COMUNICACION A LA I PONENCIA DE LAS X JORNADAS DE ESTUDIO DE LA ASOCIACION INTERPROFESIONAL PARA EL DESARROLLO AGRARIO (A.I.D.A.)

CALIDAD DE AGUA PARA EL RIEGO. I: CRITERIOS GENERALES

R. Aragüés., F. Alberto., J.A. Cuchí., J. Machín

Zaragoza, Mayo 1978
COMUNICACIÓN A LA I PONENCI A DE LAS X JORNADAS DE ESTUDIO DE LA ASOCIACIÓN INTERPROFESIONAL PARA EL DESARROLLO AGRARIO (A.I.D.A.)

CALIDAD DE AGUA PARA EL RIEGO. I: CRITERIOS GENERALES

R. Aragüés, P. Alberto, J.A. Cuchi, J. Machín

Zaragoza, Mayo 1978
CALIDAD DE AGUA PARA EL RIEGO. I: CRITERIOS GENERALES

R. Aragüés, F. Alberto, J.A. Cuchí, J. Machín.

A. INTRODUCCION

En estas jornadas sobre el riego, se hace especial hincapié en la disponibilidad del agua y las diferentes técnicas de su puesta en uso para la planta. La disponibilidad real del agua de riego, viene condicionada por la concentración y naturaleza de sus constituyentes químicos en solución, que son los que determinan básicamente la calidad del agua y su disponibilidad de aprovechamiento para la agricultura, en función de la práctica del riego y de las características climáticas, geomorfológicas, edafológicas, de cultivos y de manejo de la región en particular.

La existencia en la Depresión Media del Ebro (DME) de importantes extensiones de suelos más o menos afectados por salines (unas ciento sesenta mil hectáreas), y la salinización potencial de otras muchas, junto con unas características de calidad de agua no siempre óptimas (ver parte II de este trabajo), y la creciente demanda de agua para la agricultura y para otros usos, hacen necesaria la valoración cuidadosa de nuestros recursos hídricos en función de su calidad.

En esta comunicación, se presenta una revisión de los criterios generales que determinan la calidad del agua para el riego, y los diferentes factores que los condicionan. En la parte II de este trabajo, se exponen algunos problemas específicos de la calidad del agua en la Depresión Media del Ebro, y su evaluación parcial a partir de los criterios generales de calidad y en función de las características de la región.
B. CRITERIOS GENERALES DE CALIDAD DEL AGUA DE RIEGO

El análisis químico de un agua, permite evaluar los problemas actuales derivados de su calidad, predecir en parte los futuros, y definir —junto con otras variables— las prácticas más adecuadas de su manejo. Por ello, la clasificación de las aguas en función de su calidad, se ha basado en el análisis químico de sus componentes solubles. En el anexo nº 1, se indican aquellos constituyentes que se deben determinar en un análisis completo de calidad del agua para el riego, con los correspondientes símbolos, unidades y algunos factores de conversión. En algunas abreviaturas, se han mantenido las iniciales en inglés por considerarlas de significado común. La mayoría de los laboratorios de análisis de calidad de agua, determinan de forma rutinaria la Conductividad Eléctrica (CE), cationes (Na, Ca y Mg), aniones (CO$_3$, HCO$_3$, Cl y SO$_4$), pH y la Relación de Adsorción de Sodio (SAR).

La clasificación de las aguas de riego en función de su calidad, puede enfocarse desde diferentes puntos de vista: des de esquemas globales previstos para su aplicación a situaciones generales, hasta valores específicos de calidad para un determinado ion, cultivo y área. De cualquier forma, los parámetros que configuran la base de la mayoría de las evaluaciones de calidad de agua para el riego, son la salinidad, la sodicidad, y la toxicidad.

B-1. Criterios de salinidad

La salinidad del agua es probablemente el criterio primordial de calidad, pues determina en gran medida la disponibilidad del agua por la planta, a través de su efecto osmótico y consiguiente disminución del potencial total del agua en el suelo. Se han establecido diversos criterios de salinidad de un agua, en función de su interacción previsible con el suelo. Así DONEN (1967), considera que el agua, al ponerse en contacto con el suelo y por efecto de su incremento en la concentración debido a la evapotranspiración, precipita cuantitativamente sus sales menos solubles, y establece como índice de salinidad efectiva el valor resultantes de la ecuación (1),

"salinidad efectiva" = (Ca+Mg+Na) - (CO$_3$+HCO$_3$+SO$_4$) ···················· (1)
EATON (1954) considera que la precipitación de las sales no es cuantitativa, y utiliza el valor

\[(\text{Cl} + \frac{1}{2} \text{SO}_4) \] (2)

como índice de "salinidad potencial".

RICHARDS (1954) asume por el contrario que no hay precipitación de ningún tipo de sal, e "institucionaliza" el parámetro Conductividad Eléctrica (CE) como índice de salinidad, estableciendo una clasificación de las aguas de riego basada en las sales solubles totales (CE):

<table>
<thead>
<tr>
<th>Indice de salinidad</th>
<th>CE (m¿hos/cm a 25°C)</th>
<th>Riesgo de salinidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1-0.25</td>
<td>bajo</td>
</tr>
<tr>
<td>2</td>
<td>0.25-0.75</td>
<td>medio</td>
</tr>
<tr>
<td>3</td>
<td>0.75-2.25</td>
<td>alto</td>
</tr>
<tr>
<td>4</td>
<td>>2.25</td>
<td>muy alto</td>
</tr>
</tbody>
</table>

Esta clasificación, ha sido probablemente la de más amplia difusión en el mundo.

Posteriormente, investigaciones demostraron que estos valores de CE eran demasiado conservadores, y un Comité del Estado de California los ha modificado recientemente en el sentido que se indica en la TABLA 2:

<table>
<thead>
<tr>
<th>Indice de salinidad</th>
<th>CE (m¿hos/cm a 25°C)</th>
<th>Riesgo de salinidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤0.75</td>
<td>bajo</td>
</tr>
<tr>
<td>2</td>
<td>0.75-1.5</td>
<td>medio</td>
</tr>
<tr>
<td>3</td>
<td>1.5-3.0</td>
<td>alto</td>
</tr>
<tr>
<td>4</td>
<td>>3.0</td>
<td>muy alto</td>
</tr>
</tbody>
</table>
El riesgo de salinidad queda definido como el valor de la CE del extracto saturado del suelo \((CE_e)\) asociado a una disminución en rendimiento de los cultivos de un 10-15%. Los valores de CE del agua de riego se obtienen de la relación \(CE = 1/3 CE_e\).

