DOÑANA: 50 AÑOS
DE INVESTIGACIONES CIENTÍFICAS

Miguel Ferrer
(coord.)
ANEJOS ARBOR

DIRECTOR
Alfonso Vicente Carrasco Santacruz, Consejo Superior de Investigaciones Científicas (CSIC)

SECRETARIA
María José Albalá, Consejo Superior de Investigaciones Científicas (CSIC)

COMITÉ EDITORIAL
Guadalupe Arbona Aboal, Universidad Complutense de Madrid
Sonia Salas Cañado, Universidad CEU
José Andrés Gallego, Consejo Superior de Investigaciones Científicas (CSIC)
José Luis García López, Consejo Superior de Investigaciones Científicas (CSIC)

CONSEJO ASESOR
César Nomehla Canto, Universidad Internacional Menéndez Pelayo
Juan Arana Gárate-Acosta, Universidad de Sevilla
María Elisa Chávarri Rodríguez, Universidad Nacional de Educación a Distancia
José Carlos Díez Masa, Consejo Superior de Investigaciones Científicas (CSIC)
Miguel Elías, Universidad de Évora (Portugal)
María Ramos, Escuela del Pueblo, Universidad Autónoma de Madrid
Fernando Nieto Fernández, State University of New York
María Victoria Gorrochategui Almeida-Mouracés, Universidad Complutense de Madrid
Gonzalo Esteban Pérez, Bournemouth University
[Reino Unido]
María Hernández Rodríguez, Consejo Superior de Investigaciones Científicas (CSIC)
Claudia Estela Yarney, Universidad Austral de Argentina

Reservados todos los derechos por la legislación en materia de Propiedad Intelectual. Ni la totalidad ni parte de este libro, incluyendo el diseño de la cubierta, puede reproducirse, almacenarse o transmitirse en forma alguna por medio ya sea electrónico, químico, óptico, informático, de grabación o de fotocopia, sin permiso previo por escrito de la editorial.

Las notitas, los avisos y las opiniones contenidos en esta obra son de la exclusiva responsabilidad del autor o autores.

La editorial, por su parte, solo se hace responsable del interés científico de sus publicaciones.

Catálogo general de publicaciones oficiales:
http://publicacionesoficiales.csic.es

Editorial CSIC: http://editorial.csic.es (correo: publi@csc.es)

DISEÑO DE CUBIERTA: ESTUDIO Joaquín Gallego

© CSIC
© Miguel Ferrer (coord.), y de cada texto, su autor
© De las imágenes, los autores y fuente mencionados al pie de cada figura

Dedicatoria: 50 AÑOS DE INVESTIGACIONES CIENTÍFICAS
ISBN: 978-84-00-11010-6
e-ISBN: 978-84-00-11012-2
NIF: 721-1-420-1
e-NIF: 721-1-421-7
Depósito Legal: M-2939-2016

Impresión e ilustración: CALAMAR
Impreso en España. Printed in Spain

EN ESTA EDICIÓN SE HA UTILIZADO PAPEL ECOLÓGICO COTONEO A UN PROCESO DE BLANQUEADO ECO, CUYA FIBRA PROCEDE DE BOSQUES GESTIONADOS DE FORMA SOSTENIBLE.
1. Introducción

«Todo era nuevo y salvaje», ha subtitulado Jorge Molina su retrospectiva sobre cómo era Doñana antes de 1964, fecha de la creación de la Estación Biológica del Consejo Superior de Investigaciones Científicas (CSIC) (Molina, 2011). Es un subtítulo paradójico, ya que nada en Doñana era «nuevo y salvaje» entonces, como el mismo Molina se encarga de mostrar sobradamente. Pero eso era lo que les pareció a los colonos del cultivo del arroz traídos desde las Canarias y luego desde Valencia después de la Guerra Civil. Los informadores de Molina aún recordaban hechos y condiciones como las 24.000 ha que los ingleses plantaron de maíz, tabaco, algodón y ricino a principios del siglo xx; o la fábrica de caviar abierta en 1929; o la agricultura impulsada por el general Queipo de Llano y la ganadería de reses bravas en 1.000 ha de Isla Mínima en la década de 1940; o los embarcaderos y barcas con las que moverse por las marismas hasta los años sesenta, llamadas cajones. La cría de caballos está atestiguada desde el menos el reinado del califa Al-Hakam II, en el siglo x (García Gómez, 1967). De mucho antes, de época imperial romana, data el asentamiento del
Cerro del Trigo, en el lado interior de la flecha de Doñana, cerca de la actual desembocadura del Guadalquivir, dedicado principalmente a la pesca y la industria de salazón (Campos et al., 2002).

