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ABSTRACT 1 

In response to different adverse conditions, most eukaryotic organisms, including 2 

Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation 3 

of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. 4 

Gcn2 also controls the translation of Gcn4, a transcription factor involved in the 5 

induction of amino acid biosynthesis enzymes. Here, we have studied the functional 6 

role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature 7 

downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated 8 

amino acid limitation nor Gcn2 are involved in the translation suppression at low 9 

temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-10 

dependent polysome disassembly and overactivity of Gcn4, which result in cold-11 

sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, 12 

mutation of several Gcn2-regulators and effectors results in cold-growth effects. 13 

Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the 14 

regulatory mechanism of Gcn2- eIF2α. Finally, we demonstrated that P-body formation 15 

responds to a downshift in temperature in a TRP1-dependent manner and is required for 16 

cold tolerance. 17 

18 
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1. Introduction 1 

2 

Adaptation to temperature downshifts is a critical event for the growth and 3 

survival of unicellular organisms. In the budding yeast Saccharomyces cerevisiae, cold 4 

influences, among others, the enzyme kinetics, increases the molecular order of 5 

membrane lipids, and stabilizes the secondary structures of RNAs (Aguilera et al., 6 

2007). This stabilization affects the transcriptional machinery, inhibits RNA 7 

degradation and reduces adversely the ribosome function, compromising the global 8 

translation (Phadtare and Severinov, 2010). Consistent with this, cold-shocked yeast 9 

cells temporally reduce protein synthesis (Hofmann et al., 2012), and increase the 10 

expression of transcription-related and ribosomal genes (Sahara et al., 2002; Schade et 11 

al., 2004). Nevertheless, the cold-instigated arrest of protein translation could also 12 

respond to additional mechanisms and have a protective role. Most types of stress 13 

reduce global translation whereby they prevent further protein damage, re-allocate their 14 

resources to repair processes and ensure cellular survival (Hofmann et al., 2012). The 15 

physiological changes that cause the cold-mediated translational inhibition, the 16 

signaling pathways involved and its consequences in the ability of yeast cells to face 17 

with a downshift in temperature remain unclear. 18 

In response to different adverse conditions, cells reduce protein translation 19 

through the phosphorylation of the  subunit of the eukaryotic initiation factor-2 20 

(eIF2) by Gcn2. The protein kinase Gcn2 is virtually present in all eukaryotes and 21 

governs a regulatory module called the General Amino Acid Control (GAAC) pathway 22 

in S. cerevisiae (Hinnebusch, 2014; Murguía and Serrano, 2012; Castilho et al., 2014). 23 

When amino acid availability is low, uncharged tRNAs (tRNAdeacyl) accumulates in the 24 

cell leading to the stimulation of the protein kinase catalytic domain of Gcn2 and 25 

subsequent phosphorylation of eIF2α at Ser51 (Hinnebusch, 2014). This modification 26 

blocks the translation initiation and simultaneously favors the preferential translation of 27 

specific mRNAs, such as that coding for Gcn4 (Hinnebusch, 2014), the transcriptional 28 

activator of a large number of genes involved in amino acid biosynthesis (Natarajan et 29 

al., 2001). Increased levels of uncharged tRNAs caused by amino acid depletion are 30 

also proposed as the primary signal regulating Gcn2 in response to a variety of stress 31 

conditions such as high salinity (Zaborske et al., 2009), oxidizing conditions (Shenton 32 

et al., 2006; Mascarenhas et al., 2008) and weak acids stress (Hueso et al., 2012). For 33 
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example, it is well documented that both high Na+ concentrations and downward shifts 1 

in temperature, cause a strong inhibition of amino acid uptake (Abe and Horikoshi, 2 

2000; Pascual-Ahuir et al., 2001; Vicent et al., 2015). A link between amino acid 3 

limitation and translational inhibition might also be on the basis of the strong cold-4 

sensitivity phenotype found in several amino acid transport and biosynthesis mutants 5 

(Hampsey, 1997), a phenotype especially severe in tryptophan auxotrophic strains of S. 6 

cerevisiae (Schmidt et al., 1994). Recently, it has been reported that cold stimulates the 7 

Gcn2-mediated phosphorylation of eIF2α in mammals and S. cerevisiae cells, although 8 

the cold-induced translational depression was found to be largely independent of this 9 

event (Hofmann et al., 2012). Thus, a role of Gcn2 in controlling translation during 10 

temperature downshift remains unclear. Whether the timing and duration of the cold-11 

instigated translation arrest differs between prototrophic and auxotrophic yeast strains, 12 

and how this influences the growth of yeast cells at low temperature needs to be 13 

established. 14 

The cold effects on protein translation may also be regulated by energy 15 

depletion. In mammal cells, downshifts in temperature reduce mitochondrial function 16 

leading to energy depletion and concomitant activation of AMP-activated protein 17 

kinase, AMPK (Hofmann et al., 2012). It is also known that low temperature exposure 18 

induces an increase in the fermentative/oxidative ratio in S. cerevisiae (Tai et al., 2007; 19 

Ballester-Tomás et al., 2015) and that glucose starvation causes a rapid and robust 20 

inhibition of translation initiation (Ashe et al., 2000), which is followed by mRNA P-21 

bodies formation (Teixeira et al., 2005; Lui et al., 2014). The P-bodies (processing 22 

bodies) consist of defined mRNA-containing granules that harbor much of the mRNA 23 

decay machinery (Stoecklin and Kedersha, 2013; Pizzinga and Ashe, 2014). It has been 24 

reported that Snf1, the yeast ortholog of AMPK, the central kinase of the catabolite 25 

repression pathway (Conrad et al., 2014), regulates the phosphorylation state of eIF2α 26 

in response to either amino acid or glucose starvation (Cherkasova et al., 2010). 27 

However, the mechanism involved in each case differs. Snf1 promotes the formation of 28 

phospho-eIF2α by activating Gcn2 in histidine starved cells. Instead, Snf1 is required to 29 

inhibit the eIF2α-phosphatases Glc7 and Sit4, when cells are shifted from glucose to 30 

galactose (Cherkasova et al., 2010). Thus, Snf1 could play a role in regulating the 31 

translation arrest induced by low temperature exposure, although no evidence of this 32 

function has been reported. Whether cold promotes the formation of P-bodies and 33 
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whether this process is influenced by the limiting amino acid in auxotrophic strains are 1 

questions that need to be clarified. 2 

Here, we have investigated the functional role of the Gcn2-eIF2α signaling and 3 

its effector kinases and phosphatases in the cold-induced translation regulation of TRP1 4 

and trp1 yeast cells. Our data suggest that energy depletion is the triggering signal of 5 

the translational arrest in response to a downshift in temperature and that cold 6 

sensitivity in tryptophan biosynthesis mutant yeast cells is linked to overactivity of the 7 