A partir de esta clasificación, AYERS y WESTCOT (1976) han dividido las aguas en tres grupos: Aguas sin problemas de salinidad \((CE < 0.75)\), Aguas con problemas crecientes \((0.75 < CE < 3.0)\), y Aguas con serios problemas \((CE > 3.0)\).

Los factores que condicionan el uso de estos índices de salinidad se señalan en el apartado C.

B-2. Criterios de sodicidad

La sodicidad del agua de riego es un parámetro de calidad de especial significación, debido a su efecto sobre la permeabilidad del suelo, y la nutrición de la planta ("efecto tóxico"). Este último aspecto se detalla en el punto 3. de este apartado.

Parece claro que el porcentaje de Sodio de Cambio (ESP), es la propiedad del suelo que mejor se correlaciona con los dos efectos antes mencionados (RHOADES, 1972). Por consiguiente, una evaluación racional del riesgo de sodicidad potencial de un agua, debe realizarse en base a un parámetro que se correlacione de forma satisfactoria con el ESP del suelo que resulta del uso del agua. Así, de forma general, la Relación de Adsorción de Sodio (SAR), definida como

\[
SAR = \frac{Na}{[(Ca+Mg)/2]^{1/2}}
\]

(3)

donde las concentraciones vienen expresadas en meq/l, ha sido ampliamente utilizada como índice de riesgo de sodicidad del agua.

RICHARDS (1954) enfoca el problema de la sodicidad del agua desde el punto de vista de su efecto sobre la permeabilidad del suelo, y clasifica las aguas por sodicidad en cuatro grupos que son función del SAR y de la CE. En este sistema, el riesgo de sodicidad para aguas de un mismo SAR aumenta con el incremento de la CE. A pesar del uso muy extendido de esta clasificación, adolece de importantes limitaciones que se discuten posteriormente en el apartado C.
DONEEN (1967), basándose en estudios de laboratorio y en lisiómetros, correlaciona la permeabilidad del suelo con la concentración total del agua y el contenido de Na y HCO₃, y clasifica las aguas en tres clases, de acuerdo con el índice de permeabilidad,

"indice de permeabilidad" = \[\frac{(Na + \sqrt{HCO₃})}{(Ca+Mg+Na)} \times 100 \] \hspace{1cm} (4)

(donde los iones vienen expresados en meq/1), y con la concentración total del agua en meq/1.

BIGGAR y NIELSEN (1972), basándose en los criterios propuestos por RICHARDS (1954), clasifican las aguas en función de su SAR y del consiguiente riesgo de descenso en la permeabilidad:

TABLA 3: CLASIFICACION DE LAS AGUAS BASADA EN EL SAR (BIGGAR Y NIELSEN, 1972)

<table>
<thead>
<tr>
<th>Índice de sodicidad</th>
<th>SAR</th>
<th>Riesgo descenso en la permeabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 3</td>
<td>bajo</td>
</tr>
<tr>
<td>B</td>
<td>3-5</td>
<td>medio</td>
</tr>
<tr>
<td>C</td>
<td>5-8</td>
<td>alto</td>
</tr>
<tr>
<td>D</td>
<td>>8</td>
<td>muy alto</td>
</tr>
</tbody>
</table>

Finalmente, AYERS y WESTCOT (1976) clasifican las aguas en tres grupos según el "riesgo potencial de permeabilidad", que resulta de considerar los valores de CE o de SAR ajustado (SARaj.) (este último término se define en el apartado C).

TABLA 4: CLASIFICACION DE LAS AGUAS EN FUNCION DEL RIESGO POTENCIAL DE DESCENSO EN LA PERMEABILIDAD (AYERS Y WESTCOT, 1976).

<table>
<thead>
<tr>
<th>sin problemas</th>
<th>problemas crecientes</th>
<th>problemas serios</th>
</tr>
</thead>
<tbody>
<tr>
<td>riesgo descenso permeabilidad (según valores de CE:mmhos/cm)</td>
<td>> 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>riesgo descenso de permeabilidad (según valores de SARaj.)</td>
<td>< 6.0</td>
<td>6.0-9.0</td>
</tr>
</tbody>
</table>
Como veremos en el apartado C, el concepto de SAR\textsubscript{ajustado} es el que aparecientemente se correlaciona mejor con el ESP del suelo, por lo que –según hemos indicado al principio del punto B-2.– aparece como el parámetro más real de determinación del riesgo de sodicidad de un agua de riego.

Una contribución importante de esta última clasificación es que indica el hecho frecuentemente ignorado de que aguas de muy baja conductividad pueden originar serios problemas de permeabilidad debido básicamente al efecto desfloculante del agua pura sobre las partículas del suelo.

Como es lógico, la evaluación del "riesgo de permeabilidad" de un agua, debe ser mucho más satisfactoria cuando se considera en función de su interacción con el suelo. Ya hemos indicado mas arriba la utilidad del concepto de SAR\textsubscript{ajustado}. Este, y otros parámetros de aproximación al problema, se discuten en el apartado C.

B-3. Criterios de toxicidad

Ciertos iones ejercen un efecto específico sobre la planta, disminuyendo su crecimiento y producción independientemente del efecto osmótico antes mencionado. Este efecto específico puede ser de naturaleza tóxica o nutricional. La toxicidad se produce cuando ciertos constituyentes del agua son absorbidos por la planta y se acumulan en ella en cantidades tales que se produce una disminución en su rendimiento. Los efectos sobre la nutrición de la planta se producen generalmente por la presencia excesiva de ciertos iones que originan un desequilibrio en la absorción de otros.

- **Iones Tóxicos.** Los problemas de toxicidad debidos a la calidad del agua son generalmente específicos para un ión y planta en particular. De forma general, los cultivos arbóreos y las plantas ornamentales son muy sensibles al sodio y al cloro, mientras que las plantas anuales no exhiben el mismo grado de sensibilidad. La tabla siguiente clasifica las aguas en tres grupos y puede utilizarse para el caso de plantas sensibles a Na y/o Cl (AYERS y WESTCOT, 1976). El Na se evalúa en términos de SAR\textsubscript{aj.} y el Cl en meq/l.

<table>
<thead>
<tr>
<th></th>
<th>sin problemas</th>
<th>problemas crecientes</th>
<th>problemas serios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodio (SAR\textsubscript{aj.})</td>
<td>< 3</td>
<td>3-9</td>
<td>> 9</td>
</tr>
<tr>
<td>Cloruro (meq/l)</td>
<td>< 4</td>
<td>4-10</td>
<td>> 10</td>
</tr>
</tbody>
</table>

Al contrario que el Sodio y el Cloruro, el Boro afecta a un amplio espectro de cultivos, aunque su efecto cuantitativo varía mucho entre ellos. Por ello la clasificación de calidad de las aguas atendiendo a criterios de toxicidad por Boro se realiza generalmente atendiendo al tipo de cultivo. En la tabla 6 se indican los índices de Boro comúnmente aceptados para la clasificación de las aguas en función de la concentración en Boro (ppm), y del tipo de planta (sensitiva, semitolerante y tolerante) (BIGGAR y NIELSEN, 1976).

