos’ had TL values close to 2.  

Looking at the 4 MSFD areas, comparing total biomass and mean TL of the 

community, the Adriatic and the Western Mediterranean Sea were the areas with the 

highest total biomass, followed by the Ionian and Eastern Seas (Fig. 3 of Chapter 2.4). 

During the 2000s, the mean TL of the community (TLco) differed considerably whether 

calculated using TLco ≥ 1 or TLco > 1 (i.e. excluding detritus and primary producers). 

For TLco≥ 1, the Adriatic was the area with highest mean TLco (1.86) followed by the 

Ionian (1.56), Eastern (1.5) and Western Mediterranean (1.49). For TLco > 1, the Western 

had the highest TLco (2.36), followed by the Eastern (2.34), Ionian (2.28) and Adriatic 

Seas (2.18) (Fig. 3 of Chapter 2.4). Several differences in TLs were also found between 

the 2 modelled time periods, with declines observed particularly in the Ionian and 

Eastern Mediterranean Sea in the 2000s compared to the 1950s (Fig. 4 of Chapter 2.4).  

Trophic impact and keystone species 

Among all MSFD areas, most predators had a direct negative impact on their 
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prey through their diet preferences; functional groups negatively impacted themselves 

due to cannibalism/within group competition; demersal functional groups had a greater 

impact (either negatively or positively) on the majority of the other groups than pelagic 

functional groups, and ‘zooplankton’ and ‘phytoplankton’ groups most positively 

affected all other groups in the system (e.g. through a bottom-up effect).  

MTI analysis in both time periods revealed changes in the role of ‘pinnipeds’ in 

the West, Adriatic and Ionian Seas, with a higher impact in the food web during the 

1950s and almost no impact in the 2000s. In the Eastern Mediterranean, where the species 

still occurred in greater numbers, the impact on the food web was greater in 2000s than 

in the other 3 MSFD areas but still reduced compared to the 1950s. Similar trends were 

observed for ‘piscivorous cetaceans’ in all MSFD areas, where the group had a large 

effect in the 1950s but because of their reduced biomass, only had a limited effect in the 

2000s. For fishes, ‘European anchovy’ and ‘European pilchard’ similarly affected the 

Mediterranean food web with greater positive impact on top predators, pelagic fishes 

and fisheries (particularly mid-water trawlers and purse seiners). Interestingly, ‘sharks’ 

were negatively impacting marine mammals either through direct competition for the 

same resources or niche overlap. Overall, lower TL organisms, namely ‘benthos’, 

‘crustaceans’ and particularly ‘seagrass’, positively affected the rest of the food web. 

Results also revealed that the role of fisheries in the different MSFD areas has 

changed with time, growing in impact from 1950s to 2000s, and affecting several groups 

in the different food webs. In general, if only the commercially exploited functional 

groups were considered, results showed a greater impact of bottom trawlers, mid-water 

trawlers and purse seiners (Fig.  7b of Chapter 2.4). More specifically, bottom trawlers 

and dredges had large negative impacts on targeted demersal species (mainly demersal 

fishes and ‘molluscs’) and on ‘sea turtles’ (incidental catches), while longline fisheries 

had large negative impacts on ‘large pelagic fishes’ (target species) and, through 

incidental catches, on ‘sea turtles’, dolphins and ‘seabirds’. Mid-water trawlers and 

purse seiners showed negative impacts on targeted small pelagic fishes and, through 

direct competition for the same resources, on marine mam- mals and ‘seabirds’. When 

all functional groups in the ecosystem were included in the analysis, artisanal fisheries 

seemed to be the fleets with greater negative impact, particularly in the Western, Ionian 



 

 

2.6 Summary of results 

 
 

195  

and Eastern Mediterranean Seas (Fig. 7a of Chapter 2.4). Recreational fisheries had a 

negative impact on ‘large pelagic fishes’ and ‘sharks’ in the Western, Adriatic and Ionian 

Seas and on ‘medium’ and ‘small’ demersal and ‘medium‘ and small pelagic fishes in 

the Eastern Mediterranean.  

The results obtained from the keystoneness analysis (Fig. 8 and Table S6 in the 

Supplement of Chapter 2.4) revealed that in the 1950s ecosystem, ‘large pelagic fishes’ 

had the highest overall keystoneness role followed by ‘sharks’ and ‘medium pelagic 

fishes’ groups, whereas in the 2000s ecosystem, ‘medium pelagic fishes’ were replaced 

by ‘benthic’ and ‘benthopelagic cephalopods’. Interestingly lower TL groups (e.g. 

‘zooplankton’, ‘phytoplankton’ and ‘benthos’) were also identified in both time periods 

as keystone groups, probably caused by their overall low biomass and high P/B 

(characteristic of oligotrophic systems) and important role in the ecosystem. In both time 

periods, marine mammals, in particular ‘pinnipeds’ and ‘piscivorous cetaceans’, 

appeared within the least important keystone groups. 

Comparison among European regional seas 

The statistics and main indicators calculated from the whole Mediterranean Sea 

ecosystem model representing the 2000s were compared with other modelled European 

regional seas for the same or similar period (Table 2 of Chapter 2.4). The TST revealed 

that the main flows driving the Mediterranean Sea were flow to detritus (42%) and 

exports (39%) followed by consumption (15%) and respiration (5%). In the Baltic, North 

and Black Seas, on the other hand, consumption seemed to be the flow with the highest 

importance (around 43−48%) followed by flow to detritus (22−30%), respiration (20−23%; 

in the Black Sea, this flow constituted the second most important flow, with 29%) and 

exports (1−6%). Looking at ecological indicators addressing community energetics and 

cycling of nutrients, under Odum’s theory (Odum 1969), our results suggest that the 

Mediterranean Sea ecosystem is at an early developmental stage. This was visible, for 

example, in the ratio between total primary production (PP) and total respiration (R) 

(Odum 1969, Christensen 1995) or in the primary production/biomass ratio (PP/B). On 

the other hand, the indicators from the other European Seas suggested that systems fell 

within an intermediate-low level developmental stage. For the SOI, despite the low 

general values, the Mediterranean Sea showed the highest value, while in relation to the 
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2 cycling indices, the Mediterranean basin had the highest values in PCI and the lowest 

in FCI. For each European regional sea, ascendancy was relatively low, whereas 

overhead was high. As for fishing indicators, the PPR% of the Mediterranean was 0.81%, 

the lowest among the other seas, while TLc was 3.04 in the Mediterranean Sea, similar 

to the Black Sea and lower in comparison to the other European Seas with higher TL 

values (between 3.3 and 3.7). 

Chapter 2.5 

Time series from the model fitting 

 The most statistically significant results in our model fitting exercise were 

obtained when trophic interactions, fishing and the primary productivity changes were 

included together in the model run (Step 7 in Table 3 of Chapter 2.5). Differences were 

found among the five areas with the “best” fitted models (lowest AICc) explaining 

between 50% and 69% of the variance of the data (Table 3). By looking at each area 

separately, the Ionian Sea sub-model was the one that showed the smallest improvement 

of prediction capabilities (thus the AICc estimates declined the least), while the Eastern 

followed by the Western Mediterranean were the areas with the biggest improvement 

from the baseline AICc estimates. Both fishing and primary productivity drivers, when 

considered individually, were able to enhance the fit of all areas by ~16% to ~50% (when 

using the predicted PP anomaly) and by ~10% to ~37% when using fishing effort (steps 

3 and 5 in Table 1 of Chapter 2.5). The addition of trophic interactions to changes in PP 

anomaly alone (step 4 in Table 1 of Chapter 2.5) provided the second largest 

improvement for the Western, Ionian and the whole Mediterranean Seas (AICc reduced 

further by ~10%). For the Adriatic Sea this was obtained with the addition of trophic 

interactions to fishing effort (step 6 in Table 1 of Chapter 2.5). Also, different 

vulnerabilities were tested and the largest enhancement was obtained using high 

vulnerabilities (step 7 in Table 3 of Chapter 2.5) for both the four sub-models (maximum 

predator prey-interactions or Vs: #24) and the additional Mediterranean model as a 

whole (maximum predator prey-interactions or Vs: #2).  

When we checked for correlation between the PP anomaly resulting from the 

Ecosim fitting procedure and the PP from the biogeochemical model, in all the areas 

except for the Adriatic Sea both PP time series were positively correlated with high 
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significance. On the contrary, the Adriatic Sea showed a negative correlation and highly 

significant (Table 4 and S7 Figure of Chapter 2.5). Using the “best” fitted models, Ecosim 

reproduced satisfactorily the biomasses trends for some of the functional groups with 

available survey data in all sub-areas (Fig 3 and Fig 4 of Chapter 2.5). Overall, forage 

fishes (functional groups nº 8-9), demersal fishes (nº 12-14) and invertebrates (nº 18-19 

and 21) showed a good fit in the different sub-models, while deep sea fish (nº 15) and 

benthos (nº 23) were the least well fitted (Fig 3, Fig 4 and S7 Figures of Chapter 2.5). 

These latter groups are the ones with the fewest data points. A satisfactory fit was also 

shown for sharks and rays/skates groups (nº 16-17), and, despite only few observed 

records, also for pinnipeds (nº 3). 

By looking at biomass trends per area, in the Western Mediterranean, the 

predicted time series suggested a decreasing pattern for the biomasses of several 

functional groups (Fig 3 and S8 Figure of Chapter 2.5). European pilchard showed a 

decline from the beginning of our study period (1950), which became more pronounced 

in the last years of the surveyed period. A similar result was also observed for medium 

and small demersal fishes, and pinnipeds, although the model was not able to capture 

the sharp decline of these marine mammals in the 70s. As for sharks, rays/skates the 

model confirmed a decrease in trends until the end of the 1990s and a slightly increase 

in the 2000s decade. For European anchovy and hake, Ecosim had difficulties reflecting 

observed variations in their biomass, although suggesting a decreasing trend for both 

species. A poor fit was observed for benthos and deep fish, where only few data points 

were available. A good reproduction of biomass time series was found for crustaceans 

and benthopelagic cephalopods where the model was able to follow the majority of the 

fluctuations in time (Fig 3 and S8 Figure of Chapter 2.5). When the model was run using 

the PP from the biogeochemical model as an alternative primary productivity driver, we 

observed similar pattern as the ones obtained using the PP Ecosim anomaly and for 

certain species/functional groups (nº 8 and nº 21 in Fig.3 of Chapter 2.5) the fit improved. 

As for the Western Mediterranean, also in the Adriatic Sea, Ecosim suggested a 

more/less pronounced decline for demersal and pelagic fish and for some invertebrates 

(Fig 3 and S8 Figure of Chapter 2.5). In particular, the model was able to capture the 

steep decline of pinnipeds observed in the area since mid-1970s and a less marked 
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decrease of medium and small demersal fish observed in mid 1990s. Ecosim captured 

some of the pattern observed for European hake, sharks, rays/skates suggesting a 

decline of the groups until the end of the 1990s, followed by a slight increase or by 

fluctuations (in the case of European hake) in the last years of the studied period. An 

overall satisfactory match between predicted and available data was found for 

benthopelagic cephalopods where a decrease was captured since the beginning of the 

survey period, and for benthic cephalopods and crustacean where the model followed 

some of the fluctuation of the groups and a slight increase at the end of 2000s. Again, 

the model did not represent the trends well for deep sea fish (S8 Figure in 

Supplementary materials of Chapter 2.5). Regarding forage fish, when we run the model 

using PP anomaly as driver, Ecosim was not able to reflect the decreasing biomass trend 

observed in European anchovies, while it was able to pick up a general decline for 

European pilchards. However, it was when we applied the PP from the biogeochemical 

model in the model run that Ecosim was able to follow the steep decline observed in 

European anchovies in mid 1970s and improve also slightly the decline of European 

pilchard. For the other species/functional groups, different trends were observed using 

the two different PPs particularly in the decades before the beginning of our time series 

of observations (Fig 3 and S8 Figure of Chapter 2.5). The Ionian Sea resulted to be the 

area with less biomass changes during the years with available survey data (Fig 4 and 

S8 Figure of Chapter 2.5). Except for pinnipeds, where the model was able to pick up the 

decline since the late 1970, despite the presence of only few data points, all the other 

groups didn’t show any directional variation in time resulting mainly in a series of 

fluctuations. However, by looking at the overall time period (1950-2011), the model 

suggested a small increase in biomass since the beginning of 1990s for small demersal 

fish and crustaceans. The model partly underestimated and was not able to capture the 

biomass trends for European pilchards and medium demersals (Fig 4 and S8 Figure of 

Chapter 2.5) and it did not represent well the trend for benthos (S8 Figure in 

Supplementary materials of Chapter 2.5). The use of PP from the biogeochemical model 

improved slightly the fit for crustaceans, sharks and benthopelagic cephalopods while 

maintaining the same pattern observed with the PP anomaly. 

In the Eastern Mediterranean, different trends among species/functional groups 
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were detected (Fig 4 and S8 Figure of Chapter 2.5). Ecosim represented relatively well 

the biomass declines of European pilchards and anchovies since the 1990s, despite 

underestimating the high peaks observed at the beginning of this decade. The model 

was able to capture the biomass trends for European hake, sharks, small demersals, 

rays/skates, benthic cephalopods and crustaceans. All these groups showed similar 

patterns with signs of decrease in the 1990s and fluctuations afterwards. An 

underestimation of biomass by the model was predicted for medium demersal fish, 

benthopelagic cephalopods, deep sea fish and benthos where the model was not able to 

reproduce observed trends and fluctuations (Fig S8 in Supplementary materials of 

Chapter 2.5). A good fit, even though for only few data points, was found for pinnipeds 

where the model was able to represent the fluctuation of these marine mammals in time 

(Fig 4 of Chapter 2.5). The predicted trends obtained using PP from the biogeochemical 

model were similar to the ones found using the PP anomaly and for European hake, 

sharks, small demersals, benthic cephalopods and crustaceans the fit slightly improved. 

Ecosim was able to represent the decrease in biomass of large pelagic fish particularly 

since the 80s, while it failed to capture the fluctuation observed in the end of the 2000s 

when looking at results from the whole Mediterranean model for the two highly 

migratory species for which we had survey data: large pelagics and sea turtles. In the 

case of the sea turtles, the model approximated the general increasing biomass trend of 

this reptile, but it failed to reproduce its fluctuations over time (Fig 5 of Chapter 2.5). We 

observed similar results with the PP from the biogeochemical model as a driver. 

The time series of catch trends estimated for the five areas, when compared with 

independent data, showed a general satisfactory match (Fig 6 and S9 Figure of Chapter 

2.5): the sub-models overestimated or underestimated some fractions of the time series 

trends, but overall they were able to capture long-term trends similar to those observed 

(Fig. 6 of Chapter 2.5). In the Western Mediterranean, an increase (up to the end of the 

1990s) and posterior decrease in catches were predicted for the majority of the groups 

with the exception of small pelagic fish, large demersal and benthic cephalopods that 

continued to increase even afterwards. Non-significant trend was simulated for 

rays/skates, while the model was not able to reflect the trend observed for benthopelagic 

cephalopods. Regarding large pelagic fishes, catches predicted for the whole 
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Mediterranean were similar to those observed until the 1980s, but the predicted catches 

did not reflect the increase observed in the last two decades (Fig 6a of Chapter 2.5). 

In the Adriatic, as for the Western Mediterranean, the model simulated the 

decrease in catches observed in the beginning of the 1990s for the majority of the 

functional groups while it did not managed to pick up the sharp decline of European 

anchovies in mid 1970s and of European hake and sharks in the 1990s (Fig 6b of Chapter 

2.5). In the Ionian Sea, predicted results reflected the increase in catches until the end of 

2000s for the majority of the functional groups. For European hake, medium demersal 

benthic cephalopods, sharks and rays/skates, though, such increase turned into a 

decrease approximately around the 1990s (Fig. S9c in Supplementary materials of 

Chapter 2.5). In the Eastern Mediterranean Sea, predicted results reproduced quite well 

the increase in catches for the majority of the functional groups until the 1990s and the 

decline afterwards and they also captured the continuous increase for benthopelagic 

cephalopods and small pelagic fishes. On the other hand, simulated results did not 

match the sharp decline of sharks observed since the 1980s in the region (Fig. S9d in 

Supplementary materials of Chapter 2.5). 

Temporal model-based ecological indicators 

Trends in ecological indicators calculated from Ecosim temporal outputs showed 

different patterns if we looked at each sub-regional sea individually or at the 

Mediterranean ecosystem as a whole. For example, considering the entire 

Mediterranean Sea, a clear decreasing trend was observed in community biomass 

indicators like the forage fish biomass and, to less extent, for demersal fish, the 

Kempton’s biodiversity index and in all the trophic level indicators considered (TLco, 

TL≥3.25 and TL Catch) (Fig 7 of Chapter 2.5). On the contrary, an increase was predicted 

for invertebrate biomass while no clear trend was visible for sharks and rays/skates. 

Total catch was the only indicator that clearly increased in time (until 1990s) and that 

gradually decreased afterwards. These patterns were also reflected through the 

Spearman correlation test (Fig. 8 of Chapter 2.5). 

Considering sub-regional seas (S10-S13 Figures in Supplementary materials of 

Chapter 2.5), we observed a clear decline of forage fish, demersal fish and sharks/rays-

skates biomasses in the Western and Adriatic Seas, a fluctuation of these groups in the 



 

 

2.6 Summary of results 

 
 

201  

Ionian Sea while in the Eastern Mediterranean they respectively decreased, increased 

and fluctuated. Invertebrate biomass slightly decreased in the Adriatic Sea; fluctuated 

in the Western and Ionian Seas; and increased in the Eastern Mediterranean. The 

Kempton biodiversity index decreased in the Western and in the Ionian Sea, it showed 

a slight increase in the Adriatic while no clear trend was visible in the Eastern 

Mediterranean. Total catch increased in all the areas until the beginning of 1990s but in 

the Western and Ionian Seas started to fluctuate afterwards while in the Eastern and 

Adriatic Sea it gradually declined. As for the different trophic level indicators assessed, 

the mean TL of the community slightly increased in the Western Mediterranean and 

decreased in the other sub-regions, while the mean TL ≥3.25 and mean TL catches 

decreased in all the seas except in the Eastern Mediterranean where they respectively 

fluctuated with no clear trend and slightly increased (S10-S13 Figures in Supplementary 

materials of Chapter 2.5).  

When we tested the significance and correlation of our suite of temporal 

ecological indicators we noticed that in the Western and the Adriatic Seas the majority 

of the time series were negatively correlated with high significance (respectively 6 and 

7 out of 9 indicators; Fig 8 of Chapter 2.5). On the contrary, in the Ionian Sea and Eastern 

Mediterranean Sea, the community indicators (except for forage fishes in the Ionian that 

showed a weak negative correlation) were highly significant and positively correlated 

(Fig 8 of Chapter 2.5). Also, we observed no significant and weakly correlated trends for 

mean TL ≥3.25 and Kempton biodiversity index in the Eastern Mediterranean Sea.
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In this thesis I investigate the status of the Mediterranean Sea ecosystem and the 

sustainability of its marine resources using an interdisciplinary approach, which 

combine data integration and modelling approaches. During this study a number of 

specific objectives were addressed, together with the identification of important data 

gaps/limitations. Before focusing on the Mediterranean Sea ecosystem, I reviewed the 

capabilities of ecological models developed for European seas to support main European 

Union policies, highlighting gaps, development needs and recommendation to 

undertake for further analysis (Chapter 2.1). Results from this first chapter guided the 

methodological approach used during the rest of the PhD thesis. In Chapter 2.2, I 

presented one of the important steps needed when building an ecosystem model of a 

marine ecosystem, which is related to data collection and analysis and, in this particular 

case, to data regarding fisheries in Italian waters. This second chapter evidenced the 

limitiations of some data availability regarding fishing exploitation in the Mediterranean 

Sea, limitations that were taken into account in the following chapters. The core of the 

thesis was the use of an ecosystem modelling approach (Ecopath with Ecosim [EwE]), 

applied first to a small area of the Mediterranean Sea, the Amvrakikos Gulf, Greece 

(Chapter 2.3) and then to the Mediterranean Sea ecosystem as a whole (Chapters 2.4 and 

2.5). Results from chapters 2.3, 2.4 and 2.5 highlight the importance of considering local 

vs regional scale assessments when dealing with the study of marine ecosystem 

processes and translating relevant results to management processes. In these last three 

Chapters I evaluated past and current exploitation status of targeted commercial species 

and important functional groups of the Mediterranean marine ecosystem, putting a 

special effort in the historical role and impact of fisheries and primary production 

changes on the dynamics of the marine ecosystems and on specific compartments of the 

food web (such as top predators, forage fish and invertebrates). 

1. Data gaps/limitations 

When building Mediterranean ecosystem models both at regional scale but also 

at more local scales, an important issue is that data availability, accessibility and quality 

is a major constraint. However, because of the complex nature of ecosystem models that 

require large amount of multidisciplinary and good quality data (Mora et al. 2016), such 

limitation was found common not only in the Mediterranean Sea but also in many 



 

 

3. DISCUSSION 

 
 

206  

ecosystems models around the world (Chapter 2.1; Piroddi et al. 2015, Mora et al. 2016). 

In the Mediterranean Sea region, in particular, the major pitfalls encountered 

were related to temporal changes in diet composition, the availability of biomass 

estimates for specific species or groups (e.g., non-commercially important species, deep-

sea organisms) and fisheries data. This is particularly relevant for early decades (1950s-

1970s) and for southern Mediterranean countries, where survey data remains still either 

inaccessible or absent (Chapters 2.3-2.5). Differences in data gaps were found when 

working at local (Chapter 2.3) and regional scales (Chapter 2.4-2.5). Among all, temporal 

biomass data for marine mammals and seabirds that were available in the small area of 

the Mediterranean Sea modelled in this thesis, the Amvrakikos Gulf (in Greece), were 

lacking for the regional scale. This is not surprising since local studies tend to have more 

empirical data for specific components of the ecosystem (Guarnieri et al. 2016), whereas 

regional/global studies have more aggregated and sparse data (Halpern et al. 2015). Such 

limitation increased the difficulty of building an ecosystem model for the Mediterranean 

Sea as a whole capable of capturing sub-regional differences in environmental and 

biological characteristics. This raises the need to increase effort in regional 

survey/assessments as already highlighted before in the course of other integrated 

assessments and projects (Coll et al. 2010, Coll et al. 2013a, Micheli et al. 2013, 

Katsanevakis et al. 2015). It also points out an important limitation at the whole 

Mediterranean scale to perform regional assessments: the lack of common and 

standardized datasets regarding important ecosystem components that could be used as 

ecological indicators to assess the good environmental status of the basis (Katsanevakis 

et al. 2015, Chapter 2.1: Piroddi et al. 2015). 

A common limitation found among the different scales, local (Amvrakikos Gulf; 

Chapter 2.3), national (Italy; Chapter 2.2) and regional (Mediterranean Sea; Chapter 2.4-

2.5), was related to fisheries data (e.g., effort, catch and discards). For example, the fitting 

procedure utilized in Chapter 2.5 enabled to detect issues related to landings data at the 

beginning of our survey period (in the 1950s as established in our Ecopath baseline). 

Low fishing mortalities for the three most important commercial species (European 

pilchard ‘Sardina pilchardus’, anchovy ‘Engraulis encrasicolus’, and hake ‘Merluccius 

merluccius’) were, in fact, observed in the 1950s, in each Mediterranean sub-area, between 
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5 and 10 times lower than the average reference values reported for these fish stocks in 

the Mediterranean Sea (Patterson 1992, Colloca et al. 2013, Tsikliras et al. 2015). Even the 

assessment of the Italian fisheries (Chapter 2.2) was able to highlight such discrepancies. 

