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Staphylococcus aureus pathogenicity islands (SaPIs) are phage satellites that

exploit the life cycle of their helper phages for their own benefit. Most SaPIs

are packaged by their helper phages using a headful ( pac) packaging mechan-

ism. These SaPIs interfere with pac phage reproduction through a variety of

strategies, including the redirection of phage capsid assembly to form small

capsids, a process that depends on the expression of the SaPI-encoded cpmA

and cpmB genes. Another SaPI subfamily is induced and packaged by

cos-type phages, and although these cos SaPIs also block the life cycle of

their inducing phages, the basis for this mechanism of interference remains

to be deciphered. Here we have identified and characterized one mechanism

by which the SaPIs interfere with cos phage reproduction. This mechanism

depends on a SaPI-encoded gene, ccm, which encodes a protein involved in

the production of small isometric capsids, compared with the prolate helper

phage capsids. As the Ccm and CpmAB proteins are completely unrelated

in sequence, this strategy represents a fascinating example of convergent evol-

ution. Moreover, this result also indicates that the production of SaPI-sized

particles is a widespread strategy of phage interference conserved during

SaPI evolution.

This article is part of the themed issue ‘The new bacteriology’.
1. Introduction
The Staphylococcus aureus pathogenicity islands (SaPIs) are the prototypical mem-

bers of a novel family of mobile genetic elements, the phage-inducible

chromosomal islands (PICIs). These elements are intimately related to certain

helper phages, whose life cycles they parasitize [1], driving helper phage evol-

ution [2]. Following infection by a helper phage or SOS induction of a helper

prophage, the PICI genome excises, using the PICI-encoded integrases (int) and

excision functions (xis) [3,4]. The PICI genome replicates extensively using its

replicon [5,6] and is efficiently packaged into infectious particles composed

of phage-encoded structural proteins [7,8]. These events, which constitute the

excision–replication–packaging (ERP) cycle of the PICIs, allow both the intra-

and intergeneric transfer of these elements at extremely high frequencies [9,10].

The hallmark of this parasitism is a key PICI gene that encodes a master repressor

(Stl), which controls expression of most of the PICI genome. Contrary to the clas-

sical phage repressors, the Stl repressors are not cleaved following activation of

the SOS response; rather the repression is lifted by the formation of a complex

between the repressor and a specific helper phage protein [11,12], thereby linking

PICI replication to the helper phage lytic cycle.
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Figure 1. Genomic structure of the cos SaPIs. (a) Comparison of the pac (SaPIbov1) and cos (SaPIbov5) SaPIs. (b) Alignment of selected SaPIbov5 size adjustment.
Genomes are aligned according to the prophage convention with the integrase gene at the left end. Gene colour code: int and xis, yellow; transcription regulators,
blue; replication genes, purple; replication origin, red; genes affecting expression ( pti) or assembly (cpm) of helper phage virion components are dark brown and
medium brown, respectively; the terminase small subunit gene (terS) is green; pip ( phage interference) orange, the two variant subsets are distinguished by dark
versus light fill; superantigen and other accessory genes, pink. Genes encoding hypothetical proteins, white. In (a), the cos site is shown in grey. In (b), the
tetracycline resistance gene is light green, and the erythromycin resistance gene is dark red.
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Another key feature of all the analysed PICIs is their

capacity to severely interfere with phage reproduction. To

date, all described mechanisms of phage interference target

key proteins of the phage DNA packaging machinery. Like

their helper phages, PICIs can be packaged using two differ-

ent strategies: a headful (also called pac) mechanism, in which

DNA packaging continues until the capsid is full; or cos site

packaging, in which units of DNA delimited by cos sites

are packaged [13]. Most of the characterized SaPIs (and

their helper phages) use the headful packaging mechanism

for packaging. The pac SaPIs encode a small terminase sub-

unit (TerSSP) which interacts with the phage-coded large

terminase subunit (TerL), promoting SaPI-specific DNA

packaging [14,15]. Additionally, many pac SaPIs redirect the

helper phage assembly pathway to generate SaPI capsids

that are one-third of the size of the helper phage capsids

[16,17], commensurate with the smaller size of the SaPI

genome. The small SaPI capsids are incapable of accommod-

ating complete helper phage genomes [17–19]. This size

redirection depends on the SaPI-encoded cpmA and cpmB

genes [5,20–22]. Like terSSP, the cpmAB genes are located in

the SaPI packaging module, also termed operon I (figure 1),

whose expression is controlled by the SOS-specific repressor

LexA [14]. Apparently, the raison d’être of this operon is to

interfere with phage reproduction. Operon I also contains

the ptiA, ptiB and ptiM genes (figure 1) [23]. PtiA and PtiM

modulate the function of the late phage gene transcriptional

regulator LtrC [23–25], while the mechanism of phage inter-

ference depending on PtiB remains unresolved [23]. The

remaining known mechanism of interference depends on

the ppi gene, located between the SaPI ori site and the SaPI

packaging module (figure 1). The SaPI-coded Ppi protein

interacts with the phage TerS, preventing phage DNA

packaging [26].