En junio de 2004, la publicación por el físico alemán Rainer W. Kühne de unas imágenes de satélite de la Marisma de Hinojos en la prestigiosa revista británica Antiquity, en las que se advertían formas geométricas de grandes dimensiones, planteaba la hipótesis de un poblamiento en Doñana más antiguo aún: de la época de Tarteso y aun de antes (Kühne, 2004). La relevancia de tales imágenes para el estudio de la prehistoria y la protohistoria de la cuenca baja del Guadalquivir había sido señalada, a principios de 2003, por el también alemán Werner Wickboldt (Wößmann, 2003a y 2003b). Precisamente el yacimiento del Cerro del Trigo, en la década de 1920, les había preocupado al filólogo alemán Adolf Schulten y el arqueólogo anglo-francés George Bonsor como el lugar donde, bajo los restos romanos, habría estado la capital del reino de Tarteso. Aunque las excavaciones practicadas no dieron con la célebre ciudad, sí pusieron de manifiesto la importancia de los restos romanos en el lugar, a la vez que alentaron proyectos arqueológicos comparables en el entorno del antiguo estuario del Guadalquivir. Su proyecto reveló asimismo indicios de un poblamiento humano en el estuario más remoto todavía, de la prehistoria, por el hallazgo de hachas pulimentadas cerca de la laguna de Santa Olalla y junto a El Rocío. El geólogo del equipo de Schulten y Bonsor, Otto Jessen, advirtió de paso señales inequívocas de una subsistencia general del terreno durante el Holoceno, aunque no pudo explicarla (Schulten, 1945: 268-273).

El proyecto Hinojos, nacido en 2005, solo tuvo como objetivo, en principio, el de contrastar la hipótesis Wickboldt-Kühne en su aspecto más fundamental y materialmente comprobable: las formas geométricas que se veían en las imágenes que los científicos alemanes habían dado a conocer. Centrados en la Marisma de Hinojos (véase Figura 1), deseábamos establecer con un mínimo de seguridad si tales formas eran reveladoras o no de restos arqueológicos de importancia y, si lo eran, qué antigüedad tendrían. Fueran o no de los tiempos de Tarteso, huellas así de antiguo poblamiento humano en las proximidades de la desembocadura del Guadalquivir darían a Doñana una significativa dimensión adicional a la de ser una gran reserva de la biosfera, ya reconocida internacionalmente.

El proyecto tenía que ser necesariamente pluridisciplinar y debía tener en cuenta precedentes históricos y arqueológicos como los señalados.

![Figura 1. Área de estudio y puntos de sondeo (Fuente: Rodríguez-Ramírez et al., 2015: 26, Figura 1, modificada).](image)

Debía contar, además, con los estudios geológicos que desde la década de 1970 se venían haciendo de la evolución del litoral del golfo de Cádiz durante el Holoceno; estudios que ponían en entredicho la teoría comúnmente aceptada entre los prehistoriadores e historiadores de la Antigüedad del suroeste peninsular sobre el origen de las marismas y la historia del poblamiento en ellas. En sus líneas esenciales, esta teoría ya fue planteadada por el mencionado Otto Jessen con ocasión del proyecto de Schulten y Bonsor. El geólogo e ingeniero español Juan de Gavala y Laborde la desarrollaría a lo largo de las décadas de 1920 y 1930. Las marismas, según esta teoría, serían el resultado de un largo, lento y gradual proceso de colmatación del gran estuario del Guadalquivir (que es también el del
Guadíamar y otros ríos convergentes) surgido de la crecida del océano Atlántico tras el fin de la última glaciación. Este proceso habría hecho difícilmente habitable toda la zona antes de la Edad Media, ya que hasta entonces la mayor parte de ella habría estado inundada.

El proyecto empezó con un cotejo fotográfico de las imágenes estudiadas por Wickboldt y Kühnecon otras obtenidas por otros medios, como la serie de fotografías aéreas del llamado vuelo americano de 1956 (Menanteau, 1982: 135-136 y 222). Nosotros mismos obtendríamos nuestra propia serie de fotografías, con ayuda de un avión teledirigido. Junto con este análisis fotográfico, se hicieron dos prospecciones de superficie y, a continuación, tres sondeos geofísicos y una exploración electro-magnética del subsuelo. Esas primeras comprobaciones revelaron la sedimentación acumulada en los últimos 12 m del Holoceno en la Marisma de Hinojos, lo que permitió un análisis lito-estratigráfico y mineralógico de la misma, así como de la macro y microfauna que contenía. También se tomaron muestras de los testigos del subsuelo para ser fechadas por Carbono-14 y hacer un análisis palinológico que permitiera una reconstrucción de la evolución de la vegetación durante el tiempo de la sedimentación. La exploración electro-magnética se hizo mediante geo-radar, magnetometría y tomografía eléctrica.