Gcn2-Gcn4 regulatory module. 8 

9 

2. Materials and methods10 

11 

2.1. Media, culture conditions, and stress sensitivity tests 12 

Previously described standard methods were followed for media preparation 13 

(Guthrie and Fink, 1991). Yeast cells were cultured at 30, 15 or 12ºC in YPD (1% yeast 14 

extract, 2% peptone and 2% glucose) or SCD (0.67% yeast nitrogen base without amino 15 

acids, DIFCO, plus 2% glucose) supplemented with the appropriate amino acid drop out 16 

(ForMedium, England). Yeast transformants carrying the geneticin (kanMX4) and 17 

nourseothricin (natMX4) resistant module were selected on YPD agar plates containing 18 

200 mg/l of G-418 (Sigma) or 50 mg/l of nourseothricin (clonNAT, WERNER 19 

Bioagents, Germany), respectively (Wach et al., 1994; Goldstein and McCusker, 1999). 20 

Escherichia coli DH5 host strain was grown in Luria-Bertani (LB) medium (1% 21 

peptone, 0.5% yeast extract and 0.5% NaCl) supplemented with ampicillin (50 mg/l). 22 

All amino acids, sugars and antibiotics were filter-sterilized and added to autoclaved 23 

medium. Solid media contained 2% agar. Yeast cells were transformed by the lithium 24 

acetate method (Ito et al., 1983). 25 

For plate phenotype experiments, cultures were diluted to OD600 = 0.8 and 10-fold 26 

serial dilutions spotted (3 μl) onto SCD- or YPD-agar solid media. Unless otherwise 27 

indicated, colony growth was inspected after 2-4 days of incubation at 30ºC. Cold-28 

growth experiments were carried out at 15 or 12ºC for 8-12 days. 29 

30 

2.2. Strains and plasmids 31 

The S. cerevisiae strains, oligonucleotides and plasmids used in this study are 32 

listed in the supplementary material (Tables S1-S3). Tat1, Tat2 and Gap1 C-terminal 33 
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tagging with 13-Myc epitope was carried out by PCR-based gene tagging using plasmid 1 

pFA6a-13Myc-His3MX6 (Table S3) as a template and appropriate target-gene specific 2 

plasmid pairs (Table S2). The TRP1 and HOG1 deletion strains were constructed by 3 

PCR-based gene replacement using the natMX4 cassette template (Table S3) and 4 

synthetic oligonucleotides (Table S2). Detection of the correct gene disruption and 5 

tagging was done by diagnostic PCR (Huxley et al., 1990), using a set of 6 

oligonucleotides (Table S2), designed to bind outside of the replaced gene sequence and 7 

within the marker module (data not shown). 8 

9 

2.3. Preparation of protein extracts and Western blot analysis 10 

Proteins were extracted, separated and analyzed by SDS-PAGE and Western blot 11 

as previously described (Hernández-López et al., 2011). The proteins tagged with 12 

13Myc were visualized by using a mouse monoclonal antibody against human c-Myc 13 

(1:1,000; cat#sc-40; Santa Cruz Biotechnology, Dallas, Texas). Anti-G6Pdh serum 14 

(1:3,000; cat#8866; Cell Signaling, Danvers, MA) was used as a loading control. The 15 

phosphorylation of eIF2α was followed by using anti-phospho-S51 antibody (1:1,000; 16 

cat#3597; Cell Signaling). Rabbit anti-phospho Rps6 (1:10,000; kindly provided by T. 17 

Moustafa) and rabbit polyclonal against Rps6 (1:1,000; cat#ab40820; Abcam, 18 

Cambridge, UK), were used to check the activity of TORC1. Phospho-AMPKα 19 

(Thr172) rabbit monoclonal antibody (1:1,000; cat#4188; Cell Signaling) was used to 20 

follow the phosphorylation state of Snf1. Total Snf1 was revealed by using a polyclonal 21 

rabbit antibody (1:1,000; kindly provided by F. Estruch). The secondary antibodies used 22 

were horseradish peroxidase-conjugated goat anti-rabbit (1:2,000; cat#7074; Cell 23 

Signaling) or rabbit anti-mouse (1:5,000, cat#P0260; Dako, Carpinteria, CA). Blots 24 

were done and images were captured as described elsewhere (Hernández-López et al., 25 

2011). 26 

27 

2.4. ATP assay 28 

SCD-grown overnight seed cultures of the BY4741 wild-type and trp1 mutant 29 

strain were refreshed at OD600 = 0.10 in the same medium and cultivated at 30 ºC for 3 30 

h. Aliquots were withdrawn for their immediate analysis (control), and cultures were 31 

split 1:2 and incubated at 30 or 12 ºC until the OD600 reached values around 1.2. At 32 

different times during growth, 100 l samples were analyzed for ATP levels using the 33 

CellTiter-Glo® Luminescent Assay following the manufacturer’s instructions 34 
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(Promega). The ATP level in the cell suspensions was calculating after correcting for 1 

the reagent background using the signal produced by an ATP standard as reference. 2 

Values provided are expressed as nmol of ATP per OD600 and represent the mean (±SD) 3 

of triplicate assays. ATP kinetics for each strain was repeated at least two times. 4 

5 

2.5. Polysomal analyses 6 

For polysome profiling, 30ºC-SCD-grown cells (OD600 = 0.5) were incubated at 7 

12ºC and at the indicated times, 80 ml samples were withdrawn, chilled for 5 min on ice 8 

in the presence of cycloheximide (0.1 mg/ml final concentration). Then, cell extracts 9 

were prepared, applied to 10–50% sucrose gradients, centrifuged and analyzed as 10 

described previously (Garre et al., 2012). Each polysome gradient analysis was repeated 11 

at least two times. 12 

13 

2.6. Microscopy 14 

Cells were grown in SCD medium to mid-log phase and then shifted to 15°C for 15 

the indicated times. The cells were spun at 3,000 x g for 3 min and resuspended in 20 16 

mM PBS, pH 7.4. Dcg2-GFP was observed under a Zeiss 510 Meta Confocal 17 

microscope with a 63× Plan-Apochromat 1.4 NA Oil DIC objective lens (Zeiss). Image 18 

processing was done with Image J (http://rsb.info.nih.gov/ij/). 19 

20 

2.7. Statistical analysis 21 

Sample averages were compared using a Student’s t-test. The samples denoted 22 

with * were significantly different with a p < 0.05. 23 

24 

25 

3. Results and discussion26 

27 

3.1. The tryptophan biosynthetic capacity influences polysome disassembly and 28 

eIF2phosphorylation in cold-shocked yeast cells 29 

Cold-shocked TRP1 yeast cells showed the typical features of translation initiation 30 

inhibition (Castilho et al., 2014), including a decrease in the fraction of polysomes (Fig. 31 