In particular, the reconstructed total catches were 2.6 times the landings officially 

reported by the FAO on behalf of Italy for the same period and same sea,  with 

unreported commercial landings (from both industrial and artisanal sectors) 

contributing 50% to the total catch (in relation to FAO reporting) and discards 

contributing another 7%.  

In the Mediterranean areas, several studies, included work developed in this 

thesis (Chapter 2.2), have demonstrated how fisheries statistics are generally incomplete 

and unreliable (Coll et al. 2013a, Moutopoulos & Koutsikopoulos 2014, Pauly et al. 2014). 

This is especially true in relation to the catches that are often un-reported and 

underestimated (EC 2003, Garibaldi & Kebe 2005, Garibaldi 2012) and makes the 

assessment of fisheries impacts on Mediterranean marine ecosystems a challenging task. 

For this reason, I decided to reconstruct the Italian fisheries (both reported and un-

reported catches and effort), as shown in Chapter 2.2, with the goal to include this 

assessment in the Mediterranean modelling work. In particular, this study was 

conducted as part of an overall effort to reconstruct global fisheries catches (Pauly & 

Zeller 2016) by the Sea Around Us (www.seaaroundus.org), which also included other 

Mediterranean countries such as Spain (Coll et al. 2014), Greece (Tsikliras et al. 2007, 

Moutopoulos & Koutsikopoulos 2014), and Turkey (Ulman et al. 2013). Unfortunately at 

the time of developing this study, the catch reconstruction for the entire Mediterranean 

Sea was not completed and publically available, therefore it was not possible to integrate 

the Mediterranean reconstruction information, including Italy, in the modelling work at 

the regional scale of Chapter 2.4-2.5. The catch time series used in those last two chapters 

is based on official data distributed by the Food and Agriculture Organization (FAO) of 

the United Nations. In the near future and when available, the alternative database 

regarding catch reconstruction will be integrated in the regional modelling effort started 

under this thesis to reduce the above-mentioned data gaps and the impact of fishing 

pressure on the Mediterranean marine ecosystem using the two data sources will be 

compared. 
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I recognize that, because of the caveats explained above, uncertainties in the 

modelling results remain high. However, studies presented here include the best 

available data at the time (see Supplementary material of Chapters 2.2-2.5), use models 

for which outputs have been tested, and when possible validated (Macias et al. 2014), or 

that have been widely utilized to assess temporal biomasses for fish stocks (Walters et 

al. 2008) and highlight main gaps and difficulties encountered along the modelling 

process (Chapters 2.2-2.5). Also, when possible, uncertainties are assessed and 

presented. In the reconstruction of the Italian catches (Chapter 2.2), for example, a 

scoring factor (ranging between 1 -less robust data, to 4- more robust data), is assigned 

to each fishing sector and then converted to percentage confidence intervals following 

same criteria developed and used by the Intergovernmental Panel on Climate Change 

(Mastrandrea et al. 2010). In Chapter 2.3 and 2.5, respectively the Amvrakikos Gulf and 

the Mediterranean Sea, models are statistically fit to observed data; and in Chapter 2.5 a 

Monte Carlo routine is applied to assess model output sensitivity around the input 

parameters of the Mediterranean Sea ecosystem model, on the temporal analysis related 

to biomass estimates of species and functional groups and on model-based indicators.  

Despite the fact that the majority of ecosystem models in European waters still 

lack a standardized approach that takes into account the uncertainty of modelled data 

(both input and output parameters), as shown in Chapter 2.1, statistically fit models with 

measure of uncertainties in model parameters (such as biomass) are critical if the 

purpose of modelling is to inform policy and management processes (Fulton et al. 2003). 

Further effort should be conducted to fill knowledge and data gaps. Yet, with the data 

currently available, this thesis presents the best approximation to assess the historical 

and current environmental status of Mediterranean marine exploited ecosystems, with 

emphasis on local to regional scales.  

2. Major findings 

 The Mediterranean marine ecosystem: structural and functional traits 

Results from both the static (Chapter 2.4) and dynamic (Chapter 2.5) components 

of the modelling effort developed for the entire Mediterranean Sea ecosystem have 

highlighted that the trophic flow dynamics of the Mediterranean marine ecosystem is 

mainly dominated by lower trophic level organisms, particularly ‘benthic invertebrates’, 
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‘zooplankton’ and ‘phytoplankton’ and driven by bottom up processes. This has been 

observed at regional, sub-regional (this study) and at smaller scales (e.g., this study, Coll 

et al. 2006, Coll et al. 2007, Tsagarakis et al. 2010, Moutopoulos et al. 2013, Torres et al. 

2013) and named as the ‘Mediterranean paradox’ for the capability of the ecosystem to 

produce relatively high fish abundance despite the oligotrophic characteristic of the 

basin (Sournia 1973, Macias et al. 2014). Among the top predators, marine mammals and 

large pelagic fish resulted to be the groups with the highest trophic levels, with the 

‘Mediterranean monk seal’ (Monachus monachus) being on top of the food web followed 

by ‘piscivorous cetaceans’ and ‘large pelagic fish’. As shown by the temporal trend 

analysis of Chapter 2.5, these large predators (in our case monk seals, large pelagic fish 

and partially sharks) have undergone drastic declines in time due to anthropogenic 

pressures (mainly fisheries), followed by an increase in abundance of groups at lower 

trophic levels (e.g., invertebrates). This has been already observed in other studies 

(Ferretti et al. 2008, Coll et al. 2009a, Coll et al. 2009c, Piroddi et al. 2010, Maynou et al. 

2011). Part of these declines are also reflected in the results of the keystone analysis of 

Chapter 2.3 where top predators (except ‘large pelagic fishes’) have shown a diminishing 

ecological role in the ecosystem and been replaced, in recent years, by cephalopods. 

Cephalopods have been identified as a keystone group in many local Mediterranean 

food webs (Catalan Sea: Coll et al. 2006, North Aegean Sea: Tsagarakis et al. 2010, Gulf 

of Lion: Bănaru et al. 2013, Gulf of Gabes: Hattab et al. 2013, Gulf of Cadiz: Torres et al. 

2013). Despite the fact that the role of cephalopods in the overall structure and 

functioning of marine ecosystems remains poorly understood, this study confirms that 

they are a key element in current marine food webs (Coll et al. 2013b).  

The regional assessment presented in Chapters 2.4 and 2.5 has also revealed signs 

of decrease for organisms located in the middle of the Mediterranean food web. For 

example, forage fish (‘European sardine ‘Sardina pilchardus’, and anchovy ‘Engraulis 

encrasicolus’), which are important structuring species of the Mediterranean food web 

having high biomasses and high proportions in the catches (almost 40% of total landings; 

FAO 2012) were observed to decrease, at different time scale, in the majority of the 

Mediterranean Sea. This is likely due to excessive fishing pressures and changes in 

primary productivity, confirming the trends already highlighted in smaller areas of the 
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Mediterranean Sea (Coll et al. 2007, Palomera et al. 2007, Piroddi et al. 2010, Tsagarakis 

et al. 2010, Van Beveren et al. 2016). The local (Chapter 2.3) and regional scales (Chapters 

2.4 and 2.5) models showed similar results in relation to demersal fish stocks which were 

observed decline. However, while for the regional Mediterranean Sea assessment, 

increase fishing pressure seemed to have been the major player impacting these stocks, 

as observed by other studies (Colloca et al. 2013, Vasilakopoulos et al. 2014), a 

degradation of the ecosystem, mainly caused by eutrophication and contaminants, was 

the major reason for the decline of demersal fish in the Amvrakikos Gulf 

(Koutsikopoulos et al. 2008, Ferentinos et al. 2010).  

When comparing the Mediterranean Sea to other European seas (North, Baltic 

and Black Seas; Chapter 2.4) several differences were observed. In particular, the 

Mediterranean Sea stood alone in relation to the type of energy and matter flows (mainly 

flow to detritus and exports) and the cycling indices (Predatory cycling index; Finn’s 

cycling index) (Odum 1969, Christensen 1995) suggesting higher levels of community 

stress induced by intensive fishing activities, as previously illustrated (Costello et al. 

2010). In regards to ecosystems development, the Mediterranean Sea appeared to be in 

an early development stage, different from the other systems, probably because the 

ecosystem has been perturbed continuously over a long period of time. Indeed, when 

ecosystems develop, biomasses and complexity tend to increase and mature, whereas 

when they are disturbed, e.g. by fishing, they show the opposite trend and stay ‘young’ 

(Odum 1969, Christensen 1995). This was also observed in the Amvrakikos Gulf 

(Chapter 2.3), suggesting that such conditions (young and less complex), typical of 

“semi-closed” ecosystems, occur where bottom-up processes drive the system and 

where possibly high levels of community stress are induced by anthropogenic (e.g., 

fishing) and environmental forces (e.g., changes in primary production [PP]) (Heymans 

et al. 2014). 

The Mediterranean marine ecosystem: ecosystem drivers 

Both fishing pressure and primary production (PP) changes played an important 

role in describing the temporal dynamics of the Mediterranean marine ecosystem. 

Results presented in this study (Chapters 2.3, 2.4 and 2.5) indicate that temporal 

variation of PP in the system was the strongest driver upon the Mediterranean Sea 
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ecosystem. This confirms the results obtained from other local studies (Coll et al. 2009b, 

Macias et al. 2014) that have shown how the Mediterranean Sea is driven by bottom-up 

processes where nutrient availability controls the biological characteristics of the region. 

The use of relative PP trends from a regional biogeochemical model in this study helped 

validating the predicted PP anomaly trend from the ecological model and improved the 

temporal dynamics of selected species in the ecosystem (particularly for small pelagic 

fish) (Chapter 2.5). This was clearly visible, for example, in the Adriatic Sea where PP 

anomaly unsuccessfully reproduced the trends of European anchovies while PP from 

the biogeochemical model was able to capture the trends. Since there are no official long-

trend (from the 1950s) records of primary production in the region (Macias et al. 2014), 

using coupling hydro-dynamic biogeochemical models with ecosystem models (e.g., 

EwE) becomes critically important, particularly in complex areas like the Adriatic Sea 

that has diverse physical and biological oceanographic characteristics (e.g., eutrophic in 

the north, oligotrophic in the south; Polimene et al. 2006) and it is also subjected to strong 

anthropogenic pressures (e.g., fishing) (Coll et al. 2009c, Steenbeek et al. 2013). 

In this study, historical changes in PP at regional, sub-regional and local scale 

were used to assess the response of the Mediterranean Sea ecosystem to changes in the 

environment. However, other environmental factors (e.g., SST, O2) influence the 

dynamics of the Mediterranean Sea ecosystem (Stergiou et al. 2016) and they should be 

taken into account in future modelling efforts. This might improve the description of the 

dynamics of certain groups and areas (e.g., Ionian Sea) that were not well captured by 

the current Mediterranean models (Chapters 2.3, 2.4 and 2.5). Thus, future work will be 

dedicated to develop this part of the modelling approach further. 

This thesis also highlights that fishing was an important driver affecting the 

dynamics of fish populations and invertebrates of the Mediterranean Sea ecosystem. 

This is in line with previous studies that highlighted the increasing impact of fishing in 

the Mediterranean Sea and the overexploitation of its marine resources (Colloca et al. 

2013, Vasilakopoulos et al. 2014, Tsikliras et al. 2015). Simulations of Chapter 2.5, in fact, 

are able to reflect the impact of increased fishing effort in the basin starting, in all the 

four sub-areas (Western Mediterranean, Adriatic, Ionian and Central Mediterranean and 

Eastern and Levantine), since the beginning of 1950s. Nominal fishing effort showed 
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decreasing trends only after 2000; the only exception was found in the Eastern 

Mediterranean Sea where fishing effort was observed fluctuating in the 2000s decade. 

Similar decreasing trends in fishing effort observed in the Mediterranean Sea were also 

found in Italy (Chapter 2.2) and the Amvrakikos Gulf (Chapter 2.3) despite the decline 

that started at the beginning of 1980s. Since official records and statistics of fishing effort 

are often unable to capture real trends in fishing capacity (because of biases and 

misreporting), as observed for example in the Catalan Sea (Gorelli et al. 2016), 

reconstructing fishing effort, as shown in Chapters 2.2, 2.3 and 2.5, becomes critically 

important for understanding its historical evolution and impact on marine resources and 

for effective management measures to be placed (Hilborn & Walters 1992).  

Fishing, as presented in Chapters 2.2, 2.4 and 2.5, was shown to be an important 

driver affecting the abundance of the Mediterranean stocks over time. For example, the 

mixed trophic impact analysis of Chapter 4, indicated bottom trawling and dredges to 

be the fisheries with the widest impact on the Mediterranean food web, particularly on 

the demersal community. This has been observed in several smaller areas of the 

Mediterranean Sea representing continental shelf and upper slopes (e.g., Coll et al. 2006, 

Coll et al. 2007, Puig et al. 2012, Bănaru et al. 2013, Hattab et al. 2013). In the same analysis 

the impact by artisanal fisheries on the ecosystem is shown to have increased in time.  

Overall, our results for the entire Mediterranean Sea reveals a continuous 

increase in catches with a slight downtrend from mid 1990s showing high level of 

exploitation in the region. Since signs of deteriorations are continuously recorded in the 

region (Lotze et al. 2006, Vasilakopoulos et al. 2014), such pattern could mean that catch 

composition, having highly diversified targeted species, continues to change in time as 

a result of fisheries expansion to further and deeper fishing grounds (Coll et al. 2014, 

Pauly et al. 2014). A different picture was detected when looking at total catches per sub-

regional area, where clear signs of decrease are noticed mainly in the Adriatic and the 

Eastern Mediterranean Sea and only in the last years also in the Western Mediterranean 

and Ionian Seas. These results are in line with previous works that point out the 

excessive fishing mortality and food web degradation caused by fishing in the Eastern 

and Adriatic fisheries (Coll et al. 2009, Libralato et al. 2010, Lotze et al. 2011, Tsikliras et 

al. 2015). On the other hand, the more stable catches observed in the Western 
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Mediterranean and Ionian Sea could be the result of exploiting new species, as observed 

for the Mediterranean as a whole (Coll et al. 2014). Trends in trophic level of the catches 

both at regional, sub-regional and local scale presented a clear ‘fishing down’ effect 

(Pauly et al. 1998) that occurs when top predators and large sized fish are removed from 

the ecosystem and gradually replaced by lower trophic level organisms. Such patterns 

were observed by other studies in the Mediterranean Sea both at regional (Pauly et al. 

1998), sub-regional (Tsikliras et al. 2015) and more local scale (Stergiou 2005 , Shannon 

et al. 2014).  The only exception was found in the Eastern Mediterranean Sea where, 

contrary to the rest of areas, a situation of fishing up has been described. Accordingly to 

Stergiou and Tsikliras (2011), though, this might be a ‘false fishing up effect’ occurring 

when small pelagic fishes and invertebrates, with a low trophic level, and larger-size 

predators fish are both intensely fished and/or depleted.   

Ecological processes at regional vs sub-regional vs local 

Ecological indicators (Chapter 2.5) for the Mediterranean Sea ecosystem as a 

whole confirmed the historical changes in the structure of the Mediterranean Sea 

ecosystem and an overall ecosystem degradation over time caused by the combined 

effect of excessive fishing pressure and changes in productivity. In particular, decreasing 

trends were observed for forage and demersal fish biomasses, while an increase and a 

series of fluctuations were found respectively for invertebrates and sharks/rays and 

skates.  

Difference patterns were instead depicted when considering the sub-regional 

seas individually (Western, Adriatic, Ionian, Eastern). The Western and the Adriatic Seas 

resulted to be the most degraded ecosystems with the largest biomasses declines among 

all the communities assessed (from forage fish to sharks/rays and skates except for 

invertebrates that remained stable in time). The Ionian Sea resulted to be the area with 

less biomass changes that didn’t show any clear trends but instead a series of fluctuations 

in time. Since there are no additional studies that have looked at biomass and ecological 

indicators trends per sub-regional sea, it is difficult to validate these results. However, 

our overall findings are in line with other assessments conducted for smaller areas of the 

Mediterranean Sea (Catalan: Coll et al. 2006, Coll et al. 2008,  Adriatic Sea: Coll et al. 

2009c). The only exception is the Ionian Sea; several studies in the area have shown 
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decreasing trend in the abundance of many commercial and no commercial species (Patti 

et al. 2004, Machias et al. 2008, Piroddi et al. 2010) that were not well captured in this 

work. Among the possible causes of such differences are the poor quality of the data 

and/or some missing components (e.g., oceanographic characteristics) not accounted for 

in our modelling framework. For this reason, this aspect should be explored further in 

future research.  

Differences were also found between results from the regional Mediterranean 

Sea ecosystem study and the one performed in the smaller area of Greece, the 

Amvrakikos Gulf (Chapter 2.3). In fact, despite being both two semi-enclosed basins, 

they differed in many ways as presented by our modelling results (Chapters 2.3-2.5). In 

particular, the mean trophic level of the community and Kempton Q Diversity Index, 

declined in the Mediterranean Sea as a whole while in the gulf they respectively 

increased and fluctuated. The main reason for differences is related to high abundance 

of top predatory species and of forage fish in the gulf, because of high levels of 

productivity in the epipelagic layers of the water column and moderate fishing pressure 

in the area (industrial fisheries are prohibited) (Koutsikopoulos et al. 2008, Ferentinos et 

al. 2010). In the Mediterranean Sea, instead, the observed decline of top predatory 

species and forage fish is linked due to intensive fishing pressure and changes in PP. 

Kempton Q was relative stable in the gulf, despite clear signs of degradation at the 

bottom of the food web, as shown in Chapter 2.3, and this may be due to the fact that the 

system is still resilient to large driver changes. This raises an important question: “how 

resilient are these marine ecosystems, and how will their current functioning be 

modified in the future? This thesis has shown that the Mediterranean Sea is subjected to 

high levels of ecosystem stress (from species, to community and population level) and 

that the degradation is mainly caused by excessive overexploitation of the marine 

resources and by changes in PP, as observed already at regional (Coll et al. 2012, Micheli 

et al. 2013, Tsikliras et al. 2015) and smaller scale (Coll et al. 2008, Coll et al. 2009c, Piroddi 

et al. 2010). However, in light of increasing cumulative impacts, more effort should be 

put in place to quantify the magnitude of these disturbances and their cumulative 

impacts, and the capability of the Mediterranean Sea ecosystem to potentially absorbed 

them without losing its overall structure and function.  
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3. Policy and conservation implication 

The final aim of this thesis was to develop a series of relevant results that could 

inform current and future policy and conservation frameworks at regional and 

European level. For example, the Marine Strategy Framework Directive (MSFD; 

2008/56/EC), which is the main European regulation for addressing the ecological quality 

of marine waters, aims at assessing, by 2020, the environmental status of European 

marine ecosystems under anthropogenic pressures and the required interventions to 

bring the systems back to its desired good status. To be able to implement the Marine 

Directive, in 2010, a set of detailed criteria and indicators (from biological, physico-

chemical indicators as well as pressure indicators—including hazardous substances, 

hydrological alterations, litter and noise, and biological disturbance such as introduction 

of non-indigenous species) were selected with the goal of assessing the “good 

environmental status” of selected systems (Cardoso et al., 2010; European Commission, 

2010). Alongside these environmental measures, other EU policies that focus on the 

marine environment are represented by the Common Fisheries Policy (CFP), that aims 

at ensuring the sustainable exploitation of living aquatic resources, including measures 

to protect sensitive species and habitats from the impacts of fishing. In addition, the new 

Directive 2014/89/EC (Marine Spatial Planning Directive, MSPD), that provides a 

framework for Maritime Spatial Planning to support the sustainable development of 

seas and oceans whilst supporting current and future policies, in particular the 

implementation of the MSFD (2008/56/EC).  

To support environmental regulations and because of the complexity in 

understanding marine ecosystem structures and functions and their responses to human 

pressures (Borja et al. 2013, Katsanevakis et al. 2015), ecological models and their 

modelled derived indicators have been increasingly used to evaluate ecosystems and 

predict impacts of human pressures on the environment (Fulton & Smith 2004, Shin et 

al. 2004, Christensen & Walters 2005, Plagányi 2007, Collie et al. 2014). However, since 

the models, in most cases, are not developed with the aim of supporting management 

strategies, like the MSFD, there are still difficulties in using models and interpreting their 

results for policy support (Piroddi et al. 2015; Chapter 2.1). For this reason, I coordinated 

a review (Chapter 2.1) of models and their derived indicators with the goal of presenting 
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their potential to help the planning and the implementation of objectives defined in the 

MSFD, particularly in relation to which models and indicators exist and the missing 

components to support such policy. Results from this analysis showed that there is an 

extensive number of models (#44) and model derived indicators (#201) in Europe that 

could be used to support the MSFD, in particular, coming from coupled ecological 

models (end-to-end). As has been highlighted in Chapter 2.5, this coupling modelling 

framework, which links hydrodynamic-biogeochemical models with multi-species 

models, is a powerful tool that can better describe ecosystem properties and include 

anthropogenic and physical drivers behind observed changes, identifying both direct 

and indirect causes (Fulton 2010, Shin et al. 2010, Travers-Trolet et al. 2014).  

Also, among all the models assessed, Ecopath with Ecosim (EwE) was notably 

the one associated with the largest number of model‐derived biodiversity indicators and, 

although the majority of the indicators in the catalogue were static, it proves that it is 

one of the most applied tool for modelling marine and aquatic ecosystems (Colléter et 

al. 2015, Heymans et al. 2016). Despite the fact that EwE can produce temporal dynamic 

and spatial dynamic indicators, at the time the review (Chapter 2.1) was conducted only 

few areas of the European Seas (Coll & Libralato 2012) had spatial and temporal 

indicators assessed and publicly available. This explains why the catalogue had the 

majority of the indicators ‘static’. In particular, of the 11 descriptors of the MSFD, EwE 

potential was stronger for two of the biodiversity descriptors: biological diversity (D1) 

and food webs (D4). Nevertheless, commercial fish and shellfish (D3) and to less extent, 

seafloor integrity (D6) and human induced eutrophication (D5) descriptors were well 

addressed by the EwE approach. Non‐indigenous species (D2) was poorly addressed by 

the EwE models of the catalogue. However, recent studies have shown how EwE models 

can be useful in assessing ecosystem’s respond to the introduction of invasive species 

(Langseth et al. 2012, Pinnegar et al. 2014, Libralato et al. 2015) and new spatial temporal 

capabilities of the approach have broaden the possibilities to apply this framework to 

derive temporal-spatial indicators (Steenbeek et al. 2013, Christensen et al. 2014, Coll et 

al. 2015, Villasante et al. 2016).  

Regarding the model derived indicators that EwE was able to produce, ‘biomass’ 

(e.g., species/community in the food web) constituted the largest group (57%) followed 
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by ‘diversity’ (13%; e.g., Kempton diversity index, trophic level of the community, 

species/habitat diversity, proportions in community), ‘primary or secondary production’ 

(9%), ‘ecological network analysis’ (ENA) (2%; flows, energies and efficiencies) and 

‘species life-history’ (1%; traits such as for e.g., length, weight or life span) indicators. 

Few of the abovementioned indicators were used in this thesis (Chapters 2.3, 2.4 and 

2.5), and few more will be integrated or improved in the next phase of the modelling 

work presented here (e.g., Shannon index; TL of community). Particularly temporal 

modelled derived indicators (as the ones shown in Chapters 2.3 and 2.5), which are able 

to detect changes in the structure and function of the ecosystem over time, are necessary 

pieces of the puzzle if the aim is to inform management processes. Also, the evaluation 

of these indicators at different spatial scale, as presented in this study, it is essential if we 

want to provide context-specific actions and guidelines for policy decisions (Guarnieri 

et al. 2016).  