Los resultados obtenidos justificarían una segunda fase en la investigación a partir de 2009, en la que el sencillo objetivo inicial daría paso a la necesidad de contrastar un nuevo planteamiento general sobre las transformaciones geomorfológicas y los cambios en el desarrollo cultural en el paleo-estuario del Guadalquivir y ríos convergentes durante el Holoceno, especialmente en el tiempo transcurrido desde que la crecida del océano alcanzara su nivel actual, hace unos cinco mil años (Zazo et al., 2008), hasta la época romana. Aparte de requerir comprobaciones adicionales sobre el terreno, esta segunda fase exigía valorar todos los datos resultantes a la luz de los estudios geológicos, palinológicos y arqueológicos ya realizados en el suroeste peninsular para el mismo espacio de tiempo.

2. LAS FORMAS GEOMÉTRICAS Y LA SEDIMENTACIÓN ANÓMALA

En su primera fase, hasta 2008, el proyecto permitió identificar en la Marisma más formas geométricas que las identificadas por Wickboldt y Kühne. Este hallazgo, especialmente de formas ortogonales en las imágenes (véase Figura 2), hizo descartar enseguida que muchas de las figuras pudieran ser el efecto de algún fenómeno natural. Asimismo, los datos obtenidos del subsuelo indicaban un registro sedimentario que era anómalo respecto de lo previsto por Jessen y Gaval: en los 12 m sondeados, el subsuelo no solo ofrecía arcillas y litosos arenosos que se explicaban por un lento ascenso del nivel del mar, la acción regular de las mareas y los temporales de invierno y, ulteriormente, la colmatación aluvial del antiguo estuario, sino también dos potentes sedimentaciones de arenas gruesas con abundantes restos de moluscos y otros or-
organismos. Las especies de moluscos representadas, en un estado de gran fragmentación, eran muy diversas, estando presentes tanto las propias de un estuario poco profundo, de intercambio de aguas marinas y fluviales, que era lo esperado (Cerastoderma edule, Tellina tenuis, Tellina sp, Crassostrea angulata, Nassarius reticulatus, Rissoa sp, Bitlum reticulatum), como las que habitan en mar abierto (Chamelea gallina, Donax sp, Anomia ephippium, Lories lucinallis Venus sp, Chlamys multistratiata, Nucula nucleus, Pecten sp, Tapes decussatus, Murex bandaris). El análisis micropaleontológico de las asociaciones de foraminíferos bentónicos también mostró mezcla de especies marinas (Triolucina trigonula, Ammonia beccarii, Miliolinella sp, Quinqueloculina seminula, Quinqueloculina sp, Triloculina sp) con las estuarinas (Haynesina germanica, Ammonia tepida, Elphidium translucens, Elphidium granosum) en los dos niveles arenosos. La presencia de especies marinas en las dos sedimentaciones anómalas apuntaba a otros tantos episodios puntuales de origen oceánico muy erosivos, posiblemente tsunamis. Las dataciones obtenidas por Carbono-14 giraban en torno al año 2000 antes de nuestra era para el episodio más antiguo, y en torno al año 1150 a. n. e. para el posterior.

El episodio que tuvo lugar ca. 2000 a. n. e. habría sido muy destructivo en la flecha de Doñana y el vecino sistema de dunas de El Abalarito, al noroeste; y tal vez también en la otra flecha que separa la superficie del paleo-estuario del océano: La Algaida (véase Figura 3). La transgresión marina habría causado una extensa inundación y generado grandes acumulaciones arenosas y de fauna marina en el interior del paleo-estuario, incluso en puntos muy alejados de las flechas, como en las llamadas veta de Carrizosa y Vetalarena —que son testigos del litoral arenoso de entonces— y aún más adentro, en el sector más septentrional del paleo-estuario, donde se estaba formando un delta (Arteaga et al., 1995: 114-115). El hallazgo venía a corroborar lo que uno de nosotros, Antonio Rodríguez-Ramírez, había concluido de la composición de la veta de Carrizosa y de Vetalarena, que estudió en la década de 1990 (Rodríguez-Ramírez, 1998: 81-82, y 124 y ss.).