1A) and a rapid phosphorylation at Ser51 of eIF2 (Fig. 1B), the specific amino acid 32 

phosphorylated by the kinase Gcn2 (Hinnebusch, 2014). We also observed that there 33 

http://rsb.info.nih.gov/ij/
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was a relatively high level of remaining polysomes in cold-shocked cells (Fig. 1A; 2 h 1 

at 12ºC). In addition, the response was transient (Fig. 1A and B), suggesting that the 2 

global protein synthesis is not fully suppressed under the conditions tested. Indeed, 3 

previous reports have shown evidence of protein induction in cold-shocked cells of S. 4 

cerevisiae (Kandror et al., 2004; Ballester-Tomás et al., 2016). Compared with this, the 5 

repressive effect of a downshift in temperature on the bulk translation, as judged by 6 

polysome disassembly and eIF2 overphosphorylation, was more pronounced and 7 

persistent in the trp1 mutant strain (Fig. 1). The progressive polysome reassembly 8 

during cold-adaptation also took longer, and even after 24 h at 12ºC, the polysome 9 

profile was still altered in the tryptophan biosynthesis mutant (Fig. 1A). 10 

11 

3.2. Gcn2-dependent and –independent effects on polysome disassembly 12 

The above results showed the activation of the Gcn2-eIF2 signaling pathway in 13 

response to cold, suggesting that amino acid starvation might be the primary signal to 14 

induce the translation inhibition under this condition. Amino acid uptake is strongly 15 

inhibited by cold-stress (Vicent et al., 2015) and amino acid depletion upregulates Gcn2 16 

function (Hinnebusch, 2014). Thus, this regulatory mechanism might also explain the 17 

stronger effects on translational regulation caused by loss of TRP1. Tryptophan 18 

biosynthesis mutants depend exclusively on the external supply of tryptophan, and thus, 19 

cold effects on amino acid transport could be expected to reduce further amino acid 20 

intracellular levels. However, recent evidence in mammals, fission and budding yeast 21 

cells suggest that under a variety of stress conditions the initial translational inhibition is 22 

largely independent of GCN2 and eIF2α phosphorylation (Hofmann et al., 2012; 23 

Knutsen et al., 2015). In agreement with this, we found that knock-out of GCN2 did not 24 

result in noticeable changes in the polysome profile of TRP1 yeast cells at either 30 or 25 

12ºC (compare Fig. 2A and Fig. 1A). However, the loss of Gcn2 in the trp1 strain 26 

reduced the strong cold-instigated polysome disassembly caused by deletion of TRP1 27 

(compare Fig. 2A and Fig. 1A; 2 h at 12ºC). Hence, our results suggest that yeast cells 28 

reduce protein synthesis in response to a downshift in temperature by pathways other 29 

than the cold-instigated Gcn2-eIF2α, yet this mechanism plays an important role in the 30 

translational regulation of tryptophan biosynthesis mutant cells. 31 

32 
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3.3. Cold triggers the inhibition of TORC1 1 

Cold has been reported to cause energy depletion in mammal cells, which results 2 

in the inhibition of mTOR activity (Hofmann et al., 2012). mTOR like the yeast TORC1 3 

(the Target of Rapamycin Complex 1), are sensitive to the energy status of the cell 4 

(Hindupur et al., 2015). It has also been suggested that mTOR inhibition under stress 5 

conditions contribute to the fine-tuning of translation initiation by regulating the 6 

phosphorylating state of 43S preinitiation complex factors (Richter and Sonenberg, 7 

2005; Hoyle et al., 2007). Thus, we first analyzed whether S. cerevisiae TORC1 is 8 

inhibited by cold. We followed the phosphorylation state in cold-shocked cells of the 9 

40S ribosomal protein S6 (Rps6) at S232 and S233, a well stablished readout of 10 

TORC1-dependent signaling, via its direct targets Ypk1/Ypk3 (González et al., 2015; 11 

Yerlikaya et al., 2016). As it is shown in Fig. 2B, the phospho-Rps6 signal began to 12 

decrease within 60 min after the transfer of yeast cells from 30 to 12ºC and almost 13 

disappeared at 120 min (Fig. 2B), suggesting that TORC1-Ypk1/Ypk3 signaling is 14 

downregulated in response to low temperature. In addition, there were no major 15 

differences in the dephosphorylation kinetics of Rps6 in TRP1 and trp1 yeast cells (Fig. 16 

2B). Thus, the results are consistent with the idea that TORC1 inhibition upon cold-17 

shock may drive the Gcn2-independent translation downregulation observed in either 18 

TRP1 or trp1 yeast strains (Fig. 2A). 19 

20 

3.4. The turnover of tryptophan transporters is insensitive to low temperature 21 

The finding that Gcn2 plays no major role as regulator of the translation initiation 22 

in wild-type cells during temperature downshifts, suggested that cold stress does not 23 

induces amino acid starvation. We sought to obtain further evidence of this by 24 

analyzing how low temperature could influence amino acid permeases abundance. In S. 25 

cerevisiae, the stability and sorting of the low and high affinity tryptophan permeases 26 

Tat1 and Tat2, is controlled by amino acid availability, and regulated inversely to that 27 

of the general amino acid permease Gap1 (Beck et al., 1999). As shown in Fig. S1, 28 

myc-tagged Tat2 was clearly more abundant in 30ºC-grown trp1 mutant yeast cells than 29 

in TRP1 cells. On the contrary, the TRP1 prototroph strain displayed increased levels of 30 

Tat1 (Fig. S1). Thus, S. cerevisiae appears to regulate the abundance of low and high 31 

affinity transporters in response to its biosynthetic ability. On the other hand, cold 32 

exposure caused a downregulation of Tat2 in both TRP1 and trp1 strains that was 33 

evident 24 h after the shift of cells from 30 to 12ºC (Fig. S1). Comparing with this, a 34 
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full degradation of Tat2 has been reported to occur in less than 60 min in rapamycin 1 

treated yeast cells (Beck et al., 1999). Tat1 was also degraded at late time points, 2 

whereas Gap1 was induced in coincidence with the decrease in the level of tryptophan 3 

transporters (Fig. S1). Importantly, tryptophan auxotroph and prototroph strains showed 4 

again a similar kinetics of Tat1 and Gap1 regulation. Hence, a downshift in temperature 5 

does not seem to trigger a fast turnover of tryptophan transporters, even in the 6 

tryptophan biosynthesis mutant.  7 

8 

3.5. Amino acid uptake alone is not a limiting factor for growth at low temperature 9 

We explored the effects of the overexpression of TAT2 on growth at low 10 

temperature. The study by Vicent et al. (2015) demonstrated that a high-copy number 11 

