Yttrium Iron Garnet/Barium Titanate Multiferroic Composites

Giorgio Schileo¹, Cristina Pascual Gonzalez¹, Miguel Alguero², Ian M. Reaney³, Petronel Postolache⁴, Liliana Mitoseriu⁴, Klaus Reichmann⁵ and Antonio Feteira¹

¹Christian Doppler Laboratory on Advanced Ferroic Oxides, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK

²Instituto de Ciência de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid, Spain

³University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK

⁴A.I. Cuza University, Faculty of Physics, Blvd. Carol I 11, 700506, Iasi, Romania

⁵Christian Doppler Laboratory on Advanced Ferroic Oxides,, Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria

Abstract

Dense multiferroic 0-3 composites encompassing BaTiO₃ and Y₃Fe₅O₁₂ were fabricated by the solid state reaction method. X-ray diffraction data combined with Scanning Electron Microscopy imaging show virtual immiscibility between the two phases, with the Y₃Fe₅O₁₂ ferrimagnetic phase well dispersed in the tetragonal BaTiO₃ ferroelectric matrix. Raman spectroscopy analyses corroborate the polar nature of the BaTiO₃ matrix in composites with a Y₃Fe₅O₁₂ content as great as 40 wt%. Ferrimagnetism is detected in all composites and no additional magnetic phases are distinguished. Finally, these dense ceramics can be electrically poled, after which they exhibit a distinctive magnetoelectric response that increases with the Y₃Fe₅O₁₂ content, as expected.
Introduction

Magnetoelectric Multiferroics (MFs) are multifunctional materials which display simultaneously ferroelectric and magnetic order, and coupling between these two order parameters, i.e. the polarisation can be manipulated by a magnetic field, and likewise the magnetisation by an electric field. This phenomenon is referred to as the magnetoelectric (ME) effect, and its potential development may have a huge impact on the electronic industry, since they would enable us to develop 4-state logic memories, electrically written magnetic data, new tuneable sensors and transducers, to name but a few [1], [2]. The search for single-phase materials dates back to the 1960s, when doping ferroelectric crystals with magnetic ions was intensively investigated and often showed that ferroelectricity would vanish even without the establishment of magnetic ordering. Nowadays there are more than 20 single-phase MFs, however the coexistence of both ferroic properties is only observed at cryogenic temperatures. Two of the main reasons why a feasible single-phase MF has not been discovered yet are a) the fact that ferroelectricity, in most ferroelectrics such as perovskites (BaTiO$_3$, Pb(Zr,Ti)O$_3$) depends on the hybridisation of empty d orbitals of Ti or Zr with p orbitals of oxygen atoms, whereas magnetism arises from unpaired electrons in the same shells; b) magnetic cations, because of their unpaired electrons, are also relatively good conductors compared to ferroelectrics, therefore because of the increased conductivity it is then it is then impossible to apply large electric fields and ferroelectric properties are lost [3]. The theoretical understanding of these and other reasons moved the attention to composite materials. In composites, each ferroic property is carried by a separate phase, chosen in order to be ferroelectric and ferromagnetic, respectively. At room temperature and possibly well above: the two phases can be arranged according to various geometries: 0-3 for particles embedded in a matrix, 2-2 for multilayer materials or 1-3 for tubes, pillars and other elongated structures embedded into a matrix. In any case, the ME coupling is achieved via mechanical strain. A piezoelectric generates a strain which is passed onto a magnetostrictive phase, which in turn develops magnetisation, and vice versa. A good contact between the surfaces of the two phases is therefore essential to transfer the strain and achieve a useful ME effect (> 20 mV cm$^{-1}$ Oe$^{-1}$) [4].
In our previous work, we compared two sol-gel methods and a coprecipitation method to prepare 0-3 composite ceramics of BaTiO$_3$ (BT) and Y$_3$Fe$_5$O$_{12}$ (YIG) [5]. YIG was chosen in place of CoFe$_2$O$_4$ due to its much higher electrical resistance and the possibility of its use at high frequencies. The results showed that the coprecipitation method was the most suitable to retain ferroelectricity in the sintered composite. However, issues such as low density and aggregation of YIG persisted: low density is detrimental to ferroelectric properties, and aggregation reduces the interface area between the magnetic and the ferroelectric phase. Therefore, in this study we prepared particulate composites in 0-3 geometry of BT and YIG by solid state reaction method, with the aim of improving density and reducing YIG aggregation, as previously observed by Schileo et al [5]. Moreover, the concentration of YIG is varied to identify the percolation threshold for DC current under an electric field. We finally present evidence that the solid state method is more advantageous against sol-gel methods to prepare this type of composites.