TABLA 6: CLASIFICACIÓN DE LAS AGUAS BASADA EN LOS NIVELES DE BORO Y EN LA SENSIBILIDAD DE LAS PLANTAS (BIGGAR Y NIELSEN, 1972).

<table>
<thead>
<tr>
<th>Índice de Boro</th>
<th>Conc. (ppm)</th>
<th>Riesgo toxicidad</th>
<th>Ejemplo de plantas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 0.5</td>
<td>Bajo, incluso para sensibles.</td>
<td>Sensibles: frutales y ornamentales en general.</td>
</tr>
<tr>
<td>2</td>
<td>0.5-1.0</td>
<td>Las sensibles muestran daños pequeños a moderados.</td>
<td>Semitolerantes: cereales en general; patatas, tomate, etc.</td>
</tr>
<tr>
<td>3</td>
<td>1.0-2.0</td>
<td>Las semitolerantes muestran daños pequeños a moderados.</td>
<td>Tolerantes: esparagó, alfalfa, cebolla, col, lechuga, etc.</td>
</tr>
<tr>
<td>4</td>
<td>2.0-4.0</td>
<td>Las tolerantes muestran daños pequeños a moderados.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>> 4.0</td>
<td>Alto para todas las plantas.</td>
<td></td>
</tr>
</tbody>
</table>
AYERS y WESTCOT (1976), simplifican la clasificación anterior, estableciéndola en tres grupos: Aguas sin problemas ($B<0.5$ ppm.), Aguas con problemas crecientes a intermedios ($0.5<B<2.0$ ppm) y Aguas con problemas serios ($B>2.0$ ppm).

Otros elementos como el Litio y el Selenio pueden estar presentes en algunas aguas en concentraciones suficientes como para afectar a los cultivos. Así, valores de Litio de 0.05 a 0.1 ppm pueden ser tóxicos para los cítricos. El selenio se considera tóxico a concentraciones mayores de 0.2 ppm. Por otro lado, muchas substancias presentes en aguas residuales industriales que son descargadas a las corrientes superficiales, pueden contener substancias fitotóxicas (ALLISON, 1964).

- **Desequilibrios Nutricionales.** Valores elevados de Nitrogeno en el agua de riego inducen en ciertas plantas sensibles (como Albaricoquero, Cítricos, Remolacha azucarera, Vid, etc.) un aumento en su crecimiento vegetativo, un descenso en la producción y/o en la calidad y un retraso en la maduración. Así, AYERS y WESTCOT (1976), dan la siguiente clasificación para cultivos sensibles a Nitrógeno:

<table>
<thead>
<tr>
<th>NH$_4$-N y NO$_3$-N (ppm)</th>
<th>Sin problemas</th>
<th>Problemas crecientes</th>
<th>Problemas serios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5</td>
<td>5-30</td>
<td>>30</td>
</tr>
</tbody>
</table>

C. FACTORES CONDICIONANTES DE LOS CRITERIOS GENERALES DE CALIDAD.

Como hemos indicado anteriormente, los parámetros principales que definen los criterios de calidad de un agua son la salinidad, la sodicidad y la toxicidad. Sin embargo, ellos solo determinan los efectos de la calidad sobre la planta y el suelo. Por lo tanto, los criterios de calidad de agua descritos en el apartado B de este trabajo, deben considerarse en relación con las condiciones específicas de su uso, incluyendo el clima, las propiedades del suelo y su interacción con el agua, la tolerancia de las plantas a la salinidad y las prácticas de manejo del riego y suelo.

C-1. Clima

Parece ampliamente demostrado que la temperatura, la radiación y la humedad del aire tienen una influencia grande sobre el efecto relativo de la salinidad en el comportamiento de las plantas. De forma general, un aumento en la severidad del clima (calor, viento, radiación alta, baja humedad del aire, etc.) viene asociado con un descenso en la tolerancia de las plantas a la salinidad (HOPPMAN y RAWLINS, 1971; HOPPMAN, 1973; GALE, 1975).

C-2. Propiedades del suelo y su interacción con el agua

C-2.1. Velocidad de infiltración, conductividad hidráulica y drenaje.

El control de la salinidad de un suelo, depende de su capacidad para infiltrar una cantidad mayor de agua en la zona radicular que la consumida en la evapotranspiración (ET). Este exceso de agua es el que transporta las sales en profundidad, por debajo de la zona de raíces, si la conductividad hidráulica y la capacidad de drenaje de ese suelo son adecuadas. Si alguna de estas variables es un factor limitante, deberán considerarse como condicionantes de los criterios de calidad establecidos en el apartado B de este trabajo. De forma general, la
velocidad de infiltración debe ser tal que la cantidad de agua que penetre el suelo sea suficiente para compensar la ET y la necesidad de lavado, durante un tiempo de riego que no sea excesivo para las características de la planta (BERNSTEIN, 1967).

La mínima cantidad de agua de drenaje \(V_{ad}^{(\text{min})} \) necesaria para mantener en la zona de raíces una salinidad adecuada para la planta, puede obtenerse de la ecuación 5:

\[
V_{ad}^{(\text{min})} = \left[\frac{CE_{ar}}{CE_{ad} - CE_{ar}} \right] V_{uc} \quad \text{(5)}
\]

donde \(V_{ad}^{(\text{min})} \) y \(V_{uc} \) son el volumen de agua de drenaje y consumida por la planta, respectivamente (en cm.), \(CE_{ar} \) es la conductividad eléctrica del agua de riego, expresada en mmmhos/cm, y \(CE_{ad} \) es la conductividad eléctrica del agua de drenaje. Este valor suele sustituirse por la CE asociada a un descenso del 100% en el rendimiento del cultivo en consideración (tabla 8).

C-2.2. Fracción de lavado (LF) y necesidad de lavado (LR).

La fracción de lavado (LF) se define como aquella fracción prevista del agua infiltrada en el suelo, que percola a través de la zona de raíces. Evidentemente, la LF es función del suelo, del clima y de la cantidad de agua aplicada. La LF puede calcularse a partir de dos ecuaciones descritas por BERNSTEIN(1967), la primera para el caso en que el drenaje del suelo no sea un factor limitante:

\[
LF = 1 - \frac{ET \times tc}{I \times ti} \quad \text{(6)}
\]

y la segunda cuando la velocidad de drenaje del suelo sea un factor limitante:

\[
LF = \frac{0}{ET + 0} \quad \text{(7)}
\]

donde \(ET \) es la velocidad de evapotranspiración en mm./día, \(I \) es la velocidad de infiltración en mm./día, \(O \) es la velocidad de drenaje en mm./día, \(tc \) es el ciclo del riego (días) y \(ti \) es el tiempo de infiltración (días).
BERNSTEIN (1967) da unas gráficas que simplifican los cálculos para obtener la LF.