expression of TAT2 is able to maintain tryptophan uptake at 10°C to levels similar to the 12 

control strain at 28°C. As shown in Fig. 3, excess Tat2 had no effect on the cold-growth 13 

of TRP1 yeast cells. Only in trp1 mutant cells, the overexpression of TAT2 stimulated 14 

the growth at 15ºC, yet the effect was limited and thus, growth differences between 15 

auxotrophic and prototrophic cells were still important (Fig. 3). Altogether, the results 16 

suggest that tryptophan uptake becomes a limiting factor for the cold growth of trp117 

yeast cells, although this factor alone is not the main responsible for the extreme cold-18 

sensitivity of this strain. 19 

20 

3.6. P-bodies formation responds to a downshift in temperature and is required for cold 21 

tolerance 22 

The above results suggested that amino acid limitation is not the main reason why 23 

trp1 cold-stressed yeast cells show a strong growth defect. To further explore this idea, 24 

we analyzed the P-bodies formation after cold exposure. RNA processing bodies (P-25 

bodies), which concentrate mRNA decay enzymes (Balagopal and Parker, 2009; 26 

Buchan and Parker, 2009; Hoyle and Ashe, 2008), are induced in response to certain 27 

stresses, including low glucose (Teixeira et al. 2005; Romero-Santacreu et al., 2009), 28 

but not by amino acid starvation (Hoyle et al., 2007), and have been reported to play a 29 

role in cell survival and adaptation (Balagopal et al., 2012). Accordingly, we examined 30 

the localization of P-bodies marker Dcp2 tagged with green fluorescent protein (GFP), 31 

in TRP1 and trp1 yeast cells exposed to low temperature (Fig. 4A). Dcp2 encodes a 32 

catalytic subunit of the Dcp1-Dcp2 mRNA decapping complex in yeast (Dunckley and 33 

Parker, 1999) and forms part of the decapping machinery that accumulates in P-bodies 34 
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(Teixeira and Parker, 2007; Buchan et al., 2010). As it is shown in Fig. 4A, P-bodies 1 

increased in response to a downshift in temperature, suggesting again that amino acid 2 

starvation is not the primary signal mediating the cold-induced inhibition in translation 3 

initiation. We were unable to find significant differences in the number of P-bodies 4 

raised in cold-shocked TRP1 and trp1 yeast cells (data not shown). However, the Dcp2-5 

GFP fluorescence pattern showed by wild-type and trp1 mutant strains differed. TRP16 

cells formed large foci after 30 min at 15ºC (Fig. 4A). Instead, a more disperse 7 

cytoplasmic GFP pattern with smaller foci was observed in trp1 mutant cells (Fig. 4A). 8 

Moreover, a number of Dcp2-GFP foci were still evident during prolonged cold 9 

exposure of wild-type cells, whereas the reporter was hardly visible in the tryptophan 10 

biosynthesis mutant. 11 

Finally, we analyzed whether impaired P-body formation might induce cold 12 

sensitivity. In E. coli, some of the main cold-shock proteins are RNA helicases and 13 

exoribonucleases that stimulate RNA degradation at low temperature through their 14 

RNA unwinding activity (Phadtare and Severinov, 2010). We examined the cold growth 15 

of TRP1 cells lacking Pat1, Ccr4 or Pop2. The protein Pat1 is a conserved core 16 

constituent of eukaryotic P-bodies that has been suggested to act as a scaffolding 17 

molecule during the assembly process (Pilkington and Parker, 2008; Marnef and 18 

Standart, 2010). Ccr4 and Pop2 form part of the major mRNA deadenylase complex in 19 

S. cerevisiae (Tucker et al., 2002), and have been identified as enriched in yeast P-20 

bodies (Nissan and Parker, 2008). In addition, ccr4 mutant cells have been reported as 21 

showing increased cold sensitivity in the D273-10B yeast background (Betz et al., 22 

2002). In agreement with this, BY4741 cells lacking Ccr4 displayed impaired growth at 23 

low temperature (Fig. 4B). Likewise, knock-out of POP2 and PAT1 caused strong cold 24 

sensitivity (Fig. 4B). Remarkably, growth of pat1 mutant cells was slowed down by 25 

cold-exposure at 15ºC (data not shown) and completely stopped at the temperature of 26 

12ºC (Fig. 4B). 27 

28 

3.7. The activity of Gcn2 induces cold-sensitivity in trp1 yeast cells 29 

Our study indicated that P-body assembly and disassembly is physiologically 30 

relevant for adaptation to low temperature in S. cerevisiae. We wonder whether the 31 

increased translation inhibition observed in cold-shocked trp1 yeast cells (Fig. 1A and 32 

2A), could also contribute to their severe growth defect at low temperature. A previous 33 

study by Goossens et al. (2001) had identified Gcn2 in a screening for negative factors 34 
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in yeast salt stress tolerance. We found that lack of kinase activity provided by Gcn2 1 

had no apparent effect on the cold growth of tryptophan prototroph wild-type cells (Fig. 2 

4C). On the contrary, disruption of the GCN2 gene stimulated the growth of the trp13 

mutant at 15ºC, while no growth effects were observed at 30ºC by loss of Gcn2 (Fig. 4 

4C). Likewise, mutation of other components of this regulatory circuit such as GCN1, 5 

GCN3 and GCN20 also resulted in improved cold growth (Supplementary material; Fig. 6 

S2). Only, the absence of Gcn4 caused a strong growth defect independently of the 7 

growth temperature tested (Fig. S2), a result also reported for salt exposed cells 8 

(Goossens et al., 2001). Hence, the tryptophan biosynthesis mutant trp1 shows Gcn2-9 

dependent effects on translation regulation, and this effect correlates with cold 10 

sensitivity. 11 

12 

3.8. Overphosphorylation of eIF2 decreases the cold growth of yeast cells 13 

We investigated whether mutations in regulators and effectors of the Gcn2-eIF214 

signaling might alter the cold growth of wild-type cells. In S. cerevisiae, the GAAC 15 

pathway is regulated by different kinases (see a schematic representation in Fig. 5A), 16 

including TORC1, which inhibits Gcn2 activity in non-starved cells (De Virgilio and 17 

Loewith, 2006; Dobrenel et al., 2016), and the Snf1 protein kinase, a member of the 18 