El episodio ocurrido ca. 1150 a. n. e., también muy destructivo del litoral, así como de las flechas (en la de La Algaida habría dado lugar a una isla; véase de nuevo Figura 3) explicaría las potentes acumulaciones arenosas y de fauna marina de más al sur del paleo-estuario, así como los depósitos de roca que se encuentran al pie de los acantilados pliocenos que limitan el paleo-estuario por el este. Precisamente en ese sector meridional, en la hoy conocida como Marismas de Rajaldabas, se había descubierto accidentalmente en 1975 un yacimiento arqueológico de la Edad del Bronce Medio (segunda mitad del II milenio a. n. e.) de acuerdo con la tipología de los fragmentos de cerámica que salieron a la luz. El yacimiento se hallaba enterrado en el subsuelo, bajo 0,60-0,80 m de una sedimentación de limos arenosos (Menanteau, 1982: 115-117), lo que sugería una terminación abrupta del poblamiento. En otras áreas del litoral del Golfo de Cádiz se han señalado erosiones o depósitos anómalos en torno a esa fecha de 1150 a. n. e. causados por un posible tsunami, que sería el mismo que el detectado por nosotros en las cercanías de la actual desembocadura del Guadalquivir. En particular, tales huellas adicionales de ese posible tsunami se han encontrado en el estuario de Huelva (Moraes et al., 2008: 737) y en el del Guadalete (Lario et al., 1995; Luque et al., 2001). Del estuario del Guadalete se conoce otro yacimiento de la Edad del Bronce Medio, sobre la flecha litoral de Valdelagrana (Gómez Ponce et al., 1997: 166).

El análisis paleoambiental validaba independientemente la causa de esas dos sedimentaciones anómalas en las hoy Marismas del Guadalquivir en torno a los años 2000 y 1150 a. n. e., respectivamente. Ambas sedimentaciones contenían cantidades significativas de foraminíferos y dinoflagelados, que cabe atribuir a sendos movimientos oceánicos.
impulsados por una energía considerable, la misma que habría transportado estos organismos planetónicos desde mar abierto hasta el interior del paleo-estuario. Las dos sedimentaciones incluían asimismo polen de Ruppia, una planta subacuática que crece en medios muy salinos. Entre una y otra sedimentación marina, en el milenio a. n. e., así como después de la segunda, a partir de aproximadamente el año 500 a. n. e., el polen hallado corroboraba que el área del paleo-estuario, en esos períodos, habría estado resguardada del océano mediante barreras arenosas en suficiente medida como para facilitar la continentalización de las hoy marismas en un paisaje de dehesa con humedales mareales y de agua dulce. Determinadas zonas de ese paisaje con malzecas fluviales (palizas) y vetas habrían sido objeto de aprovechamiento humano, como indicaba el hallazgo, en las profundidades correspondientes, de polen abundante de cereal, así como de Urtica, Plantago, Rumex, Aster y Cichorioidae y de hongos coprófilos (Sordaria sp, Sporormiella sp), huellas todas ellas de pastoreo y ganadería en combinación con una agricultura de pequeña escala, posiblemente de roza. En las zonas aleñadas a los humedales, los árboles serían escasos (menos de un 20% de la flora silvestre) y dispersos entre extensiones de las especies del matorral característicos del ecosistema termófilo y xerofílico mediterráneo: Olea europaea, Rhamnus lycioides, Juniperus, Myrtus, Phillyrea, Pistacia lentiscus.

El hallazgo de este contingente polínico corroboraba el de pruebas comparables de agricultura, más antiguas aún —del Neolítico de finales del IV milenio a. n. e.— sacadas de la tumba de El Acebrón, cercana al litoral actual y a pocos kilómetros al oeste de la Marisma de Hinojos (Stevenson y Harrison, 1992 y López-Sáez et al., 2011). Era una agricultura, por consiguiente, que ya se había desarrollado en la zona con anterioridad al episodio destructivo acaecido ca. 2000 a. n. e. De forma independiente respaldaban esta evidencia palinológica los muchos restos arqueológicos dispersos del Neolítico y el Calcolítico (útiles de silex y subproductos de industria lítica) aparecidos entre las dunas de la actual costa y en el sector occidental del Espacio Natural de Doñana (Campos et al., 1993 y Borja, 1995: 74-77 y 83), así como los asentamientos del Calcolítico en lugares del entorno del paleo-estuario, como San Bartolomé de Almonte, Lebrija y Mesas de Asta (Escacena y Belén, 1991: 19-20 y 23). En un clima del Holoceno que ya era más seco, los efectos de las roturaciones y otras actividades relacionadas con la agricultura y la ganadería —y con la minería en el Calcolítico— en el curso medio y alto del Guadiamar, y tal vez también en ríos convergentes (efectos como la deforestación y la pérdida de tierra cultivable), habrían facilitado, mediante el aumento de las descargas aluviales de los ríos, el proceso de continentalización en el paleo-estuario durante ese tiempo (Borja, 2009).