In addition, other factors not presented in this study but which I believe are 

important factors to account for in policy and conservation plans are the following and 

can be included in future developments of this work:  

1. the development of spatial-temporal analyses able to identify spatial changes 

of species distribution, biodiversity patterns and threats that can directly 

assist management actions (e.g., by prioritizing specific areas of concern) and 

facilitate the communication between scientists and policy makers, 

environmental managers, conservationists and the general public (Micheli et 

al. 2013) as also highlighted in the recent European Commission Maritime 

Spatial Planning Directive (MSPD) (EC 2014a); 

2. the integration of additional stressors (e.g., aquaculture, invasive species) as 

driving forces of species dynamics in the modelling tool since marine 

ecosystems are impacted by simultaneous cumulative threats (Coll et al. 2012, 

Micheli et al. 2013). Currently the recent MSPD, which include the EU’s Blue 

Growth Strategy (EC 2014b) that supports sustainable growth in emergent 

marine sectors (e.g., aquaculture, coastal tourism, marine energies), is 

expected to impose further pressure on the Mediterranean  ecosystem (Coll 

et al. 2012, Piante 2015); 
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3. the development of future scenarios including different management actions 

into the future are crucial for the implementation of management plans. 

Future scenarios should follow the Intergovernmental Panel on Climate 

Change (IPCC) and the Platform on Biodiversity and Ecosystem Services 

(IPBES) projections on climate-induced changes in sea surface temperature. 

They should also consider the relevant elements of the Common Fisheries 

Policy (CFP) on commercially important stocks to exploit them at maximum 

sustainable yield (MSY) levels (where population size is maintained at a 

maximum growth rate, allowing the population to continue to be productive 

indefinitely), and the reduction of fishing effort needed to develop effective 

and appropriate policy and conservation plans in the region (Colloca et al. 

2013, Tsikliras et al. 2015). 

 

 

 



 

109  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

  

 

CHAPTER 4. 

 CONCLUSION 

 



 
 

  

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 



 

 

4. CONCLUSIONS 

 
 

221  

This study is the first to provide a basis for understanding and quantifying the 

structure and functioning of the whole Mediterranean Sea ecosystem, including main 

marine organisms, from low to high TLs, and considering changes in primary 

production and fishing activity driving the ecosystem dynamics. This is also the first 

study that integrates Mediterranean sub-regions within a unified model to take into 

consideration differences in biological and environmental characteristics. Since 

anthropogenic pressures are rapidly expanding in the basin, this work constitutes an 

important first step to further advance in the regional assessment of the Mediterranean 

Sea ecosystem with the aim to inform conservation plans and management actions.  

Main conclusions derived from this study can then be summarized as follow: 

1. ‘Small pelagic fishes’, mainly European pilchards and anchovies, both with 

high biomasses and high proportions in catches, are important structuring 

species for the Mediterranean ecosystem (at regional, sub-regional and local 

scales). On the other hand, the ‘Mediterranean monk seal’ is the species with 

the highest TL followed by ‘piscivorous cetaceans’ and ‘large pelagic fish’. 

2. ‘Large pelagic fishes’ is the main keystone group for both the past and current 

Mediterranean ecosystem while ‘sharks’ and ‘medium pelagic fishes’ played a 

key role in the past, and are currently replaced by benthopelagic and benthic 

cephalopods. 

3. When comparing the Mediterranean to other European regional seas, the 

Mediterranean stands alone in relation to the type of flows driving the system 

and the cycling indices, suggesting higher levels of community stress induced 

by intensive fishing activities in the Mediterranean basin. 

4. Looking at ecosystem dynamics, biomass trends and ecological indicators (e.g., 

community biomass, trophic levels of the community, catch and diversity 

indicators) reveal that the combined effect of excessive fishing pressure and 

changes in the primary productivity altered the Mediterranean marine 

ecosystem over time, especially reducing the proportions of top predators (e.g., 

pinnipeds, large pelagic fish) and mid trophic level organisms and increasing 

the abundance of groups at lower trophic levels (e.g., invertebrates).  
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5. The Western and the Adriatic Seas are the most degraded areas with biomasses 

declines among all the communities assessed (from forage fish to sharks/rays 

and skates except for invertebrates that remained stable in time) while the 

Ionian Sea seems to be the area with less biomass changes historically in 

comparison with available survey data.   

6. In the Amvrakikos Gulf, both ecological indicators and biomass trends 

highlight a degradation of the demersal compartments of the food web and a 

relative stability of the pelagic ones mainly due to high eutrophication levels. 

7. Fishing pressure and changes in primary production (PP) play an important 

role in driving species dynamics; yet, PP was the strongest historical driver 

upon the Mediterranean Sea ecosystem. In Amvrakikos, the strongest 

historical drivers were changes in nutrients and organic matter mostly from 

the loads of two local rivers.  

8. Fisheries data (mainly catch and effort) are under-reported and under-

estimated at regional, sub-regional and local scale. Fishing mortalities for three 

most important commercial species (European pilchard ‘Sardina pilchardus’, 

anchovy ‘Engraulis encrasicolus’ and hake ‘Merluccius merluccius’) were, in fact, 

in 1950s and in all the sub-regions, between 5 and 10 times lower than the 

average reference values reported for these fish stocks in the Mediterranean 

Sea by stock assessment analyses. Even in the assessment of the Italian 

fisheries, the reconstructed total catches were 2.6 times the landings officially 

reported by the FAO on behalf of Italy for the same period and same sea, with 

unreported commercial landings (from both industrial and artisanal sectors) 

contributing 50% to the total catch (in relation to FAO reporting) and discards 

contributing another 7%. 

9. In Europe, several models and associated indicators exist that could be used in 

support of European policies (MSFD); yet, Ecopath with Ecosim (EwE) seems 

to be the most applied tool for modelling marine and aquatic ecosystems and 

the one that can produce the largest number of indicators useful for MSFD. 

10. Yet, to move toward more complete regional policy and conservation plans, 

several additional steps should be developed from this study in the near future: 
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a) spatial-temporal analyses able to identify spatial patterns that can directly 

assist spatial management actions and ease the communication between 

scientists and policy makers; b) the integration of additional human stressors 

(e.g., aquaculture, invasive species, and changes in climate) as driving forces 

of species dynamics to increase the reliability of this modelling exercise since 

marine ecosystems are impacted by simultaneous cumulative threats; c) the 

development of forecasting scenarios including different management actions 

(e.g., climate-induced changes in sea surface temperature or reduction of 

fishing effort) to support the implementation of management plans. 
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Table S1. Taxonomic breakdown of the commercial species used in the reconstruction by the two national 

statistical organizations (ISTAT and IREPA). 

  Common name Scientific name ISTAT IREPA FAO 

1 Albacore Thunnus alalunga  X  

2 Angler  Lophius piscatorius X X  

3 Atlantic bluefin tuna Thunnus thynnus  X  

4 Atlantic bonito Sarda sarda X X  

5 Atlantic Mackerel Scomber scombrus X X  

6 Billfishes Istiophoridae   X 

7 Big-scale sand smelt Atherina boyeri X   

8 Black seabream Spondyliosoma cantharus   X 

9 Blue whiting  Micromesistius poutassou X X  

10 Bogue Boops boops X X  

11 Chub mackerel Scomber japonicus  X  

12 Common dentex  Dentex dentex X   

13 Common dolphinfish Coryphaena hippurus   X 

14 Common pandora Pagellus erythrinus X X  

15 Common sole Solea solea X X  

16 European anchovy  Engraulis encrasicolus X X  

17 European barracuda Sphyraena sphyraena   X 

18 European conger Conger conger X   

19 European eel Anguilla anguilla   X 

20 European hake Merluccius merluccius X X  

21 European pilchard Sardina pilchardus X X  

22 European seabass Dicentrarchus labrax X   

23 European sprat Sprattus sprattus   X 

24 Flathead mullet Mugil cephalus X X  

25 Flounder Platichthys flesus   X 

26 Forkbeard Phycis phycis   X 

27 Frigate tuna   Auxis thazard thazard X   

28 Garfish Belone belone X   

29 Gilthead seabream Sparus aurata X   

30 Goatfishes Mullidae X   

31 Gobies Gobiidae X   

32 Greater forkbeard Phycis blennoides   X 

33 Groupers Serranus spp. X   

34 Horse mackerels Trachurus spp. X X  

35 John dory Zeus faber   X 

36 Leerfishes and amberjacks Carangidae X X  

37 Marine fishes Marine fishes not identified X X  

38 Anglerfishes Lophius spp.   X 

39 Pearly razorfish Xyrichtys novacula   X 

40 Picarel Spicara smaris X X  

41 Pilotfish Naucrates ductor   X 

42 Poor cod Trisopterus minutus  X  

43 Porbeagle Lamna nasus   X 

44 Rays Rajidae X X  

45 Red mullet Mullus barbatus barbatus  X  

46 Round sardinella Sardinella aurita   X 

47 Saddled seabream Oblada melanura   X 

48 Salema Sarpa salpa   X 

49 Striped seabream Lithognathus mormyrus   X 

50 Sandlances Ammodytes spp.   X 

51 Scorpionfishes and gurnards Scorpaenidae X X  

52 Sharks Selachiimorpha X X  

53 Shortbill spearfish Tetrapturus angustirostris   X 

54 Shi drums and brown meagre Sciaenidae  X   

55 Silver scabbardfish Lepidopus caudatus   X 

56 Stargazer Uranoscopus spp.   X 

57 Striped red mullet Mullus surmuletus  X  

58 Swordfish Xiphias gladius X X  

59 Thresher sharks Alopias spp.   X 

60 Tunas Scombridae  X  
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61 Turbots Scophthalmidae X X  

62 Weeverfishes  Trachinidae   X 

63 White seabream Diplodus sargus sargus X   

64 Whiting Merlangius merlangus  X  

65 Clams Bivalvia X X  

66 Common octopus Octopus vulgaris X X  

67 Cuttlefishes Sepiida X X  

68 European flying squid Todarodes sagittatus X X  

69 Great Mediterranean scallop Pecten jacobaeus  X  

70 Horned octopus Eledone cirrhosa  X  

71 Marine molluscs Miscellaneous marine molluscs X X  

72 Musky octopus Eledone moschata  X  

73 Mutable nassa Nassarius mutabilis  X  

74 Squids Teuthida X X  

75 Blue and red shrimp Aristeus antennatus  X  

76 Caramote prawn Melicertus kerathurus X X  

77 Deepwater rose shrimp Parapenaeus longirostris X X  

78 European and spiny lobster Homarus gammarus; Palinurus vulgaris X X  

79 Giant red shrimp Aristaeomorpha foliacea X X  

80 Marine crabs Brachyura  X  

81 Marine crustaceans Miscellaneous marine crustaceans X X  

82 Norway lobster Nephrops norvegicus X X  

83 Spottail mantis shrimp Squilla mantis  X X  

 

Table S2. Percentage of Italian recreational fishing fleets observed in 1996 (Anagnopoulos 

et al., 1998) per each sub-regional division. 

Sub-regional division Recreational fishing fleets (%) 

1. Ligurian 13.4 

2. Tyrrhenian  

- Northern 12.8 

- Central 12.9 

- Southern   8.6 

3. Ionian    1.2 

4. Adriatic  

- Northern 25.6 

- Central   9.4 

- Southern   6.1 

5. Sardinian   5.3 

6. Sicilian   4.7 

Total 100 
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Table S3. Percentage of recreational species caught (Anagnopoulos et al., 1998) per each sub-regional 

division: Ligurian (LI); Northern, Central and Southern Tyrrhenian (NT, CT, ST); Sardinian (SAR); Sicilian 

(SI); Ionian (IO); Southern Northern, Central and Adriatic Sea (NA, CA, SA).   

 

Scientific name LI NT CT ST SAR SI IO NA SA CA 

Carangidae 0 0 10 10 2 3 0 0 0 0 

Sarda sarda 4 4 19 19 5 3 8 2 8 8 

Boops boops 18 18 0 0 13 22 4 14 4 4 

Teuthida 1 1 1 1 1 3 0 0 0 0 

Prionace glauca 0 0 0 0 1 0 0 3 0 0 

Serranus spp. 2 2 1 1 1 2 1 1 1 1 

Sciaenidae  0 0 0 0 1 1 0 2 0 0 

Dentex dentex 1 1 11 11 2 1 0 0 0 0 

Trachinotus ovatus 1 1 5 5 1 1 0 0 0 0 

Coryphaena hippurus 1 1 4 4 1 2 0 0 0 0 

Dicentrarchus labrax 0 0 0 0 1 1 3 2 3 3 

Platichthys flesus 0 0 0 0 1 0 0 2 0 0 

Belone belone 2 2 1 1 6 2 1 15 1 1 

Sparus aurata 4 4 0 0 2 0 1 4 1 1 

Gobiidae 5 5 0 0 3 0 4 7 4 4 

Zosterisessor ophiocephalus 0 0 0 0 1 0 0 3 0 0 

Merluccius merluccius 0 0 0 0 1 0 0 2 0 0 

Trachurus spp. 15 15 1 1 7 11 7 2 7 7 

Scomber spp. 0 0 3 3 7 4 16 7 16 16 

Mugilidae 1 1 0 0 3 0 0 9 0 0 

Pagellus erythrinus 5 5 6 6 6 14 0 1 0 0 

Pagrus pagrus 3 3 0 0 1 0 0 0 0 0 

Spicara smaris 2 2 0 0 1 1 0 0 0 0 

Mullus barbatus  0 0 0 0 0 0 2 0 2 2 

Oblada melanura 7 7 0 0 5 5 2 6 2 2 

Scorpaenidae 0 0 2 2 1 2 1 0 1 1 

Diplodus spp. 8 8 3 3 7 16 1 2 1 1 

Lithognathus mormyrus 0 0 0 0 8 4 28 6 28 28 

Xiphias gladius 0 0 3 3 1 1 0 0 0 0 

Alopias spp. 0 0 0 0 1 0 2 2 2 2 

Chelidonichthys lucerna 0 0 0 0 1 0 7 0 7 7 

Thunnus spp. 20 20 30 30 7 1 12 5 12 12 

Labridae 0 0 0 0 1 0 0 3 0 0 
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Table S4. List of illegal catch by species (when specified) reported by Italian media. UN=unknown; BFT=Atlantic bluefin tuna; SWO=swordfish; ALB=albacore; 

AN=European anchovy; SB=European seabass, OCT=common octopus; CT=cuttlefishes; SO=common sole; CL=clams; PD=common pandora; SU=sea urchins; 

SA=sardines; MA=Atlantic mackerel; LT=little tunny; TU=tunas (species); CBR=cicerello/bianchetto/rossetto. 
 

Species  Tonnes Gear Time Area Source 

UN 0.045 Trawler (no licence) Dec 2008 Sicily 
http://www.iloveagrigento.it/pesca-illegale-a-porto-empedocle-sequestrati-45-

kg-di-pesce/ 

BFT 7 Unknown (no tuna license) Jun 2009 Sicily http://www.lombardiaatavola.it/articolo.aspx?id=10361 

BFT 43 Unknown (no tuna license) Jun 2009 South Tyrrhenian -Sicily http://lombardiaatavola.it/articolo.aspx?id=10458 

SWO 3 Unknown (undersized) Jul 2009 South Tyrrhenian -Sicily 
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/24

05 

BFT 0.5 Unknown Jul 2009 South Tyrrhenian -Sicily 
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/24

05 

ALB 0.1 Unknown Jul 2009 South Tyrrhenian -Sicily 
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/24

05 

AN 90 Unknown Oct 2009 South Adriatic http://www.traniweb.it/trani/informa/11024.html 

SB 1 Unknown Oct 2009 South Adriatic http://www.traniweb.it/trani/informa/11024.html 

OCT;CT;S

O 
8 Unknown Oct 2009 South Adriatic http://www.traniweb.it/trani/informa/11024.html 

CL 5 Dredges Nov 2009 North Adriatic 
http://www.conipiediperterra.com/sequestrate-a-chioggia-5-tonnellate-di-

vongole-1125.html 

UN 0.19 Recreational sale to restaurant Mar 2010 Liguria 
http://www.riviera24.it/articoli/2010/03/16/81567/operazione-besugo-sequestrati-

190-kg-di-prodotto-ittico-in-vendita-proveniente-da-pesca-sportiva 

PD 0.12 Recreational sale to restaurant Mar 2010 Liguria 
http://www.riviera24.it/articoli/2010/03/16/81567/operazione-besugo-sequestrati-

190-kg-di-prodotto-ittico-in-vendita-proveniente-da-pesca-sportiva 

BFT 2 PS (no tuna licenses) Apr 2010 Ionian Sea 
http://www.lecceprima.it/cronaca/porto-cesareo-sequestrate-2-tonnellate-di-

tonno-rosso.html 

SU  
0.6 (above 

permitted limit) 
Recreational fisher Aug 2010 South Tyrrhenian http://www.adnkronos.com/IGN/Regioni/Abruzzo/?id=3.1.825584595 

BFT 
0.65 (500 

juveniles) 
PS Oct 2010 South Tyrrhenian  http://www.italiaatavola.net/articolo.aspx?id=17544 

CL 0.48 Dredge Oct 2010 Central Adriatic http://www.geapress.org/mare/operazione-talasso/7816 

BFT 0.3 Dredge Oct 2010 South Adriatic http://www.geapress.org/mare/operazione-talasso/7816 

SA; MA 2 PS Oct 2010 Liguria http://www.geapress.org/mare/operazione-talasso/7816 

LT 0.02 Mid-water trawl (no license) Oct 2010 Ionian Sea http://www.geapress.org/mare/operazione-talasso/7816 

AN 0.011 Mid-water trawl (no license) Oct 2010 Ionian Sea http://www.geapress.org/mare/operazione-talasso/7816 

UN 0.09 Gillnet Jun 2011 Liguria www.guardiacostiera.it 

http://www.iloveagrigento.it/pesca-illegale-a-porto-empedocle-sequestrati-45-kg-di-pesce/
http://www.iloveagrigento.it/pesca-illegale-a-porto-empedocle-sequestrati-45-kg-di-pesce/
http://www.lombardiaatavola.it/articolo.aspx?id=10361
http://lombardiaatavola.it/articolo.aspx?id=10458
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2405
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2405
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2405
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2405
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2405
http://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2405
http://www.traniweb.it/trani/informa/11024.html
http://www.traniweb.it/trani/informa/11024.html
http://www.traniweb.it/trani/informa/11024.html
http://www.conipiediperterra.com/sequestrate-a-chioggia-5-tonnellate-di-vongole-1125.html
http://www.conipiediperterra.com/sequestrate-a-chioggia-5-tonnellate-di-vongole-1125.html
http://www.riviera24.it/articoli/2010/03/16/81567/operazione-besugo-sequestrati-190-kg-di-prodotto-ittico-in-vendita-proveniente-da-pesca-sportiva
http://www.riviera24.it/articoli/2010/03/16/81567/operazione-besugo-sequestrati-190-kg-di-prodotto-ittico-in-vendita-proveniente-da-pesca-sportiva
http://www.riviera24.it/articoli/2010/03/16/81567/operazione-besugo-sequestrati-190-kg-di-prodotto-ittico-in-vendita-proveniente-da-pesca-sportiva
http://www.riviera24.it/articoli/2010/03/16/81567/operazione-besugo-sequestrati-190-kg-di-prodotto-ittico-in-vendita-proveniente-da-pesca-sportiva
http://www.lecceprima.it/cronaca/porto-cesareo-sequestrate-2-tonnellate-di-tonno-rosso.html
http://www.lecceprima.it/cronaca/porto-cesareo-sequestrate-2-tonnellate-di-tonno-rosso.html
http://www.adnkronos.com/IGN/Regioni/Abruzzo/?id=3.1.825584595
http://www.italiaatavola.net/articolo.aspx?id=17544
http://www.geapress.org/mare/operazione-talasso/7816
http://www.geapress.org/mare/operazione-talasso/7816
http://www.geapress.org/mare/operazione-talasso/7816
http://www.geapress.org/mare/operazione-talasso/7816
http://www.geapress.org/mare/operazione-talasso/7816
http://www.guardiacostiera.it/
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SU 1.2 Unknown 2012 Sicily 
http://www.agricolae.it/pesca-illegale-il-bilancio-dellattivita-di-contrasto-nel-

2012-80603/ 

TU; SWO  1.4 (undersized) Longline Oct 2012 South Adriatic 
http://www.statoquotidiano.it/25/10/2012/vieste-sequestro-14-quintali-tonno-

rosso-e-pesce-spada/107443/ 

SWO 
0.085 (20 

juveniles) 
Unknown Oct 2012 Sicily 

http://livesicilia.it/2012/10/26/porto-empedocle-sequestrati-20-esemplari-di-

pesce-spada_203673/ 

CBR 0.715 Unknown Jan 2013 South Adriatic 
http://www.foggiatoday.it/cronaca/sequestro-bianchetto-manfredonia-calabria-

14-gennaio-2013.html 

CBR 0.126 Seine Mar 2013 Ionian Sea 
http://bari.repubblica.it/cronaca/2013/01/20/news/incastrati_i_predoni_del_mare-

50950505/ 

CBR 0.1 Unknown Mar 2013 Ionian Sea 
http://www.cn24tv.it/news/65331/pesca-illegale-guardia-costiera-sequestrati-

oltre-100-kg-di-bianchetto.html 

CBR 0.02 Seine Apr 2013 Ionian Sea 
http://www.lentelocale.it/cronaca/1718-lotta-alla-pesca-illegale-numerosi-

sequestri-di-bianchetto-e-cicerello-da-parte-della-guardia-costiera 

CBR 0.13 Unknown Apr 2013 South Tyrrhenian 
http://www.ansa.it/web/notizie/regioni/calabria/2013/04/12/Sequestrati-130-chili-

novellame_8543000.html 

CBR 0.15 Trawlers Apr 2013 South Adriatic http://www.manfredonianews.it/sequestro-di-reti-illegali-e-bianchetto 

http://www.agricolae.it/pesca-illegale-il-bilancio-dellattivita-di-contrasto-nel-2012-80603/
http://www.agricolae.it/pesca-illegale-il-bilancio-dellattivita-di-contrasto-nel-2012-80603/
http://www.statoquotidiano.it/25/10/2012/vieste-sequestro-14-quintali-tonno-rosso-e-pesce-spada/107443/
http://www.statoquotidiano.it/25/10/2012/vieste-sequestro-14-quintali-tonno-rosso-e-pesce-spada/107443/
http://livesicilia.it/2012/10/26/porto-empedocle-sequestrati-20-esemplari-di-pesce-spada_203673/
http://livesicilia.it/2012/10/26/porto-empedocle-sequestrati-20-esemplari-di-pesce-spada_203673/
http://www.foggiatoday.it/cronaca/sequestro-bianchetto-manfredonia-calabria-14-gennaio-2013.html
http://www.foggiatoday.it/cronaca/sequestro-bianchetto-manfredonia-calabria-14-gennaio-2013.html
http://bari.repubblica.it/cronaca/2013/01/20/news/incastrati_i_predoni_del_mare-50950505/
http://bari.repubblica.it/cronaca/2013/01/20/news/incastrati_i_predoni_del_mare-50950505/
http://www.cn24tv.it/news/65331/pesca-illegale-guardia-costiera-sequestrati-oltre-100-kg-di-bianchetto.html
http://www.cn24tv.it/news/65331/pesca-illegale-guardia-costiera-sequestrati-oltre-100-kg-di-bianchetto.html
http://www.lentelocale.it/cronaca/1718-lotta-alla-pesca-illegale-numerosi-sequestri-di-bianchetto-e-cicerello-da-parte-della-guardia-costiera
http://www.lentelocale.it/cronaca/1718-lotta-alla-pesca-illegale-numerosi-sequestri-di-bianchetto-e-cicerello-da-parte-della-guardia-costiera
http://www.ansa.it/web/notizie/regioni/calabria/2013/04/12/Sequestrati-130-chili-novellame_8543000.html
http://www.ansa.it/web/notizie/regioni/calabria/2013/04/12/Sequestrati-130-chili-novellame_8543000.html
http://www.manfredonianews.it/sequestro-di-reti-illegali-e-bianchetto
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Table S5. Discard and bycatch rates (in %) given to each type of fishing fleet per sub-regional division.  