La necesidad de lavado (LR) se define como aquella fracción del agua infiltrada en el suelo que debe percolar a través de la zona de raíces para no exceder una CE\textsubscript{ad} predeterminada. Asumiendo un sistema en estado estacionario:

\[
LR = \frac{A_{ad}}{A_{ar}} = \frac{CE_{ar}}{CE_{ad}} \tag{8}
\]

donde \(A_{ad}\) y \(A_{ar}\) son las cantidades de agua de drenaje y de riego, respectivamente (en cm), y \(CE_{ar}\) y \(CE_{ad}\) son las conductividades eléctricas del agua de riego y del agua de drenaje, respectivamente (en mmhos/cm). Generalmente, el valor de la \(CE_{ad}\) se determina por extrapolación de las curvas de tolerancia de las plantas a la salinidad, correspondiente a un descenso en el rendimiento del 100%.

De las definiciones de LF y de LR, se deduce que para establecer un control de la salinidad en la zona de raíces, debe cumplirse que \(LR \leq LF\). Si \(LR > LF\), habrá una acumulación de sales, y para evitarlo los cambios posibles son: aumentar la LF (aumentando I y/o t\textsubscript{i}, y disminuyendo ET y/o t\textsubscript{c}, como se deduce de las ecuaciones (6) y (7)), o disminuir la LR (la única forma de disminuir LR, a igualdad de agua aplicada, es aumentando CE\textsubscript{ad} (ecuación 8); esto es, cambiando el cultivo por otro más tolerante a la salinidad, o bien modificando CE\textsubscript{ar}, lo cual en ocasiones no es posible).

Por consiguiente, la condición mínima que se debe cumplir para que no haya acumulación de sales en la zona de raíces es que \(LF = LR\), esto es, según la ecuación (8):

\[
LF = \frac{CE_{ar}}{CE_{ad}} \tag{9}
\]

Por lo tanto

\[
CE_{ar} = LF \times CE_{ad} \tag{10}
\]

A partir de esta ecuación, conociendo LF (calculada según las ecuaciones 6 y 7 descritas más arriba) y CE\textsubscript{ad} (algunos ejemplos de CE\textsubscript{ad} en función de las plantas se detallan en la TABLA 8), puede determinarse si la conductividad eléctrica del agua de riego (CE\textsubscript{ar}) es tal que el agua puede o no utilizarse, en función del suelo, riego y planta.
TABLA 8: VALORES DE CEad CORRESPONDIENTES A UN DESCENSO EN el rendimiento del cultivo del 100%

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>CEad (mmhos/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebada</td>
<td>18</td>
</tr>
<tr>
<td>Remolacha azucarera; Algodon</td>
<td>16</td>
</tr>
<tr>
<td>Trigo</td>
<td>14</td>
</tr>
<tr>
<td>Tomate; Espinaca; Alfalfa; Arroz</td>
<td>8</td>
</tr>
<tr>
<td>Patata; Maiz</td>
<td>6</td>
</tr>
<tr>
<td>Cítricos y Frutales en general</td>
<td>4</td>
</tr>
<tr>
<td>Presal; Cerzamora</td>
<td>2-4</td>
</tr>
</tbody>
</table>

En la Tabla 9 se presentan los valores máximos permitidos de la CE del agua de riego (deducidos de la ec. 10) según el tipo de planta (definida por CEad) y la LF alcanzada:

<table>
<thead>
<tr>
<th>CEad máxima</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>2, (mmhos/cm)</td>
<td>0.2</td>
</tr>
<tr>
<td>4 "</td>
<td>0.4</td>
</tr>
<tr>
<td>8 "</td>
<td>0.8</td>
</tr>
<tr>
<td>16 "</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Así, por ejemplo, para los árboles frutales y cítricos en general, para los que la CEad máxima es aproximadamente 4 mmhos/cm, la CE del agua que puede utilizarse para su riego varía entre 0.4 y 1.6 según la LF alcanzada. Es obvio que conforme la fracción de lavado se aproxime a 1.0, el valor de la CEar se acercará a CEad. Evidentemente, en el ejemplo propuesto habrá que considerar también los valores de Na, Cl y B del
agua de riego, por ser los frutales y cítricos sensibles a estos elementos. BERNSTEIN (1967) ha obtenido una tabla semejante a la TABLA 9, para los Cloruros, la cual puede aplicarse a cultivos sensibles a este elemento en aquellos casos en que se conozca el nivel máximo permitido de Cl en la solución del suelo y la LF. Si los valores de la LF no pueden inferirse con cierta precisión, utilizando valores conservativos de I (esto es, valores mínimos) y de ET (valores máximos), la fiabilidad del procedimiento estará asegurada.

Aunque el método propuesto por Bernstein tiene algunas limitaciones (por ejemplo, se considera que no hay precipitación ni disolución de sales, meteorización de minerales o absorción de iones por la planta, y el estado alcanzado en el sistema se considera estacionario, etc.), parece el más adecuado para cuantificar la calidad del agua de riego en función del suelo y de la planta. Es obvio que el cálculo de todas las variables existentes en este método no siempre es posible, en cuyo caso deberán seguirse los criterios generales de salinidad descritos en el apartado B.

Desde un punto de vista práctico, la cantidad de agua de riego (expresada en cm.) necesaria para satisfacer la LR, es:

\[\text{Var} = \left(\frac{\text{CEad}}{\text{CEad} - \text{CEar}} \right) \times \text{Vuc} \]

(11)

donde Var y Vuc son los cm. de agua de riego y de agua consumida por la planta, respectivamente, CEad es la CE obtenida de la tabla 8 en función de la planta en consideración, y CEar es la CE del agua de riego. En la práctica, se aplica un 10% o un 20% más del agua calculada para compensar en parte la falta de uniformidad del suelo.