Esos primeros resultados de palinología, paleontología y sedimentología, añadidos a los del análisis fotográfico, venían a añadir razones de peso al proceso de revisión al que la teoría de Jessen y Gavala se hallaba sometida entre los geólogos desde la década de 1970, quienes además contaban con el método del Carbono-14 para las dataciones absolutas de los restos orgánicos encontrados (v. g. Menanteau, 1982; Zazo et al., 1994; Lario et al., 1995; Rodríguez-Ramírez et al., 1996 y Rodríguez-Ramírez, 1998). El gradual ascenso del nivel del mar desde la última glaciación, la dinámica cíclica de las marea y de las crecidas de los ríos, la formación de sistemas de dunas en las costas y la ulterior colmatación limo-arcillosa de paleo-estuarios como el del Guadalquivir ya no bastaban como elementos suficientes del modelo de evolución del litoral y tierras bajas del Golfo de Cádiz en el Holoceno. Se había hecho necesario considerar también otros factores para explicar una evolución más compleja y de distintos ritmos que la imaginada en la primera mitad del siglo xx, y por tanto anómala con respecto a ella: factores como las fluctuaciones climáticas de menor duración —incluidos los cambios en el régimen de vientos y de tormentas marinas— y los movimientos neo-tectónicos, generados por la gran fracturación del terreno y, en último término, por la fricción entre las placas africana y euroasiática en el Golfo; sin olvidar las consecuencias de la propia acción del ser humano en la zona desde el Neolítico.

3. UNA ECOLOGÍA CULTURAL ANTIGUA E INTERMITENTE

Una vez descartado que el paleo-estuario estuviera (todo él o la mayor parte de él) siempre inundado —y por ello difícilmente habitable— desde el máximo de la transgresión marina en el Holoceno hasta la Edad Media, casi era obligado el objetivo de delimitar lo más precisamente posible la geografía física y humana de la zona a lo largo de ese espacio de tiempo, así como el de proponer un modelo general de la relación bidireccional que se hubiera producido entre ambas. Con estas nuevas
metas en la mente, se inició en 2009 la segunda fase del proyecto Hinojos. Las comprobaciones sobre el terreno fueron entonces: (1) el sondeo geofísico y la prospección electromagnética en puntos adicionales de la Marisma; (2) análisis palinológicos complementarios; (3) una nueva toma de fotografías aéreas, esta vez con ayuda de un globo de helio; (4) una prospección de la superficie del terreno más extensa, y, finalmente, (5) el levantamiento y la exploración arqueológica en diversos lugares, especialmente en la veta de Carrizosa y en Vetalarena (véase Figura 1).

La exploración más pormenorizada de la veta de Carrizosa puso al descubierto fragmentos de cerámica del Neolítico y el Calcolítico incrustados en la sedimentación acumulada en este antiguo litoral por el episodio ocurrido ca. 2000 a. n. e. Tales fragmentos, que venían a añadirse a los hallados en la nueva prospección de la superficie de la Marisma de Hinojos, eran de los mismos períodos que las hachas pulimentadas mencionadas por Schulten (1945: 268-269) y que los restos dispersos de industria de sílex hallados en la década de 1990 entre las dunas y en el oeste de Doñana (Campos et al., 1993). Arrastrados

probablemente desde la flecha de Doñana o sus cercanías, los incrustados en la veta de Carrizosa tienen el aspecto de haber sido desgastados por el movimiento marino en el paleo-estuario que siguió a la irrupción violenta del océano (véase Figura 4). En octubre de 2012, la presidencia de la Junta de Andalucía dio a conocer el hallazgo accidental de restos comparables del Neolítico sobre la superficie de la Vera del Espacio Natural, inmediatamente al oeste de la Marisma de Hinojos («Aparecen en Doñana...»), 2012). Los restos incluían un hacha pulimentada en buen estado de conservación, fragmentos de cerámica y núcleos de sílex. La franja de la Vera es un suelo de transición entre las marismas y los sistemas de dunas del litoral actual; en ella ya se había encontrado un hacha pulimentada en la década de 1990 (Campos et al., 1993: 237). Este hallazgo de 2012 corroboraba el nuestro de 2009 en la sedimentación acumulada en la veta de Carrizosa y sobre la superficie de la Marisma de Hinojos.

Los nuevos sondeos geofísicos en la marisma revelaron un episodio erosivo adicional de origen oceánico, para añadir a los dos ya identificados en la primera fase de la investigación. Las muestras orgánicas extraídas del depósito correspondiente dieron dataciones en torno al año 1550 a. n. e.; por lo que habría habido, en el primer milenio del Holoceno Superior, al menos tres incursiones violentas del océano: en los años 2000, 1550 y 1150 a. n. e., aproximadamente (Rodríguez-Ramírez et al., 2015: 33-37 y Jiménez-Moreno et al., 2015) (véase de nuevo Figura 3). De las tres, la acaecida hacia 1550 a. n. e. habría sido de mucha menor magnitud que las otras dos, tal y como determinaron los estudios sedimentológicos y paleontológicos. Cabe pensar, por ello, que ese episodio hacia 1550 a. n. e. habría tenido un impacto sobre el poblamiento del paleo-estuario comparativamente poco significativo también.