Fishing fleet types: T: trawlers; MT: mid-water trawlers; D: dredges; P: purse seiners; AF: artisanal 

fisheries; MG: multiple gears and L: longline. N/A = not applicable is related to a fishing fleet not being 

present in a given sub-regional division. 

 

 T MT D P AF MG L 

1. Ligurian 

  20a,b,c,d,e,f N/A N/A 8.5 a,c,d,g 5a,c,d,g 18.4a,b,c,d,g,h 40a,c,d,h,i 

2. Tyrrhenian 

North 20a,b,c,d,e,f N/A N/A 8.5a,c,d,g 5a,c,d,g 18.4a,b,c,d,g,h 40a,c,d,h,i 

Central 20a,b,c,d,e,f N/A 20a,c,d,j 8.5a,c,d,g 5a,c,d,g 18.4a,b,c,d,g,h 40a,c,d,h,i 

South 20a,b,c,d,e,f N/A 20a,c,d,j 8.5a,c,d,g 5a,c,d,g 18.4a,b,c,d,g,h 40a,c,d,h,i 

3. Ionian  

  35a,c,d,g,k N/A N/A 7.5a,c,d,g 5a,c,d,g 18.6a,c,d,g 40a,c,d,g 

4. Adriatic  

North 67.4a,d,l,m,n 18.3a,d,g,o 68.5a,c,d,g,k 8.5a,c,d,o 7a,c,d,g 42.9a,c,d,l 50a,c,d,h,i 

Central 67.4a,d,l,m,n 18.3a,d,g,o 68.5a,c,d,g,k 8.5a,c,d,o 7a,c,d,g 42.9a,c,d,l 50a,c,d,h,i 

South 67.4a,d,l,m,n 18.3a,d,g,o 68.5a,c,d,g,k 8.5a,c,d,o 7a,c,d,g 42.9a,c,d,l 50a,c,d,h,i 

5. Sardinian 

  20a,b,c,d,e,f N/A N/A 8.5a,c,d,g 5a,c,d,g 18.4a,b,c,d,g,h 40a,c,d,h,i 

6. Sicilian 

  20a,b,c,d,e 28.3a,c,d N/A 8.5a,c,d,g 5a,c,d,g 17.5a,b,c,d,g,h 50a,c,d,h,i 
a European Commission (2011); b Sartor et al. (2003); c Tsagarakis et al. (2013); d Vassilopoulou (2012); e Vitale et al. (2006); 
f Relini (1981); g European Commission (2008); h Gilman et al. (2007); i MegaPesca (1999); j Castriota et al. (2004); k D'Onghia 

et al. (2003); l Botter et al. (2006); m Sánchez et al. (2007); n Scarcella et al. (2007); o Santojanni et al. (2005) 

 

 

Table S6. ‘Score’ given to each catch of fishing sector to estimate the uncertainty associated to the data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catch of sector 1950-1969 1970-1989 1990-2010 

Industrial discards 1 2 3 

Industrial landings 2 3 4 

Artisanal discards 1 2 3 

Artisanal catch 2 3 4 

Subsistence catch 1 1 1 

Recreational catch 1 1 2 
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Figure S1. Comparison between reconstructed (dotted line) and IREPA (grey line) catches for European 

anchovies (1) and European pilchard (2) around the coasts of Sardinia.  

  

Figure S2. Comparison between ICCAT (dark line), IREPA-ISTAT (grey line) and reconstructed catches 

(dotted line) for Atlantic bluefin tuna (a); frigate tuna (b); Atlantic bonito (c) and swordfish (d). 
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S1. Input parameters (B, P/B, Q/B) and estimated outputs (trophic levels, ecotrophic efficiencies and production/consumption rates in grey cells) for the functional groups of the 

Amvrakikos Gulf marine ecosystem in 1980s 

# Group name Trophic level B (t/km²) P/B (year) Q/B (year) 
Total Catch 

(t/km2/year) 
EE P/Q 

1 Tursiops truncatus 4.07 0.066 0.054 22.630  0.028 0.002 

2 Phalacrocorax carbo 3.44 0.005 0.205 109.450  0.095 0.002 

3 Seagulls and terns 3.48 0.002 0.171 589.050  0.000 0.000 

4 Pelicanus crispus 3.66 0.001 0.105 177.816  0.134 0.001 

5 Caretta caretta 3.27 0.001 0.190 3.220  0.526 0.059 

6 Sardina pilchardus 2.96 23.050 2.650 10.500 1.567 0.639 0.252 

7 Other clupeidae 3.14 0.240 2.185 11.300 0.008 0.890 0.193 

8 Trachurus trachurus 3.67 1.690 1.795 8.400 0.115 0.825 0.214 

9 Diplodus annularis 2.99 6.320 0.888 7.150 0.430 0.257 0.124 

10 Mugillidae 2.13 5.920 0.905 20.900 0.403 0.342 0.043 

11 Other benthop. fish 3.03 5.420 0.720 7.480 0.368 0.958 0.096 

12 Demersal fish 1 3.02 1.630 0.820 6.940 0.111 0.851 0.118 

13 Demersal fish 2 2.85 1.220 0.940 6.730 0.083 0.698 0.140 

14 Demersal fish 3 3.91 4.250 0.820 4.400 0.289 0.200 0.186 

15 Pelagic fish 4.05 5.110 0.920 4.790 0.347 0.296 0.192 

16 Sharks and rays 3.34 0.284 0.780 4.000 0.017 0.944 0.195 

17 Solea vulgaris 2.93 4.870 0.770 7.670 0.331 0.788 0.100 

18 Boops boops 3.04 6.105 0.650 6.900 0.415 0.743 0.094 

19 Dicentrarchus l./Sparus a. 3.21 2.120 0.888 7.430 0.144 0.533 0.119 

20 Mullidae 2.91 24.090 0.750 6.600 1.638 0.237 0.114 

21 Fish farms 1.00 0.059 18.000 36.000 1.062 0.995 0.500 

22 Penaeus kerathurus 2.85 5.950 1.588 6.500 0.405 0.892 0.244 

23 Other crustaceans 2.01 10.940 3.500 12.000 0.200 0.989 0.292 

24 Bivalves and gastropods 2.00 7.350 1.200 4.000 0.228 0.965 0.300 

25 Benthopelagic cephalopds 3.56 8.520 2.000 7.500 0.579 0.964 0.267 

26 Octopus vulgaris 3.49 0.230 2.000 7.000 0.016 0.600 0.286 

27 Jellyfish 3.09 0.877 6.500 22.000  0.950 0.295 

28 Benthic invertebrates 2.01 73.202 4.000 14.000  0.796 0.286 

29 Zooplankton 2.20 10.360 20.000 70.000  0.982 0.286 

30 Bacterioplankton 2.00 5.500 153.000 290.000  0.164 0.528 

31 Phytoplankton 1.00 32.281 80.000 --  0.257 -- 

32 Discards 1.00 0.770 -- --  0.944 -- 

33 POM 1.00 1.757 -- --  0.756 -- 

34 Detritus 1.00 10.000 -- --  0.310 -- 
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S2. Diet composition matrix for the Amvrakikos Gulf ecosystem, 1980s period. Prey are indicated by rows and predators by columns. Functional group codes are reporting 

according to Table S1. 

Prey/predator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0.09 0.02 0.34 0 0 0 0 0.3 0.06 0 0 0.02 0 0.18 0.25 0.01 0 0 0.04 0 0 0 0 0 0.3 0 0 0 0 0 

7 0.14 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.08 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0.05 0.26 0 0.2 0 0 0 0 0 0 0 0 0 0.05 0 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0.01 0.02 0.05 0 0 0 0.1 0 0 0.01 0.05 0 0.01 0.01 0.03 0 0 0.03 0 0 0 0 0 0 0.04 0 0 0 0 

12 0 0.1 0.08 0.25 0 0 0 0 0 0 0 0.01 0.01 0.01 0 0.002 0 0 0.01 0 0 0 0 0 0 0.05 0.01 0 0 0 
13 0.19 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0 0.01 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0.04 0 0 0 0 0 0 0 0 0 0 0.01 0 0.005 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0.06 0 0 0 0 0.01 0.07 0.01 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0.05 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.001 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 

20 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0.13 0 0.099 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0.03 0 0 0 0 0 0 0.01 0.04 0 0.01 0.01 0.06 0.05 0.01 0.05 0.05 0 0.04 0 0 0 0 0 0.01 0.05 0 0 0 0 

23 0 0 0.1 0 0.08 0 0 0.01 0.18 0.01 0.11 0.38 0.07 0.09 0.03 0.1 0.15 0 0.18 0.01 0 0.05 0.01 0 0.05 0.1 0 0 0 0 

24 0 0 0 0 0.14 0 0 0 0.09 0 0.01 0.01 0.08 0.05 0.02 0.006 0.01 0 0 0 0 0 0 0 0.02 0.1 0 0 0 0 
25 0.08 0 0 0 0.07 0 0 0.07 0 0 0 0 0 0.16 0.2 0.05 0 0 0 0 0 0 0 0 0.1 0.2 0.01 0 0 0 

26 0 0 0 0 0.08 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0 0 0.01 0.01 0 0 0 

27 0 0 0 0 0.09 0 0 0 0.05 0 0 0 0 0 0.05 0.001 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 

28 0 0 0.05 0 0.05 0 0 0 0.39 0.06 0.15 0.24 0.52 0 0 0.361 0.54 0.35 0.4 0.77 0 0.79 0 0 0 0.36 0 0 0 0 
29 0 0 0 0 0 0.4 0.95 0.45 0.02 0.05 0.44 0.17 0 0 0.09 0.1 0.09 0.4 0.08 0.02 0 0 0 0 0.2 0.09 0.7 0.01 0.01 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19 0 

31 0 0 0 0 0 0.1 0.05 0 0.06 0.4 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0 0.18 0 0.8 0 

32 0 0 0.15 0 0.15 0 0 0 0 0 0 0 0 0 0 0.087 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 0 0.08 0.28 0 0.04 0.22 0 0 0 0.08 0 0.05 0.08 0 0.07 0.49 0.5 0 0 0 0.69 0 1 

34 0 0 0 0 0 0 0 0 0.03 0.2 0.08 0.02 0.02 0 0 0 0.08 0 0.05 0.02 0 0.09 0.5 0.5 0 0 0 0.3 0 0 

Import 0 0.6 0.2 0.5 0.34 0.5 0 0 0 0 0.2 0 0 0 0.25 0 0 0.2 0 0.1 1 0 0 0 0.32 0 0 0 0 0 

Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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S 3. Main equations and/or references used for basic input parameters (Biomass (B), Production over Biomass (P/B), Consumption over Biomass (Q/B), Diet (D)) of the 

Amvrakikos functional groups in the 1980s. Species composition of each functional group and time series of biomass and catch used to fit the model are also given. 

Functional groups Description Source 

Tursiops truncatus 

Biomass 1980s  (Gonzalvo et al., 2014) 

Biomass Time series Survey data (2003-2013) (Bearzi et al., 2008; Gonzalvo unpublished data ) 

Production/Biomass  Life history table (Barlow and Boveng, 1991) 

Consumption/Biomass 
From modified energy 

requirement equation: E 
=aW0.714 

(Hunter, 2005; Pauly et al., 1998) 

Diet   (Gonzalvo unpublished data) 

Phalacrocorax carbo 

Biomass 1980s  (Liordos et al., 2002; Liordos et al., 2014) 

Biomass Time series Survey data (1982-2012) (Liordos et al., 2002; Liordos et al., 2014) 

Production/Biomass   (Liordos and Goutner, 2008; Liordos and Goutner, 2012) 

Consumption/Biomass  (Karpouzi, 2005; Karpouzi et al., 2007) 

Diet   (Liordos and Goutner, 2007a, b) 

Seagulls and terns (Sterna nilotica, Sterna sandvicensis, Sterna albifrons, Larus ridibundus) 

Biomass 1980s  (Karpouzi, 2005) 

Biomass Time series --  

Production/Biomass   (Karpouzi, 2005; Karpouzi et al., 2007) 

Consumption/Biomass  (Karpouzi, 2005; Karpouzi et al., 2007) 

Diet   (Karpouzi, 2005; Karpouzi et al., 2007) 

Pelicanus crispus 

Biomass 1980s  (Crivelli et al., 2000) 

Biomass Time series Survey data (1983-2012) (Crivelli et al., 2000) 

Production/Biomass   (Catsadorakis and Crivelli, 2001; Crivelli, 1996; Crivelli et al., 1998) 

Consumption/Biomass  (Dentressangle et al., 2008) 

Diet   (Albanis et al., 1995a; Crivelli, 1996) 

Caretta caretta 

Biomass 1980s  (Moutopoulos et al., 2013; Piroddi et al., 2010) 

Biomass Time series --  

Production/Biomass   (Rees et al., 2013) 

Consumption/Biomass  (Rees et al., 2013; Wabnitz et al., 2010) 

Diet   (Rees and Margaritoulis, 2006) 
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Sardina pilchardus 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (1980-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Somarakis et al., 2006a; Somarakis et al., 2006b) 

Consumption/Biomass  (Somarakis et al., 2006b) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Other clupeidae (Engraulis encrasicolus, Sardinella aurita) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series   

Production/Biomass   (Tsikliras and Antonopoulou, 2006) 

Consumption/Biomass  (Tsikliras and Antonopoulou, 2006) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series --  

Trachurus trachurus 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (1980-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Karlou-Riga, 2000; Šantić et al., 2002) 

Consumption/Biomass  (Karlou-Riga, 2000; Šantić et al., 2002) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Diplodus annularis 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (1980-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Matić‐Skoko et al., 2007) 

Consumption/Biomass  (Froese and Pauly, 2010) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Mugillidae (Mugil cephalus, Mugil spp.) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (1980-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Hotos, 1999; Katselis, 1996; Minos, 1996) 

Consumption/Biomass  (Hotos, 1999; Katselis, 1996; Minos, 1996) 
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Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Other Benthopelagic fish (Dentex Dentex, Micromesistius poutassou, Oblada melanura, Pagellus bogaraveo, Pagellus erythrinus, Sarpa salpa) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Chilari et al., 2006; HCMR, 1988; Papaconstantinou et al., 1988; Stergiou and Karachle, 2006) 

Consumption/Biomass  (Chilari et al., 2006; HCMR, 1988; Papaconstantinou et al., 1988; Stergiou and Karachle, 2006) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (2003-2007) (Preveza Department of Fisheries; Koutsikopoulos et al., 2008; EC, 2009) 

Demersal fish 1 (Chelidonichthys obscurus, Citharus linguatula, Labrus spp, Scorpaena porcus, Serranus hepatus) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series   

Production/Biomass   (Labropoulou et al., 1998; Stergiou and Karachle, 2006; Vassilopoulou, 1994) 

Consumption/Biomass  (Labropoulou et al., 1998; Stergiou and Karachle, 2006; Vassilopoulou, 1994) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series --  

Demersal fish 2 (Diplodus sargus, Lithognathus mormyrus, Scophthalmus maximus) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series   

Production/Biomass   (Kallianiotis et al., 2005; Stergiou and Karachle, 2006) 

Consumption/Biomass  (Kallianiotis et al., 2005; Stergiou and Karachle, 2006) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series --  

Demersal fish 3 (Epinephelus aeneus, Lophius budegassa, Merluccius merluccius) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series   

Production/Biomass   (HCMR, 1988; Stergiou and Karachle, 2006; Tsimenidis, 1984) 

Consumption/Biomass  (HCMR, 1988; Stergiou and Karachle, 2006; Tsimenidis, 1984) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series --  

Pelagic fish (Belone belone, Euthynnus alletteratus, Lichia amia, Pomatomus saltatrix, Sarda sarda, Scomber japonicus, Seriola dumerili) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Kozul et al., 2001; Sini, 2005; Stergiou and Karachle, 2006; Uçkun et al., 2004) 

Consumption/Biomass  (Kozul et al., 2001; Sini, 2005; Stergiou and Karachle, 2006; Uçkun et al., 2004) 

Diet   (Stergiou and Karpouzi, 2001) 
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Catch time series (2003-2007) (Preveza Department of Fisheries; Koutsikopoulos et al., 2008; EC, 2009) 

Solea vulgaris 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Stergiou et al., 1997) 

Consumption/Biomass  (Papaconstantinou et al., 1990) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (2003-2007) (Preveza Department of Fisheries; Koutsikopoulos et al., 2008; EC, 2009) 

Boops boops 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (El-Haweet et al., 2005) 

Consumption/Biomass  (Stergiou and Karachle, 2006) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (2003-2007) (Preveza Department of Fisheries; Koutsikopoulos et al., 2008; EC, 2009) 

Dicentrarchus labrax/Sparus aurata 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Brando et al., 2004; Kraljević and Dulčić, 1997) 

Consumption/Biomass  (Brando et al., 2004) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (2003-2007) (Preveza Department of Fisheries; Koutsikopoulos et al., 2008; EC, 2009) 

Mullidae (Mullus barbatus, Mullus surmuletus) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (1980-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Vassilopoulou et al., 2002) 

Consumption/Biomass  (Vassilopoulou et al., 2002) 

Diet   (Stergiou and Karpouzi, 2001) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Fish farms 

Biomass 1980s  (Preveza Department of Fisheries; Katselis and Ramfos, 2015) 

Biomass Time series (1988-2008) (Preveza Department of Fisheries; Katselis and Ramfos, 2015) 

Production/Biomass   (Katselis and Ramfos, 2015) 

Consumption/Biomass  (Katselis and Ramfos, 2015) 

Diet    

Catch Time series (1988-2008) (Preveza Department of Fisheries; Katselis and Ramfos, 2015) 
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Sharks and rays (Raja spp., Squalus acanthias) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series   

Production/Biomass   (Coll et al., 2009) 

Consumption/Biomass  (Coll et al., 2009) 

Diet   (Coll et al., 2009) 

Catch Time series --  

Penaeus kerathurus 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (1980-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Conides et al., 2008; Conides et al., 2010) 

Consumption/Biomass  (Coll et al., 2009; Piroddi et al., 2010) 

Diet   (Coll et al., 2009; Piroddi et al., 2010) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Other crustaceans (Hommarus gammarus, Nephrops norvegicus, Rissoides desmaresti, others) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Coll et al., 2009; Piroddi et al., 2010) 

Consumption/Biomass  (Coll et al., 2009; Piroddi et al., 2010) 

Diet   (Coll et al., 2009; Piroddi et al., 2010) 

Catch time series (2003-2007) (Preveza Department of Fisheries; Koutsikopoulos et al., 2008; EC, 2009) 

Bivalves and gastropods 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Coll et al., 2009) 

Consumption/Biomass  (Coll et al., 2009) 

Diet   (Coll et al., 2009) 

Catch time series (2003-2007) (Preveza Department of Fisheries; Koutsikopoulos et al., 2008; EC, 2009) 

Benthopelagic cephalopods (Loligo vulgaris, Loliginidae, Ommastrepidae, Sepia officinalis) 

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (1980-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Coll et al., 2009) 

Consumption/Biomass  (Coll et al., 2009) 

Diet   (Coll et al., 2009) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Octopus vulgaris 



ANNEX 3. SUPPLEMENTARY MATERIALS 

 
 

307  

Biomass 1980s CPUE Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009) 

Biomass Time series CPUE (2003-2007) 
Catch and effort from: (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; EC, 2009; Koutsikopoulos et al., 
2008) 

Production/Biomass   (Coll et al., 2009) 

Consumption/Biomass  (Coll et al., 2009) 

Diet   (Coll et al., 2009) 

Catch time series (1980-2007) (Preveza Department of Fisheries; Conides et al., 2001; Conides and Papaconstantinou, 2001; Koutsikopoulos et al., 2008; EC, 2009) 

Jellyfish 

Biomass 1980s Estimated by Ecopath  

Biomass Time series --  

Production/Biomass   (Coll et al., 2009) 

Consumption/Biomass  (Coll et al., 2009) 

Diet   (Coll et al., 2009) 

Benthic invertebrates 

Biomass 1980s  (Nicolaidou et al., 1983; Nicolaidou and Papadopoulou, 1989; Pancucci et al., 1994; Tziavos and Vouloumanos, 1994) 

Biomass Time series --  

Production/Biomass   (Moutopoulos et al., 2013; Piroddi et al., 2010) 

Consumption/Biomass  (Moutopoulos et al., 2013; Piroddi et al., 2010) 

Diet   (Moutopoulos et al., 2013; Piroddi et al., 2010) 

Zooplankton 

Biomass 1980s  (Kehayias and Aposporis, 2014; Nicolaidou et al., 1983; Panayotidis et al., 1994) 

Biomass Time series --  

Production/Biomass   (Nicolaidou et al., 1983; Panayotidis et al., 1994) 

Consumption/Biomass  (Nicolaidou et al., 1983; Panayotidis et al., 1994) 

Diet   (Nicolaidou et al., 1983; Panayotidis et al., 1994) 

Bacterioplankton 

Biomass 1980s  (Harvey et al., 2003; Libralato and Solidoro, 2009) 

Biomass Time series --  

Production/Biomass   (Harvey et al., 2003; Libralato and Solidoro, 2009) 

Consumption/Biomass  (Harvey et al., 2003; Libralato and Solidoro, 2009) 

Diet   (Harvey et al., 2003; Libralato and Solidoro, 2009) 

Phytoplankton 

Biomass 1980s  (Nicolaidou et al., 1983; Panayotidis et al., 1994) 

Biomass Time series --  

Production/Biomass   (Nicolaidou et al., 1983; Panayotidis et al., 1994) 

Consumption/Biomass   

Diet    

Discards 

Biomass 1980s  (Moutopoulos et al., 2013) 

Biomass Time series --  
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Production/Biomass    

Consumption/Biomass   

Diet    

POM 

Biomass 1980s  (Albanis et al., 1995b; Katselis and Ramfos, 2015; Zacharias et al., 2009) 

Biomass Time series 1981-2008 (Albanis et al., 1995b; Katselis and Ramfos, 2015; Zacharias et al., 2009) 

Production/Biomass    

Consumption/Biomass   

Diet    
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S4. Predicted (solid lines) versus observed (dots) biomass (tonnes/km2) for the remaining functional groups of the Amvrakikos ecosystem 
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S 1. Initial (light grey cells) and output (white cells) parameters of the Mediterranean marine ecosystem for the 1950s period 

# Group name Trophic level 
Habitat area 

(fraction) 

Biomass in 
habitat area 

(t/km²) 

Biomass 
(t/km²) 

Production / 
biomass (/year) 

Consumption / 
biomass 
(/year) 