C-2.3. Reacciones químicas e interacciones agua-suelo

Limitaciones a los criterios de salinidad

En el apartado B, se han descrito los criterios generales de salinidad y algunas de las aproximaciones que se han realizado al problema. Es bien conocido el hecho de que la concentración del agua de riego, aumenta en el suelo debido a los
fenómenos de evaporación y transpiración. Por otro lado la presencia de sales mas o menos solubles en el perfil del suelo es relativamente frecuente. Ambos fenómenos tienden a aumentar la presencia de sales en el mismo. Como hemos visto en el apartado C-2.2, si el lavado de un suelo no es adecuado (esto es, si LR > LF), la acumulación de las sales solubles en la zona de raíces por efecto de la ET es progresiva con los sucesivos riglos, hasta un punto determinado en el que se alcanza el producto de solubilidad característico de cada sal. Excepto para los carbonatos de calcio y magnesio, y quizás el sulfato cálcico con dos moléculas de agua (yeso), la solubilidad de las demás sales excede los límites de tolerancia a la salinidad de las plantas no halofitas. Por otro lado, la meteorización de los minerales del suelo depende en gran parte de las condiciones de lavado. De forma general, en aquellos casos en que los valores de la fracción de lavado sean menores del 10% (LF = 0.1), la precipitación de las sales más insolubles puede ser importante. Así, Bower y Wilcox (1965) han determinado que hasta un 70% del HCO₃ presente en el agua de riego puede precipitar como CaCO₃ en el suelo cuando la LF es menor de 0.1; correspondientemente, la salinidad "efectiva" del agua de riego es menor que la prevista por la medida de su CE. Razonamientos parecidos a este son los que llevaron a algunos autores a intentar clasificaciones basadas en la salinidad "efectiva" o "potencial" del agua de riego (ver apartado B.1). A pesar de ello, Rhoades (1972) concluye que la suposición de que todos los bicarbonatos y sulfatos del agua de riego precipitan como sales de calcio y magnesio al concentrarse en el suelo (criterio seguido por Doneen), causa mas errores de evaluación que la suposición de que ninguna sal precipita (Criterio éste último seguido por Richards). Ello es en parte debido a que se ha demostrado que la precipitación de las sales en el suelo (provenientes de aguas de riego de CE = 1.0 mmhos/cm), no es significativa para valores de LF superiores a 0.2 y estos valores son comúnmente sobrepasados en los sistemas tradicionales de riego. Por otro lado, para aguas con CE ≤ 0.4 mmhos/cm, es más importante la disolución de los minerales presentes en el suelo que las sales aportadas por el agua de riego, especialmente para LF elevadas.

Todo lo dicho hasta aquí, resalta la importancia que la LF tiene en el establecimiento de los criterios de calidad del agua para el riego; por ello, el enfoque dado a este tema por Bernstein (1967) (ver apartado C-2.2) parece el mas adecuado, si se establecen correcciones a sus criterios que compensen por los fenómenos de precipitación, disolución, etc.
En los últimos años, el U.S. Salinity Laboratory de Riverside (California), ha intensificado sus estudios en esta dirección, intentando predecir a través de modelos matemáticos la extensión de las reacciones de precipitación y disolución en el suelo, teniendo en cuenta factores tales como las aguas de riego, la fracción de lavado, la solubilidad de los carbonatos alcalino-térreos y el yeso, la formación de pares iónicos, la actividad de los iones en solución y la presión parcial del CO₂ en la atmósfera del suelo. Uno de los fines perseguidos en estos trabajos, es intentar disminuir la cantidad de sales en las aguas de drenaje que están comprometiendo seriamente la calidad de las aguas situadas en cotas inferiores (U.S. Salinity Laboratory, ANNUAL REPORTS, 1975-1976).

Otro aspecto a señalar es que dado que los límites de tolerancia de las plantas a la salinidad son de un amplio espectro, correspondientemente los límites de salinidad de las aguas de riego en función de la planta son también muy variables. Ya hemos visto que BERNSTEIN (1967) introduce la variable cultivo en su análisis a través del parámetro CEBad. El capítulo de la tolerancia de los cultivos a la salinidad se trata con más extensión en el punto 3. de este apartado.

Limitaciones a los criterios de sodicidad

En el apartado B. de esta comunicación, se han descrito algunos de los parámetros utilizados en la evaluación de la sodicidad del agua de riego y el efecto sobre la permeabilidad del suelo. El SAR del agua de riego (SARar), cuyo fundamento químico ha sido recientemente establecido (Sposito y Mattigod, 1977), es probablemente el parámetro más ampliamente utilizado en esta evaluación. Sin embargo, éste solo es válido en el caso en que pueda correlacionarse con el correspondiente SAR del agua en el suelo (SARas), pues es éste último el que se corresponde satisfactoriamente con el ESP del suelo (Richard, 1954). La cuantificación de esta relación y la demostración de su validez general, han sido una de las mayores limitaciones en el establecimiento de los criterios de sodicidad (Rhoades, 1972). De forma general, la relación entre el SARar y el SARas no es sencilla, pues (i) la concentración del agua en el suelo aumenta en relación con el del riego, (ii) ésta concentración varía con los diferentes sistemas de riego, así como con la profundidad en el perfil del suelo, y (iii) su composición depende de la disolución y precipitación de las sales así como de los procesos de meteorización. Despreciando por el momento este último punto, el SARas aumenta en relación con el SARar en proporción a la raíz cuadrada de la concentración total; por lo tanto-asu
miendo condiciones de equilibrio- el ESP resultante es mayor que el previsto por el SARar.

Como se ha indicado mas arriba, un factor fundamental que afecta al SARas final es el aumento o la disminución en el contenido de iones Ca y Mg debido a la disolución o precipitación de los carbonatos alcalino-térreos y a la meteorización de algunos minerales del suelo. Por ello, el SARar se ha aplicado de forma satisfactoria únicamente a las aguas de bajo contenido en CO$_3$ y HCO$_3$. En el caso de aguas de riego con concentraciones apreciables en estos iones, existe una tendencia a que precipiten en el suelo, especialmente en forma de CaCO$_3$ (BOWER et al., 1965) aumentando por lo tanto el SARas. En el apartado B-2, se señaló que DONEEN (1967) intentó una corrección para este fenómeno a través del establecimiento del "índice de permeabilidad". BAYTON (1950), sugirió una aproximación al problema considerando que la precipitación en el suelo de los iones Ca y Mg en forma de carbonatos era cuantitativa, y propuso el término de "carbonato sódico residual", CSR (CSR = (CO$_3$ + HCO$_3$) - (Ca + Mg), iones en meq/l.) para evaluar las aguas de alto contenido en carbonatos. WILCOX et al. (1954) cuantificaron esta relación y concluyeron que aguas con un CSR > 2.5 meq/l. no eran utilizables para el riego. Estos parámetros de evaluación no han sido en general satisfactorios (RHOADES, 1972).