Experimental

BT was prepared by solid state reaction method. Starting reagents BaCO$_3$ and TiO$_2$ (Sigma Aldrich, UK, ACS reagent, >99%) were mixed in polypropylene (PP) bottles with yttria-stabilised zirconia milling media and propan-2-ol as solvent and milled overnight. The obtained slurries were dried, sieved through a 250 mesh stainless steel sieve and calcined at 800, 900, 1000 and 1100 ºC for 8 hours. YIG was also prepared by the same method from Fe$_2$O$_3$ and Y$_2$O$_3$ (Sigma Aldrich, UK, ACS reagent, >99%), and the mixed powders were reacted at 900 and 1200 ºC. The powders were then mixed and ball milled together with 2 wt% polyethylene glycol (PEG) as binder to produce four compositions: 10, 20, 30 and 40 wt% of YIG in BT. As a reference, pellets of BT and YIG were also prepared. Green bodies were pressed isostatically at 200 MPa, heated at 1 ºC/min to 500 ºC for 5 hours to remove the binder and finally sintered at 1300 ºC for 2 hours. To fabricate electrodes, Pt paste was applied to the faces of the pellets and fired at 700 ºC for 30 min.

Purity and phase contents were studied using an X-ray diffractometer in reflection geometry (model: Empyrean, Panalytical™, Almelo, The Netherlands, K$_{α1}$-Cu line at $\lambda = 1.54060$ Å and step size
The composites microstructures were investigated using a Scanning electron Microscope (SEM) (model: Nova Nano 200 with Field Emission Gun, FEI, Brno, Czech Republic). Lattice parameters were calculated using the X’Pert High Score software suite. The sintered composites were ground using SiC paper, polished using 6 and 1 μm-diamond suspension, and then coated with carbon. Raman spectra were obtained in back-scattering geometry using a Raman microscope (model: In Via, Renishaw, Glouchestershire, UK) using an Ar laser at 514.5 nm and 10 mW. Magnetic hysteresis loops were measured using a SVM (Sample vibrating Magnetometer, Princeton Measurements Corporation, Princeton, NJ, USA) coupled with a Micromag™ furnace vacuum monitor and gas flow controller (Princeton Measurements Corporation, Princeton, NJ, USA). The instrument is calibrated daily using an Yttrium Iron Garnet sphere (7.825·10⁻² emu, NIST standard reference material no. 2853). Dielectric properties were measured with an Impedance/Gain Phase Analyser (model: 1260, Solartron instruments, Farnborough, UK) connected to a Carbolite™ (Hope Valley, UK) tube furnace. Capacitance was measured versus temperature (from room temperature to 250 °C, 1 °C/min) at five different frequencies (1, 10, 100, 250 and 1000 kHz). The ferroelectric hysteresis loops were taken using a ferroelectric tester (model: RT60, Radiant Technologies, Albuquerque, New Mexico, USA).

Composites were heated up to 100 °C in silicone oil for 1 h under 20 kV/cm, and subsequently cooled naturally to room temperature maintaining the same electric field, before magnetoelectric characterization. This was carried out with a system consisting of two Helmholtz coils (Serviciencia S.L., Spain): a high power and a high frequency coil, designed to independently provide a static magnetic field up to 1 kOe (to magnetize the material), and an alternate magnetic field up to 10 Oe at 10 kHz (the stimulus). Magnetoelectric out-put voltages were monitored with a lock-in amplifier (model 7265 Signal Recovery, TN, USA).