Ecotrophic 
efficiency 

Production / 
consumption 

1 Piscivores cetaceans W 4.19 0.33 0.01 0.00 0.08 25.84 0.97 0.00 

2 Others cetaceans 3.53 1.00 0.07 0.07 0.05 8.29 0.07 0.01 

3 Pinnipeds W 4.20 0.33 0.00 0.00 0.08 13.15 0.90 0.01 

4 Seabirds W 3.09 0.33 0.00 0.00 5.33 73.09 0.01 0.07 

5 Sea turtles  2.68 1.00 0.02 0.02 0.19 2.78 0.14 0.07 

6 Large Pelagics 3.94 1.00 0.44 0.44 0.35 2.50 0.04 0.14 

7 Medium pelagics W 3.28 0.33 0.56 0.18 0.75 4.94 0.85 0.15 

8 European pilchard W 3.13 0.33 0.55 0.18 0.99 8.45 1.00 0.12 

9 European anchovy W 3.25 0.33 0.67 0.22 0.87 7.95 0.90 0.11 

10 Other small pelagics W 3.14 0.33 0.36 0.12 0.75 6.63 0.90 0.11 

11 Large demersals W 3.68 0.33 0.24 0.08 0.87 3.06 0.87 0.28 

12 European hake W 3.81 0.33 0.28 0.09 0.60 2.80 0.91 0.21 

13 Medium demersals W 2.94 0.33 0.79 0.26 0.70 6.40 0.92 0.11 

14 Small demersals W 3.03 0.33 0.38 0.13 1.57 6.87 0.98 0.23 

15 Deep fish W 2.97 0.33 0.85 0.28 0.70 3.50 0.99 0.20 

16 Sharks W 3.85 0.33 0.36 0.12 0.42 3.48 0.10 0.12 

17 Rays and skates W 3.34 0.33 0.28 0.09 0.80 3.67 0.83 0.22 

18 Benthopelagic cephalopods W 3.69 0.33 0.32 0.11 2.00 9.00 0.96 0.22 

19 Benthic cephalopods W 3.44 0.33 0.56 0.18 2.10 7.00 0.86 0.30 

20 Bivalves_gastropods W 2.01 0.33 1.00 0.33 1.30 5.00 0.94 0.26 

21 Crustaceans W 2.79 0.33 0.99 0.33 3.50 12.00 0.97 0.29 

22 Jellyfish W 3.08 0.33 0.33 0.11 13.87 50.48 0.42 0.27 

23 Benthos W 2.02 0.33 16.22 5.39 2.50 9.04 0.33 0.28 

24 Zooplankton W 2.25 0.33 7.76 2.58 30.60 102.00 0.81 0.30 

25 Phytoplankton W 1.00 0.33 18.40 6.11 197.00  -- 0.18  -- 

26 Seagrass W 1.00 0.33 16.70 5.55 5.94  -- 0.16  -- 

          

27 Piscivores cetaceans A 4.16 0.05 0.00 0.00 0.08 25.84 0.90 0.00 

28 Pinnipeds A 4.19 0.05 0.00 0.00 0.08 13.15 0.55 0.01 

29 Seabirds A 3.03 0.05 0.00 0.00 4.61 69.34 0.16 0.07 

30 Medium Pelagics A 3.26 0.05 0.88 0.05 0.92 6.76 0.89 0.14 

31 European pilchard A 3.00 0.05 4.32 0.23 0.80 9.19 0.31 0.09 

32 European anchovy A 3.11 0.05 2.60 0.14 0.85 11.02 0.75 0.08 

33 Other small pelagics A 3.02 0.05 0.53 0.03 1.00 11.29 0.48 0.09 

34 Large demersals A 3.63 0.05 0.20 0.01 0.90 5.14 0.72 0.18 

35 European hake A 3.86 0.05 0.28 0.01 0.40 1.85 0.79 0.22 
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36 Medium demersals A 2.96 0.05 0.39 0.02 1.10 5.57 0.99 0.20 

37 Small demersals A 2.96 0.05 0.32 0.02 1.50 8.02 0.97 0.19 

38 Deep fish A 2.88 0.05 0.61 0.03 0.70 3.50 0.98 0.20 

39 Sharks A 3.79 0.05 0.10 0.01 0.50 4.00 0.26 0.13 

40 Rays and skates A 3.41 0.05 0.12 0.01 0.64 4.10 0.77 0.16 

41 Benthopelagic cephalopods A 3.58 0.05 0.22 0.01 2.70 9.00 0.88 0.30 

42 Benthic cephalopods A 3.45 0.05 0.33 0.02 2.10 7.00 0.85 0.30 

43 Bivalves_gastropods A 2.05 0.05 0.95 0.05 1.30 5.00 0.99 0.26 

44 Crustaceans A 2.76 0.05 0.80 0.04 3.50 12.00 0.99 0.29 

45 Jellyfish A 3.14 0.05 2.27 0.12 14.60 50.48 0.94 0.29 

46 Benthos A 2.02 0.05 68.24 3.64 1.31 6.71 0.18 0.20 

47 Zooplankton A 2.11 0.05 5.79 0.31 37.85 126.17 0.97 0.30 

48 Phytoplankton A 1.00 0.05 15.00 0.80 140.00  -- 0.33  -- 

49 Seagrass A 1.00 0.05 2.68 0.14 4.02  -- 0.50  -- 

          

50 Piscivores cetaceans I 4.13 0.30 0.00 0.00 0.08 25.84 0.77 0.00 

51 Pinnipeds I 4.16 0.30 0.00 0.00 0.08 13.15 0.35 0.01 

52 Seabirds I 3.11 0.30 0.00 0.00 4.60 105.43 0.07 0.04 

53 Medium Pelagics I 3.20 0.30 0.38 0.11 0.70 7.70 0.96 0.09 

54 European pilchard I 3.02 0.30 0.48 0.14 0.94 8.68 0.97 0.11 

55 European anchovy I 3.14 0.30 0.53 0.16 0.91 12.30 0.86 0.07 

56 Other small pelagics I 3.04 0.30 0.28 0.08 0.86 8.36 0.95 0.10 

57 Large demersals I 3.66 0.30 0.20 0.06 0.65 2.85 0.93 0.23 

58 European hake I 3.86 0.30 0.13 0.04 0.65 3.40 0.96 0.19 

59 Medium demersals I 2.89 0.30 0.65 0.20 0.90 8.13 0.82 0.11 

60 Small demersals I 2.93 0.30 0.34 0.10 1.10 6.38 0.98 0.17 

61 Deep fish I 2.80 0.30 0.59 0.18 0.70 3.50 0.81 0.20 

62 Sharks I 3.72 0.30 0.24 0.07 0.41 4.33 0.10 0.09 

63 Rays and skates I 3.27 0.30 0.24 0.07 0.60 3.00 0.76 0.20 

64 Benthopelagic cephalopods I 3.53 0.30 0.17 0.05 2.70 9.00 0.93 0.30 

65 Benthic cephalopods I 3.42 0.30 0.33 0.10 2.10 7.00 0.95 0.30 

66 Bivalves_gastropods I 2.01 0.30 0.70 0.21 1.30 5.00 0.95 0.26 

67 Crustaceans I 2.63 0.30 0.63 0.19 3.45 12.00 0.97 0.29 

68 Jellyfish I 3.10 0.30 0.17 0.05 11.10 35.90 0.87 0.31 

69 Benthos I 2.01 0.30 11.74 3.52 2.75 22.00 0.29 0.13 

70 Zooplankton I 2.14 0.30 3.63 1.09 38.44 128.12 0.57 0.30 

71 Phytoplankton I 1.00 0.30 7.60 2.28 61.80  -- 0.88  -- 

72 Seagrass I 1.00 0.30 16.00 4.79 2.59  -- 0.64  -- 

          

73 Piscivores cetaceans E 4.12 0.31 0.00 0.00 0.08 25.84 0.76 0.00 

74 Pinnipeds E 4.11 0.31 0.00 0.00 0.08 13.15 0.31 0.01 
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75 Seabirds E 3.12 0.31 0.00 0.00 4.78 111.61 0.00 0.04 

76 Medium Pelagics E 3.23 0.31 0.61 0.19 0.80 4.79 0.92 0.17 

77 European pilchard E 3.02 0.31 0.48 0.15 0.95 9.49 0.99 0.10 

78 European anchovy E 3.14 0.31 0.87 0.27 0.90 5.20 0.92 0.17 

79 Other small pelagics E 2.89 0.31 0.48 0.15 0.95 8.23 0.91 0.12 

80 Large demersals E 3.57 0.31 0.18 0.06 0.70 4.35 0.94 0.16 

81 European hake E 3.79 0.31 0.28 0.09 0.60 5.26 0.92 0.11 

82 Medium demersals E 2.87 0.31 0.40 0.12 1.00 9.09 0.91 0.11 

83 Small demersals E 2.95 0.31 0.36 0.11 1.10 7.64 0.99 0.14 

84 Deep fish E 2.90 0.31 0.42 0.13 0.70 3.50 0.94 0.20 

85 Skarks E 3.70 0.31 0.20 0.06 0.50 5.16 0.10 0.10 

86 Rays and skates E 3.38 0.31 0.18 0.06 0.70 4.07 0.93 0.17 

87 Benthopelagic cephalopods E 3.55 0.31 0.13 0.04 2.70 9.00 0.92 0.30 

88 Benthic cephalopods E 3.36 0.31 0.32 0.10 2.10 7.00 0.96 0.30 

89 Bivalves_gastropods E 2.01 0.31 0.62 0.19 1.30 5.00 0.98 0.26 

90 Crustaceans E 2.64 0.31 0.56 0.17 3.50 12.00 0.98 0.29 

91 Jellyfish E 3.25 0.31 0.16 0.05 4.84 15.00 0.75 0.32 

92 Benthos E 2.02 0.31 9.83 3.10 2.64 16.13 0.32 0.16 

93 Zooplankton E 2.14 0.31 3.59 1.13 38.80 129.33 0.55 0.30 

94 Phytoplankton E 1.00 0.31 8.83 2.78 70.00  -- 0.66  -- 

95 Seagrass E 1.00 0.31 15.00 4.72 2.69  -- 0.40  -- 

96 Discards W 1.00 0.33 0.02 0.01 -- -- 0.02  -- 

97 Detritus W 1.00 0.33 32.01 10.63 -- -- 0.04  -- 

98 Discards A 1.00 0.05 0.01 0.00 -- -- 0.11  -- 

99 Detritus A 1.00 0.05 19.73 1.05 -- -- 0.25  -- 

100 Discards I 1.00 0.30 0.01 0.00 -- -- 0.27  -- 

101 Detritus I 1.00 0.30 14.78 4.43 -- -- 0.59  -- 

102 Discards E 1.00 0.31 0.01 0.00 -- -- 0.13  -- 

103 Detritus E 1.00 0.31 14.74 4.64 -- -- 0.29  -- 

 

S 2. Initial and output parameters of the Mediterranean marine ecosystem for the 2000s period 

# Group name Trophic level 
Habitat area 

(fraction) 

Biomass in 
habitat area 

(t/km²) 

Biomass 
(t/km²) 

Production / 
biomass (/year) 

Consumption / 
biomass 
(/year) 

Ecotrophic 
efficiency 

Production / 
consumption 

1 Piscivores cetaceans W 4.19 0.33 0.00 0.00 0.08 25.84 0.50 0.00 

2 Others cetaceans 3.53 1.00 0.05 0.05 0.05 8.29 0.21 0.01 

3 Pinnipeds W 4.22 0.33 0.00 0.00 0.08 13.15 0.41 0.01 

4 Seabirds W 3.09 0.33 0.00 0.00 5.33 73.09 0.05 0.07 

5 Sea turtles  2.68 1.00 0.00 0.00 0.16 2.78 0.97 0.06 
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6 Large Pelagics 3.94 1.00 0.40 0.40 0.39 2.50 0.15 0.16 

7 Medium pelagics W 3.28 0.33 0.48 0.16 0.85 4.94 0.97 0.17 

8 European pilchard W 3.13 0.33 0.39 0.13 1.20 8.45 0.97 0.14 

9 European anchovy W 3.25 0.33 0.64 0.21 0.97 7.95 0.97 0.12 

10 Other small pelagics W 3.14 0.33 0.32 0.11 0.99 6.63 0.88 0.15 

11 Large demersals W 3.68 0.33 0.22 0.07 0.91 3.06 0.84 0.30 

12 European hake W 3.82 0.33 0.24 0.08 0.70 2.80 0.87 0.25 

13 Medium demersals W 2.94 0.33 0.71 0.24 0.80 6.40 0.94 0.13 

14 Small demersals W 3.04 0.33 0.31 0.10 1.60 6.87 0.91 0.23 

15 Deep fish W 2.97 0.33 0.87 0.29 0.70 3.50 0.96 0.20 

16 Sharks W 3.85 0.33 0.35 0.11 0.50 3.48 0.09 0.14 

17 Rays and skates W 3.34 0.33 0.27 0.09 0.88 3.67 0.77 0.24 

18 Benthopelagic cephalopods W 3.69 0.33 0.30 0.10 2.50 8.33 0.85 0.30 

19 Benthic cephalopods W 3.48 0.33 0.43 0.14 2.30 7.67 0.92 0.30 

20 Bivalves_gastropods W 2.01 0.33 0.70 0.23 1.50 5.00 1.00 0.30 

21 Crustaceans W 2.79 0.33 0.72 0.24 3.67 12.23 0.99 0.30 

22 Jellyfish W 3.08 0.33 0.27 0.09 22.84 50.48 0.26 0.45 

23 Benthos W 2.02 0.33 13.27 4.41 3.90 9.04 0.21 0.43 

24 Zooplankton W 2.25 0.33 8.04 2.67 39.60 132.00 0.76 0.30 

25 Phytoplankton W 1.00 0.33 20.40 6.77 185.18  -- 0.23  -- 

26 Seagrass W 1.00 0.33 12.84 4.26 5.94  -- 0.16  -- 

 
 
  

        

27 Piscivores cetaceans A 4.16 0.05 0.00 0.00 0.08 25.84 0.85 0.00 

28 Pinnipeds A 4.21 0.05 0.00 0.00 0.08 13.15 0.55 0.01 

29 Seabirds A 3.03 0.05 0.00 0.00 4.61 69.34 0.41 0.07 

30 Medium Pelagics A 3.26 0.05 0.74 0.04 1.15 6.76 0.72 0.17 

31 European pilchard A 3.00 0.05 3.37 0.18 0.97 9.19 0.30 0.11 

32 European anchovy A 3.11 0.05 2.11 0.11 1.10 11.02 0.70 0.10 

33 Other small pelagics A 3.02 0.05 0.43 0.02 1.10 11.29 0.46 0.10 

34 Large demersals A 3.64 0.05 0.18 0.01 1.30 5.14 0.53 0.25 

35 European hake A 3.86 0.05 0.25 0.01 0.60 2.10 0.65 0.29 

36 Medium demersals A 2.96 0.05 0.28 0.02 1.54 5.57 0.94 0.28 

37 Small demersals A 2.96 0.05 0.26 0.01 1.90 8.02 0.98 0.24 

38 Deep fish A 2.88 0.05 0.48 0.03 0.70 3.50 0.97 0.20 

39 Sharks A 3.79 0.05 0.05 0.00 0.60 4.00 0.38 0.15 

40 Rays and skates A 3.42 0.05 0.10 0.01 0.74 4.10 0.44 0.18 

41 Benthopelagic cephalopods A 3.56 0.05 0.17 0.01 3.30 11.00 0.98 0.30 

42 Benthic cephalopods A 3.51 0.05 0.30 0.02 3.00 10.00 0.87 0.30 

43 Bivalves_gastropods A 2.01 0.05 0.84 0.04 1.35 4.50 0.95 0.30 
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44 Crustaceans A 2.75 0.05 0.67 0.04 3.80 12.67 0.98 0.30 

45 Jellyfish A 3.14 0.05 2.51 0.13 14.71 50.48 0.93 0.29 

46 Benthos A 2.02 0.05 64.24 3.43 1.31 6.71 0.16 0.20 

47 Zooplankton A 2.11 0.05 6.15 0.33 38.85 129.50 0.87 0.30 

48 Phytoplankton A 1.00 0.05 17.73 0.95 214.00  -- 0.20  -- 

49 Seagrass A 1.00 0.05 2.06 0.11 4.02  -- 0.59  -- 

          

50 Piscivores cetaceans I 4.13 0.30 0.00 0.00 0.08 25.84 0.67 0.00 

51 Pinnipeds I 4.15 0.30 0.00 0.00 0.08 13.15 0.67 0.01 

52 Seabirds I 3.11 0.30 0.00 0.00 4.48 79.17 0.29 0.06 

53 Medium Pelagics I 3.20 0.30 0.29 0.09 0.83 7.70 0.92 0.11 

54 European pilchard I 3.02 0.30 0.39 0.12 1.00 8.68 0.99 0.12 

55 European anchovy I 3.14 0.30 0.44 0.13 1.10 12.30 0.79 0.09 

56 Other small pelagics I 3.04 0.30 0.26 0.08 1.10 8.36 0.91 0.13 

57 Large demersals I 3.66 0.30 0.19 0.06 0.70 2.85 0.86 0.25 

58 European hake I 3.86 0.30 0.12 0.04 0.70 3.40 0.95 0.21 

59 Medium demersals I 2.89 0.30 0.52 0.16 1.15 8.13 0.86 0.14 

60 Small demersals I 2.93 0.30 0.30 0.09 1.40 6.38 1.00 0.22 

61 Deep fish I 2.80 0.30 0.51 0.15 0.70 3.50 0.97 0.20 

62 Sharks I 3.71 0.30 0.24 0.07 0.58 4.33 0.09 0.13 

63 Rays and skates I 3.27 0.30 0.23 0.07 0.70 3.00 0.67 0.23 

64 Benthopelagic cephalopods I 3.53 0.30 0.14 0.04 3.10 10.33 0.90 0.30 

65 Benthic cephalopods I 3.42 0.30 0.32 0.09 3.00 10.00 0.81 0.30 

66 Bivalves_gastropods I 2.01 0.30 0.63 0.19 1.50 5.00 0.99 0.30 

67 Crustaceans I 2.63 0.30 0.59 0.18 3.77 12.57 0.97 0.30 

68 Jellyfish I 3.10 0.30 0.25 0.08 14.13 47.10 0.86 0.30 

69 Benthos I 2.01 0.30 11.35 3.40 4.70 16.13 0.16 0.29 

70 Zooplankton I 2.14 0.30 5.65 1.69 30.63 102.10 0.53 0.30 

71 Phytoplankton I 1.00 0.30 14.09 4.22 173.56  -- 0.21  -- 

72 Seagrass I 1.00 0.30 12.17 3.65 2.59  -- 0.60  -- 

  
     

 
 

  

73 Piscivores cetaceans E 4.11 0.31 0.00 0.00 0.08 25.84 0.89 0.00 

74 Pinnipeds E 4.10 0.31 0.00 0.00 0.08 13.15 0.62 0.01 

75 Seabirds E 3.12 0.31 0.00 0.00 4.78 111.61 0.02 0.04 

76 Medium Pelagics E 3.19 0.31 0.42 0.13 0.95 4.79 0.81 0.20 

77 European pilchard E 3.02 0.31 0.45 0.14 1.10 9.49 0.90 0.12 

78 European anchovy E 3.14 0.31 0.52 0.16 1.20 5.20 0.94 0.23 

79 Other small pelagics E 2.89 0.31 0.41 0.13 1.15 8.23 0.89 0.14 

80 Large demersals E 3.56 0.31 0.17 0.05 0.90 4.35 0.84 0.21 

81 European hake E 3.73 0.31 0.27 0.09 0.75 4.06 0.65 0.18 
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82 Medium demersals E 2.84 0.31 0.35 0.11 1.18 9.09 0.90 0.13 

83 Small demersals E 2.95 0.31 0.21 0.07 1.30 7.64 0.96 0.17 

84 Deep fish E 2.90 0.31 0.44 0.14 0.70 5.50 0.84 0.13 

85 Skarks E 3.64 0.31 0.19 0.06 0.58 5.16 0.14 0.11 

86 Rays and skates E 3.38 0.31 0.17 0.05 0.78 4.07 0.89 0.19 

87 Benthopelagic cephalopods E 3.54 0.31 0.11 0.03 3.10 10.33 0.94 0.30 

88 Benthic cephalopods E 3.35 0.31 0.29 0.09 3.00 10.00 0.82 0.30 

89 Bivalves_gastropods E 2.01 0.31 0.59 0.19 1.50 5.00 0.98 0.30 

90 Crustaceans E 2.63 0.31 0.42 0.13 4.90 16.33 0.97 0.30 

91 Jellyfish E 3.25 0.31 0.20 0.06 4.84 16.13 0.74 0.30 

92 Benthos E 2.02 0.31 8.90 2.80 4.00 13.33 0.22 0.30 

93 Zooplankton E 2.14 0.31 3.80 1.20 35.13 117.10 0.54 0.30 

94 Phytoplankton E 1.00 0.31 11.61 3.66 168.99 0.00 0.20  -- 

95 Seagrass E 1.00 0.31 11.58 3.65 2.69 0.00 0.40  -- 

96 Discards W 1.00 0.33 0.04 0.01  --  -- 0.02  -- 

97 Detritus W 1.00 0.33 32.01 10.63  --  -- 0.04  -- 

98 Discards A 1.00 0.05 0.01 0.00  --  -- 0.06  -- 

99 Detritus A 1.00 0.05 19.73 1.05  --  -- 0.13  -- 

100 Discards I 1.00 0.30 0.02 0.00  --  -- 0.04  -- 

101 Detritus I 1.00 0.30 12.78 3.83  --  -- 0.08  -- 

102 Discards E 1.00 0.31 0.04 0.01  --  -- 0.03  -- 

103 Detritus E 1.00 0.31 14.74 4.64  --  -- 0.07  -- 

 

 

 

S3. Diet composition matrix for the Mediterranean marine ecosystem model for the 1950s period. Prey groups are indicated by rows and predators by columns. Functional group 

codes are reported according to Table S1. 
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S 5. Main equations and references used for basic input parameters (Biomass (B), Production over Biomass (P/B), Consumption over Biomass, (Q/B), Diet (TL)) of the 

Mediterranean functional groups in the 1950 and 2000 periods.  Information about species composition of each functional group is also given. 