En el apartado B-2 se señaló también que Ayers ha clasificado las aguas de riego atendiendo al riesgo de un descenso en la permeabilidad del suelo a través del parámetro "SARajustado" del agua de riego. El SARajustado (SARaj) se calcula por medio de una ecuación modificada propuesta por el U.S. Salinity Laboratory, que incluye el efecto de la disolución o precipitación del calcio en el suelo en función de la concentración de CO$_3$ y HCO$_3$:

\[\text{SARaj} = \left[\frac{\text{Na}}{\left(\frac{\text{(Ca+Mg)}}{2} \right)^{1/2}} \right] \left[1 + (8.4 - \text{pHc}) \right] \] (12)

El pHc (pH calculado) evalúa la tendencia del agua de riego a disolver o precipitar CaCO$_3$ en el suelo, y se calcula a través de la ecuación (13):

\[\text{pHc} = (\text{pK}_2' - \text{pK}_1') + \text{p(Ca+Mg)} + \text{pAlk} \] (13)

donde pK$_2'$ y pK$_1'$ son los logaritmos con signo cambiado de la segunda constante de disociación del H$_2$CO$_3$ y la constante de solubilidad del CaCO$_3$, respectivamente y se obtienen de la Tabla 10.
a partir de los valores de (Na+Ca+Mg) en meq/l; p(Ca+Mg) se obtiene a partir de los valores de (Ca+Mg) en meq/l, y pAlk se obtiene a partir de los valores de (CO$_3$+HCO$_3$) en meq/l. (Alk se refiere a la alcalinidad de la solución).

<table>
<thead>
<tr>
<th>Conc. Ca+Mg+Na</th>
<th>pK${A}$-pK${C}$</th>
<th>Conc. Ca+Mg</th>
<th>p(Ca+Mg)</th>
<th>Conc. CO$_3$+HCO$_3$</th>
<th>pAlk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.11</td>
<td>0.05</td>
<td>4.60</td>
<td>0.05</td>
<td>4.30</td>
</tr>
<tr>
<td>0.7</td>
<td>2.12</td>
<td>0.10</td>
<td>4.30</td>
<td>0.10</td>
<td>4.00</td>
</tr>
<tr>
<td>0.9</td>
<td>2.13</td>
<td>0.15</td>
<td>4.12</td>
<td>0.15</td>
<td>3.82</td>
</tr>
<tr>
<td>1.2</td>
<td>2.14</td>
<td>0.2</td>
<td>4.00</td>
<td>0.20</td>
<td>3.70</td>
</tr>
<tr>
<td>1.6</td>
<td>2.15</td>
<td>0.25</td>
<td>3.90</td>
<td>0.25</td>
<td>3.60</td>
</tr>
<tr>
<td>1.9</td>
<td>2.16</td>
<td>0.32</td>
<td>3.80</td>
<td>0.31</td>
<td>3.51</td>
</tr>
<tr>
<td>2.4</td>
<td>2.17</td>
<td>0.39</td>
<td>3.70</td>
<td>0.40</td>
<td>3.40</td>
</tr>
<tr>
<td>2.8</td>
<td>2.18</td>
<td>0.50</td>
<td>3.60</td>
<td>0.50</td>
<td>3.30</td>
</tr>
<tr>
<td>3.3</td>
<td>2.19</td>
<td>0.63</td>
<td>3.50</td>
<td>0.63</td>
<td>3.20</td>
</tr>
<tr>
<td>3.9</td>
<td>2.20</td>
<td>0.79</td>
<td>3.40</td>
<td>0.79</td>
<td>3.10</td>
</tr>
<tr>
<td>4.5</td>
<td>2.21</td>
<td>1.00</td>
<td>3.30</td>
<td>0.99</td>
<td>3.00</td>
</tr>
<tr>
<td>5.1</td>
<td>2.22</td>
<td>1.25</td>
<td>3.20</td>
<td>1.25</td>
<td>2.90</td>
</tr>
<tr>
<td>5.8</td>
<td>2.23</td>
<td>1.58</td>
<td>3.10</td>
<td>1.57</td>
<td>2.80</td>
</tr>
<tr>
<td>6.6</td>
<td>2.24</td>
<td>1.98</td>
<td>3.00</td>
<td>1.98</td>
<td>2.70</td>
</tr>
<tr>
<td>7.4</td>
<td>2.25</td>
<td>2.49</td>
<td>2.90</td>
<td>2.49</td>
<td>2.60</td>
</tr>
<tr>
<td>8.3</td>
<td>2.26</td>
<td>3.14</td>
<td>2.80</td>
<td>3.13</td>
<td>2.50</td>
</tr>
<tr>
<td>9.2</td>
<td>2.27</td>
<td>3.90</td>
<td>2.70</td>
<td>4.00</td>
<td>2.40</td>
</tr>
<tr>
<td>11</td>
<td>2.28</td>
<td>4.97</td>
<td>2.60</td>
<td>5.0</td>
<td>2.30</td>
</tr>
<tr>
<td>13</td>
<td>2.30</td>
<td>6.30</td>
<td>2.50</td>
<td>6.3</td>
<td>2.20</td>
</tr>
<tr>
<td>15</td>
<td>2.32</td>
<td>7.90</td>
<td>2.40</td>
<td>7.9</td>
<td>2.10</td>
</tr>
<tr>
<td>18</td>
<td>2.34</td>
<td>10.00</td>
<td>2.30</td>
<td>9.9</td>
<td>2.00</td>
</tr>
<tr>
<td>22</td>
<td>2.36</td>
<td>12.50</td>
<td>2.20</td>
<td>12.5</td>
<td>1.90</td>
</tr>
<tr>
<td>25</td>
<td>2.38</td>
<td>15.80</td>
<td>2.10</td>
<td>15.7</td>
<td>1.80</td>
</tr>
<tr>
<td>29</td>
<td>2.40</td>
<td>19.80</td>
<td>2.00</td>
<td>19.8</td>
<td>1.70</td>
</tr>
</tbody>
</table>

TABLA 10
De esta forma, la correlación entre el ESP del suelo superficial (ESPs) y el SAR del agua de riego (SARar) queda mucho mejor establecida:

$$\text{ESP}_{s} = \text{SARar} \left[\frac{1+(8.4-\text{pHc})}{\sqrt{\frac{\text{Na}}{[(\text{Ca+Mg})/2]}^{1/2}}} \right] \left[1+(8.4-\text{pHc}) \right]$$

(14)

La ecuación (14) representa actualmente la mejor estimación disponible del riesgo de sodicidad y su efecto sobre la permeabilidad, pues se considera que la infiltración y transmisibilidad del agua en el suelo están básicamente limitados por los primeros centímetros de suelo superficial.

