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Intermittency of Lagragian velocity and acceleration is a key to understand transport in com-
plex systems ranging from fluid turbulence to flow in porous media. High resolution optical particle
tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian
velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability
in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration
distributions characterized by a sharp peak at low velocity, superlinear evolution of particle disper-
sion and double peak behavior in the propagators. The velocity distribution is quantified in terms
of pore geometry and flow connectivity, which forms the basis for a continuous time random walk
model that sheds light on the observed Lagrangian flow and transport behaviors.

I. INTRODUCTION

Intermittency of Lagrangian velocities and accelera-
tions plays an important role in the understanding of
transport in complex systems such as fluid turbulence
[1–3], flow in porous media [4, 5], or animal locomotion
[6, 7]. While in turbulence and animal motion, intermit-
tency is caused by the characteristic spectrum of turbu-
lent eddies and animal behavior, respectively, in porous
media it arises due to the confined and complex pore
space in which flow occurs. Continuum models of porous
media [8] are based on the validity of the Darcy equation
for fluid and Fick’s law for scalar fluxes on a representa-
tive elementary volume. Fluctuations of pore-scale flow
and scalar transport are averaged out and represented in
terms of effective parameters such as hydrodynamic dis-
persion. However, the intermittent behavior of pore-scale
flow impacts on the nature of particle and scalar trans-
port, and determines the way dissolved substances mix
and react. The understanding of the origin of these pro-
cesses is of both fundamental and practical importance in
applications ranging from reactive transport in ground-
water flow to diffusion in fuel cells or biological systems
[9–11]. For engineered and natural porous media, they
determine the mixing and dispersion of contaminants
[12, 13], biofilm growth or the kinetics of chemical re-
actions [14–16]. On a fundamental level, pore-scale fluc-
tuations may propagate to the continuum scale in a form
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that cannot be quantified by effective parameters [17],
and give rise to non-Fickian transport behaviors [18, 19].
The qualitative and quantitative understanding of such
collective phenomena requires the understanding of the
physical origins of pore-scale flow fluctuations and inter-
mittency.
Advancements in experimental techniques have allowed
for a leap in our understanding of transport in turbulent
flows by analysis of the Lagrangian properties of accel-
eration [20, 21]. However, analogous measurements in
porous medium flow have been hindered by the difficulty
of probing flow through a complex solid pore matrix in
three dimensions, and at fine enough resolutions to detect
intense gradients. Most optical experimental measure-
ments, such as particle image velocimetry, provide Eule-
rian velocity information limited to one or two velocity
components [22–26]. Nuclear magnetic resonance (NMR)
measurements provide 3D flow information in real soil
packings [15, 27, 28] and have measured a broad range
of proton displacements. Recent work by Datta et al.
[29] characterized the flow field from empirical Eulerian
measurements to understand the spatial structure of the
flow. Their findings present a correspondence between
velocity fluctuations with the shape of the pore-space,
which demonstrates that flow velocity is organized by
the geometry of the porous medium. Statistics of veloc-
ity fluctuations from an Eulerian velocity field, however,
cannot capture features of intermittency, which requires
Lagrangian data instead. De Anna et al. [4] probed the
flow through a 2D porous medium in greater detail by
studying pore-scale flow simulations within a Lagrangian
framework. Evaluation of fluid particle displacements re-
vealed superdiffusive dispersion, while the analysis of La-
grangian velocities and accelerations displayed persistent
zones of stagnation and correlations that decay quickly
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for acceleration but slowly for velocity. Despite its im-
portance for pore-scale transport, mixing and reaction
processes, little is known about intermittent flow organi-
zation with respect to the 3D pore-space geometry or the
structural features of the porous medium that cause it.