Results

Fig. 1 shows the room temperature X-ray diffraction data of BT, BT-YIG composites ceramics (YIG = 10-40 wt%) and YIG, sintered at 1300 °C for 2 h. BT ceramics are single phase and as expected
their crystal symmetry is well described by the tetragonal space group $P4mm$, as evidenced by the 002/200 doublet. A small amount of YFeO$_3$ (yttrium orthoferrite, PDF no. 00-039-1489 [6]) is observable in YIG, due to the equilibrium:

$$Y_3Fe_5O_{12} \leftrightarrow 3YFeO_3 + Fe_2O_3$$ (eq. 1)

Small amounts of the parasitic phases $Y_2Ti_2O_7$ (PDF no. 00-042-0413) and possibly $BaFe_{12}O_{19}$ (PDF no. 00-039-1433) are also present in the composites, as indicated by the reflections at 30.3 °2θ (for $BaFe_{12}O_{19}$) and 30.7 °2θ (for $Y_2Ti_2O_7$ and $BaFe_{12}O_{19}$), due to reaction at the interfaces between BT and YIG. The degree of tetragonality decreases in the composites as compared to pure BT (1.0106), ranging from 1.004 to 1.006 (Table 1).

Fig. 2 shows the back-scattered electron images of the polished surface for all ceramic composites. All composites exhibit high relative density, between 96% and 98%, as corroborated by the almost complete absence of porosity, especially for low YIG concentrations. YIG grains range in size from 1 to 2 µm and are also well dispersed within the BT matrix; the formation of significantly large aggregates does not occur until YIG = 40 wt%, where the level of porosity is also slightly larger.

The Raman spectra for YIG and for each composite are shown in Fig. 3 (polished sintered pellets). All modes can be assigned to either the YIG or BT phase. YIG presents the same general features as spectra reported in the literature [7], [8]; polycrystalline BT presents three broad modes at ~260, ~510 and ~720 cm$^{-1}$, and a sharp mode at ~307 cm$^{-1}$. YIG instead presents several sharp modes at 129, 170, 192, 235, 270 (the most intense), 340, 374, 415, 443, 504, 585, 676, 703 and 733 cm$^{-1}$, and a broader band at ~890 cm$^{-1}$, labelled from 0 to 14. The intensity of YIG modes increases with YIG concentration in the composites, and like for BT modes, there is no appreciable shift in mode positions in relation to the pure compounds. Moreover, no additional modes due to parasitic phases are observed.

Fig. 4 shows the temperature dependence of relative permittivity and dielectric loss for composites sintered at 1300 ºC for 2 h. The room temperature relative permittivity, ε_r, for the composites is ~1400 (10 wt% YIG), ~1250 (20 wt% YIG), ~1000 (30 wt% YIG) and ~300 (40 wt% YIG), respectively, at
1 MHz. All composites show a dielectric anomaly around 120-130 °C, which is associated with the paraelectric-to-ferroelectric transition of BT. The maximum associated to the phase transition becomes broader and less intense with increasing YIG. Above this temperature, \(\varepsilon_r \) decays continuously, however, for YIG = 30 and 40 wt% we can observe a strong frequency dispersion and increased loss at room temperature (20 - 30%), whereas for YIG = 10 and 20 wt% dielectric loss is very low for this type of particulate composite, being as low as 3-5% up to 150 °C. On heating, the permittivity continues to increase due to the enhanced conductivity, but this occurs above ~250 °C for 10 and 20 wt% YIG and already above ~150 °C for 30 and 40 wt% YIG. The PE loops (Fig. 5) reveal a good insulating behaviour of composites with a YIG content up to 30 wt%. Indeed, those composites are resistive enough to withstand a 40 kV cm\(^{-1}\) electric field. However, even under such high fields, the recorded PE loops are unsaturated and strongly affected by resistive losses, in particular for composites with 40 wt% YIG, as shown in Fig. 5. Hence, for YIG concentrations of 10 and 20 wt%, the PE loops indicate a sub-switching regime (Rayleigh), which makes impossible to describe by quantitative characteristics (remanent polarisation, coercive field) the switching character of these composites. Nevertheless, these PE loops clearly show the composites with a YIG content up to 30 wt% to sustain electric fields as high as 40 kV cm\(^{-1}\). The room temperature polarisation (non-saturated) for these composites reaches 5 to 6 µC cm\(^{-2}\) under an applied field of 40 kV cm\(^{-1}\).