  Source 

Functional groups Equations Western Med. Sea Adriatic Sea Ionian and central Med. Sea Eastern and Levantine Sea 

Piscivores cetaceans: Delphinus delphis, Stenella coeruleoalba, Tursiops truncatus 

Biomass 1950s 
Estimated by 
Ecopath 

 (Bearzi et al. 2004)   

Biomass 2000s  (Reeves & Notarbartolo di Sciara 
2006) 

(Reeves & Notarbartolo di Sciara 
2006) 

(Reeves & Notarbartolo di Sciara 2006) 
(Reeves & Notarbartolo di Sciara 
2006) 

Production/Biomass  Life history table (Barlow & Boveng 1991) (Barlow & Boveng 1991) (Barlow & Boveng 1991) (Barlow & Boveng 1991) 

Consumption/Biomass 
From modified 
energy requirement 
equation: E =aW0.714 

(Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) 

Diet   

(Aguilar & Raga 1993, Würtz & 
Marrale 1993, Blanco et al. 1995, 
Blanco et al. 2001, Cañadas & 
Hammond 2008, Bearzi et al. 2009, 
Gómez-Campos et al. 2011) 

(Bearzi et al. 2004, Fortuna 2006, 
Bearzi et al. 2009) 

(Blanco et al. 1995, Bearzi et al. 2003, 
Bearzi et al. 2009, Piroddi et al. 2010) 

(Blanco et al. 1995, Blanco et al. 
2001, Bearzi et al. 2003, Bearzi et 
al. 2009) 

Other cetaceans: Balaenoptera physalus, Globicephala melas, Grampus griseus, Physeter macrocephalus, Ziphius cavirostris 

Biomass 1950s 
Estimated by 
Ecopath 

    

Biomass 2000s  (Reeves & Notarbartolo di Sciara 
2006) 

(Reeves & Notarbartolo di Sciara 
2006) 

(Reeves & Notarbartolo di Sciara 2006) 
(Reeves & Notarbartolo di Sciara 
2006) 

Production/Biomass  Life history table (Barlow & Boveng 1991) (Barlow & Boveng 1991) (Barlow & Boveng 1991) (Barlow & Boveng 1991) 

Consumption/Biomass 
From modified 
energy requirement 
equation: E =aW0.714 

(Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) 

Diet   

(Würtz et al. 1992, Cañadas & 
Sagarminaga 2000, Drouot et al. 
2004, Blanco et al. 2006, Canese et al. 
2006, De Stephanis et al. 2008, Praca 
& Gannier 2008, Cotté et al. 2009, 
Rosso 2009, Bearzi et al. 2011) 

(Santos et al. 2001, Reeves & 
Notarbartolo di Sciara 2006, Cotté et 
al. 2009) 

(Santos et al. 2001, Reeves & Notarbartolo 
di Sciara 2006, Cotté et al. 2009, Bearzi et 
al. 2011) 

(Santos et al. 2001, Shoham-
Frider et al. 2002, Roberts 2003, 
Reeves & Notarbartolo di Sciara 
2006, Cotté et al. 2009, Bearzi et 
al. 2011) 

Pinnipeds: Monachus monachus 

Biomass 1950s   
(Sergeant et al. 1978, UNEP/MAP 
1994, Johnson & Lavigne 1998) 

(Sergeant et al. 1978, UNEP/MAP 
1994, Johnson & Lavigne 1998) 

(Sergeant et al. 1978, UNEP/MAP 1994, 
Johnson & Lavigne 1998) 

(Sergeant et al. 1978, UNEP/MAP 
1994, Johnson & Lavigne 1998) 
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Biomass 2000s   (UNEP/MAP 2005, Mo et al. 2011) (Gomerčić et al. 2011, Mo 2011) 
(Panou et al. 1993, Notarbartolo di Sciara 
G. et al. 2009, Mo 2011) 

(Güçlüsoy et al. 2004, Gucu et al. 
2004, Notarbartolo di Sciara G. et 
al. 2009, Scheinin et al. 2011) 

Production/Biomass  Life history table (Barlow & Boveng 1991) (Barlow & Boveng 1991) (Barlow & Boveng 1991) (Barlow & Boveng 1991) 

Consumption/Biomass 
From modified 
energy requirement 
equation:E =aW0.714 

(Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) (Pauly et al. 1998, Hunter 2005) 

Diet   
(Salman et al. 2001, Karamanlidis et 
al. 2011, Pierce et al. 2011) 

(Salman et al. 2001, Karamanlidis et 
al. 2011, Pierce et al. 2011) 

(Salman et al. 2001, Karamanlidis et al. 
2011, Pierce et al. 2011) 

(Salman et al. 2001, Karamanlidis 
et al. 2011, Pierce et al. 2011) 

Seabirds: Calonectris diomedea, Hydrobates pelagicus melitensis, Larus michahellis, Larus audouinii, Larus genei, Larus melanocephalus, Phalacrocorax aristotelis desmarestii, Puffinus yelkouan, Puffinus 
mauretanicus, Sterna nilotica, Sterna sandvicensis, Sterna caspia, Sterna hirundo, Sterna albifrons, Sterna bengalensis 

Biomass 1950s   (Karpouzi et al. 2007, Paleczny 2012) (Karpouzi et al. 2007, Paleczny 2012) (Karpouzi et al. 2007, Paleczny 2012) 
(Karpouzi et al. 2007, Paleczny 
2012) 

Biomass 2000s   (Karpouzi et al. 2007, Paleczny 2012) (Karpouzi et al. 2007, Paleczny 2012) (Karpouzi et al. 2007, Paleczny 2012) 
(Karpouzi et al. 2007, Paleczny 
2012) 

Production/Biomass    
(Birdlife www.birdlife.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Birdlife www.birdlife.org; Coll et al. 
2007, Coll et al. 2009) 

(Birdlife www.birdlife.org; Piroddi et al. 
2010, Piroddi et al. 2011, Hattab et al. 
2013, Moutopoulos et al. 2013) 

(Birdlife www.birdlife.org; 
Tsagarakis et al. 2010) 

Consumption/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Birdlife www.birdlife.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Birdlife www.birdlife.org; Coll et al. 
2007, Coll et al. 2009) 

(Birdlife www.birdlife.org; Piroddi et al. 
2010, Piroddi et al. 2011, Hattab et al. 
2013, Moutopoulos et al. 2013) 

(Birdlife www.birdlife.org; 
Tsagarakis et al. 2010) 

Sea turtles: Caretta caretta, Chelonia mydas 

Biomass 1950s   
(Groombridge 1990, Margaritoulis et 
al. 2003, Camiñas 2004, Casale & 
Margaritoulis 2010) 

(Groombridge 1990, Margaritoulis et 
al. 2003, Camiñas 2004, Casale & 
Margaritoulis 2010) 

(Groombridge 1990, Margaritoulis et al. 
2003, Camiñas 2004, Casale & 
Margaritoulis 2010) 

(Kasparek & Baran 1989, 
Groombridge 1990, Margaritoulis 
et al. 2003, Camiñas 2004, Casale 
& Margaritoulis 2010) 

Biomass 2000s   

(Groombridge 1990, Margaritoulis et 
al. 2003, Camiñas 2004, Mingozzi et 
al. 2008, Bentivegna et al. 2010, 
Casale & Margaritoulis 2010, Lauriano 
et al. 2011) 

(Groombridge 1990, Margaritoulis et 
al. 2003, Camiñas 2004, Mingozzi et 
al. 2008, Bentivegna et al. 2010, 
Casale & Margaritoulis 2010) 

(Groombridge 1990, Margaritoulis & Rees 
2001, Margaritoulis et al. 2003, Camiñas 
2004, Mingozzi et al. 2008, Casale & 
Margaritoulis 2010) 

(Groombridge, 1990; 
Margaritoulis et al., 2003; 
Camiñas, 2004; Casale and 
Margaritoulis, 2010)(Broderick & 
Godley 1996, Kasparek et al. 
2001, Canbolat 2004, Yalçin-
Özdilek & Yerlİ 2009) 

Production/Biomass   Z = survival rate 

(Coll et al. 2006, Coll et al. 2008, 
Casale et al. 2009, Wabnitz et al. 
2010, Casale et al. 2011, Piovano et al. 
2011) 

(Coll et al. 2007, Casale et al. 2009, 
Coll et al. 2009, Casale et al. 2011, 
Piovano et al. 2011) 

(Casale et al. 2009, Piroddi et al. 2010, 
Wabnitz et al. 2010, Casale et al. 2011, 
Piovano et al. 2011, Moutopoulos et al. 
2013) 

(Casale et al. 2009, Tsagarakis et 
al. 2010, Wabnitz et al. 2010, 
Casale et al. 2011, Piovano et al. 
2011) 

Consumption/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Wabnitz et al. 2010) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Wabnitz et al. 2010, 
Moutopoulos et al. 2013) 

(Tsagarakis et al. 2010, Wabnitz 
et al. 2010) 
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Diet   
(Coll et al. 2006, Casale et al. 2008, 
Casale & Margaritoulis 2010, Wabnitz 
et al. 2010) 

(Coll et al. 2007, Casale et al. 2008, 
Coll et al. 2009, Casale & 
Margaritoulis 2010) 

(Casale & Margaritoulis 2010, Piroddi et al. 
2010, Wabnitz et al. 2010, Moutopoulos et 
al. 2013) 

(Casale et al. 2008, Casale & 
Margaritoulis 2010, Tsagarakis et 
al. 2010, Wabnitz et al. 2010) 

Large pelagics: Coryphaena hippurus, Tetrapturus belone, Thunnus alalunga, Thunnus thynnus, Xiphias gladius 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

 (Fishstat www.fao.org; ICCAT 2010b, 
a, 2011b, a, Ortiz de Zárate et al. 
2011, ICCAT 2012) 

(Fishstat www.fao.org; ICCAT 2010b, 
a, 2011b, a, Ortiz de Zárate et al. 
2011, ICCAT 2012) 

(Fishstat www.fao.org; ICCAT 2010b, a, 
2011b, a, Ortiz de Zárate et al. 2011, ICCAT 
2012) 

((Fishstat www.fao.org; ICCAT 
2010b, a, 2011b, a, Ortiz de 
Zárate et al. 2011, ICCAT 2012) 

Biomass 2000s  
 (Fishstat www.fao.org; ICCAT 2010b, 
a, 2011b, a, Ortiz de Zárate et al. 
2011, ICCAT 2012) 

(Fishstat www.fao.org; ICCAT 2010b, 
a, 2011b, a, Ortiz de Zárate et al. 
2011, ICCAT 2012) 

(Fishstat www.fao.org; ICCAT 2010b, a, 
2011b, a, Ortiz de Zárate et al. 2011, ICCAT 
2012) 

(Fishstat www.fao.org; ICCAT 
2010b, a, 2011b, a, Ortiz de 
Zárate et al. 2011, ICCAT 2012) 

Production/Biomass 
1950 

Total mortality 
Z= F+M (Pauly 
1980) 

 (Coll et al. 2006, Coll et al. 2008, 
ICCAT 2010b, a, 2011b, a, Ortiz de 
Zárate et al. 2011, ICCAT 2012, Bănaru 
et al. 2013) 

(Coll et al. 2007, Coll et al. 2009, 
ICCAT 2010b, a, 2011b, a, Ortiz de 
Zárate et al. 2011, ICCAT 2012) 

(ICCAT 2010b, a, Piroddi et al. 2010, ICCAT 
2011b, a, Ortiz de Zárate et al. 2011, ICCAT 
2012, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(ICCAT 2010b, a, Tsagarakis et al. 
2010, ICCAT 2011b, a, Ortiz de 
Zárate et al. 2011, ICCAT 2012) 

Consumption/Biomass  (Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

Medium pelagics: Acanthocybium solandri, Alepes djedaba, Auxis rochei rochei, Auxis thazard thazard, Belone belone, Dicentrarchus punctatus, Euthynnus alletteratus, Katsuwonus pelamis, Lichia amia, Liza 
aurata, Orcynopsis unicolor, Pomatomus saltatrix, Sarda sarda, Scomber japonicus, Scomber scombrus, Scomberesox saurus saurus, Scomberomorus commerson, Seriola dumerili, Sphyraena sphyraena 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010)  Fishstat www.fao.org 

Biomass 2000s  (Fishstat www.fao.org; Coll et al. 
2006, Bănaru et al. 2013) 

(Fishstat www.fao.org; Coll et al. 
2007) 

(Fishstat www.fao.org; Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Production/Biomass   
(Fishstat www.fao.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Fishstat www.fao.org; Coll et al. 
2007, Coll et al. 2009) 

(Fishstat www.fao.org; Piroddi et al. 2010, 
Piroddi et al. 2011, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Consumption/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

European pilchard: Sardina pilchardus 

Biomass 1950s 
From a logist 
growth model:                                             

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010)  Fishstat www.fao.org 
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Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

Biomass 2000s  
(Coll et al. 2006, STECF 2010a, b, 
2011a, b, 2012a, b, Bănaru et al. 
2013, STECF 2013a, b) 

(Coll et al. 2007, STECF 2010a, b, 
2011a, b, 2012a, b, 2013a, b) 

(STECF 2010a, b, Piroddi et al. 2011, STECF 
2011a, b, 2012a, b, Hattab et al. 2013, 
Moutopoulos et al. 2013, STECF 2013a, b) 

(STECF 2010a, b, Tsagarakis et al. 
2010, STECF 2011a, b, 2012a, b, 
2013a, b) 

Production/Biomass   (Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Consumption/Biomass  (Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

European anchovy: Engraulis encrasicolus 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

 (Fishstat www.fao.org; Piroddi et al. 2010)  Fishstat www.fao.org 

Biomass 2000s  
(Coll et al. 2006, STECF 2010a, b, 
2011a, b, 2012a, b, Bănaru et al. 
2013, STECF 2013a, b) 

(Coll et al. 2007, STECF 2010a, b, 
2011a, b, 2012a, b, 2013a, b) 

(STECF 2010a, b, Piroddi et al. 2011, STECF 
2011a, b, 2012a, b, Hattab et al. 2013, 
Moutopoulos et al. 2013, STECF 2013a, b) 

(STECF 2010a, b, Tsagarakis et al. 
2010, STECF 2011a, b, 2012a, b, 
2013a, b) 

Production/Biomass   (Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Consumption/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

Other small pelagics: Aphia minuta, Atherina hepsetus, Etrumeus sadina, Sardinella aurita, Spicara maena, Spicara smaris, Sprattus sprattus, Trachurus trachurus, Trachurus mediterraneus 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

 (Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010)  Fishstat www.fao.org 

Biomass 2000s  (Fishstat www.fao.org; Coll et al. 
2006, Bănaru et al. 2013) 

(Fishstat www.fao.org; Coll et al. 
2007) 

(Fishstat www.fao.org; Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 
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Production/Biomass   
(Fishstat www.fao.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Fishstat www.fao.org; Coll et al. 
2007, Coll et al. 2009) 

(Fishstat www.fao.org; Piroddi et al. 2010, 
Piroddi et al. 2011, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

 (Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Consumption/Biomass  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

 (Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

 (Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

1 Large demersals: Conger conger, Epinephelus aeneus, Epinephelus caninus, Epinephelus marginatus, Lophius piscatorius, Molva dypterygia, Muraena helena, Polyprion americanus 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  
(Coll et al. 2006, STECF 2010a, b, 
2011a, b, 2012a, b, Bănaru et al. 
2013, STECF 2013a, b) 

(Coll et al. 2007, STECF 2010a, b, 
2011a, b, 2012a, b, 2013a, b) 

(STECF 2010a, b, Piroddi et al. 2011, STECF 
2011a, b, 2012a, b, Hattab et al. 2013, 
Moutopoulos et al. 2013, STECF 2013a, b) 

(STECF 2010a, b, Tsagarakis et al. 
2010, STECF 2011a, b, 2012a, b, 
2013a, b) 

Production/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Consumption/Biomass  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

European hake: Merluccius merluccius 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  
(Coll et al. 2006, STECF 2010a, b, 
2011a, b, 2012a, b, Bănaru et al. 
2013, STECF 2013a, b) 

(Coll et al. 2007, STECF 2010a, b, 
2011a, b, 2012a, b, 2013a, b) 

(STECF 2010a, b, Piroddi et al. 2011, STECF 
2011a, b, 2012a, b, Hattab et al. 2013, 
Moutopoulos et al. 2013, STECF 2013a, b) 

(STECF 2010a, b, Tsagarakis et al. 
2010, STECF 2011a, b, 2012a, b, 
2013a, b) 

Production/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Consumption/Biomass  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=10139
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=species&spid=57889
http://it.wikipedia.org/wiki/Epinephelus_marginatus
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=112
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=species&spid=12993
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=1096
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=species&spid=12041
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Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

Medium demersals: Argyrosomus regius, Balistes capriscus, Campogramma glaycos, Cepola macrophthalma, Chelidonichthys lucerna, Chelon labrosus, Dactylopterus volitans, Dentex dentex, Dentex 
macrophthalmus, Dicentrarchus labrax, Epigonus telescopus, Eutrigla gurnardus, Labrus Merula, Lagocephalus sceleratus, Lepidopus caudatus,Lithognathus mormyrus, Lophius budegassa, Mugil cephalus, 
Naucrates ductor, Pagellus bogaraveo, Pagrus pagrus, Phycis blennoides, Platichthys flesus, Plectorhinchus mediterraneus, Sarpa salpa, Saurida undosquamis, Sciaena umbra, Scophthalmus maximus, 
Scophthalmus rhombus, Scorpaena scrofa, Solea solea, Sparisoma cretense, Sparus aurata, Spondyliosoma cantharus, Trisopterus luscus, Umbrina canariensis, Umbrina cirrosa, Zeus faber 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010)  Fishstat www.fao.org 

Biomass 2000s  
(Coll et al. 2006, STECF 2010a, b, 
2011a, b, 2012a, b, Bănaru et al. 
2013, STECF 2013a, b) 

(Coll et al. 2007, STECF 2010a, b, 
2011a, b, 2012a, b, 2013a, b) 

(STECF 2010a, b, Piroddi et al. 2011, STECF 
2011a, b, 2012a, b, Hattab et al. 2013, 
Moutopoulos et al. 2013, STECF 2013a, b) 

(STECF 2010a, b, Tsagarakis et al. 
2010, STECF 2011a, b, 2012a, b, 
2013a, b) 

Production/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Consumption/Biomass  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

Small demersals: Atherina boyeri, Boops boops, Chelidonichthys cuculus, Dicologlossa cuneata, Diplodus annularis, Diplodus sargus sargus, Diplodus vulgaris, Gobius niger, Helicolenus dactylopterus, 
Lepidorhombus whiffiagonis,  Merlangius merlangus, Mullus barbatus barbatus, Mullus surmuletus, Nemipterus randalli, Oblada melanura, Pagellus acarne, Pagellus erythrinus, Phycis phycis, Scorpaena 
porcus, Serranus cabrilla, Serranus scriba, Synodus saurus, Trachinus draco, Trisopterus minutes, Uranoscopus scaber, Xyrichtys novacula 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  
(Coll et al. 2006, STECF 2010a, b, 
2011a, b, 2012a, b, Bănaru et al. 
2013, STECF 2013a, b) 

(Coll et al. 2007, STECF 2010a, b, 
2011a, b, 2012a, b, 2013a, b) 

(STECF 2010a, b, Piroddi et al. 2011, STECF 
2011a, b, 2012a, b, Hattab et al. 2013, 
Moutopoulos et al. 2013, STECF 2013a, b) 

(STECF 2010a, b, Tsagarakis et al. 
2010, STECF 2011a, b, 2012a, b, 
2013a, b) 

Production/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Consumption/Biomass  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Stergiou & Karpouzi 2001, Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Stergiou & Karpouzi 2001, Coll et al. 
2007, Coll et al. 2009) 

(Stergiou & Karpouzi 2001, Piroddi et al. 
2010, Hattab et al. 2013, Moutopoulos et 
al. 2013) 

(Stergiou & Karpouzi 2001, 
Tsagarakis et al. 2010) 

http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=112
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Deep fish: Alepocephalus rostratus, Argyropelecus hemigymnus, Bathypterois mediterraneus, Benthocometes robustus, Benthosema glaciale, Brama brama, Caelorhynchus caelorhynchus, Caelorhynchus 
mediterraneus, Cataetyx laticeps, Ceratoscopelus maderensis, Chalinura mediterranea, Chauliodus sloani, Chlorophthalmus agassizii, Coryphaenoides guentheri, Cyclothone braueri, Diaphus metopoclampus, 
Epigonus constanciae, Epigonus denticulatus, Epigonus telescopus, Halosaurus ovenii, Helicolenus dactylopterus, Hoplostethus mediterraneus, Hygophum benoiti, Hymenocephalus italicus, Lampanyctus 
crocodilus, Lepidion lepidion, Lepidopus caudatus, Lepidorhombus whiffiagonis, Micromesistius poutassou, Mora moro, Nettastoma melanorum, Nezumia aequalis, Nezumia sclerorhynchus, Notacanthus 
bonapartei, Notolepis rissoi, Paralepis speciosa, Polyacanthonotus rissoanus, Stomias boa, Trachyrhynchus trachyrhynchus, Trachyscorpia cristulata echinata  

Biomass 1950s   (Christensen et al. 2009) (Christensen et al. 2009) (Christensen et al. 2009) (Christensen et al. 2009) 

Biomass 2000s   (Wei et al. 2010, Tecchio et al. 2013) (Wei et al. 2010) (Wei et al. 2010) (Wei et al. 2010) 

Production/Biomass    
(Christensen et al. 2009, Tecchio et al. 
2013) 

( Christensen et al., 2009) (Christensen et al., 2009) (Christensen et al., 2009) 

Consumption/Biomass   
(Christensen et al. 2009, Tecchio et al. 
2013) 

( Christensen et al., 2009) (Christensen et al., 2009) (Christensen et al., 2009) 

Diet   
(Christensen et al. 2009, Tecchio et al. 
2013) 

( Christensen et al., 2009) (Christensen et al., 2009) (Christensen et al., 2009) 

Sharks: Alopias superciliosus, Alopias vulpinus, Carcharias taurus, Carcharodon carcharias, Centrophorus granulosus, Centrophorus granulosus, Centroscymnus coelolepis, Cetorhinus maximus, Chimaera 
monstrosa, Dalatias licha, Etmopterus spinax, Galeorhinus galeus, Galeus melastomus, Heptranchias perlo, Hexanchus griseus, Isurus oxyrinchus, Lamna nasus, Mustelus mustelus, Oxinotus centrina, Prionace 
glauca, Scyliorhinus canicula, Sharks nei, Somniosus rostratus, Squalus acanthias, Squalus blainville 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  (Fishstat www.fao.org; Coll et al. 
2006, Bănaru et al. 2013) 

(Fishstat www.fao.org; Coll et al. 
2007) 

(Fishstat www.fao.org; Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Production/Biomass   
(Fishstat www.fao.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Fishstat www.fao.org; Coll et al. 
2007, Coll et al. 2009) 

(Fishstat www.fao.org; Piroddi et al. 2010, 
Piroddi et al. 2011, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Consumption/Biomass  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Tsagarakis et al. 2010) 

Rays and skates: Dasyatis pastinaca, Leucoraja naevus, Gymnura altavela, Mobula mobular, Myliobatis aquila, Rays and Skates nei, Raja asterias, Raja clavata, Raja montagui, Rhinobatos rhinobatos, 
Rostroraja alba 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  (Fishstat www.fao.org; Coll et al. 
2006, Bănaru et al. 2013) 

(Fishstat www.fao.org; Coll et al. 
2007) 

(Fishstat www.fao.org; Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 
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Production/Biomass   
(Fishstat www.fao.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Fishstat www.fao.org; Coll et al. 
2007, Coll et al. 2009) 

(Fishstat www.fao.org; Piroddi et al. 2010, 
Piroddi et al. 2011, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Consumption/Biomass  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Tsagarakis et al. 2010) 

Benthopelagic Cephalopods: Alloteuthis media, Ancistroteuthis lichtensteini, Callista chione, Cerastoderma edule, Chamelea gallina, Crassostrea gigas, Donax vittatus, Eledone cirrhosa, Eledone moschata, Illex 
coindetii, Littorina littorea, Loligo vulgaris, Marine molluscs nei, Mytilus galloprovincialis, Octopus vulgaris, Ostrea edulis, Pecten jacobaeus, Pecten maximus, Ruditapes decussatus, Sepia officinalis, Todarodes 
sagittatus, Venerupis pullastra, Venus verrucosa 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  (Fishstat www.fao.org; Coll et al. 
2006, Bănaru et al. 2013) 

(Fishstat www.fao.org; Coll et al. 
2007) 

(Fishstat www.fao.org; Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Production/Biomass  
Total mortality 
Z= F+M (Pauly, 
1980) 

(Fishstat www.fao.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Fishstat www.fao.org; Coll et al. 
2007, Coll et al. 2009) 

(Fishstat www.fao.org; Piroddi et al. 2010, 
Piroddi et al. 2011, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Consumption/Biomass 

 From daily feeding 
rate equation 
FR = 0.0683 + 
0.0474 W      

(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Tsagarakis et al. 2010) 

Benthic Cephalopods: Alloteuthis media, Ancistroteuthis lichtensteini, Callista chione, Cerastoderma edule, Chamelea gallina, Crassostrea gigas, Donax vittatus, Eledone cirrhosa, Eledone moschata, Illex 
coindetii, Littorina littorea, Loligo vulgaris, Marine molluscs nei, Mytilus galloprovincialis, Octopus vulgaris, Ostrea edulis, Pecten jacobaeus, Pecten maximus, Ruditapes decussatus, Sepia officinalis, Todarodes 
sagittatus, Venerupis pullastra, Venus verrucosa 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

 (Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  
(Fishstat www.fao.org; Coll et al. 
2006, Bănaru et al. 2013) 

(Fishstat www.fao.org; Coll et al. 
2007) 

(Fishstat www.fao.org; Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 

Production/Biomass   
(Fishstat www.fao.org; Coll et al. 
2006, Coll et al. 2008, Bănaru et al. 
2013) 

(Fishstat www.fao.org; Coll et al. 
2007, Coll et al. 2009) 