In this work we employ an experimental 3D particle
tracking method that has been adapted to measure the
flow velocity and accelerations along Lagrangian trajec-
tories at high spatio-temporal resolution. Measurements
are performed in a transparent porous mediumthat mim-
ics the structure of sandy soil. Intermittent behavior of
velocity and acceleration is observed and related to the
succession of wide and narrow pore spaces along prefer-
ential flow channels. The strongest velocity and accel-
erations appear abruptly in the vicinity of pore throats,
while in pore bodies the flow is nearly stagnant and ve-
locities vary gradually. This double structure of the flow
leads to anomalous transport as a consequence of the
broad range of velocities and accelerations experienced
by advected flow particles. To understand these behav-
iors, we develop a pore velocity model that accounts for
pore geometry and connectivity and set up a continuous
time random walk (CTRW) for the Lagrangian velocity
and particle transitions.

II. EXPERIMENTAL SET-UP

FIG. 1. Volumetric information obtained from X-ray com-
puted tomography scanning of the Nafion grain-packed flow-
through cell after 3D-PTV measurements. The flow-through
cell has been cut away to show the sample interior, where
white grains are the two sizes of Nafion. The tomographic
image has cubic voxels of 50 µm in size.

A transparent acrylic flow cell of size 3.8 × 3.8 ×
3.8 cm3 was custom built for the 3D-PTV setup to
allow illumination from the side by monochromatic light
(Ar Ion laser) and stereoscopic viewing from the front
(Fig. 1). Two sizes of Nafion grains (Ion power, Inc.,
New Castle, DE, USA & Walther G. Grot, Rockland,
DE, USA) of d1 = 3.7 mm and d2 = 0.5 mm were

FIG. 2. Nafion grains (A), liquid saturated Nafion grains in
Isopropanol-water (B), pure water (C).

mixed and used as the transparent porous medium at
a v/v ratio of 95/5, respectively. Nafion grains were
allowed to become fully hydrated in the working 42 v/v
% isopropanol aqueous solution for a minimum of 24
hrs in order to achieve a stable grain size. The flow cell
was then packed wet with the hydrated Nafion until no
additional grains fit through the cell opening. Then, a
thin rod was used to mix the medium and ensure an
even distribution of large and small grains throughout
the cell. Full saturation was maintained in the cell
during 3D-PTV measurements and excellent matching
of the index of refraction between solid phase and liquid
was achieved (Fig. 2). The constant volumetric flow rate
is 19 mL/min, the Darcy velocity is q = 0.22 mm/s and
the average interstitial pore velocity is vp = q/φ = 0.95
mm/s. The Reynolds number is Re = qd1/ν ' 0.4, well
within the valid range for Darcy’s law (Re ≤10). An
advective time scale can be defined as tA = d/vp = 3.7
s.

A. Particle Tracking Velocimetry

The liquid is seeded with neutrally buoyant fluores-
cent tracer particles with a diameter of 60 µm with a
volume fraction concentration of 0.01%. The suspension
is hence very dilute and hydrodynamic interactions be-
tween tracer particles are negligible. The Stokes number
of the particles (defined as the ratio between particle re-
sponse time tp = 2.7·10−7 s and advective time scale tA)
is O(10−7), i.e., inertia effects are negligible. The size of
the Polystyrene tracer particles is about 8 times smaller
than the smaller grain diameter d2 used for the experi-
ments. Ref. [30] showed that finite sized particles may
sample the porous medium flow selectively. Large par-
ticles are transported faster through constricted regions
since their center of mass is further away from the ma-
trix surfaces. Also, they observed that large particles
cannot access the entire region between obstacles. As
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a consequence they found major deviations in the aver-
age pore velocity measured from particle tracking. In
our measurements the difference between the pore veloc-
ity calculated from the measured flow rate and average
pore velocity measured from tracer particles was less than
10%. We have carried out additional experiments using
silver coated tracer particles with a size of 15 µm, i.e.
30 times smaller than d2 and did not observe significant
differences in the results. We therefore concluded that
finite size effects were not significant.
For the optical 3D particle tracking measurements we em-
ploy an Ar-Ion laser to illuminate the particles, a Photron
high speed camera with a resolution of 1024 × 1024 pix-
els, operated at a framerate of 50 Hz and equipped with
a four-way image splitter that mimics a multi-camera
setup [31]. About 500 particles are tracked per frame for
a duration of 4 min.
The measurement accuracy in the 2D views (x,y) is about
5µm. The image splitter setup has several advantages
(e.g. no need to synchronize), but the disadvantage is
that it has a relatively large error of about 250 µm in the
reconstruction of the raw z-coordinate of the trajectories.
Following Lüthi et al. (2005), a Savitzky-Golay filter was
applied for smoothing in time along Lagrangian trajecto-
ries, using a cubic polynomial fitted to 21 frames. After
filtering the accuracy can be calculated by 250 µm / (fil-
ter size/sampling rate)1/2 = 55 µm. We compute the La-
grangian acceleration by differentiating the velocity along
particle trajectories. Components of Lagrangian velocity
ui and accelerations ai (i = x, y, z), as well as the compo-
nents εij = ∂ui/∂xj of the Lagrangian deformation rate
tensor and its symmetric part sij = (εij +εji)/2, the rate
of strain tensor, are computed [32, 33]. The strain rate is
denoted by S =