Fig. 6 shows the magnetic hysteresis loops for the ceramic composites from -10 kOe to +10 kOe. The saturation magnetisation (\(M_s \)) of YIG ceramics is 24.7 emu/g, whereas for composites \(M_s \) varies as follows: 1.48 emu/g (YIG = 10 wt%), 4.14 emu/g (YIG = 20 wt%), 6.87 emu/g (YIG = 30 wt%), and 10.51 emu/g (YIG = 40 wt%); at 10 wt%, YIG also shows higher coercivity (80 Oe) than for higher concentrations (10-15 Oe), the latter being closer to the value for isolated YIG (~16 Oe).

Linear longitudinal magnetoelectric coefficients \(\alpha_{33} \) are given in Fig. 7. Note the distinctive dependence with the static magnetic field, typical of magnetoelectric composites. Maximum values of \(\approx 24, 40 \) and \(60 \mu V \text{ cm}^{-1} \text{ O}^{-1} \) are achieved for composites with 10, 20 and 30 wt% YIG content, at an increasing static magnetic field of \(\approx 330, 370 \) and 520 Oe, respectively.
Discussion

BT-YIG particulate composites fabricated from precursors prepared by solid state reaction method show better properties than those prepared by sol-gel methods [5], for the following reasons. First, XRD shows evidence of smaller amounts of parasitic phases and the crystal structure of BT is clearly tetragonal. The \(c/a \) ratio for BT in the composites is approximately 1.005, which is smaller than the value of 1.0106 measured for BT ceramics. In principle, chemical doping associated with a potential diffusion of either Y or Fe into the BT lattice can be ruled out, because neither the Curie temperature nor the Raman modes show any shift. YIG lattice parameters also show good agreement with the literature values.

Second, SEM images show very dense ceramics, a fundamental prerequisite for an effective ME coupling via strain in multiferroic composites. Back-scattered electron images of the sintered composites failed to reveal evidence of parasitic phases in the observed areas.

Third, it is important to note the presence of a peak at 307 cm\(^{-1}\) in the Raman spectra of all composites, which is ascribed to the E(TO+LO) mode (Fig. 3): this mode is generally regarded as a "signature" for the presence of ferroelectricity in BT. The Raman spectra of the composites show no evidence of parasitic phases or doping, such as extra modes or modes shifting, for BT. This is due to the local scale of the Raman probe, compared to the average picture given by XRD. The assignment of Raman mode 0 at 129 cm\(^{-1}\) to the YIG phase (uncertain in our previous work [5]) is confirmed by comparing the Raman spectra of isolated YIG and that of composite with \(x = 0.30 \) and 0.40. The mode appears only at higher concentration and its intensity relative to modes 1 and 2 in the composites matches the relative intensity in the isolated YIG. Finally, the dielectric anomaly related to the ferroelectric-to-paraelectric transition in BT is present in all composites, with relatively low loss up to 20 wt% YIG, together with high permittivity, due to the high resistivity of YIG; as a comparison, particulate composites of BT and CoFe\(_2\)O\(_4\) [9] show dielectric loss as high as 15-20% for 20 wt% CoFe\(_2\)O\(_4\) in BT. Furthermore, at least 40 kV/cm can be applied to our composites (up to 30 wt% YIG) without dielectric breakdown due to DC conductivity (fig. 5), a better result than that obtained, for example,
by combining just 10 wt% BaFe$_{12}$O$_{19}$ in BT, where the maximum applicable voltage was 2.5 kV cm$^{-1}$ \cite{10}, or 35 wt% CoFe$_2$O$_4$, again with BT \cite{11}, where 25 kV cm$^{-1}$ corresponds to a maximum polarisation of \sim4 μC cm$^{-2}$.