AMP-activated protein kinase (AMPK) family (Conrad et al., 2014). Snf1 promotes the 19 

phosphorylation of eIF2 by stimulating the Gcn2 activity (Cherkasova et al., 2010). In 20 

addition, Snf1 acts as a negative regulator of two eIF2 phosphatases, Sit4, a PP2A-like 21 

enzyme (Arndt et al., 1989), and Glc7, the protein phosphatase 1, PP1 (Cannon et 22 

al., 1994), which in turn, is a negative regulator of the Snf1 kinase activity (Conrad et 23 

al., 2014). As it is shown in Fig. 5B, loss of Snf1 reduced the growth of TRP1 wild-type 24 

cells in SCD minimal medium at 30ºC. The Snf1 protein kinase is a key regulator of the 25 

transcriptional response to nutrient limitation (Conrad et al., 2014). However, a 26 

downshift in temperature resulted in a progressive recovery of snf1 growth rate (Fig. 27 

5B). Conversely, deletion of SIT4 conferred cold-sensitivity (Fig. 5B). We also tested 28 

the phenotype of an allele of GLC7 (glc7-127) which provides a phenotype of glucose 29 

repression insensitivity (Venturi et al., 2000). As expected, cells containing an 30 

integrated copy of this allele at the GLC7 locus, showed increased abundance of 31 

phospho-Snf1 (Fig. 5C). In addition, glc7-127 mutant cells displayed 32 

overphosphorylation of eIF2Fig. 5C), and reduced growth at low temperature in 33 
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either minimal SCD or rich YPD medium (Fig. 5D). Again, our results support the idea 1 

that the aberrant activity of the Gcn2-eIF2signaling module causes cold sensitivity. 2 

3 

3.9. Hog1 plays a role in the regulatory mechanism of Gcn2-eIF24 

Hog1, the MAPK of the High Osmolarity Glycerol (HOG) pathway (Saito and 5 

Posas, 2012; Hohmann, 2015; de Nadal and Posas, 2015), is required for yeast cells to 6 

adapt to low temperature (Panadero et al., 2006). On the other hand, Hog1 has been 7 

found to be physiologically relevant in modulating the translational response to NaCl in 8 

yeast cells (Bilsland-Marchesan et al., 2000). Nevertheless, Hog1 does not appear to be 9 

involved in the initial inhibition of translation, but rather in reactivation of translation 10 

under stress (Romero-Santacreu et al., 2009; Warringer et al., 2010; de Nadal and 11 

Posas, 2015). Therefore, we were interested to investigate the importance of the MAPK 12 

in the translational regulation in response to a downshift in temperature. Loss of Hog1 13 

increased the phosphorylation level of eIF2 in response to cold exposure (Fig. 6A), 14 

and impaired cold growth in either liquid (Fig. 6B) or solid (Supplementary material; 15 

Fig. S3) SCD medium. Thus, Hog1 appears to modulate directly or indirectly the 16 

phosphorylation state of eIF2by increasing the activity of Gcn2 or downregulating 17 

eIF2-targeting protein phosphatases. Indeed, previous work by Rodriguez-Hernandez 18 

et al. (2003), revealed the existence of a positive regulatory loop between Hog1 and 19 

Gcn2 protein kinases contributing to cell sensitivity to osmotic stress. However, the role 20 

of Hog1 in inhibiting eIF2phosphorylation had no apparent effect on cold growth 21 

since the single hog1 and the double gcn2 hog1 mutant strains displayed a similar 22 

behavior at low temperature (Fig. 6B). Given that Hog1 appears to control the 23 

expression of mitochondrial pyruvate carrier genes (Timón-Gómez et al., 2013), which 24 

are important determinants of respiration rate, the role of the MAPK in cold tolerance 25 

might be linked to the cell’s energy status, which in turn, could affect the activity of 26 

TORC1 and Gcn2- eIF2 More work is required to address this point and decipher the 27 

interesting relationship between Gcn2 and Hog1 in the stress response to low 28 

temperature. 29 

30 

3.10. Cold sensitivity is linked to overactivity of Gcn4 and energy stress 31 

The above results suggested a role of energy-sensitive pathways in the 32 

translational control during a cold shock. Amino acid biosynthesis mutant strains 33 
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depend exclusively on energy-dependent transport, making them highly sensitive to 1 

energy stress. To analyze this possibility, we first measured ATP levels in TRP1 and 2 

trp1 yeast cultures incubated at low temperature. Aliquots of cells growing at 30ºC were 3 

transferred to 12ºC and the levels of ATP were followed at both temperatures until 4 

cultures reached an OD600 ~ 1.2. As can be seen in Fig. 7A, the ATP present in cells of 5 

the BY4741 TRP1 strain gradually increased as growth at 30ºC proceed, reaching a 6 

peak in coincidence with the mid-log-phase (OD600 ~ 0.7-0.8). The content of ATP in 7 

cells of the trp1 mutant showed a similar trend along the growth period analyzed, but 8 

values were always lower (Fig. 7A), suggesting that the tryptophan auxotrophy has an 9 

energetic cost for yeast cells. Comparing with this, cells exposed to low temperature 10 

showed a quite different profile of ATP (Fig. 7A). Except for a short period after the 11 

transfer to 12ºC, where ATP levels appeared to increase transiently, the ATP content in 12 

cold-shocked cells of the TRP1 strain were much lower than those found in control 13 

cells. For example, at OD600 ~ 1.0, ATP levels at 12ºC were <30% of those at 30ºC (Fig. 14 

7A). Likewise, trp1 cells showed a continuous decrease in ATP content after their 15 

transfer to cold conditions. Furthermore, the ATP levels were again lower than those 16 

measured for the TRP1 counterpart at 12ºC (Fig. 7A).  17 

We then examined whether increased energy wasting may explain the specific 18 

cold growth effects observed in trp1 cells. Indeed, trp1 yeast cells were more sensitive 19 

to the presence of metabolic inhibitors such as 2-DOG and sodium arsenate than the 20 

corresponding isogenic TRP1 strain (Fig. 7B). Given that the tryptophan biosynthesis 21 

mutant shows overphosphorylation of eIF2α (Fig. 1B), an energy consuming process 22 

could be the Gcn4-dependent expression of, among others, amino acid biosynthetic 23 

enzymes (Hinnebusch, 2014). Elevated GCN4 expression in salt-exposed yeast cells has 24 

been suggested as the most likely reason explaining the salt-resistant phenotype of cells 25 

lacking Gcn2 (Goossens et al., 2001). Using a GCN4-lacZ reporter (Mueller and 26 

Hinnebusch, 1986), we observed that cold exposure activated the Gcn2-dependent 27 

translational regulation of the GCN4 mRNA, and that the effect was larger (p < 0.05) in 28 

trp1 than in TRP1 yeast cells (Fig. 7C). Then, we analyzed whether the harmful effect 29 

of the loss of TRP1 on cold tolerance could be attributed to GCN4 overactivation. For 30 

this, we used two different genetic approaches. First, we investigated the cold 31 

phenotype of yeast cells lacking the eIF4E-associated protein Eap1 (Consentino et al., 32 