√∑
ij sijsij . Average flow is along the

positive x-direction, while y and z are the cross-sectional
coordinates.

B. X-ray Computed Tomography and
topologic/geometric information of the pore space

Micro tomography was used to non-destructively char-
acterize the structure of the transparent porous medium
used during particle tracking. XCT images were thresh-
olded and analyzed to determine the sample porosity, in-
vestigate the topology of the pore space, and extract the
pore size distribution. The method established by Pérez-
Reche et al. [34] was followed for this sample. Briefly,
this involves the following steps. First, the reconstructed
XCT scans are cropped and segmented to generate im-
age stacks that contain voxels corresponding only to the
pore and porous medium of the sample (illustrated in
Figure 1). From the thresholded images it is possible to
quantify the porosity of the sample directly (φ = 0.23).
Next, the stacks are subjected to a thinning process,
which extracts the medial lines of the pore space. Medial
lines are subsequently differentiated between nodes and
edges of the network equivalent of the pore space, and the

topology established accordingly. The number of pores
is considered to be captured by the number of nodes of
the network (Npores = 139′135). The mean coordination
number, which is a local property defined as the number
of edges connected to a nodal point in the network over
all nodes, is determined to be 〈k〉 = 2.67. Lastly, pore
size distribution is computed from local measurements
of the channel size along the length of the medial lines.
More specifically, the local channel size is computed as
the distance between a point on the medial line and the
nearest grain boundary, which represents the radius of
the smallest inscribed sphere that fits and is centered at
that point on the network. Diameter equivalents are used
for reporting mean pore size (〈S〉 = 0.23mm) and pore
size distributions.

III. EXPERIMENTAL OBSERVATIONS

FIG. 3. Three- (a) and two-dimensional (b) views of the
logarithm of the velocity magnitude log(|u|) normalized by
its standard deviation along Lagrangian trajectories that are
longer than 200 frames in a portion of the observation vol-
ume. Magnified views of the velocity ux (c) and acceleration
(d) ax components normalized by their standard deviations.

Figs. 3a and b show the logarithm of the velocity mag-
nitude ln(|u|) along Lagrangian trajectories in a portion
of the observation volume. It is apparent that preferen-
tial flow paths develop where the velocity is high next to
regions where velocities are much lower. The two magni-
fied views of a high activity region show the velocity ux

[Fig. 3c] and acceleration ax [Fig. 3d] components nor-
malized by their standard deviations σu and σa. It is
illustrated how intense velocities are reached in narrow
pore throats where the trajectories converge. Here, ac-
celerations are strong and change sign in correspondence
to the relative maxima of velocity.
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FIG. 4. PDFs of longitudinal (circles, red) and transverse
(triangles, blue) Lagrangian velocity (a) and acceleration (b)
components normalized by their standard deviations σ from
experiment. Longitudinal velocity (a) and acceleration (b)
from CTRW model (green line). The inset shows a close-up
near zero of the longitudinal velocity component.