In theory, the relative permittivity in composites can be estimated from empirical expressions which combine the permittivity of each component phase and their relative concentrations. Hence, considering the relative permittivity of YIG, measured at room temperature and 1 MHz, to be 14, which is in agreement with the literature value (although for single crystal) \cite{12} and the relative permittivity of BT to be 2500 and using the Maxwell Garnett equation 1:

$$\varepsilon_{\text{comp}} = \varepsilon_1 - \frac{3x_2\varepsilon_1(\varepsilon_1-\varepsilon_2)}{3\varepsilon_1-x_1(\varepsilon_1-\varepsilon_2)} \tag{eq. 1}$$

where $\varepsilon_{\text{comp}}$ is the permittivity of the 0-3 composite, x_1 and x_2 are volume fractions, and ε_1 and ε_2 are the relative permittivity of each phase. It follows $\varepsilon_{\text{comp}}$: 2146, 1823, 1529 and 1259 for 10, 20, 30 and 40 wt%, respectively. These values are higher than the experimental ones shown in Fig. 4. Instead, using the Lichtenecker equation \cite{13}:

$$\ln \varepsilon_{\text{comp}} = (1 - x_2) \ln \varepsilon_1 + x_2 \ln \varepsilon_2 \tag{eq. 2}$$

By using the same values for ε_1 and ε_2 we obtain the following results for $\varepsilon_{\text{comp}}$, for increasing YIG contents: 1489, 886, 528 and 314. This equation is in good agreement for 10 and 40 wt% YIG, but fails to account for the experimental value of permittivity for 20 and 30 wt%. The discrepancy between the predictions and the experimental values shows that the assumptions made for the Maxwell-Garnett or the Effective Medium Approximation (EMA) model were not fulfilled in the real case, i.e. the microstructures are not standard EMA ones, there are possible interactions among embedded particles, or particles may have different sizes and shapes. It was demonstrated that the Lichtenecker logarithmic expression characterises a specific microgeometry of a composite system only, which cannot be reduced neither to the Maxwell Garnett microgeometry, nor to that of Bruggemann \cite{14}. For example, the Lichtenecker’s equation also could explained to some extent the permittivity decay in PZT-ferrite ceramic composites when increasing the ferrite amount, but the best
results could be provided by calculations with finite element methods using realistic microstructures [15].

The high field electrical measurements demonstrate that BT-YIG composites are electrically insulating up to 30 wt% YIG. For 40 wt% YIG instead, the maximum applicable electric field is limited to 15 kV/cm before short-circuit occurs, and it is evident from the shape of the polarisation curve, which appears due to conductivity rather than electrical polarisation. We can therefore conclude that the percolation limit lies between 30 and 40 wt% YIG in BT.

As far as magnetic properties are concerned, the value of saturation magnetisation for composites with YIG = 10-20 wt% is significantly below what one would expect by simply correcting for the YIG concentration. This discrepancy decreases for YIG concentrations ≥ 30 wt%, which are closer to the theoretical values. For the composite at lowest YIG concentration, coercivity is also significantly higher than in the other composites and isolated YIG. From the shape of the hysteresis loops for all composites we can observe the absence of parasitic hard magnetic phases even for YIG = 40 wt%, which supports the choice of the solid state reaction method for the preparation of these composites.

It is remarkable that a distinctive magnetoelectric response, yet low is obtained in the composites as a result of the partial poling. Indeed, coefficients increases with the YIG content as expected.

Conclusions

Dense particulate multiferroic composites of ferrimagnetic YIG embedded into a matrix of ferroelectric BT were fabricated from precursors prepared by solid state reaction method. The ferroelectric and ferrimagnetic nature of the initial precursors was preserved in the composites. XRD patterns confirm the presence of YIG and tetragonal BT with little or no parasitic phases. Raman spectroscopy analysis confirms retention of ferroelectricity up to 40 wt% YIG included. Magnetic hysteresis loops also show the typical ferrimagnetic behaviour derived from the YIG parent phase. Therefore we conclude that the solid state methods yields a reliable method of producing good quality composites in terms of density, dispersion of YIG and retention of ferroelectricity, by comparison
with wet methods. Finally, these dense ceramics can be partially poled, after which they exhibit a distinctive magnetoelectric response that increases with YIG content, as expected.

Acknowledgements

This work was funded by the Christian Doppler Association in cooperation with TDK-EPC (Austria). LM acknowledges the grant PN-II-ID-PCE-2011-3-0745, while MA thanks funding by Spanish MINECO through project MAT2014-58816-R.