2000). It has been proposed that upon TOR-inactivation, Eap1 attenuates the translation 33 

of GCN4 mRNA via a mechanism independent of eIF4E-binding (Matsuo et al., 2005). 34 
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Thus, deletion of EAP1 enhances GCN4 translation (Matsuo et al., 2005), and as it is 1 

shown in Fig. 7D, leads to cold sensitivity. In the second approach, wild-type yeast cells 2 

were transformed with plasmid p235, which contains a derepressed allele of GCN43 

(uORF1-GCN4) that leads to increased transcription of Gcn4-regulated genes (Grant et 4 

al., 1994). Transformants containing empty and wild-type-Gcn4 expressing plasmids 5 

were used as control. As shown in Fig. 7E, overexpression of regulated wild-type GCN46 

had no effect on the growth of the wild-type strain at either 30 or 15ºC. However, 7 

increased Gcn4 activity (Fig. 7E) caused cold sensitivity. 8 

9 
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4. Concluding remarks 1 

2 

Phosphorylation of eIF2 by Gcn2 does not appear to cause effect on cold 3 

tolerance of tryptophan prototroph strains of S. cerevisiae. Neither the cold-instigated 4 

activation of Gcn2 explains the translation inhibition under these conditions. Instead, 5 

the cold-induced inhibition of TORC1 might account for the global downregulation of 6 

protein translation, although its role in this regulatory mechanism needs to be 7 

confirmed. The idea that alterations in the cell’s energy status might be perceived as the 8 

primary signal downregulating translation initiation was not confirmed in our work. 9 

Indeed, we were unable to detect a sudden decrease of ATP levels in cold-shocked cells 10 

of either TRP1 or trp1 strain. Nevertheless, it is clear from our study that cold exposure 11 

causes ATP depletion and that this reduction in the cell’s energy reserves might 12 

influence also the activity of Gcn2 over the eIF2 translation factor. It is well known 13 

that protein translation is one of the most energy-demanding processes and that glucose 14 

depletion, the preferred energy-producing carbon source by yeast cells, causes a 15 

dramatic translation arrest. Our observation that Snf1/Glc7, central players in conveying 16 

energy- and nutrient-derived signals, inputs the translational machinery in cold-shocked 17 

cells indeed suggests an important role of the energetic metabolism in modulating the 18 

phosphorylation state of eIF2 and the level of translation initiation at low temperature. 19 

Unlike prototroph strains, cells lacking TRP1 show Gcn2-dependent cold-20 

sensitivity, inappropriate translation arrest and overactivity of the Gcn4 transcriptional 21 

factor. In addition, loss of Trp1 has an impact on the cold-induced formation of P-22 

bodies. Both impaired P-bodies assembly/disassembly and energy-consuming Gcn4 23 

activity appears to account for the extreme cold sensitivity phenotype of trp1 cells. 24 

Nonetheless, the mechanisms of translational regulation are very complex, and thus, 25 

additional factors could be involved. Our finding that Hog1 plays a role in the activity 26 

of the Gcn2-eIF2 stresses this idea and adds new actors in the regulatory mechanisms 27 

of translation initiation. 28 

29 
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Figure legends 

Fig. 1. Loss of TRP1 increases polysome disassembly and eIF2 phosphorylation after 

a downshift in temperature. A) polysome profile of cold-shocked TRP1 and trp1 yeast 

cells of the BY4741 yeast background. SCD-cultures were incubated at 30ºC (OD600 ~ 

0.5) and then transferred to 12ºC for the indicated times. Cell extracts were prepared 

and analyzed as described in the Materials and Methods section. The positions in the 

gradient of polysomes and the ribosomal particle 80S (monosome) are indicated. The 

ratio of the area under the polysomal to 80S peaks is shown in brackets. B) Protein 

extracts from whole cells of the aforementioned strains were separated by SDS-PAGE 

and blots were probed with an antibody specific for phosphorylated (S51) eIF2α (P-

eIF2α). The level of glucose 6-phosphate dehydrogenase (G6Pdh) was used as loading 

control. Spot intensities were quantified as earlier described (Hernández-López et al., 

2011). The graph shows the relative values of P-eIF2α corrected with respect to that of 

G6Pdh. The highest relative signal for each strain, TRP1 and trp1, and sample analyzed 

was set at 100. A representative experiment out of the three is shown. 

Fig. 2. Cold triggers the inhibition of TORC1 and the Gcn2-independent polysome 

disassembly. A) Polysome disassembly was monitored in cold-shocked gcn2 mutant 

cells of the TRP1 and trp1 BY4741 yeast background. Cell extracts were prepared and 

analyzed as described in the Fig. 1A. The positions in the gradient of polysomes and the 

ribosomal particle 80S are indicated. The ratio of the area under the polysomal to 80S 

peaks is shown in brackets. B) Cell cultures of the indicated strains were subjected to 

cold shock at 12°C for the indicated times, and total protein lysates were analyzed by 

Western blotting for phospho-Rps6 (P-Rps6) and total Rps6 as loading control. Relative 

signal levels (%) are shown. The highest relative signal for each strain was set at 100. A 

representative experiment out of the three is shown. 

Fig. 3. TAT2 overexpression effects on growth after a downshift in temperature. TRP1

and trp1 BY4741 yeast cells harboring empty (YEplac195; URA3) and TAT2

(YEpTAT2) overexpressing plasmids were examined for growth at 30 and 15ºC. 

Exponentially growing cultures were adjusted to OD600 ~ 0.8, diluted (1-10-3), spotted 
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(3 l) onto solid SCD-Ura medium, and incubated at the indicated temperature for 2 and 

8 days, respectively. In all cases, representative experiments are shown. 

Fig. 4. Inappropriate cold-instigated P-body formation and Gcn2 activity cause cold 

sensitivity. A) P-bodies formation was analyzed by fluorescence microscopy of the 

marker protein Dcp2 tagged with green fluorescent protein (GFP), in TRP1 and trp1

yeast cells of the BY4741 wild-type (wt) strain exposed to low temperature. Cells were 

transformed with plasmid pRP1175 (Dcp2-GFP; Coller and Parker, 2005), cultured at 

30ºC and then transferred to 15ºC for the indicated times. Aliquots of the cultures were 

withdrawn, and cells were visualized as described in the Materials and methods section. 

B) pat1, pop2 and ccr4 mutant cells of the wild-type (wt) BY4741 strain were pre-

grown, spotted as mentioned in Fig. 3, and incubated at the indicated temperatures. C) 

TRP1 and trp1 derivatives of the BY4741 wild-type (wt) and gcn2 mutant strains were 

examined for growth in SCD at 30 and 15ºC, as mentioned in Fig. 3. In all cases, 

representative experiments are shown. 

