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Intrinsic state for an extended version of the interacting boson model
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An intrinsic-state formalism for the interacting boson model IBM-4 is presented. A basis of deformed
bosons is introduced which allows the construction of a general trial wave function that has Wigner’s spin-
isospin SU~4! symmetry as a particular limit. Intrinsic-state calculations are compared with exact ones, show-
ing good agreement.

PACS number~s!: 21.60.Fw, 21.30.Fe, 21.60.Ev
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The interacting boson model~IBM ! was originally pro-
posed to describe collective low-lying states in even-e
nuclei. The model building blocks are monopolar~s! and
quadrupolar~d! bosons. In the original formulation of th
model ~IBM-1! no distinction was made between neutro
and protons@1#. Later, connections with the nuclear she
model were investigated@2,3# and a new version was pro
posed in terms of neutron (sn ,dn) and proton (sp ,dp)
bosons, known as IBM-2@1#. The model has been widel
applied to medium-mass and heavy nuclei, where neutr
and protons fill different major shells. In lighter nuclei wit
N'Z, however, neutrons and protons are in the same s
and a boson made of one neutron and one proton~known as
a d boson! should be included. This version of the bos
model, called IBM-3@4#, is the simplest isospin invarian
formulation of the IBM. The three types of bosons (n, p,
andd) form an isospinT51 triplet and correspond, micro
scopically, to spatially symmetric nucleon pairs withS50.
In particular, thed boson corresponds to a spatially symm
ric S50 neutron-proton pair. A further extension of the IB
introduces the neutron-proton boson withT50, or s boson,
corresponding to a spatially symmetric nucleon pair withS
51. This version is known as IBM-4@5# and gives a prope
description of even-even as well as odd-oddN'Z nuclei.

The IBM-3 and IBM-4 are appropriate models forN'Z
nuclei approaching the proton drip line. Such nuclei are
der intensive study at the moment, in particular with rad
active nuclear beams. In addition, the IBM-4 is a reasona
simple, yet detailed model to study the competition betwe
T50 andT51 pairing, one of the hot topics in present-d
nuclear structure physics.

All versions of the IBM are algebraic in nature and do n
have a direct geometrical interpretation. Such interpreta
can be achieved, however, by introducing an intrinsic s
that provides a connection to geometric models such as
of Bohr and Mottelson@6#. Intrinsic states have been pro
posed for IBM-1 @7–10#, IBM-2 @11–13#, and IBM-3
@14,15#. Their primary use is to provide a geometric visua
ization of the model. In addition, a considerable reduction
achieved in the complexity of calculations, which leav
room for the inclusion of extra degrees of freedom.

The purpose of this paper is to propose an intrinsic s
for IBM-4. In the limit of strong isovector pairing it reduce
to the intrinsic state for IBM-3; in general, it can be used
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studying the competition betweenT50 andT51 pairing in
N'Z nuclei. First, the mean-field formalism for IBM-4 i
presented. This formalism is subsequently checked aga
the results of an exact calculation.

The ensemble of bosons in the IBM-4 consists of isov
tor T51 and isoscalarT50 bosons which have intrinsic
spin S50 andS51, respectively, to ensure spatial symm
try. The allowed spin-isospin combinations are thus (T,S)
5(1,0) and (T,S)5(0,1). These, together with the orbita
angular momental 50,2, give rise to 36 different bosons
The corresponding boson creation and annihilation opera
areg lm,Tt,Ss

† andg lm,Tt,Ss wherel is the orbital angular mo-
mentum,m is its projection,T is the isospin,t is its projec-
tion, S is the spin, ands is its projection. The operator
g̃ lm,Tt,Ss5(21)l 1T1S2m2t2sg l 2m,T2t,S2s are introduced
because of their appropriate tensor transformation proper

The construction of an intrinsic state requires two ing
dients. First, it needs a basis of deformed bosons and
ondly, it requires a trial wave function. The deformed boso
are defined in terms of the spherical ones through a uni
Hartree-Bose transformation,

Vp,Tt,Ss
† 5(

lm
l lm

pTtSsg lm,Tt,Ss
† ,

g lm,Tt,Ss
† 5(

p
l lm

pTtSs* Vp,Tt,Ss
† , ~1!

and their Hermitian conjugates. The deformation parame
l in these equations satisfy the following orthonormalizati
relations:

(
lm

l lm
p8TtSs* l lm

pTtSs5dpp8 ,

(
p

l lm
pTtSs* l l 8m8

pTtSs
5d l l 8dmm8 . ~2!