(Fishstat www.fao.org; Piroddi et al. 2010, 
Piroddi et al. 2011, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Fishstat www.fao.org; 
Tsagarakis et al. 2010) 
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Consumption/Biomass  
(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet  
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Tsagarakis et al. 2010) 

Bivalves and Gastropods: Alloteuthis media, Ancistroteuthis lichtensteini, Callista chione, Cerastoderma edule, Chamelea gallina, Crassostrea gigas, Donax vittatus, Eledone cirrhosa, Eledone moschata, Illex 
coindetii, Littorina littorea, Loligo vulgaris, Marine molluscs nei, Mytilus galloprovincialis, Octopus vulgaris, Ostrea edulis, Pecten jacobaeus, Pecten maximus, Ruditapes decussatus, Sepia officinalis, Todarodes 
sagittatus, Venerupis pullastra, Venus verrucosa 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org) 
(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org) (Fishstat www.fao.org) 

Biomass 2000s  
(Fishstat www.fao.org; Bănaru et al. 
2013) 

(Fishstat www.fao.org; Coll et al. 
2007) 

(Fishstat www.fao.org) (Fishstat www.fao.org) 

Production/Biomass   
(Fishstat www.fao.org; Bănaru et al. 
2013) 

(Coll et al. 2007, Coll et al. 2009) (Coll et al. 2007, Coll et al. 2009) (Coll et al. 2007, Coll et al. 2009) 

Consumption/Biomass  (Bănaru et al., 2013) (Coll et al. 2007, Coll et al. 2009) (Coll et al. 2007, Coll et al. 2009) (Coll et al. 2007, Coll et al. 2009) 

Diet  (Bănaru et al., 2013) (Coll et al. 2007, Coll et al. 2009) (Coll et al. 2007, Coll et al. 2009)  (Coll et al. 2007, Coll et al. 2009) 

Crustaceans: Aristaeomorpha foliacea, Aristeus antennatus, Carcinus aestuarii, Crangon crangon, Erugosquilla massavensis, Homarus gammarus, Maja squinado, Marine crustaceans nei, Marsupenaeus 
japonicus, Melicertus kerathurus, Metapenaeus monoceros, Nephrops norvegicus, Palaemon serratus, Palinurus elephas, Palinurus mauritanicus, Parapenaeus longirostris, Plesionika martia, Portunus 
pelagicus, Scyllarides latus, Squilla mantis 

Biomass 1950s 

From a logist 
growth model:                                             
Nt+1 =Nt + 
rNt(1−Nt/k)−Ct 

(Fishstat www.fao.org; Coll et al. 
2008) 

(Fishstat www.fao.org; Coll et al. 
2009) 

(Fishstat www.fao.org; Piroddi et al. 2010) Fishstat www.fao.org 

Biomass 2000s  
(Coll et al. 2006, STECF 2010a, b, 
2011a, b, 2012a, b, Bănaru et al. 
2013, STECF 2013a, b) 

(Coll et al. 2007, STECF 2010a, b, 
2011a, b, 2012a, b, 2013a, b) 

(STECF 2010a, b, Piroddi et al. 2011, STECF 
2011a, b, 2012a, b, Hattab et al. 2013, 
Moutopoulos et al. 2013, STECF 2013a, b) 

 (STECF 2010a, b, Tsagarakis et 
al. 2010, STECF 2011a, b, 2012a, 
b, 2013a, b) 

Production/Biomass   (Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Consumption/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
(Piroddi et al. 2010, Piroddi et al. 2011, 
Hattab et al. 2013, Moutopoulos et al. 
2013) 

(Tsagarakis et al. 2010) 

Diet   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) 
 (Piroddi et al. 2010, Hattab et al. 2013, 
Moutopoulos et al. 2013) 

(Tsagarakis et al. 2010) 

Jellyfish: Aequorea forskalea, Aurelia aurita, Pelagia noctiluca, Chrysaora hysoscella, Cotylorhiza tuberculata, Liriope tetraphylla, Mnemiopsis leidyi , Pleurobrachia rhodopis, Physalia physalis, Rhizostoma 
pulmo 

Biomass 1950s   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) (Moutopoulos et al. 2013) (Tsagarakis et al. 2010) 

Biomass 2000s   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) (Moutopoulos et al. 2013) (Tsagarakis et al. 2010) 
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Production/Biomass    
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) (Moutopoulos et al. 2013) (Tsagarakis et al. 2010) 

Consumption/Biomass   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) (Moutopoulos et al. 2013) (Tsagarakis et al. 2010) 

Diet   
(Coll et al. 2006, Coll et al. 2008, 
Bănaru et al. 2013) 

(Coll et al. 2007, Coll et al. 2009) (Moutopoulos et al. 2013) (Tsagarakis et al. 2010) 

Benthos: cnidarians, sponges, tunicates, echinoderms, worms  

Biomass 1950s   (Coll et al., 2008) (Coll et al. 2007, Coll et al. 2009) (Piroddi et al., 2010) (Tsagarakis et al. 2010) 

Biomass 2000s   
( Wei et al., 2010; Coll et al. 2006, Coll 
et al. 2008, Bănaru et al. 2013) 

(Wei et al., 2010; Coll et al., 2007; 
Wei et al., 2010) 

(Wei et al., 2010; Piroddi et al., 2011; 
Hattab et al., 2013; Moutopoulos et al., 
2013) 

(Wei et al., 2010; Tsagarakis et 
al., 2010) 

Production/Biomass    
(Coll et al., 2006; Coll et al., 2008; 
Bănaru et al., 2013; Tecchio et al., 
2013) 

(Coll et al., 2007; Coll et al., 2009) 
(Piroddi et al., 2011; Hattab et al., 2013; 
Moutopoulos et al., 2013) 

(Tsagarakis et al., 2010) 

Consumption/Biomass   
(Coll et al., 2006; Coll et al., 2008; 
Bănaru et al., 2013; Tecchio et al., 
2013) 

(Coll et al., 2007; Coll et al., 2009) 
(Piroddi et al., 2011; Hattab et al., 2013; 
Moutopoulos et al., 2013) 

(Tsagarakis et al., 2010) 

Diet   
(Coll et al., 2006; Coll et al., 2008; 
Bănaru et al., 2013; Tecchio et al., 
2013) 

(Coll et al., 2007; Coll et al., 2009) 
(Piroddi et al., 2010; Hattab et al., 2013; 
Moutopoulos et al., 2013) 

(Tsagarakis et al., 2010) 

Zooplankton: meso and macro zooplankton (amphipods,  copepods, cladocerans, euphasids, mysids, pteropods) 

Biomass 1950s   
(NOAA www.st.nmfs.noaa.gov; Coll et 
al., 2008) 

(NOAA www.st.nmfs.noaa.gov; Coll et 
al., 2009) 

(NOAA www.st.nmfs.noaa.gov; Piroddi et 
al., 2010) 

(NOAA www.st.nmfs.noaa.gov) 

Biomass 2000s   
(Coll et al., 2006; Siokou-Frangou et 
al., 2010; Bănaru et al., 2013;  Tecchio 
et al., 2013) 

(Coll et al., 2007; Siokou-Frangou et 
al., 2010;)  

(Siokou-Frangou et al., 2010; Piroddi et al., 
2011; Hattab et al., 2013; Moutopoulos et 
al., 2013) 

(Siokou-Frangou et al., 2010; 
Tsagarakis et al., 2010) 

Production/Biomass    
(Coll et al., 2006; Coll et al., 2008; 
Bănaru et al., 2013; Tecchio et al., 
2013) 

(Coll et al., 2007; Coll et al., 2009) 
(Piroddi et al., 2010; Hattab et al., 2013; 
Moutopoulos et al., 2013) 

(Tsagarakis et al., 2010) 

Consumption/Biomass   
(Coll et al., 2006; Coll et al., 2008; 
Bănaru et al., 2013; Tecchio et al., 
2013) 

(Coll et al., 2007; Coll et al., 2009) 
(Piroddi et al., 2010; Hattab et al., 2013; 
Moutopoulos et al., 2013) 

(Tsagarakis et al., 2010) 

Diet   
(Coll et al., 2006; Coll et al., 2008; 
Bănaru et al., 2013; Tecchio et al., 
2013) 

(Coll et al., 2007; Coll et al., 2009) 
(Piroddi et al., 2010; Hattab et al., 2013; 
Moutopoulos et al., 2013) 

(Tsagarakis et al., 2010) 

Seagrass: Cymodocea nodosa, Posidonia oceanica, Zoostera marina, Zoostera noltii 

Biomass 1950s   
(Ardizzone et al., 2006; Duarte et al., 
2009; Giannoulaki M. et al., 2013) 

(Guidetti et al., 2002; Duarte et al., 
2009; Giannoulaki et al., 2013) 

 Duarte et al., 2009; Giannoulaki et al., 
2013) 

 Duarte et al., 2009; Giannoulaki 
et al., 2013) 

Biomass 2000s   
(Bay, 1984; Casola et al., 1987; Duarte 
and Sand-Jensen, 1990; Pergent et al., 
1994; 

(Duarte and Sand-Jensen, 1990; 
Pergent et al., 1994;Duarte and 
Chiscano, 1999; Guidetti et al., 2002; 

(Duarte and Sand-Jensen, 1990; Pergent et 
al., 1994;Duarte and Chiscano, 1999; 
Mustapha et al., 2004;Badalamenti et al., 

(Duarte and Sand-Jensen, 1990; 
Pergent et al., 1994;Duarte and 
Chiscano, 1999; Dural et al., 
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Marbá et al., 1996;Cebrián et al., 
1997; Duarte et al., 1998; Duarte and 
Chiscano, 1999; Cebrián et al., 2000; 
Cebrian and Duarte, 2001; Cancemi et 
al., 2002; Ardizzone et al., 2006; 
Giakoumi et al., 2013; Giannoulaki et 
al., 2013) 

Giakoumi et al., 2013; Giannoulaki et 
al., 2013) 

2006; Borg et al., 2009; Ben Brahim et al., 
2010; Costantino et al., 2010; Giakoumi et 
al., 2013; Giannoulaki et al., 2013; Sghaier 
et al., 2013) 
 

2012; Giakoumi et al., 2013; 
Giannoulaki et al., 2013) 
 

Production/Biomass    

(Bay, 1984; Pergent et al., 1994; 
Marbá et al., 1996; Cebrián et al., 
1997; Duarte et al., 1998; Duarte and 
Chiscano, 1999; Hemminga and 
Duarte, 2000; Cebrián et al., 2000; 
Marbà and Duarte, 2001; Cancemi et 
al., 2002;   

(Peduzzi and Vukovic, 1990; Pergent 
et al., 1994;Duarte and Chiscano, 
1999; Hemminga and Duarte, 2000) 
 

(Pergent et al., 1994;Duarte and Chiscano, 
1999; Hemminga and Duarte, 2000; 
Mustapha et al., 2004; Sghaier et al., 2013) 
 

(Pergent et al., 1994;Duarte and 
Chiscano, 1999; Hemminga and 
Duarte, 2000) 
 

Phytoplankton: Diatoms, dinoflagellates 

Biomass 1950s   (Macias et al., 2014) (Macias et al., 2014) (Macias et al., 2014) (Macias et al., 2014) 

Biomass 2000s   
(EMIS emis.jrc.ec.europa.eu; Siokou-
Frangou et al., 2010) 

(EMIS emis.jrc.ec.europa.eu; Siokou-
Frangou et al., 2010) 

(EMIS emis.jrc.ec.europa.eu; Siokou-
Frangou et al., 2010) 

(EMIS emis.jrc.ec.europa.eu; 
Siokou-Frangou et al., 2010) 

Production/Biomass    
(EMIS emis.jrc.ec.europa.eu; Siokou-
Frangou et al., 2010; Macias et al., 
2014) 

(EMIS emis.jrc.ec.europa.eu; Siokou-
Frangou et al., 2010; Macias et al., 
2014) 

(EMIS emis.jrc.ec.europa.eu; Siokou-
Frangou et al., 2010; Macias et al., 2014) 

(EMIS emis.jrc.ec.europa.eu; 
Siokou-Frangou et al., 2010; 
Macias et al., 2014) 
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S 6. Flow diagram (year 2000s) presented per each MSFD area where each functional group is shown as a circle and its size is approximately proportional to the log of its biomass. 

All the functional groups are represented by their trophic levels (y-axis) and linked to each other by predator-prey relationships expressed as light grey lines. For the 

abbreviations, please refer to Table 1. 
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S 7. Pedigree chart of EwE basic input parameters for the Mediterranean Sea model. Definition of color 

codes for each parameter are given below. A quantitative description of these colors can be found as well 

in Christensen et al (2008). 
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S 8. Keystoneness index (KSi) and relative total impact (εi) from the least to the most important pecies/groups 

in the ecosystem and for the two time periods.   

  1950 2000s 

# Group name 
Keystone 

index 

Relative total 

impact 
# Group name 

Keystone 

index 

Relative total 

impact 

28 Pinnipeds A -4.163 0.000071 28 Pinnipeds A -5.074 0.000007 

51 Pinnipeds I -3.662 0.000225 3 Pinnipeds W -4.806 0.000014 

3 Pinnipeds W -3.608 0.000255 51 Pinnipeds I -4.549 0.000025 

74 Pinnipeds E -3.065 0.000890 74 Pinnipeds E -3.355 0.000388 

29 Seabirds A -2.629 0.002 27 Piscivores cetaceans A -2.777 0.001 

27 Piscivores cetaceans A -2.451 0.004 5 Sea turtles -2.627 0.002 

73 Piscivores cetaceans E -2.189 0.007 29 Seabirds A -2.546 0.003 

52 Seabirds I -2.167 0.007 73 Piscivores cetaceans E -2.473 0.003 

50 Piscivores cetaceans I -2.156 0.007 50 Piscivores cetaceans I -2.434 0.003 

4 Seabirds W -1.753 0.018 52 Seabirds I -2.050 0.008 

5 Sea turtles -1.727 0.019 91 Jellyfish E -1.491 0.028 

75 Seabirds E -1.573 0.028 4 Seabirds W -1.470 0.030 

91 Jellyfish E -1.519 0.031 68 Jellyfish I -1.322 0.042 

68 Jellyfish I -1.443 0.037 75 Seabirds E -1.321 0.042 

10 Other small pelagics W -1.198 0.066 1 Piscivores cetaceans W -1.257 0.049 

22 Jellyfish W -1.148 0.074 22 Jellyfish W -1.243 0.050 

1 Piscivores cetaceans W -1.072 0.088 38 Deep fish A -1.038 0.081 

56 Other small pelagics I -1.005 0.103 33 Other small pelagics A -1.023 0.083 

33 Other small pelagics A -0.999 0.104 10 Other small pelagics W -0.956 0.097 

38 Deep fish A -0.973 0.110 37 Small demersals A -0.924 0.105 

26 Seagrass W -0.920 0.138 26 Seagrass W -0.907 0.118 

79 Other small pelagics E -0.908 0.128 95 Seagrass E -0.899 0.119 

9 European anchovy W -0.904 0.129 72 Seagrass I -0.898 0.119 

72 Seagrass I -0.903 0.142 84 Deep fish E -0.886 0.115 

95 Seagrass E -0.899 0.143 61 Deep fish I -0.879 0.116 

61 Deep fish I -0.887 0.135 49 Seagrass A -0.838 0.128 

84 Deep fish E -0.877 0.138 55 European anchovy I -0.832 0.130 

37 Small demersals A -0.856 0.144 60 Small demersals I -0.817 0.134 

49 Seagrass A -0.850 0.146 56 Other small pelagics I -0.816 0.135 

60 Small demersals I -0.845 0.148 83 Small demersals E -0.806 0.137 

55 European anchovy I -0.829 0.154 14 Small demersals W -0.801 0.139 

78 European anchovy E -0.793 0.168 9 European anchovy W -0.796 0.141 

32 European anchovy A -0.789 0.169 34 Large demersals A -0.783 0.145 

83 Small demersals E -0.782 0.171 79 Other small pelagics E -0.779 0.147 

45 Jellyfish A -0.779 0.172 32 European anchovy A -0.756 0.154 

14 Small demersals W -0.762 0.179 66 Bivalves and gastropods I -0.746 0.158 

34 Large demersals A -0.721 0.197 45 Jellyfish A -0.744 0.159 

15 Deep fish W -0.712 0.202 89 Bivalves and gastropods E -0.743 0.159 

20 Bivalves_gastropods W -0.708 0.204 43 Bivalves and gastropods A -0.740 0.160 

89 Bivalves_gastropods E -0.707 0.204 40 Rays A -0.702 0.175 

66 Bivalves_gastropods I -0.701 0.207 20 Bivalves and gastropods W -0.697 0.177 

11 Large demersals W -0.700 0.207 11 Large demersals W -0.695 0.178 

40 Rays and skates A -0.665 0.224 8 European pilchard W -0.672 0.188 

77 European pilchard E -0.638 0.239 15 Deep fish W -0.668 0.190 

54 European pilchard I -0.637 0.239 77 European pilchard E -0.659 0.193 

80 Large demersals E -0.615 0.251 31 European pilchard A -0.648 0.198 

43 Bivalves_gastropods A -0.610 0.254 54 European pilchard I -0.648 0.198 

31 European pilchard A -0.608 0.256 57 Large demersals I -0.604 0.219 

8 European pilchard W -0.607 0.256 78 European anchovy E -0.599 0.222 

57 Large demersals I -0.606 0.256 35 European hake A -0.570 0.237 

35 European hake A -0.602 0.259 80 Large demersals E -0.568 0.238 

58 European hake I -0.526 0.308 36 Medium demersals A -0.558 0.243 

90 Crustaceans E -0.479 0.345 58 European hake I -0.547 0.250 

12 European hake W -0.475 0.347 12 European hake W -0.536 0.256 

36 Medium demersals A -0.473 0.348 2 Others cetaceans -0.531 0.259 

82 Medium demersals E -0.460 0.359 82 Medium demersals E -0.507 0.274 

44 Crustaceans A -0.445 0.372 21 Crustaceans W -0.446 0.316 

63 Rays and skates I -0.430 0.384 17 Rays W -0.443 0.317 
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21 Crustaceans W -0.411 0.403 44 Crustaceans A -0.433 0.325 

2 Others cetaceans -0.398 0.414 63 Rays I -0.429 0.328 

17 Rays and skates W -0.387 0.425 7 Medium pelagics W -0.428 0.329 

67 Crustaceans I -0.386 0.427 90 Crustaceans E -0.421 0.334 

13 Medium demersals W -0.376 0.437 86 Rays E -0.412 0.341 

86 Rays and skates E -0.372 0.440 30 Medium Pelagics A -0.402 0.349 

81 European hake E -0.326 0.490 59 Medium demersals I -0.388 0.360 

7 Medium pelagics W -0.304 0.515 13 Medium demersals W -0.380 0.368 

59 Medium demersals I -0.301 0.519 67 Crustaceans I -0.380 0.368 

46 Benthos A -0.259 0.610 81 European hake E -0.366 0.379 

65 Benthic cephalopods I -0.245 0.589 76 Medium Pelagics E -0.332 0.411 

25 Phytoplankton W -0.239 0.670 62 Sharks I -0.265 0.478 

88 Benthic cephalopods E -0.235 0.603 25 Phytoplankton W -0.263 0.549 

41 
Benthopelagic cephalopods 

A 
-0.228 0.612 88 Benthic Cephalopods E -0.246 0.499 

42 Benthic cephalopods A -0.226 0.615 42 Benthic Cephalopods A -0.245 0.500 

19 Benthic cephalopods W -0.222 0.622 46 Benthos A -0.243 0.536 

87 
Benthopelagic cephalopods 

E 
-0.210 0.638 41 

Benthopelagic 

Cephalopods A 
-0.237 0.510 

62 Sharks I -0.206 0.645 93 Zooplankton E -0.237 0.520 

76 Medium Pelagics E -0.205 0.648 53 Medium Pelagics I -0.236 0.511 

93 Zooplankton E -0.205 0.659 85 Skarks E -0.235 0.512 

39 Sharks A -0.199 0.654 65 Benthic Cephalopods I -0.230 0.518 

18 
Benthopelagic cephalopods 

W 
-0.198 0.657 94 Phytoplankton E -0.205 0.588 

23 Benthos W -0.189 0.741 64 
Benthopelagic 

Cephalopods I 
-0.204 0.550 

70 Zooplankton I -0.188 0.685 70 Zooplankton I -0.200 0.573 

24 Zooplankton W -0.184 0.709 24 Zooplankton W -0.198 0.587 

16 Sharks W -0.179 0.687 19 Benthic Cephalopods W -0.197 0.560 

94 Phytoplankton E -0.178 0.723 23 Benthos W -0.191 0.616 

47 Zooplankton A -0.171 0.702 71 Phytoplankton I -0.191 0.615 

64 
Benthopelagic cephalopods 

I 
-0.169 0.702 87 

Benthopelagic 

Cephalopods E 
-0.185 0.574 

30 Medium Pelagics A -0.168 0.703 18 
Benthopelagic 

Cephalopods W 
-0.183 0.577 

48 Phytoplankton A -0.166 0.716 47 Zooplankton A -0.177 0.589 

71 Phytoplankton I -0.165 0.737 48 Phytoplankton A -0.174 0.600 

53 Medium Pelagics I -0.160 0.717 16 Sharks W -0.148 0.626 

85 Skarks E -0.155 0.724 69 Benthos I -0.146 0.670 

69 Benthos I -0.146 0.789 92 Benthos E -0.144 0.665 

92 Benthos E -0.134 0.804 39 Sharks A -0.117 0.672 

6 Large Pelagics -0.018 1.000 6 Large Pelagics 0.053 1.000 
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S1. List of functional groups and fisheries and their abbreviations included in the Ecopath food web model and time series data sources used in the Ecosim dynamic modelling. 

Functional groups and fisheries categories are the same in each Marine Strategy Framework Directive (MSFD) area but their composition differ per area. This is not the case for 

highly migratory species (2. ‘other cetaceans’; 5. ‘sea turtles’ and 6. ‘large pelagic fish’) that are common for all areas and they are allowed to move and feed in all the four sub-

models [19]. NA, not available. 