Por otro lado, la ecuación (15) puede utilizarse para predecir los valores del ESP en la parte baja de la zona de raíces,

$$\text{ESP}_{b} = \left[y^{1+2} \frac{\text{LF}}{(\text{LF})^{1/2}} \right] \text{SARar} \left[1+(8.4-\text{pHc}) \right]$$

(15)

Como puede observarse, en esta ecuación se tiene en cuenta que el ESPb depende en gran medida de la LF alcanzada. El término "y" que indica la tendencia de las sales de Ca y Mg a disolver en la zona de raíces es característico de cada suelo y función de la LF. La Tabla 11 da los valores medios (tentativos) del término $$\left[y^{1+2} \frac{\text{LF}}{(\text{LF})^{1/2}} \right]$$ para diferentes fracciones de lavado, LF (RHOADES, 1972).

<table>
<thead>
<tr>
<th>TABLA 11: VALORES DE $y^{1+2} \frac{\text{LF}}{(\text{LF})^{1/2}}$ EN FUNCIÓN DE LA LF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
</tr>
<tr>
<td>$y^{1+2} \frac{\text{LF}}{(\text{LF})^{1/2}}$</td>
</tr>
</tbody>
</table>

Por medio de las ecuaciones 14 y 15 puede estimarse el ESP mínimo (que corresponde al ESPs), máximo (correspondiente al ESPb), y medio del perfil del suelo que resulta del uso del agua con un SARar determinado; a partir del ESPmedio puede inferirse la resistencia de las plantas a la toxicidad por sodio. La de-
mostración de la validez general de estas dos ecuaciones no está todavía establecida y exigirá, sin duda, refinamientos posteriores, en especial en relación con la significación del término "y", pero de cualquier forma, han supuesto una importante contribución a la clarificación de los conceptos expuestos hasta aquí.

Una de las principales dificultades en la evaluación del riesgo de sodicidad de un agua, es la falta de conocimientos adecuados sobre las relaciones entre el sodio de cambio, la concentración del electrolito, las propiedades del suelo, y su permeabilidad. El hecho de que concentraciones elevadas del electrolito tiendan a contrarrestar el efecto negativo del SAR sobre la permeabilidad, ha sido repetidamente comprobado, lo cual contradice aparentemente la filosofía de la clasificación de las aguas de riego propuesta por RICHARDS (1954) que, sin embargo, sigue siendo ampliamente utilizada. QUIRK (1971), basándose en el hecho anteriormente mencionado, propone la siguiente ecuación que relaciona el SAR del agua con su concentración electrolítica,

\[X = 0.56 \times \text{SAR}_{\text{ar}} + 0.6 \] \hspace{1cm} (16)

donde la X es aquella concentración del electrolito que previene la desfloculación del suelo para un valor particular del SAR. La representación gráfica de esta ecuación (FIGURA 1) señala las dos zonas en que la recta anterior divide el sistema de coordenadas; cualquier agua que por sus características de SAR y concentración (en meq/l) se encuentre en la zona no rayada de la gráfica, debe clasificarse como "con riesgo de permeabilidad". Análogamente, conociendo el SAR del extracto saturado de un suelo, puede inferirse la concentración necesaria del agua de riego para evitar la dispersión del ese suelo.

Sin embargo, a pesar de los avances realizados por este y otros investigadores (QUIRK y SCOFIELD, 1955; McNEAL y COLEMAN, 1966; McNEAL et al., 1968; RUSSO y BRESLER, 1977; DANE y KLUTE, 1977; FRENKEL et al., 1978), quedan importantes aspectos por clarificar (BIGGAR y NIELSEN, 1972; RHOADES, 1972; FRENKEL et al., 1978).
C-3. Tolerancia de los cultivos a la salinidad

Como hemos indicado anteriormente, los criterios generales de utilización de un agua de riego atendiendo a su calidad, vienen condicionados –entre otros– por la tolerancia a la salinidad del cultivo a regar. Este capítulo ha sido ampliamente estudiado dentro del tema general de la salinidad. MAAS y HOFFMAN (1977) han realizado recientemente una amplia revisión bibliográfica sobre el tema. Aunque la contribución de numerosos investigadores al estudio de las funciones de producción rendimiento-salinidad ha sido muy importante, conviene señalar que la mayoría de los experimentos realizados se han hecho en condiciones óptimas de cultivo, con un perfil de salinidad relativamente
uniforme, y tomando como parámetro de salinidad la CE media de la zona de raíces determinada a partir del extracto saturado del suelo (CEn). ROADES (1972) y MAAS y HOFFMAN (1977) discuten las limitaciones que estas asunciones imponen a las tablas de tolerancia obtenidas. A pesar de ello, AYERS y WESTCOT (1976) han resumido los niveles de tolerancia de diversos cultivos a la salinidad del agua de riego, asumiendo que la CEn (conductividad eléctrica del agua en el suelo) es unas tres veces la CEar (conductividad eléctrica del agua de riego), y que la CEn (conductividad eléctrica del extracto saturado) es una vez y media la CEar. Por otro lado, consideran que la fracción de lavado (LP) es igual o mayor que C.15. Como ilustración la figura 2 muestra la tolerancia de algunas plantas a la CEar (absisa inferior) y a la CEn (absisa superior). Se observa claramente que la utilidad de un agua de riego (atendiendo a criterios de salinidad) depende en gran medida del cultivo en consideración.

C.E. extracto saturado (mmhos/cm)

![Diagrama de tolerancia de plantas a la salinidad](image)

FIGURA 2: TOLERANCIA RELATIVA DE LAS PLANTAS A LA SALINIDAD
La evaluación de la tolerancia de los cultivos a la salinidad ha sufrido importantes cambios en los últimos años, intentando aproximarse a las condiciones experimentales a las situaciones reales de campo: midiendo "in-situ" la salinidad del suelo, considerando el potencial total del agua en el suelo ("salinidad integrada"), teniendo en cuenta los fenómenos de salinización zonal, etc. La extensión del tema impide su tratamiento adecuado en este trabajo.

C-4. Practicas de manejo del riego y suelo

C-4.1. Riego por aspersión sobre el follaje.

La mayoría de los cultivos arbóreos y cítricos en general son sensibles a concentraciones relativamente bajas de Na y Cl (ver Tabla 5); en condiciones de baja humedad relativa, o vientos fuertes, pueden absorber foliarmente cantidades excesivas (tóxicas) de estos elementos presentes en el agua aplicada por aspersión sobre el follaje. En general, para esta situación, valores de Na o Cl superiores a 3 meq/l. son tóxicos. De forma análoga, valores de HCO₃ superiores a 1.5 meq/l. pueden ocasionar depósitos blancos de CaCO₃ en la fruta o la hoja, que reducen su valor económico en el mercado. El problema es especialmente grave para valores de HCO₃ superiores a 8.5 meq/l. (AYERS y WESTCOTT, 1976).