References

List of Figures
Figure 1. Room temperature x-ray diffraction data of BT, BT-YIG composites with YIG concentration ranging from 10 wt% to 40 wt%, and YIG sintered at 1300 ºC for 2 h (# = YFeO$_3$, * = Y$_3$Ti$_2$O$_7$ and/or BaFe$_{12}$O$_{19}$) (from bottom to top).

Figure 2. Back-scattering SEM images showing the typical microstructure of ceramic composites with increasing concentration of YIG, sintered at 1300 ºC for 2 h.

Figure 3. Raman spectra of YIG and BT-YIG composites with YIG concentration ranging from 10 wt% to 40 wt%. Spectra were collected on polished surfaces of pellets sintered at 1300 ºC for 2 h (from bottom to top).

Figure 4. Temperature dependence of relative permittivity and dielectric loss for composites with a) 10 wt%, b) 20 wt%, c) 30 wt%, and d) 40 wt% YIG in BT.

Figure 5. Ferroelectric hysteresis loops for BT-YIG ceramic composites.

Figure 6. Magnetic hysteresis loops for BT-YIG composites; inset: magnetic hysteresis loop for YIG.

Figure 7. Magnetoelectric coefficients for BT-YIG composites.

List of Tables

Table 1. Lattice parameters for BT, YIG and BT-YIG composites (10 wt% ≤ x ≤ 40 wt%) sintered at 1300 ºC for 2 h.
Tab. 1 Lattice parameters for BT, YIG and BT-YIG composites (10 %wt ≤ x ≤ 40 %wt) sintered at 1300 °C for 2 h.

<table>
<thead>
<tr>
<th></th>
<th>x=0 %wt (BT)</th>
<th>x=10 %wt</th>
<th>x=20 %wt</th>
<th>x=30 %wt</th>
<th>x=40 %wt</th>
<th>x=100 %wt (YIG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>3.9906(1)</td>
<td>3.9970(2)</td>
<td>4.0000(1)</td>
<td>3.9979(3)</td>
<td>3.9968(1)</td>
<td></td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>4.0330(1)</td>
<td>4.0219(3)</td>
<td>4.0152(3)</td>
<td>4.0186(4)</td>
<td>4.0130(2)</td>
<td></td>
</tr>
<tr>
<td>(c/a)</td>
<td>1.0106</td>
<td>1.0062</td>
<td>1.0038</td>
<td>1.0052</td>
<td>1.0041</td>
<td></td>
</tr>
<tr>
<td>YIG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>17.496(1)</td>
<td>17.493(8)</td>
<td>17.483(2)</td>
<td>17.4925(5)</td>
<td>17.5021(6)</td>
<td></td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>10.691(3)</td>
<td>10.720(1)</td>
<td>10.716(4)</td>
<td>10.7007(5)</td>
<td>10.7244(7)</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing X-ray diffraction patterns](image)
Figure 7. Room temperature x-ray diffraction data of BT, BT-YIG composites with YIG concentration ranging from 10 %wt to 40 %wt, and YIG sintered at 1300 °C for 2 h (# = YFeO$_3$, * = Y$_2$Ti$_2$O$_7$ and/or BaFe$_{12}$O$_{19}$) (from bottom to top).

Figure 8. Back-scattering SEM images showing the typical microstructure of ceramic composites with increasing concentration of YIG, sintered at 1300 °C for 2 h.
Figure 9. Raman spectra of YIG and BT-YIG composites with YIG concentration ranging from 10 %wt to 40 %wt. Spectra were collected on polished surfaces of pellets sintered at 1300 °C for 2 h (from bottom to top).
Figure 10. Temperature dependence of relative permittivity and dielectric loss for composites with a) 10 \%wt, b) 20 \%wt, c) 30 \%wt, and d) 40 \%wt YIG in BT.
Figure 11. Ferroelectric hysteresis loops for BT-YIG ceramic composites.
Figure 12. Magnetic hysteresis loops for BT-YIG composites; inset: magnetic hysteresis loop for YIG.
Figure 7. Magnetoelectric coefficients for BT-YIG composites.