 

# Functional groups/fisheries Source of biomass time series Source of catch time series 

1 
Piscivorous  cetaceans (PC): Delphinus delphis, Stenella 
coeruleoalba, Tursiops truncatus 

NA  

2 
Others  cetaceans (OC): Balaenoptera physalus, Globicephala 
melas, Grampus griseus, Physeter macrocephalus, Ziphius 
cavirostris 

NA  

3 Pinnipeds (PI): Monachus monachus [1-12]  

4 

Seabirds (SB): Calonectris diomedea, Hydrobates pelagicus 
melitensis, Larus michahellis, Larus audouinii, Larus genei, Larus 
melanocephalus, Phalacrocorax carbo, Puffinus yelkouan, Puffinus 
mauretanicus, Sterna nilotica, Sterna sandvicensis, Sterna caspia, 
Sterna hirundo, Sterna albifrons, Sterna bengalensis 

NA 
 

 

5 Sea turtles (ST): Caretta caretta, Chelonia mydas [13-25]  

6 
Large Pelagics (LP): Coryphaena hippurus, Tetrapturus belone, 
Thunnus alalunga, Thunnus thynnus, Xiphias gladius 

[26] FishSTAT (FAO); ICCAT 

7 

Medium pelagics (MP):  Acanthocybium solandri, Alepes djedaba, 
Auxis rochei rochei, Auxis thazard thazard, Belone belone, 
Dicentrarchus punctatus, Euthynnus alletteratus, Katsuwonus 
pelamis, Lichia amia, Liza aurata, Orcynopsis unicolor, Pomatomus 
saltatrix, Sarda sarda, Scomber japonicus, Scomber scombrus, 
Scomberesox saurus saurus, Scomberomorus commerson, Seriola 
dumerili, Sphyraena sphyraena 

NA  

 
FishSTAT (FAO) 

8 European pilchard (EP): Sardina pilchardus [27-43] FishSTAT (FAO) 

9 European anchovy /EA): Engraulis encrasicolus [27, 28, 32-44] FishSTAT (FAO) 

10 
Other small pelagics (SP): Aphia minuta, Atherina hepsetus, 
Etrumeus sadina, Sardinella aurita, Spicara maena, Spicara smaris, 
Sprattus sprattus, Trachurus trachurus, Trachurus mediterraneus 

NA FishSTAT (FAO) 

11 
Large demersals (LD):  Conger conger, Epinephelus aeneus, 
Epinephelus caninus, Epinephelus marginatus, Lophius piscatorius, 
Molva dypterygia, Muraena helena, Polyprion americanus 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

12 European hake (HK):  Merluccius merluccius International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 
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13 

Medium demersals (MD): Argyrosomus regius, Balistes capriscus, 
Campogramma glaycos, Cepola macrophthalma, Chelidonichthys 
lucerna, Chelon labrosus, Dactylopterus volitans, Dentex dentex, 
Dentex macrophthalmus, Dicentrarchus labrax, Epigonus 
telescopus, Eutrigla gurnardus, Labrus Merula, Lagocephalus 
sceleratus, Lepidopus caudatus,Lithognathus mormyrus, Lophius 
budegassa, Mugil cephalus, Naucrates ductor, Pagellus bogaraveo, 
Pagrus pagrus, Phycis blennoides, Platichthys flesus, Plectorhinchus 
mediterraneus, Sarpa salpa, Saurida undosquamis, Sciaena umbra, 
Scophthalmus maximus, Scophthalmus rhombus, Scorpaena scrofa, 
Solea solea, Sparisoma cretense, Sparus aurata, Spondyliosoma 
cantharus, Trisopterus luscus, Umbrina canariensis, Umbrina 
cirrosa, Zeus faber 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

14 

Small demersals (SD): Atherina boyeri, Boops boops, 
Chelidonichthys cuculus, Dicologlossa cuneata, Diplodus annularis, 
Diplodus sargus sargus, Diplodus vulgaris, Gobius niger, Helicolenus 
dactylopterus, Lepidorhombus whiffiagonis,  Merlangius merlangus, 
Mullus barbatus barbatus, Mullus surmuletus, Nemipterus randalli, 
Oblada melanura, Pagellus acarne, Pagellus erythrinus, Phycis 
phycis, Scorpaena porcus, Serranus cabrilla, Serranus scriba, 
Synodus saurus, Trachinus draco, Trisopterus minutes, Uranoscopus 
scaber, Xyrichtys novacula 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

15 

Deep sea fish (DF): Alepocephalus rostratus, Argyropelecus 
hemigymnus, Bathypterois mediterraneus, Benthocometes 
robustus, Benthosema glaciale, Brama brama, Caelorhynchus 
caelorhynchus, Caelorhynchus mediterraneus, Cataetyx laticeps, 
Ceratoscopelus maderensis, Chalinura mediterranea, Chauliodus 
sloani, Chlorophthalmus agassizii, Coryphaenoides guentheri, 
Cyclothone braueri, Diaphus metopoclampus, Epigonus 
constanciae, Epigonus denticulatus, Epigonus telescopus, 
Halosaurus ovenii, Helicolenus dactylopterus, Hoplostethus 
mediterraneus, Hygophum benoiti, Hymenocephalus italicus, 
Lampanyctus crocodilus, Lepidion lepidion, Lepidopus caudatus, 
Lepidorhombus whiffiagonis, Micromesistius poutassou, Mora 
moro, Nettastoma melanorum, Nezumia aequalis, Nezumia 
sclerorhynchus, Notacanthus bonapartei, Notolepis rissoi, Paralepis 
speciosa, Polyacanthonotus rissoanus, Stomias boa, Trachyrhynchus 
trachyrhynchus, Trachyscorpia cristulata echinata 

[45]   

16 
Sharks (SK): Alopias superciliosus, Alopias vulpinus, Carcharias 
taurus, Carcharodon carcharias, Centrophorus granulosus, 
Centrophorus granulosus, Centroscymnus coelolepis, Cetorhinus 
maximus, Chimaera monstrosa, Dalatias licha, Etmopterus spinax, 
Galeorhinus galeus, Galeus melastomus, Heptranchias perlo, 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 
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Hexanchus griseus, Isurus oxyrinchus, Lamna nasus, Mustelus 
mustelus, Oxinotus centrina, Prionace glauca, Scyliorhinus canicula, 
Sharks nei, Somniosus rostratus, Squalus acanthias, Squalus 
blainville 

17 
Rays and skates (RS): Dasyatis pastinaca, Leucoraja naevus, 
Gymnura altavela, Mobula mobular, Myliobatis aquila, Rays and 
Skates nei, Raja asterias, Raja clavata, Raja montagui, Rhinobatos 
rhinobatos, Rostroraja alba 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

18 
Benthopelagic cephalopods (BPC): Alloteuthis media, 
Ancistroteuthis lichtensteini, Illex coindetii, Loligo vulgaris, Marine 
molluscs nei, Ostrea edulis, Sepia officinalis, Todarodes sagittatus 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

19 
Benthic cephalopods (BC): Eledone cirrhosa, Eledone moschata, 
Marine molluscs nei, Octopus vulgaris 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

20 

Bivalves_gastropods (BG):  Callista chione, Cerastoderma edule, 
Chamelea gallina, Crassostrea gigas, Donax vittatus, Littorina 
littorea, Marine molluscs nei, Mytilus galloprovincialis, Ostrea 
edulis, Pecten jacobaeus, Pecten maximus, Ruditapes decussatus, 
Venerupis pullastra, Venus verrucosa 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

21 

Crustaceans (CR): Aristaeomorpha foliacea, Aristeus antennatus, 
Carcinus aestuarii, Crangon crangon, Erugosquilla massavensis, 
Homarus gammarus, Maja squinado, Marine crustaceans nei, 
Marsupenaeus japonicus, Melicertus kerathurus, Metapenaeus 
monoceros, Nephrops norvegicus, Palaemon serratus, Palinurus 
elephas, Palinurus mauritanicus, Parapenaeus longirostris, 
Plesionika martia, Portunus pelagicus, Scyllarides latus, Squilla 
mantis 

International  Bottom  Trawl  Survey  in  the  Mediterranean (Medits database) FishSTAT (FAO) 

22 
Jellyfish (JF):  Aequorea forskalea, Aurelia aurita, Pelagia noctiluca, 
Chrysaora hysoscella, Cotylorhiza tuberculata, Liriope tetraphylla, 
Mnemiopsis leidyi , Pleurobrachia rhodopis, Physalia physalis, 
Rhizostoma pulmo 

NA  

23 

Benthos (BE):  nematodes, copepods (and naupliar stages), 
polychaetes, oligochaetes, isopods, cumaceans, amphipods, 
acarians, ostracods, oligochaetes, tanaidaceans, cnidarians, 
kinorhynchs, turbellarians, gastrotriches, nemerteans, bivalves, 
priapulids (including larvae), cladocerans, decapods (larvae) and 
echinoderms 

[45]   

24 
Zooplankton (ZO): meso and macro zooplankton (amphipods,  
copepods, cladocerans, euphasids, mysids, pteropods) 

NA  

25 Phytoplankton (PH): diatoms, dinoflagellates NA  

26 
Seagrass (SE):  Cymodocea nodosa, Posidonia oceanica, Zoostera 
marina, Zoostera noltii 

NA  

27 Detritus (DE)   
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28 Discards (DI)   

29 Trawlers (TR)   

30 Purse seiners (PS)   

31 Long liners (LL)   

32 Artisanal fisheries (AR)   

33 Recreational fisheries (RC)   

 

 

 
S2 Refer to S1 in Annex 4 

S3 Refer to S3 in Annex 4 
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S4. PREBAL for each Mediterranean sub-area (Western [W]; Adriatic [A]; Ionian [I]; Eastern and Levantine [E] plotting (a) biomass estimates (t/km2), (b) production/biomass 

ratio (per year), and (c) consumption/biomass (per year) on a log scale vs trophic level, from lowest to highest trophic level, of each species/functional group. 

  

  

  

a) 
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S5. Reconstructed fishing effort (kW·days-1) for the main fishing fleets (trawlers: TRWL; purse seiners: PS; 

long liners: LONG; artisanals: ART) of the four Mediterranean sub-areas (Western: W; Adriatic: A; Ionian: 

I; Eastern and Levantine: E). 

 

 



ANNEX 5. SUPPLEMENTARY MATERIALS 

 
 

375 
 

S6. Technological coefficients of fishing vessels by gear type used in the analyses (Sources: [27-29]). 

 

  Technological coefficient 

Vessel type 1950-1979 1980-1995 1996-2010 

Trawlers 0.5 1 1.8 

Purse seiners 0.5 1 1.8 

Artisanal 0.5 1 1.3 

Longliners 0.5 1 2.8 

 

 
S7. Graphical presentation of the Spearman correlation analysis. Scatter plots show, for the four sub-areas (Western: W; Adriatic: A; Ionian: I; Eastern and Levantine: E) and for 

the additional Mediterranean Sea as whole (Mediterranean: M), values of PP from the biogeochemical model (PP biog) versus PP anomaly. Both time series were divided by their 

mean to be able to compare the two trends. 
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S8. Representation of modelling fitting for the remaining functional groups occurring in the Western (W), 

Adriatic (A), Ionian (I) and Eastern/Levantine (E) Seas for the period 1950-2011. Predicted biomass (t·km-2) 

is shown as solid black lines while observed data is represented as black dots. Functional groups codes 

correspond to those given in Fig 2. The predicted model results (dashed red line) using the modelled 

biogeochemical PP is also shown.  Blue shadow represents the 95% percentile and 5% percentile obtained 

through the Monte Carlo routine. 
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S9. Predicted (solid lines) versus observed (dots) catches (t·km-2·year-1) for main commercially important 

functional groups of the Ionian (c) and Eastern (d) Mediterranean ecosystems (1950-2011). 
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S10. Ecological indicators (1. Forage fish biomass (t·km-2); 2. Demersal fish biomass (t·km-2); 3. Invertebrates 

biomass (t·km-2); 4. Sharks/rays and skate biomass (t·km-2); 5. Kempton’s index of biodiversity; 6. Tot Catch: 

Total Catch (t· km-2·year-1); 7. mTLco: Mean trophic level of the community; 8. mTL>3.25: Mean trophic levels 

of groups having trophic level >3.25 (excluding marine mammals, sea turtles and seabirds); 9 mTLC: Mean 

trophic level of the catches) estimated from results of the Ecosim model for the period 1950-2011 for the 

Western Mediterranean Sea. Blue shadow represents the 95% percentile and 5% percentile obtained through 

the Monte Carlo routine. 
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S11.  Ecological indicators (1. Forage fish biomass (t·km-2); 2. Demersal fish biomass (t·km-2); 3. Invertebrates 

biomass (t·km-2); 4. Sharks/rays and skate biomass (t·km-2); 5. Kempton’s index of biodiversity; 6. Tot Catch: 

Total Catch (t· km-2·year-1); 7. mTLco: Mean trophic level of the community; 8. mTL>3.25: Mean trophic levels 

of groups having trophic level >3.25 (excluding marine mammals, sea turtles and seabirds); 9 mTLC: Mean 

trophic level of the catches) estimated from results of the Ecosim model for the period 1950-2011 for the 

Adriatic Sea. Blue shadow represents the 95% percentile and 5% percentile obtained through the Monte 

Carlo routine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ANNEX 5. SUPPLEMENTARY MATERIALS 

 
 

380 
 

S12. Ecological indicators (1. Forage fish biomass (t·km-2); 2. Demersal fish biomass (t·km-2); 3. Invertebrates 

biomass (t·km-2); 4. Sharks/rays and skate biomass (t·km-2); 5. Kempton’s index of biodiversity; 6. Tot Catch: 

Total Catch (t· km-2·year-1); 7. mTLco: Mean trophic level of the community; 8. mTL>3.25: Mean trophic levels 

of groups having trophic level >3.25 (excluding marine mammals, sea turtles and seabirds); 9 mTLC: Mean 

trophic level of the catches) estimated from results of the Ecosim model for the period 1950-2011 for the 

Ionian Sea. Blue shadow represents the 95% percentile and 5% percentile obtained through the Monte Carlo 

routine. 
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S13.  Ecological indicators (1. Forage fish biomass (t·km-2); 2. Demersal fish biomass (t·km-2); 3. Invertebrates 

biomass (t·km-2); 4. Sharks/rays and skate biomass (t·km-2); 5. Kempton’s index of biodiversity; 6. Tot Catch: 

Total Catch (t·km-2·year-1); 7. mTLco: Mean trophic level of the community; 8. mTL>3.25: Mean trophic levels 

of groups having trophic level >3.25 (excluding marine mammals, sea turtles and seabirds); 9 mTLC: Mean 

trophic level of the catches) estimated from results of the Ecosim model for the period 1950-2011  for the 

Eastern Mediterranean Sea. Blue shadow represents the 95% percentile and 5% percentile obtained through 

the Monte Carlo routine. 

 

 
1. Aguilar A. Current status of Mediterranean monk seal (Monachus monachus) 

populations. IUCN, Gland, Switzerland. 1998. 

2. Sergeant D, Ronald K, Boulva J, Berkes F. The recent status of Monachus monachus, the 

Mediterranean monk seal. Biological Conservation. 1978;14(4):259-87. 

3. Panou A, Jacobs J, Panos D. The endangered Mediterranean monk seal Monachus 

monachus in the Ionian Sea, Greece. Biological Conservation. 1993;64(2):129-40. 

4. Adamantopoulou S, Androukaki E, Dendrinos P, Kotomatas S, Paravas V, Psaradellis M, 

et al. Movements of Mediterranean monk seals (Monachus monachus) in the eastern 

Mediterranean Sea. Aquatic Mammals. 2011;37(3):256. 

5. Antolović J, Vaso A, Kashta L, Shutina V, Anagnosti S, Bogdanović S, et al. Protection of 

the Mediterranean Monk Seal (Monachus monachus) and its habitats. Rapport Du 36e Congrés 

de la Commission Internationale pour l’Exploration Scientifique de la mer Méditerranée Monte 

Carlo (Monaco). 2001:36-230. 

6. Notarbartolo di Sciara G, Adamantopoulou, S., Androukaki, E., Dendrinos, P., 

Karamanlidis, A., Paravas, V., Kotomatas, S. . National strategy and action plan for the 

conservation of the Mediterranean monk seal in Greece, 2009 ‐ 2015. Report on evaluating the 

past and structuring the future. Athens, Greece: Hellenic Society for the Study and Protection of 

the Mediterranean monk seal (MOm), 2009. 

7. Hellenic Society for the Study and Protection of the Mediterranean monk seal (MOm). 



ANNEX 5. SUPPLEMENTARY MATERIALS 

 
 

382 
 

Status of the Mediterranean monk seal Monachus monachus in Greece. Athens, Greece: 2009. 

8. Mo G, Agnesi S, Di Nora T, Tunesi L. Mediterranean monk seal sightings in Italy through 

interviews: Validating the information (1998–2006). Rapport Commission International Mer 

Méditerranée. 2007;38:542. 

9. Gomerčić T, Huber D, Gomerčić M, Gomerčić H. Presence of the Mediterranean monk 

seal (Monachus monachus) in the Croatian part of the Adriatic Sea. Aquatic Mammals. 

2011;37(3):243-7. 

10. Güçlüsoy H, Kiraç C, Veryeri NO, Savas Y. Status of the Mediterranean monk seal, 

Monachus monachus (Hermann, 1779) in the coastal waters of Turkey. EU Journal of Fisheries & 

Aquatic Sciences. 2004;21(3-4):201-10. 

11. Gucu AC, Gucu G, Orek H. Habitat use and preliminary demographic evaluation of the 

critically endangered Mediterranean monk seal (Monachus monachus) in the Cilician Basin 

(Eastern Mediterranean). Biological Conservation. 2004;116(3):417-31. 

12. Scheinin AP, Goffman O, Elasar M, Perelberg A, Kerem DH. Mediterranean monk seal 

(Monachus monachus) resighted along the Israeli coastline after more than half a century. 

Aquatic Mammals. 2011;37(3):241. 

13. Casale P, Margaritoulis D. Sea turtles in the Mediterranean: distribution, threats and 

conservation priorities. Gland, Switzerland: IUCN; 2010. 294 p. 

14. Margaritoulis D, Argano R, Baran I, Bentivegna F, Bradai M, Camiñas JA, et al. 

Loggerhead turtles in the Mediterranean Sea: present knowledge and conservation perspectives. 

Loggerhead Sea Turtles (editors: AB Bolten, BE Witherington) Smithsonian Institution Press, 

Washington DC. 2003. 

15. Margaritoulis D, Rees AF. The loggerhead turtle, Caretta caretta, population nesting in 

Kyparissia Bay, Peloponnesus, Greece: results of beach surveys over seventeen seasons and 

determination of the core nesting habitat. Zoology in the Middle East. 2001;24(1):75-90. 

16. Mingozzi T, Masciari G, Paolillo G, Pisani B, Russo M, Massolo A. Discovery of a regular 

nesting area of loggerhead turtle Caretta caretta in southern Italy: a new perspective for national 

conservation.  Biodiversity and Conservation in Europe: Springer; 2008. p. 277-99. 

17. Lauriano G, Panigada S, Casale P, Pierantonio N, Donovan G. Aerial survey abundance 

estimates of the loggerhead sea turtle Caretta caretta in the Pelagos Sanctuary, northwestern 

Mediterranean Sea. Mar Ecol Prog Ser. 2011;437:291-302. 

18. Kasparek M, Godley BJ, Broderick AC. Nesting of the green turtle, Chelonia mydas, in 

the Mediterranean: a review of status and conservation needs. Zoology in the Middle East. 

2001;24(1):45-74. 

19. Kasparek M, Baran İ. Marine turtles, Turkey: Status survey 1988 and recommendations 

for conservation and management: World Wide Fund for Nature; 1989. 

20. Groombridge B. Marine turtles in the Mediterranean: distribution, population status, 

conservation: Council of Europe; 1990. 

21. Canbolat AF. A review of sea turtle nesting activity along the Mediterranean coast of 

Turkey. Biological Conservation. 2004;116(1):81-91. 

22. Camiñas JA. Sea turtles of the Mediterranean Sea: population dynamics, sources of 

mortality and relative importance of fisheries impacts. FAO fisheries report. 2004;(738):27-84. 

23. Broderick AC, Godley BJ. Population and nesting ecology of the green turtle, Chelonia 

mydas, and the loggerhead turtle, Caretta caretta, in northern Cyprus. Zoology in the Middle 

East. 1996;13(1):27-46. 

24. Broderick AC, Glen F, Godley BJ, Hays GC. Estimating the number of green and 

loggerhead turtles nesting annually in the Mediterranean. Oryx. 2002;36(03):227-35. 

25. Bentivegna F, Rasotto M, De Lucia G, Secci E, Massaro G, Panzera S, et al. Loggerhead 

turtle (Caretta caretta) nests at high latitudes in Italy: a call for vigilance in the Western 

Mediterranean. Chelonian Conservation and Biology. 2010;9(2):283-9. 

26. Ahrens RNM. A global analysis of apparent trends in abundance and recruitment of large 



ANNEX 5. SUPPLEMENTARY MATERIALS 

 
 

383 
 

tunas and billfishes inferred from Japanese longline catch and effort data. Vancouver, Canada: 

University of British Columbia; 2010. 

27. MEDIAS. Report of 5th meeting for MEDIterranean Acoustic Surveys in the framework 

of European Data Collection Framework (DCF) 

Sliema, Malta: 2012. 

28. MEDIAS. Report of 3rd meeting for MEDiterranean Acoustic Surveys (MEDIAS) in the 

framework of European Data Collection Framework. Capo Granitola, Sicily: 2010. 

29. Sinovčić G, Zorica B, Keč VČ, Mustać B. Inter-annual fluctuations of the population 

structure, condition, length-weight relationship and abundance of sardine, Sardina pilchardus 

(Walb., 1792), in the nursery and spawning ground (coastal and open sea waters) of the eastern 

Adriatic Sea (Croatia). Acta Adriatica. 2009;50(1):11-21. 

30. Santojanni A, Cingolani N, Arneri E, Kirkwood G, Belardinelli A, Giannetti G, et al. Stock 

assessment of sardine (Sardina pilchardus, Walb.) in the Adriatic Sea with an estimate of discards. 

Scientia Marina. 2005;69(4):603-17. 

31. Bedairia A, Djebar AB. A preliminary analysis of the state of exploitation of the sardine, 

Sardina pilchardus (Walbaum, 1792), in the gulf of Annaba, East Algerian. Animal biodiversity 

and conservation. 2009;32(2):89-99. 

32. Patti B, Bonanno A, Basilone G, Goncharov S, Mazzola S, Buscaino G, et al. Interannual 

fluctuations in acoustic biomass estimates and in landings of small pelagic fish populations in 

relation to hydrology in the Strait of Sicily. Chemistry and Ecology. 2004;20(5):365-75. 

33. García A, Giraldez A. Small pelagic fish research in the Mediterranean by the Spanish 

Institute of Oceanography: available data series for a climatic analysis. Fuengirola, Spain: 2012. 

34. De Felice A. Biomass evaluation of anchovy (E. encrasicolus), sardine (S. pilchardus) and 

sprat (S. sprattus) in the western Adriatic Sea by means of acoustics and preliminary analysis of 

possible relationships with environmental parameters. Fuengirola, Spain: 2012. 

35. STECF. Assessment of Mediterranean Sea stocks part I. Luxembourg: 2010. 

36. STECF. Assessment of Mediterranean Sea stocks part I (STECF 11-08). Luxembourg: 2011. 

37. STECF. Assessment of Mediterranean Sea stocks part I (STECF 12-19). Luxembourg: 2012. 

38. STECF. Assessment of Mediterranean Sea stocks part I (STECF 13-22). Luxembourg: 2013. 

39. STECF. Assessment of Mediterranean Sea stocks part II. Luxembourg: 2010. 

40. STECF. Assessment of Mediterranean Sea stocks part II (STECF-14-08). Luxembourg: 

2013. 

41. STECF. Assessment of Mediterranean Sea stocks part II (STECF 11-14). Luxembourg: 

2011. 

42. STECF. Assessment of Mediterranean Sea stocks part II (STECF 13-05). Luxembourg: 

2012. 

43. Fiorentino F, Patti B, Colloca F, Bonanno A, Basilone G, Gancitano V, et al. A comparison 

between acoustic and bottom trawl estimates to reconstruct the biomass trends of sardine and 

anchovy in the Strait of Sicily (Central Mediterranean). Fisheries Research. 2013;147:290-5. 

44. Jardim E, Giannoulaki M, Pirounaki M, Tsagarakis K, Osio G, Scott F, et al. Stock 

assessment of Hellenic small pelagic stocks. EUR 27484. Luxembourg (Luxembourg): 

Publications Office of the European Union; 2015. JRC97817. 2015. 

45. Wei C-L, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T, Caley MJ, et al. Global 

patterns and predictions of seafloor biomass using random forests. PloS one. 2010;5(12):e15323. 

 



 

 
 



ANNEX 6 

 
 

385 
 

 

 

 

 

 

 

 

 

 



ANNEX 6 

 
 

386 
 

 

 

 

 

 

 

 

 



ANNEX 6 

 
 

387 
 

 
 

 

 

 

 

 

 

 

 



ANNEX 6 

 
 

388 
 

 
 

 

 

 

 

 

 

 

 



ANNEX 6 

 
 

389 
 

 
 

 

 

 

 

 

 

 

 



ANNEX 6 

 
 

390 
 

 
 

 

 

  