Fig. 5. The activity of different Gcn2 effectors influence cold-growth and 

eIF2phosphorylation. A) Schematic representation and functional role of some 

regulators of the GAAC pathway in S. cerevisiae. When amino acid availability is low, 

the protein kinase Gcn2 phosphorylates the  subunit of the eukaryotic initiation factor-

2 (eIF2), a modification that blocks the translation initiation (Hinnebusch, 2014). The 

protein kinase Snf1 regulates the phosphorylation state of eIF2 by stimulating the 

Gcn2 activity and inhibiting two eIF2-phosphatases, Sit4 and Glc7 (Cherkasova et al., 

2010). In addition the yeast TORC1 complex contributes to the fine-tuning of 

translation initiation by regulating the phosphorylating state of 43S preinitiation 

complex factors (Richter and Sonenberg, 2005; Hoyle et al., 2007). Available evidence 

from our study also indicates that the Hog1 MAPK participates in the regulation of 

Gcn2 activity and translation initiation. The red dot indicates a phosphate group. 

Positive effects are indicated by arrows, while inhibitory effects are denoted as T-bars. 

B) sit4 and snf1 mutant cells of the BY4741 strain were tested for growth at 30 and 

12ºC. Overnight SCD-grown cultures were adjusted and spotted onto solid SCD 

medium as mentioned in Fig. 3. C) Cell cultures of the wild-type KT1357 strain (trp1, 

GLC7) and its corresponding mutant BV451, which contains an integrated copy of the 
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mutant allele glc7-127 at the GLC7 locus, were subjected to cold shock at 15°C for the 

indicated times, and total protein lysates were analyzed by Western blotting for 

phospho-Snf1 (P-Snf1) and total Snf1 as loading control. Blots were also probed with 

an antibody specific for phospho-eIF2α (P-eIF2α) and glucose 6-phosphate 

dehydrogenase (G6Pdh) as described in Fig. 1B. D) The same strains as in panel C were 

tested for growth at 30 and 15ºC. Cells were grown, diluted and spotted as described in 

Fig. 3. In all cases, representative experiments are shown. 

Fig. 6. Hog1 plays a functional role in the translation initial inhibition in response to a 

downshift in temperature. A) Protein extracts from whole cells of wild-type (wt; TRP1) 

and hog1 mutant strains of the BY4741 yeast background were separated by SDS-

PAGE and blots were probed with phospho-eIF2α (P-eIF2α) and glucose 6-phosphate 

dehydrogenase (G6Pdh) antibodies as described in Fig. 1B. The graph shows the 

relative values of P-eIF2α corrected with respect to that of G6Pdh, as described in Fig. 

1B. B) Wild-type (wt), hog1, gcn2 and gcn2 hog1 mutant strains of the BY4741 yeast 

background were analyzed for growth in SCD liquid medium at 12ºC. The error bars 

represent the standard deviation of the mean values of three independent experiments.  

Fig. 7. Cold sensitivity is linked to overactivity of Gcn4 and energy stress. A) Overnight 

SCD-grown cultures of TRP1 and trp1 derivatives of the wild-type (wt) BY4741 strain 

were refreshed in the same medium at 30ºC and after 3 h, a portion of the culture was 

transferred to 12ºC. ATP levels were measured at different times during growth using a 

recombinant firefly luciferase-based kit as described in the Materials and Methods 

section. Values are expressed as nmol of ATP per unit of OD600 and represent the mean 

(±SD) of triplicate assays. ATP kinetics for each strain was repeated at least two times. 

B) The same strains were examined for growth in SCD lacking or containing 2-

deoxyglucose (2-DOG) or Na+-arsenate. Overnight SCD-grown cultures were adjusted 

and spotted as mentioned in Fig. 3. C) The mentioned strains were tested for the 

transcriptional activity of the GAAC pathway reporter Gcn4::lacZ. SCD-grown cells at 

30ºC were cold-shocked at 12ºC for 3 h and processed for -galactosidase activity. The 

values for the cold-shocked samples were divided by those of the 30ºC-samples and 

represented as the relative fold change. The error bars represent the standard deviation 

of the mean values of three independent experiments. Statistical significance was 

determined by using the two-tailed Student’s t-test. (*) were significantly different with 
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a p < 0.05. D) Wild-type (wt) and eap1 mutant strains of the BY4741 yeast background 

were examined for growth at low temperature. E) BY4741 yeast cells harboring 

plasmids YCp50 (Control; URA3), p164 (GCN4) and p235 (uORF1-GCN4) were 

spotted on SCD-Ura plates and incubated at the indicated temperatures. Cells were pre-

grown and spotted as mentioned in Fig. 3. A representative experiment is shown. 
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Figure 2 
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Figure 4 
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Figure 5 
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Figure 6 

Time (min)

R
el

at
iv

e
si

gn
al

(%
)

0
20
40
60
80

100
120

0 50 100 150 200 250

wt (TRP1)
hog1 (TRP1)

B

hog1 (TRP1)

P-eIF2α

G6Pdh

Time (min) 0 10 30 60 120 240

wt (TRP1)

30ºC 15ºC

P-eIF2α

G6Pdh

A

0

1

2

3

4

5

6

0 50 100

wt

hog1

gcn2

gcn2 hog1

Time (h)

O
D

60
0



 34

Figure 7 
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Table S1. S. cerevisiae strains used in this study 

Strain  Relevant genotype/phenotype Source or reference  

BY4741 MATa his3 leu20 met150 ura30 EUROSCARF 
BY4741 Tat1-myc  BY4741, TAT1-13myc::HIS3MX6 This study 
BY4741 Tat2-myc  BY4741, TAT2-13myc::HIS3MX6 This study 
BY4741 Gap1-myc  BY4741, GAP1-13myc::HIS3MX6 This study 
BY4741 trp1Δ  BY4741, trp1::kanMX4 EUROSCARF 
BY4741 trp1Δ Tat1-myc  BY4741, trp1::kanMX4 TAT1-13myc::HIS3MX6 This study 
BY4741 trp1Δ Tat2-myc  BY4741, trp1::kanMX4 TAT2-13myc::HIS3MX6 This study 
BY4741 trp1Δ Gap1-myc  BY4741, trp1::kanMX4 GAP1-13myc::HIS3MX6 This study 
BY4741 gcn2Δ  BY4741, gcn2::kanMX4 EUROSCARF 
BY4741 gcn2Δ trp1Δ  BY4741, gcn2::kanMX4 trp1::natMX4 This study 
BY4741 gcn2Δ hog1Δ  BY4741, gcn2::kanMX4 hog1::natMX4 This study 
BY4741 sit4Δ  BY4741, sit4::kanMX4 EUROSCARF 
BY4741 snf1Δ  BY4741, snf1::kanMX4 EUROSCARF 
BY4741 pat1Δ  BY4741, pat1::kanMX4 EUROSCARF 
BY4741 hog1Δ  BY4741, hog1::kanMX4 EUROSCARF 
KT1357  MATa ura30 leu20 his3 trp1 Frederick and Tatchell (1996) 
BV451   MATa glc7-127 ura30 leu20 his3 trp1 Venturi et al. (2000) 
RLK88-3C    MATa his4-260 leu2-3,112 ura3-52 ade2-1 trp1-HIII 

lys2ΔBX can1R
Lin and Keil (1991)  