The probability density functions (PDFs) of longitu-
dinal and transverse velocity components normalized by
their standard deviations σ are shown in Fig. 4a. While
the PDF of velocity in turbulent flow is typically of
Gaussian shape, our measurements show that flow in a
porous medium produces velocity PDFs with strongly
non-Gaussian tails. The longitudinal velocity component
has a peak near zero and and it has a strong positive
and a weaker negative tail related to the occurrence of
reversed flow. The transverse velocity components are
slightly skewed, which is presumably related to finite size
effects or small anisotropic regions. We note that the ve-
locity PDF can be represented by a stretched exponential
model, consistent with simulations in stochastically gen-
erated geometries [35]. Velocity PDFs with broad tails
but simple exponential decay were observed in experi-
ments in bead packs [27–29] and 2D simulations of a
medium composed of disks [36].

Measurements of the distributions of accelerations are
shown in Fig. 4b, which illustrates the PDFs of longitudi-
nal and transverse accelerations normalized by their stan-
dard deviations σa. The PDFs of both acceleration com-
ponents follow a stretched exponential shape and over-
lap, i.e., they do not show features of anisotropy. Their
shape is similar to the one of the velocity PDF [Fig. 4a]
and resembles typical acceleration PDFs in turbulent flow
[20, 21]. This points to a possible universal character of
the distribution of acceleration that is shared among dif-
ferent correlated fluid flows [20].

The intermittent and interdependent attributes of La-
grangian velocity and acceleration in porous medium flow
can be understood qualitatively from Figs. 3c and d. Fast
and strong acceleration events coincide with high veloc-
ities localized in pore throats, while acceleration events
are weak in pore bodies characterized by almost stagnant
velocities. As a consequence, Lagrangian velocities and
accelerations, which are sampled equidistantly in time
along the particle trajectories, display sharp peaks at
low magnitudes [Fig. 4]. This interdependence can be
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FIG. 5. (a) Conditionally averaged Lagrangian evolution of
ux (solid), ax (dashed), (|a|) (dash-dotted) and S (dotted).
The inset is a close-up at the origin. (b) Joint PDF of |ux|
and |ax|.

illustrated more quantitatively by considering the condi-
tional averages 〈Y(t′)〉 = 〈Y(t′ + tm)〉 for Y = ux, ax,
|a| and S, where tm is the time at which ux assumes a
global maximum along the measured trajectory, and the
angular brackets denote the average over all particle tra-
jectories. Both velocity and acceleration rise steeply and
show sharp (double) peaks around t′ = 0 [Fig. 5a]. The
longitudinal acceleration component reaches a positive
peak shortly before t′ = 0, followed by a rapid change to
a negative peak of similar magnitude shortly after. Ac-
cordingly, the acceleration magnitude shows a positive
double peak around the origin [inset of Fig. 5a]. Since
flow converges in front of pore throats, fluid elements
are strongly stretched in longitudinal direction, which is
manifested in the rise of the strain rate [Fig. 5a]. While
a local minimum is observed at t′ = 0 [inset of Fig. 5a],
highest stretching is reached before the maximum veloc-
ity, which is qualitatively similar to laminar flow through
an orifice. This shows that strong events of velocity and
acceleration occur at pore throats where fluid elements
are exposed to high strain.