Tras el tercer episodio, ca. 1150 a. n. e., y pasados sus efectos geomorfológicamente más visibles —la irrupción destructiva del océano y la subsiguiente inundación—, empezaría con el tiempo un nuevo ciclo de sedimentación fluvial en la ensenada, así como de progradación marina en las flechas litorales. A este nuevo contexto geomorfológico pertenece el poblamiento protohistórico e histórico de La Algaida (entonces una isla) del que constan restos significativos que se han fechado por tipología y funcionalidad entre los siglos VI a. n. e. y IV a. n. e. (Esteve-Guerrero, 1952; Blanco Freijero y Corzo Sánchez, 1983; Corzo Sánchez, 1984 y López Amador y Ruiz Gil, 2010). Los restos parecen corresponder

Figura 4. Fragmentos de cerámica hallados incrustados en la veta de Carrizosa.
a los de un santuario púnico-gaditano hasta el siglo II a. n. e. y de un asentamiento romano entre los siglos I y IV de nuestra era que incluiría un taller de reparación de embarcaciones y una fábrica de salazones. Investigadores como Pedro Barbadillo Delgado (1951), Loic Menanteau (en Palacios, 1981) y también Antonio Rodríguez-Ramírez (1998: 127-128) han sugerido, sin embargo, que tal isla de La Algaida pudo haber albergado el reino del reino de Tarteso, antes del siglo VI a. n. e. De época tartésica, en todo caso, y hasta de la Edad del Bronce Final, a partir del siglo IX a. n. e., parecen darse las repoblaciones en San Bartolomé de Almonte, Lebrija y Mesas de Asta (Escacena y Belén, 1991: 19-20 y 23), así como la fundación del asentamiento del Cortijo de Ébora, cercano a La Algaida y a Sanlúcar de Barrameda (Mata Carriazo, 1970).

Al mismo contexto geomorfológico, aunque más tardiamente, pertenece el mencionado asentamiento del Cerro del Trigo, sobre una prolongación de la flecha de Doñana hacia el SE. Los restos hallados datan de los siglos II a VI de nuestra era (Bonsor, 1922 y 1928; Schulten, 1945 y Campos et al., 2002). La continuación de esa progresión en dirección hacia la actual desembocadura del Guadalquivir, desde época visigoda hasta el presente, junto con la reconstitución de la flecha de La Algaida (en época bajo-imperial romana, o aun después), dificultaría cada vez más la irrupción de nuevas transgresiones marinas violentas hacia el interior del paleo-estuario —a diferencia de lo que ocurriera hasta el episodio que tuvo lugar ca. 1150 a. n. e.—, así como de la navegación por él. El resultado de este proceso, junto con el de las regulares apariciones fluviáticas, sería, primero, la formación en el seno del paleo-estuario de un lago, mencionado por autores romanos como Pomponio Mela (1887: 8) y Rufo Festo Avieno (1959: XVIII), y ulteriormente, el ancho paisaje de pacies, vetas, lucios y marismas que se observa hoy.

El cortejo de las dataciones absolutas obtenidas por Carbono-14 para todos los testigos de los sondeos (32 dataciones en total) con las profundidades relativas de los depósitos identificados y fechados en cada uno de los testigos, de un lado, y con testigos comparables de sondeos realizados por otros investigadores para otras zonas del paleo-estuario, de otro, permitió confirmar la subsistencia general del suelo en la evolución geomorfológica de la zona durante el Holoceno Superior que ya notara Jessen. Especialmente pronunciada entre el episodio acaecido ca. 2000 a. n. e. y los inicios de la Era cristiana, esta subsistencia dimana de la fracturación neo-tectónica activa en el paleo-estuario, en particular de la relacionada con la denominada falla de Torre Carbonero-Marilópez [TCMF (Torre Carbonero-Marilópez Fault)], que atraviesa la Marisma de Hinojos y áreas aleñanas en dirección SO-NE, dividiendo diagonalmente el territorio en dos grandes bloques, uno al norte (más elevado) y otro al sur, casi al nivel del mar, hasta la falla del Bajo Guadalquivir (Rodríguez-Ramírez et al., 2014: 134-136) (véase Figura 1). Todo el paisaje visible hoy en Doñana, por tanto, incluidas las flechas litorales, tendría una antigüedad de unos dos mil años como máximo, quedando las formaciones más antiguas, con sus posibles restos arqueológicos, soterradas bajo la superficie, como ilustra el caso de los hallados en la Marisma de Ralaldabas. Las mismas dataciones, así como la estructura de la sedimentación a la luz de los sondeos y de la nueva prospección electromagnética del subsuelo, hacían muy poco probable que las construcciones humanas cuyas huellas habían quedado reveladas por las fotografías aéreas y las imágenes de satélite fueran anteriores a la época andalusí (711-1262 de la era cristiana); de la que se sabe, además, por documentos históricos (v. g. González, 1951, 1: 11-24, 147 y 210-226; Bosch Vilá, 1984: 322-342 y 375-386 y García Sanjuán, 2003: 124-126, 135 y 182-183), que registró en las marismas una notable ocupación humana, especialmente en el periodo almohade (1147-1262). Esta población, distribuida por alquerías dispersas, debió de vivir principalmente de la cría de caballos y otras actividades ganaderas, a las que complementarían la pesca y la agricultura. Las prospecciones y sondeos arqueológicos de superficie permitieron el hallazgo de diversos restos de ese periodo que vinieron a confirmar esa ocupación. Los devastadores efectos materiales y demográficos de la conquista cristiana (1224-1262) pusieron fin a este periodo floreciente. Aunque el poblamiento y el aprovechamiento económico de las marismas retornarían en los siglos siguientes, lo harían de manera lenta y gradual, hasta la nueva época de crecimiento en la Edad Contemporánea (González Arteaga, 1993: 52-53; Molina, 2011: 15, 42-43, 94 y 175).