For convenience, a global labelj is used for spin, isospin
and their projections,j[(TtSs). This new index plays the
same role in IBM-4 as the isospin projectiont does in the
IBM-3 intrinsic-state formalism@15#. The indexp labels the
different deformed bosons. The fundamental deformed bo
©2000 The American Physical Society05-1



ue
re
d

l-
s-
ro
b

n

th
a

f

n
ian

ria

m
n

in
-
un
in
re

a

ex
ia
s

al

n

-
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has p50 while excited ones havep51,2, . . . ,( l(2l 11)
21. If only s andd bosons are included, the maximum val
of p is 5. Only the ground-state properties are conside
here; so the superscriptp is always zero and can be omitte
henceforth.

The definition of the ground-state trial wave function fo
lows Ref.@15#; it is different depending on whether the sy
tem is even-even or odd-odd. For even-even nuclei with p
ton excess~the case of neutron excess is obtained
interchangingNp and Nn) the proposed trial wave functio
for the ground state has the form

uf~d,aT ,aS!&ee5D†Nn~d,aT ,aS!VT51t51
†Np2Nn u0&, ~3!

whereNn (Np) is half the number of valence neutrons~pro-
tons! and

D†~d,aT ,aS!5~VT51t51
† VT51t521

†

1aTVT51t50
† VT51t50

† !

1d~VS51s51
† VS51s521

†

1aSVS51s50
† VS51s50

† !. ~4!

The description of odd-odd nuclei is complicated even in
ground state, since in general their spin-isospin values
not known a priori. In N5Z nuclei, which is the case o
most interest, those values are known, being either (T,S)
5(1,0) or (T,S)5(0,1). Correspondingly, two trial wave
functions are proposed:

uf~d,aT ,aS!&oo215D†Nn21/2~d,aT ,aS!VT51t51
† u0& ~5!

and

uf~d,aT ,aS!&oo22,s5D†Nn21/2~d,aT ,aS!VS51s
† u0&. ~6!

Which of these two states is lower in energy depends o
delicate balance of the different terms in the Hamilton
which in turn follow from the competition betweenT50 and
T51 pairing.

In addition to the deformation parameters, three va
tional parameters,aT , aS , andd, appear in the trial wave
functions. The first two are related to isospin and spin sy
metry breaking in the trial wave function. For deformatio
parameters independent ofj and foraT5aS521/2, the op-
eratorD†(d,aT ,aS) corresponds to a bosonic pair scalar
spin and isospin. The parameterd measures the relative im
portance of isovector and isoscalar bosons in the gro
state. In the limit ofd50, the number of isoscalar bosons
the ground state is zero and the IBM-3 trial state is recove
@15#. Another interesting limit isd561 which is obtained if
the IBM-4 Hamiltonian has Wigner’s SU~4! symmetry@5#.
In this caseT50 andT51 bosons are treated on an equ
footing.

Given a general IBM-4 HamiltonianĤ, the ground-state
equilibrium parameters are obtained by minimizing the
pectation value of the Hamiltonian in the appropriate tr
wave function~3!, ~5!, and~6!. A general expression for thi
expectation value can be written as
03430
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E~l,d,aT ,aS!

5 (
j1j2

ej1j2
f̃ 1~d,aT ,aS ,j1j2!

1 (
j1j2j3j4

Vj1 ,j2 ,j3 ,j4

c f̃ 2~d,aT ,aS ,j1j2j3j4!,

~7!

where

ej1 ,j2
5 (

l 1m1l 2m2

«̃ l 1m1j1l 2m2j2
l l 1m1

j2* l l 2m2

j2 , ~8!

Vj1 ,j2 ,j3 ,j4

c

5 (
l 1m1l 2m2l 3m3l 4m4

Vl 1m1j1 ,l 2m2j2 ,l 3m3j3 ,l 4m4j4

3l l 1m1

j1* l l 2m2

j2* l l 3m3

j3 l l 4m4

j4 , ~9!

f̃ 1~d,aT ,aS ,j1j2!

5dj1j2

^f~d,aT ,aS!uVj1

† Vj2
uf~d,aT ,aS!&

^f~d,aT ,aS!uf~d,aT ,aS!&
,

~10!

and

f̃ 2~d,aT ,aS ,j1j2j3j4!

5
^f~d,aT ,aS!uVj1

† Vj2

† Vj3
Vj4

uf~d,aT ,aS!&

^f~d,aT ,aS!uf~d,aT ,aS!&
.

~11!