The joint PDF of |ux| and |ax| shows that mid to high
values have a moderate degree of pointwise correlation
[Fig. 5b]. That is, when velocity is high also accelera-
tions are moderate to high and particles accelerate and
decelerate strongly. A correlation, albeit weaker, is still
present at low values of velocity and acceleration (also
visible in [Fig. 5a]). Low velocities are persistent and
commonly exposed to low accelerations, but they feature
a finite probability of moderate accelerations [Fig. 5b].
We find that this high variability of velocity and acceler-
ations leads to anomalous dispersive behavior. Propaga-
tors of advected tracer particle locations are character-
ized by a strong stagnant peak present throughout the
investigated time period, and a smaller secondary mobile
peak that develops at time t≥ 10 s and moves at average
flow speed [Fig. 6a]. We hence note that preasymptotic
transport behavior and Fickian transport is not reached
within an observation time of O(10)tA and distance of
O(10)d1. Analogous observations of non-Fickian trans-
port have been made in complex pore structures using
NMR [37] and, more recently, using numerical simula-
tions [38]. The root mean square displacement of parti-
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cles features a ballistic behavior initially, before it transi-
tions towards a possible super-diffusive regime [Fig. 6c].
In the following we explore the quantification of these ob-
servations in terms of the pore geometry and flow struc-
ture. To this end we develop a model for the PDF of
pore-velocities and set up a simple physically based cor-
related CTRW model [4, 5, 39].

Stretched exponential velocity PDF: Note that flow
through a single pore can be approximated by a parabolic
profile characteristic of Poiseuille flow through a pipe
v(r) = vm

(
1− r2/r2

p

)
with vm the maximum velocity

in the pore and rp the pore radius. Sampling this pro-
file uniformly in space gives rise to the flat velocity PDF
pv(v|vm) = v−1

m for 0 ≤ v ≤ vm for a given maximum
velocity vm. The unconditional PDF of pore-velocities
then is given by

pv(v) =
∫ ∞

v

dvmv−1
m pm(vm), (1)

where pm(vm) is the PDF of maximum pore velocities
to be determined in the following. We note that for
an arrangement of parallel, non-interacting pores with
variable radius, the maximum pore-velocity vm is deter-
mined by the constant pressure drop and the pore-radius
rp such that vm ∝ (rp/r0)

2 with r0 a characteristic pore
radius. For a serial arrangement, vm is determined by
the constant total flux and the pore-radius such that
vm ∝ (rp/r0)

−2. For a connected pore network, we con-
jecture the dependence of vm on the pore radius accord-
ing to the power-law

vm = v0 (rp/r0)
α −2 ≤ α ≤ 2 (2)

with v0 representing a characteristic pore velocity. The
exponent α may be understood as a connectivity param-
eter that informs on the pore network geometry. As
shown in Fig. 6d, the distribution of pore radii rp can
be well approximated by the exponential PDF pr(rp) =
exp(−rp/r0)/r0. Combining the latter with (2) gives the
stretched exponential PDF of maximum pore velocities,
pm(vm)

pm(vm) = v−1
0 (vm/v0)

1/α−1 exp
[
− (vm/v0)

1/α
]
. (3)

From (1), we then obtain the PDF of pore-velocities

pv(v) = v−1
0 Γ[1− α, (v/v0)1/α], (4)

where Γ(α, v) is the the incomplete Gamma-function [40].
The characteristic velocity v0 is given in terms of the
mean pore velocity 〈v〉 = vp as v0 = 2vp/Γ(1 + α). For
small velocities v � v0, pv(v) goes towards the constant
v−1
0 Γ(1−α), for large v � v0 it shows the stretched expo-

nential behavior pv(v) ∼ v−1
0 exp[− (v/v0)

1/α]. Notably,
this velocity model explains the stretched exponential tail
observed in the PDF of Lagrangian velocities in a series
of pore-scale studies [35, 41] by the exponential distribu-
tion of pore radii and the connectivity exponent α in (2).

20 40 60 80 100

10 4

10 2

100

S/ l

PD
F

 

 

0 1 2 3
0

0.5

1

1.5

2

/ 0

PD
F

 

 

10 2 100 10210 2

10 1

100

101

102

t/tA

/

 

 

0 1 2 3
0

0.5

1

1.5

2

 

 

/ 0

PD
F

t=0.04s
t=4s
t=14s

t=0.04s
t=4s
t=14s

a b

 t

 t1/2

c d

FIG. 6. PDF of propagators ζ of advected tracer particle lo-
cations at various displacement times in experiment (a) and
model (b). 〈ζ〉0 = vpt is the expected nominal mean displace-
ment. Root mean square displacement (c) and pore size PDF
extracted from XRCT scan, voxel size ∆l =50 µm (d).