Por debajo de esa ocupación en la Edad Media estaban las huellas del significativo poblamiento humano anterior, mencionado antes; huellas que habían puesto de manifiesto esas mismas prospecciones y sondeos, junto con los datos del polen y paleoenvironmentales. Esa prehistoria e historia antigua de Doñana, sin embargo, no podía dejar restos visibles desde el aire por la potencia de la colmatación limo-arcillosa en el paleo-estuario en el transcurso del Holoceno.
4. CONCLUSIÓN

El Espacio Natural de Doñana ha sido escenario de procesos geomorfológicos de duración relativamente rápida que son comparables a los que han generado en otras zonas del planeta las fluctuaciones climáticas, la dinámica de los ecosistemas costeros y la neo-tectónica de los últimos tiempos geológicos, en particular durante el Holoceno Medio y el Holoceno Superior. En el antiguo estuario del Guadalquivir, ese proceso se condicionó, y se vio condicionado a su vez, por un poblamiento humano que se remonta claramente al menos al Neolítico y habría pasado, contando con los datos disponibles hasta el momento, por tres épocas y espacios geográfico-culturales muy distintos. Entre unos y otros habría habido largos hitos coincidiendo con los intervalos de irrupción marina.

La primera época fue la del Neolítico y el Calcolítico (milenarios IV y III a. n. e.) hasta el episodio erosivo ocurrido ca. 2000 a. n. e. La población habría estado repartida por pequeños poblados en el entorno del paleo-estuario, así como sobre suelos ganados al mismo, al norte de la veta de Carrizosa, y en sectores de la flecha primitiva de Doñana y acaso de La Algaida, hoy sumergidos por la subsistencia del terreno al sur de la falla de Torre-Carbonero-Marlópez o destruidos por esa violenta irrupción marina. De esa época son los múltiples hallazgos de restos dispersos por la Vera, por la actual zona de dunas en la costa y por el sector más occidental del Espacio Natural, así como los fragmentos de cerámica incrustados en la sedimentación de la veta de La Carrizosa.

La segunda época, la de la nueva fase de sedimentación aluvial y reconstitución de las flechas litorales en el milenio II a. n. e., corresponde a la de la Edad del Bronce Medio en el suroeste de la Península, que en el paleo-estuario y su entorno duraría hasta el episodio que tuvo lugar ca. 1150 a. n. e. Esta nueva fase no dejó aquí restos arqueológicos de importancia claramente identificados hasta ahora, salvo los del yacimiento hallado por accidente en mitad de la hoy Marisma de Rajaldabas. La subsistencia sostenida desde el episodio acaecido ca. 2000 a. n. e. pudiera explicar esta pobreza arqueológica. El asentamiento de Rajaldabas, como otros, se haría sobre un suelo arenoso que debió de estar entonces sobre el nivel del mar.

La tercera época, la de una nueva fase de reclamación continental al paleo-estuario y de progradación marina en las flechas, se habría iniciado en los primeros siglos del milenio I a. n. e. (Edad del Bronce Final y época tartésica) y continuado hasta época romana y aun después, hasta la reducción de la vía de contacto con el océano a su mínima expresión y la colmatación limo-arcilloso compleja del paleo-estuario. Este último proceso geomorfológico es el que sirvió de marco natural a los períodos de la protohistoria e historia antigua y medieval del suroeste peninsular que han dejado más restos y yacimientos arqueológicos en la zona, y hasta notables asentamientos que han llegado hasta nosotros, como Lebrija y Sanlúcar de Barrameda.