C-4.2. Frecuencia y duración del riego.

Solo cabe indicar aquí que los criterios establecidos de calidad de agua son únicamente aplicables a las técnicas de riego tradicionales, y que, de forma general, los riegos de alta frecuencia admiten aguas de mayor salinidad, debido básicamente al efecto importante del potencial mático sobre el potencial total del agua en el suelo, y al flujo descendente -mas o menos continuo- de agua que lava mas efectivamente las sales presentes en la zona de raíces (BERNSTEIN y FRANCOIS, 1975; HOFFMAN, 1976).
C-4.3. Manejo del suelo.

Las técnicas de plantación, fertilización, conservación del agua en el suelo, etc. pueden modificar, en mayor o menor medida, los criterios establecidos de calidad del agua. Bernstein et al., 1955; Bernstein y Fireman, 1957; Torres y Bingham, 1973; Bernstein et al., 1974; Ayers y Westcot, 1976, y otros, discuten en profundidad varios de los aspectos señalados mas arriba.

D. CONCLUSIONES

1. No es factible al menos en el estado actual de nuestros conocimientos establecer criterios precisos de evaluación de calidad del agua de riego que tengan una aplicabilidad amplia. A pesar de ello, los parámetros Conductividad Eléctrica (CE), relación de adsorción de sodio ajustado (SAR-aj.) y la cuantificación de los iones Na, Cl, y B parecen los más adecuados para una valoración general de la calidad del agua para el riego. En este sentido, se recomiendan las TABLAS 2 (salinidad), 4 (en su defecto la TABLA 3)(sodicidad), y 5 y 6 (toxicidad debida a los iones Na, Cl y B), como criterios amplios de valoración.

2. Cuando sea posible, los criterios de calidad de un agua deben evaluarse en base a sus condiciones específicas de utilización, incluyendo factores tales como las condiciones climáticas las propiedades del suelo y su interacción con el agua, las plantas a cultivar, las prácticas de riego y las prácticas culturales. En este sentido se ha recalado la importancia de la fracción de lavado (LF) en el establecimiento del perfil de salinidad y sodicidad de un suelo, y en la evaluación de la calidad del agua. En aquellos casos que sea posible, se recomienda la utilización de la TABLA 9 para la valoración de la salinidad relativa del agua, y las ecuaciones 14 y 15 para la valoración de la sodicidad del agua.

3. Por todo lo dicho anteriormente, parece lógico concluir que cualquier avance sustancial de interés, en el tema que nos ocupa, deberá pasar por una investigación propia, sistemática y racional, aplicada a las condiciones climáticas, geomorfológicas
cas, edafológicas y de prácticas de riego de la región, y para aquellos cultivos que se estimen prioritarios por razones sociales o económicas de interés general.
ANEJO I: ANALISIS QUIMICO PARA DETERMINAR LA CALIDAD DEL AGUA PARA RIEGO

<table>
<thead>
<tr>
<th>Determinación</th>
<th>Símbolo</th>
<th>Unidades</th>
<th>Factores de conversión</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Conductividad</td>
<td>CE</td>
<td>mmhos/cm</td>
<td>PO = CE x 0.36 PO= presión osmótica en atm.</td>
</tr>
<tr>
<td>Electrica</td>
<td>CE</td>
<td></td>
<td>CE en mmhos/cm.</td>
</tr>
<tr>
<td>- Acidez-Alcalinidad</td>
<td>pH</td>
<td></td>
<td>mg/l = CE (mmhos/cm) x 640</td>
</tr>
<tr>
<td>- Cationes</td>
<td></td>
<td></td>
<td>mg/l = meq/l x f</td>
</tr>
<tr>
<td>Calcio</td>
<td>Ca</td>
<td>meq/l</td>
<td>20.64</td>
</tr>
<tr>
<td>Magnesio</td>
<td>Mg</td>
<td>meq/l</td>
<td>12.16</td>
</tr>
<tr>
<td>Sodio</td>
<td>Na</td>
<td>meq/l</td>
<td>22.99</td>
</tr>
<tr>
<td>Suma de Cationes</td>
<td>Σ cat</td>
<td>meq/l</td>
<td></td>
</tr>
<tr>
<td>- Aniones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonato</td>
<td>CO$_3$</td>
<td>meq/l</td>
<td>30.00</td>
</tr>
<tr>
<td>Bicarbonato</td>
<td>HCO$_3$</td>
<td>meq/l</td>
<td>61.02</td>
</tr>
<tr>
<td>Cloruro</td>
<td>Cl</td>
<td>meq/l</td>
<td>35.45</td>
</tr>
<tr>
<td>Sulfato</td>
<td>SO$_4$</td>
<td>meq/l</td>
<td>48.03</td>
</tr>
<tr>
<td>Suma de aniones</td>
<td>Σ an</td>
<td>meq/l</td>
<td></td>
</tr>
<tr>
<td>- Boro</td>
<td>B</td>
<td>meq/l</td>
<td></td>
</tr>
<tr>
<td>Nitrogeno-Mitrato</td>
<td>NO$_3$-N</td>
<td>mg/l</td>
<td>62.00</td>
</tr>
<tr>
<td>Nitrogeno-Amonio</td>
<td>NH$_4$-N</td>
<td>mg/l</td>
<td>18.04</td>
</tr>
<tr>
<td>Posforo-Posfato</td>
<td>PO$_4$-P</td>
<td>mg/l</td>
<td>31.66</td>
</tr>
<tr>
<td>Potasio</td>
<td>K</td>
<td>mg/l</td>
<td>39.10</td>
</tr>
<tr>
<td>Litio</td>
<td>Li</td>
<td>mg/l</td>
<td>6.94</td>
</tr>
<tr>
<td>Selenio</td>
<td>Se</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Hierro</td>
<td>Fe</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Relación de Adsorción de Sodio</td>
<td>SAR</td>
<td>(meq/l)$^{1/2}$</td>
<td>SAR = Na/$[(Ca+Mg)/2]^{1/2}$;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na, Ca y Mg en meq/l.</td>
</tr>
</tbody>
</table>

- mg/l = meq/l x peso equivalente
- mg/l = ppm x $\sqrt[3]{2}$
- Σ cat \neq Σ an (en meq/l)
- Σ cat \neq CE(mmhos/cm) x 10

1) mmhos/cm = milimhos/cm a 25°C
 1 mmhos/cm = 1.000 micromhos/cm

2) ppm = partes por millón
 ρ = gravedad específica

3) Solo en situaciones especiales

Dpto. de Fruticultura - CRIDA-O3 (INIA). Zaragoza
Dpto. de Suelos - E.E. Aula Dei (CSIC). Zaragoza