The isospin matrix elements~10! and ~11! are calculated
straightforwardly from a binomial expansion of the tri
wave function. Furthermore, the parameters«̃ l 1m1j1l 2m2j2

and

Vl 1m1j1 ,l 2m2j2 ,l 3m3j3 ,l 4m4j4
in Eqs.~8! and ~9! are defined as

«̃ l 1m1j1l 2m2j2
[^ l 1m1j1uĤu l 2m2j2&, ~12!

Vl 1m1j1 ,l 2m2j2 ,l 3m3j3 ,l 4m4j4

[ 1
4 ^ l 1m1j1 ,l 2m2j2uV̂u l 3m3j3 ,l 4m4j4&

3A11d l 1l 2
dm1m2

dj1j2
A11d l 3l 4

dm3m4
dj3j4

,

~13!

where V̂ stands for the two-body terms in the Hamiltonia
Ĥ. It is worth noting that«̃ is not diagonal inl.

The energy~7! depends explicitly on the deformation pa
rametersl and implicitly onaT , aS , andd through f̃ 1 and
5-2



fo

de

r

a

In

e

ac
th

th

o
ra
r-
-

a
h
th

f

i-
nd

he

g
m
s of

ith
the
al-
n-
and

,
-

il-
a-

e
the

o

nd
-

0

INTRINSIC STATE FOR AN EXTENDED VERSION OF . . . PHYSICAL REVIEW C 61 034305
f̃ 2. The deformation parametersl are obtained by minimiz-
ing the energy with the constraint of conserving the trans
mation norm,

dFE~l,d,aT ,aS!2(
j lm

Ejl lm
j* l lm

j G50. ~14!

The Hartree-Bose equations for IBM-4 are obtained by
riving with respect tol lm

j* ,

(
l 2m2

hl 1m1 ,l 2m2

j l l 2m2

j 5Ejl l 1m1

j , ~15!

where the Hartree-Bose matrixhj is

hl 1m1 ,l 2m2

j 5 «̃ l 1m1j l 2m2j f̃ 1~d,aT ,aS ,jj!dm1m2

12 (
l 3m3l 4m4j2j3j4

Vl 1m1j,l 3m3j3 ,l 4m4j4 ,l 2m2j2

3
l l 3m3

j3* l l 4m4

j4 l l 2m2

j2

l l 2m2

j f̃ 2~d,aT ,aS ,jj3j4j2!.

~16!

There are six coupled equations of this form, which a
solved for fixed values ofaT , aS , andd in a self-consistent
way. This procedure yields the equilibrium deformation p
rametersl. The equilibrium values for the parametersaT ,
aS , and d are obtained by an additional minimization.
fact, if the deformation parameters are independent ofj, the
parametersaT andaS can be fixed to the value21/2, which
corresponds, as mentioned above, to a state with w
defined spin and isospin. As was shown for IBM-3@14,15#,
this is a good approximation forN5Z nuclei.

To test the present formalism, comparisons with ex
calculations are carried out. Numerical calculations in
framework of IBM-4 are now possible@16# but still difficult.
Also, only few dynamical limits have been studied. Here
following schematic Hamiltonian is considered:

Ĥ5aĈ2@SUTS~4!#1bĈ2@SUS~3!#1cĈ2@SUL~3!#, ~17!

where Ĉ2@G# stands for the quadratic Casimir operator
the algebraG. The first operator is an invariant of the algeb
SUTS(4) which is the boson equivalent of Wigner’s supe
multiplet algebra@5#. It is worth noting here that, as men
tioned in@18#, there are two alternative SUTS(4) limits with
the same eigenspectrum but different phases in the w
function. The results presented below are obtained wit
one of them, which is associated with the election of
operatorŶmn

1 ~using the notation of Ref.@18#!. The use of the

alternative limit, usingŶmn
2 , gives identical results but with a

different sign ford. The second operator in Eq.~17! is an
invariant of the SUS(3) algebra associated with thes (S
51,T50) boson. ~Its definition is analogous to that o
SUS(3) considered in theL50 IBM-4 of Ref. @18#.! The last
03430
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invariant in Eq.~17! is an orbital deformation term assoc
ated with an SU(3) algebra which is scalar in spin a
isospin.