En definitiva, hay ciertamente más razones que las biológicas y medioambientales para conservar Doñana, como cabía esperar de tantos escritos sobre el célebre humedal desde al menos el proyecto de Bonsor y Schulten. Son razones geológicas, arqueológicas y antropológicas; y como aquellas, también de gran interés científico. Desde 2005, el pluridisciplinar proyecto Hinojos, al igual que otros que le precedieron, está poniendo en valor estas razones adicionales.

AGRACEDIMIENTOS

Un avance de este artículo fue presentado en el encuentro internacional «Doñana 50 años: Jornadas de investigación sobre la conservación de Doñana» (Sevilla, 6-7 de febrero de 2014). El proyecto Hinojos, cuyos resultados se exponen en síntesis aquí, fue posible gracias a sendas subvenciones de la Fundación Caja de Madrid, la Fundación Doñana 21, el Ayuntamiento de Hinojos y la Fundación del Hogar del Empleado (FUHEM). Aparte de ello, José N. Pérez-Asensio contaba con una ayuda del Ministerio de Educación del Gobierno de España. Los autores desean reconocer la participación en el proyecto, en julio de 2006, del Deutsches Zentrum für Luft- und Raumfahrt (DLR), cuyos técnicos tomaron cientos de fotografías aéreas de la Marisma de Hinojos por medio de un avión teledirigido. En el verano de 2009, la compañía productora de documentales científicos canadiense Associated Producers, por recomendación del arqueólogo de la Universidad de Hartford, Richard Freund, sufrió pruebas geofísicas y una nueva toma de fotografías aéreas, esta vez por medio de un globo de helio, por técnicos de la firma Worley Parsons Ltd. de Canadá. Buena parte del material resultante sirvió para la producción del documental Finding Atlantis, adquirido por la National Geographic Society de los EE. UU. y emitido internacional-
mente a partir de marzo de 2011. Los autores desean dejar constancia aquí de la valiosa aportación que representaron tales pruebas sobre el terreno para el proyecto, pero no pueden estar de acuerdo con muchas de las afirmaciones o interpretaciones de los datos expuestas por el profesor Freund en dicho documental, que por ello solo pueden ser de su responsabilidad exclusiva. Los autores quieren, por otro lado, rendir homenaje al cartógrafo del equipo, José Ángel Martínez del Pozo, del IAM (Instituto de Arqueología de Mérida) del CSIC, tristemente malogrado mientras este texto estaba en preparación, así como agradecer su colaboración a los arqueólogos Victorino Mayoral Herrera y Tomás Cordero, asimismo del IAM, y a Claudio Lozano, de la Universidad de Huelva, por su participación en el trabajo de campo y en el análisis fotográfico; también al arqueólogo Miguel Alba-Calzado, del Consorcio Ciudad Monumental de Mérida, por su análisis de los fragmentos de cerámica del periodo andalusi encontrados, al biólogo y geólogo Gonzalo Jiménez Moreno, de la Universidad de Granada, por su estudio paleontológico de algunas de las muestras del subsuelo extruidas, al químico Antonio Rubinos, del CSIC, por su asesoramiento sobre las complejidades técnicas que rodean a las dataciones absolutas de materia orgánica con el método del Carbono-14, y a los expertos en diseño gráfico Roberto García Infanzón y Andrés Rodríguez Blanco, asimismo del CSIC, por el tratamiento de las fotografías aéreas y las imágenes de satélite. Sin embargo, el proyecto no habría podido iniciarse, cuanto más llevarse a cabo, sin la diligencia y palabras de ánimo de Manuel Naranjo, alcalde de Hinojos, Fernando Hiraldo, director de la Estación Biológica de Doñana (EBD), Juan Carlos Rubio, director del Espacio Natural de Doñana (END), Carlos Urdiales (principal asesor técnico del END), Román Fernández-Baca, director del Instituto Andaluz del Patrimonio Histórico, y el personal de las unidades administrativas y técnicas de la EBD, el END, el Laboratorio de Teledetección y SGILAST, de la EBD, la unidad de SGIL del Centro de Ciencias Humanas y Sociales del CSIC, la Delegación de Cultura de la Junta de Andalucía en Huelva, el Organismo Autónomo Parques Nacionales del Ministerio de Medio Ambiente del Gobierno de España y la Subdirección General de Obras e Infraestructuras del CSIC. La responsabilidad del diseño y ejecución del proyecto y, por tanto, de sus resultados y de lo aquí escrito, no obstante, solo es de los autores.

BIBLIOGRAFÍA