IV. CONTINUOUS TIME RANDOM WALK

The velocity PDF (4) is used in the framework of a
CTRW model for particle displacements along the direc-
tion of the mean pressure gradient. This approach mod-
els particle movements as a random walk in space-time

xn+1 = xn + `n, tn+1 = tn + τn. (5)

The path segment of length ` follows the distribution of
pore-length p`(`). The transition time τn between turn-
ing points is determined from the mean velocity along the
segment vn = (vn+1 +vn)/2 as τn = `/vn. The velocities
vn at the turning points xn of the CTRW are distributed
according to pv(v) given by (4). Persistence of particle
velocities in subsequent CTRW steps are modeled by a
simple correlation model, which assigns a probability λ
to stay at the same velocity or 1 − λ to change it at
the turning point. Particle positions x(t) at time t are
given by linear interpolation of the positions at the turn-
ing points according to x(t) = xnt + vnt(t − tnt), where
nt is the renewal process nt = max(n|tn ≤ t). The lon-
gitudinal Lagrangian particle velocities then are given
by ux = vnt

. The average particle acceleration between
turning points is measured by an = (vn+1 − vn)/τn. Ac-
cordingly, longitudinal particle accelerations are given by
ax = ant . In the following, we set the connectivity pa-
rameter α = 3/2 and v0 = 2vp/Γ(1 + α) to parameterize
the velocity PDF (4). The distribution of pore-length is
exponential with the characteristic length `0 = d/4. The
persistence of subsequent particle velocities is quantified
by λ = 9/10.

This CTRW model quantifies quite well the PDF of
Lagrangian velocities [Fig. 4a]. The peak at small ve-
locities is captured by the CTRW in a natural way be-
cause particles spend more time in low velocity regions
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as quantified by the transition time τn = `/vn. The ac-
celeration PDF from CTRW captures the measured be-
havior qualitatively but not quantitatively [Fig. 4b]. We
would not expect that the CTRW model posed above
can resolve the acceleration PDF because it operates on
a coarse scale (the scale of a pore), and cannot capture
subpore velocity fluctuations. The particle propagators
illustrated in Fig. 6a are qualitatively well described by
the CTRW model [Fig. 6b]. The CTRW results are of
the same order of magnitude and display a similar scal-
ing behavior with 〈ζ〉0 as the experimental data. The
double peak behavior at late times cannot be captured
by the present CTRW approach because it does not rep-
resent persistence of low and high velocity classes, which
would be necessary to model such behavior. The evolu-
tion of particle dispersion is well captured by the CTRW
model, both the ballistic short time behavior, as well as
the onset of a possible super-diffusive regime [Fig. 6c].

V. SUMMARY

In conclusion, our results show that flow in a soil-like
porous medium is characterized by strongly intermittent
velocity and acceleration. This establishes a connection
between flow in porous media and turbulent flows which
sheds new light on the understanding of the universal na-
ture of complexity [42] in hierarchical flow systems. The
experimental analysis elucidates the interdependence
between Lagrangian velocity, acceleration and strain
is experimentally probed to reveal a double structure

of flow that localizes extreme events of low and high
activity in the vicinity of pore throats and pore bodies.
This double structure leads to anomalous dispersion,
and produces non-Gaussian velocity and acceleration
PDFs characterized by strong peaks in correspondence
of the origin and stretched exponential tails. These
features can be related to the pore-size distribution and
flow connectivity, and are described by a CTRW model
for the Lagrangian particle dynamics. These results
shed light on the structure of Lagrangian dynamics in
complex media and provide insight for the upscaling of
transport from the pore to the continuum scale. Next
to the local organization of pores and their connectivity,
longer conduits of fast velocity, so-called preferential
flow paths, may introduce heterogeneity at larger scales
that potentially influence transport significantly. We
shall further investigate this in a follow-up study where
different packs featuring different pore structure will be
compared to each other.
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