With this Hamiltonian three situations are studied. T
first case corresponds toaÞ0 and c50. In Ref. @17# the
competition ofT50 andT51 pairing was discussed usin
this Hamiltonian. This is a relevant test for the formalis
presented here since it explores the spin-isospin degree
freedom, which represent the main difference of IBM-4 w
respect to previous versions of the IBM. In this case
mean-field and exact calculations are almost identical
though the exact calculation is always slightly lower in e
ergy. This can be appreciated in Table I where exact
mean-field ground-state energies~in units ofa) are given for
N55 and N515 bosons for selected values ofb/a. The
valueb50 yields a Hamiltonian with the SU(4) symmetry
and degenerate lowestT50 andT51 states. Negative val
ues of the ratiob/a favor T50 while positive values favor
T51 pairing. The expectation value of the schematic Ham
tonian~17! with c50 is independent of the deformation p
rameters. The minimum of the energy occurs forj indepen-
dent parameters andaT5aS52 1

2 . This is so because th
energy has no orbital dependence. It is worth noting that
variational wave functions~3!–~6! contain for special values
of d the lowest eigenfunctions of the SUT(3)^ SUS(3) limit
@18# (d5`) and of the SUTS(4) limit @18# (d521).

The second case corresponds toaÞ0 andb50 and in-
cludes the deformation termĈ2@SUL(3)#. The exact ground-
state energy is known analytically:

E5al~l14!1c2N~2N13!. ~18!

This is so because, for sufficiently large negativec, the
ground state belongs to the SUTS(4) representation (0,l,0)
and the SUL(3) representation (2N,0), whereN is the boson
number andl5T for even-even nuclei andl51 for odd-
odd N5Z nuclei @18#. The corresponding calculation is als

TABLE I. Exact and mean-field energies of ground states, a
their isospins, for selected values ofb/a. The cases shown corre
spond toN5Z odd-odd nuclei withN55 andN515 bosons, re-
spectively.

Egs/a (N55) Egs/a (N515)

b/a T Exact Mean field Exact Mean field

21.0 0 227.8359 227.8357 2236.126 2236.125
20.8 0 220.5261 220.5257 2183.938 2183.937
20.6 0 213.4392 213.4383 2132.395 2132.394
20.4 0 26.69081 26.68917 281.9874 281.9861
20.2 0 20.46290 20.46140 234.0488 234.0484

0.0 0,1 5.00000 5.00000 5.00000 5.0000
0.2 1 6.56989 6.57374 11.8499 11.9770
0.4 1 7.76803 7.78117 15.2339 15.4644
0.6 1 8.70462 8.72895 17.5636 17.8459
0.8 1 9.45690 9.49143 19.3676 19.6743
1.0 1 10.0763 10.1187 20.8479 21.1652
5-3
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performed with the mean-field formalism presented here
the exact results are reproduced. The calculation gives
intrinsic state withbj[l20

j /l00
j 5A2, aT5aS52 1

2 , andd
521, which is an eigenstate of the Hamiltonian~17! with
aÞ0 andb50. This result is similar to that obtained for th
intrinsic state of IBM-1@19#.

The last case considered is the general one witha, b, and
c different from zero. The ground state still belongs to t
SUL(3) representation (2N,0) and hence the contribution t
the ground-state energy coming fromcĈ2@SUL(3)# is diag-
onal. The other two terms in the Hamiltonian can be dia
nalized as in Ref.@17#. Thus the exact energies are tho
calculated in Table I~under ‘‘Exact’’! plus c2N(2N13).
This calculation is repeated with the mean-field formali
and produces an intrinsic state with the same SUL(3) sym-
metry as the exact one, (2N,0). As in the preceding cas
bj[l20

j /l00
j 5A2, aT5aS52 1

2 , but now dÞ21. The
mean-field energies are those given in Table I~under ‘‘Mean
field’’ ! plus c2N(2N13).

These results demonstrate that the present mean-field
malism has the correct ingredients for reproducing the
IBM-4 calculation. In addition, this formalism allows calcu
tt.

d H

03430
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lations for an arbitrary number of bosons and a gene
Hamiltonian, not necessarily corresponding to a dynam
symmetry limit of the model.

To summarize, a Hartree-Bose mean-field approximat
for IBM-4 has been presented, along with trial wave fun
tions valid for even-even and odd-odd nuclei withN5Z.
The trial wave functions include boson correlations in t
spin and isospin spaces. Comparisons with exact calculat
show good agreement from which it can be inferred that
present formalism gives a good approximation to the f
diagonalization. The aim is now to consider more realis
IBM-4 Hamiltonians that include both types of pairing (T
50 andT51), and a spin-orbit coupling as well as mo
general quadrupole deformation terms. This will enable
study of the interplay between single-particle, spin-isosp
and orbital degrees of freedom. This work is currently
progress.
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