P1835   RLK88-3C , gcn1Δ::loxP-kanMX-loxP Palmer et al. (2005) 
P1837  RLK88-3C , gcn2Δ::loxP-kanMX-loxP Palmer et al. (2005) 
P1023  RLK88-3C , gcn3Δ::loxP-kanMX-loxP Palmer et al. (2005) 
P1026  RLK88-3C , gcn4Δ::loxP-kanMX-loxP Palmer et al. (2005) 
P2289   RLK88-3C , gcn20Δ::URA3 Palmer et al. (2005) 
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Table S2. Oligonucleotides used in this study

Name Sequence Used for 

TRP1-K1 ATGTCTGTTATTAATTTCACAGGTAGTTCTGGTCCATTGG 
CGTACGCTGCAGGTCGAC Deletion TRP1

TRP1-K2 AACAAGGGAATAAACGAATGAGGTTTCTGTGAAGCTGCA 
ATCGATGAATTCGAGCTCG Deletion TRP1

TRP1-V1 ACACCTCCGCTTACATCAAC Verification 
deletion TRP1

KAN-S2 GTCAAGGAGGGTATTCTGG Verification 
deletions 

HOG1-K1 AAGGGAAAACAGGGAAAACTACAACTATCGTATATAATA 
CGTACGCTGCAGGTCGAC Deletion HOG1

HOG1-K2 AAGTAAGAATGAGTGGTTAGGGACATTAAAAAAACACGT 
TTAATCGATGAATTCGAGCTCG Deletion HOG1

HOG1-V1 GCTTCAACTGTTCTATTTTCTG Verification 
deletion HOG1

TAT1-tag F2 TTCAAGAAAGTTTTTTAAGAGGATGACCAATTTCTGGTGC 
CGGATCCCCGGGTTAATTAA 

C-terminal tagging 
TAT1

TAT1-tag R1 AAGCCCGATGAAGCCAAGCGGAAAATGAATGGAATTGCT 
GGAATTCGAGCTCGTTTAAAC 

C-terminal tagging 
TAT1

TAT1-tag V1 AAGTTGACGATAACGATG Verification 
tagging TAT1

TAT2-tag F2 TTCCCGTCCATGGTACGTGAGACAGTTCCATTTCTGGTGT 
CGGATCCCCGGGTTAATTAA 

C-terminal tagging 
TAT2

TAT2-tag R1 AAATATTCTACAAAAATAAATTGAACTTGTTTCTTCGGTA 
GAATTCGAGCTCGTTTAAAC 

C-terminal tagging 
TAT2

TAT2-tagV1 GTCAAGCAAGAAATTGCC Verification 
tagging TAT2

GAP1-tag F2 CACAAAGCCAAGATGGTATAGAATCTGGAATTTCTGGTG 
TCGGATCCCCGGGTTAATTAA 

C-terminal tagging 
GAP1

GAP1-tag R1 ATCTAAAAAATAAAGTCTTTTTTTGTCGTTGTTCGATTCA 
GAATTCGAGCTCGTTTAAAC 

C-terminal tagging 
GAP1

GAP1-tag V1 TACGGGTAGAAGAGAAGTCG Verification 
tagging GAP1
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Table S3. Plasmids used in this study

Plasmid Description Source or reference 

YCp50 E. coli – S. cerevisiae shuttle vector (CEN4, URA3) Bonneaud et al. (1991) 

p164 Centromeric plasmid expressing GCN4. URA3 marker. Grant et al. (1994) 

p235 Centromeric plasmid expressing GCN4 with uORF1. 
URA3 marker. Grant et al. (1994) 

p180 Plasmid containing GCN4 promoter and translation 
regulatory sequences fused to the E. coli lacZ gene. 

Mueller and  
Hinnebusch (1986) 

YEp195 E. coli – S. cerevisiae shuttle vector (2m, URA3) Bonneaud et al. (1991) 

pTAT2e 2.6-kb fragment containing TAT2 promoter-TAT2 in 
YEplac195 

Abe and 
Horikoshi (2000) 

pFA6a-13Myc-His3MX6 pFA6a-His3MX6-derived plasmid containing sequences 
encoding 13 tandem repeats of the Myc epitope Longtine et al. (1998) 

pAG25 
pFA-yeast plasmid containing the natr gene, which provide 
resistance to the drug nourseothricin. natMX4 cassette 
template 

Goldstein and 
McCusker (1999) 

pDCP2-GFP Centromeric plasmid for P-body marker. URA3 marker. 
(pRP1175) 

Coller and 
Parker (2005) 
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Fig. S1. Tryptophan permeases turnover after a downshift in temperature. Tat1-, 
Tat2- and Gap1-myc tagged cells of the TRP1 and trp1 BY4741 wild-type strain grown 
in SCD-medium (OD600 ~ 0.5) were transferred from 30 to 12ºC, aliquots were 
withdrawn at the indicated times, and proteins were processed for regular SDS-PAGE 
and immunoblotted with monoclonal antibody against human c-Myc. The level of 
glucose 6-phosphate dehydrogenase (G6Pdh) was used as loading control.
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Fig. S2. Mutation of components of the Gcn2 regulatory circuit affects cold 
growth. Cells of the trp1 RLK88-3C wild-type (wt) strain and its corresponding 
derivatives lacking Gcn1 (gcn1), Gcn2 (gcn2), Gcn3 (gcn3), Gcn4 (gcn4) or Gcn20 
(gcn20) were examined for growth at 30 and 15ºC. Exponentially growing cultures were 
adjusted to OD600 ~ 0.8, diluted (1-10-3), spotted (3 l) onto solid SCD medium, and 
incubated at the indicated temperature for 2 and 8 days, respectively. A representative 
experiment is shown. 

15ºC

30ºC

RLK88-3C (trp1) 



 8

Fig. S3. Lack of Hog1 causes cold-sensitivity independently of Gcn2. Cells of the 
BY4741 wild-type (wt), hog1, gcn2 and gcn2 hog1 mutant strains were examined for 
growth onto solid SCD medium as described in Fig. S2, and incubated at the indicated 
temperature for 2 (30ºC), 8 (15ºC) or 12 (12ºC) days, respectively. A representative 
experiment is shown. 
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