We recently identified a subfamily of SaPIs in which the

complete operon I, except the 30 region of the SaPI terSSP
gene, had been replaced by a DNA region, that we have

termed ‘operon I-like’, containing a highly conserved phage

cos site (electronic supplementary material, figure S1) and a

set of conserved genes whose functions remain obscure

(figure 1). These variants, represented by SaPIbov4 and SaPI-

bov5 [27], are induced by certain cos phages, such as f12 or

fSLT, which all share basically the same cos site (electronic sup-

plementary material, figure S1), and are efficiently packaged in

infectious phage-like particles, leading to high-frequency intra-

and intergeneric transfer [9,28]. While these variant islands lack

the classical operon I, they also severely interfere with phage

reproduction [28], suggesting they encode alternative strategies

of phage interference. In this report we characterize the first

interference mechanism involving cos SaPIs and show that

these SaPIs also redirect the capsid assembly of their helpers

using a novel mechanism.
2. Material and methods
(a) Bacterial strains and growth conditions
The bacterial strains used in this study are listed in the electronic

supplementary material, table S1. The procedures for prepara-

tion and analysis of phage lysates, in addition to transduction

and transformation of S. aureus, were performed essentially as

previously described [11,12,18].
(i) DNA methods
General DNA manipulations were performed using standard

procedures. DNA samples were heated at 758C for 10 min

prior to the electrophoresis to ensure cos site melting. The plas-

mids and oligonucleotides used in this study are listed in the

electronic supplementary material, tables S2 and S3, respectively.

The labelling of the probes and DNA hybridization were per-

formed according to the protocol supplied with the PCR-DIG

DNA-labelling and Chemiluminescent Detection Kit (Roche).

http://rstb.royalsocietypublishing.org/
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Figure 2. Replication analysis of the different SaPIbov5 derivative islands. Southern blot of f12 and fSLT lysates, from strains carrying SaPIbov5original, SaPIbov5adjusted

and SaPIbov5evolved as indicated (see text for details). Samples were isolated 0 or 90 min after induction with mitomycin C, separated on agarose gels and blotted with a
SaPIbov5-specific probe. Upper band is ‘bulk’ DNA, and represents replicating SaPIbov5. SaPI monomer represents SaPI DNA packaged in small capsids.
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To produce the phage and SaPI mutations, we used plasmid

pBT2-bgal, as previously described [11].

(ii) Complementation of the mutants
The different phage genes under study were PCR amplified

using oligonucleotides listed in the electronic supplementary

material, table S3. PCR products were cloned into pCN51 [29]

and the resulting plasmids (electronic supplementary material,

table S2) were introduced into the appropriate recipient strains

(electronic supplementary material, table S1).

(b) Experimental evolution
A fSLT lysogen carrying the SaPIbov5 tetM island was SOS

(mitomycin C) induced and the island transferred to a fSLT lyso-

gen. After the transfer, the SaPIbov5-positive strains were

recollected and the procedure repeated four more times. After

the fifth passage, three individual colonies were isolated, SOS

induced and the SaPI titre obtained compared with that obtained

with the original SaPIbov5 tetM.

(c) Electron microscopy
To produce f12 phage and SaPIbov5 transducing particles,

strains JP10435 and JP12419, respectively, were induced with

1 mg l21 mitomycin C at OD600 ¼ 0.5, and grown for an

additional 3 h. As lysis was incomplete, the cell pellets were treat-

ed with lysostaphin before collecting lysate supernatants, which

were further purified by PEG precipitation and CsCl centrifu-

gation, as previously described [30]. The purified phage and

transducing particles were negatively stained with 1% uranyl

acetate and observed in an FEI Tecnai F20 electron microscope

operated at 200 kV with magnifications of 65 500� or 81 200�.

Images were captured on a Gatan Ultrascan 4000 CCD camera.

(i) In silico protein modelling and structure comparison
The three-dimensional homology models of f12 gp33 and SaPI-

bov5 Ccm were constructed using the RaptorX (default mode)

[31] and Phyre2 (intensive mode) [32] servers. Both servers gen-

erated models with low confidence for the N-terminal portions

and high confidence for the C-terminal portions of f12 gp33

and SaPIbov5 Ccm (electronic supplementary material, tables

S4 and S5). The models of the C-terminal portions of gp33

and Ccm were structurally aligned with MUSTANG [33] and this

alignment was rendered with ESPRIPT v. 3.0 [34].
3. Results
(a) SaPIbov5 is packaged in small capsids
In previous work, we noted that both cos phages fSLT and

f12 induce SaPIbov5 replication to a similar extent, although
SaPIbov5 transfer by f12 was approximately 102 times

higher than that observed for phage fSLT [28]. As the SaPI-

bov5 cos site is more similar to that present in f12 (electronic

supplementary material, figure S1), we speculated that this

would be the reason underlying the different SaPIbov5 packa-

ging efficiency observed with these two phages. Indeed, when

SaPIbov5 was evolved through five cycles of induction in

the presence of fSLT, the transducing titre increased by up to

103-fold (electronic supplementary material, table S6), indicat-

ing that the evolved SaPIs could be efficiently packaged by

phage fSLT. However, the SaPI cos site sequence remained

invariable. Instead, the evolved SaPIs had reduced their size

by losing some of the virulence genes contained in the island

(figure 1). When we originally introduced tetM into SaPIbov5,

we had artificially increased the size of the element. The evolved

SaPI had been restored to its original size. The increased size

caused the reduced transfer observed for SaPIbov5.

This restriction on genome size suggested that the cos SaPIs,

similar to the previously described pac SaPIs [16,17], were

packaged into capsids smaller than those normally made by

the phage, as the helper phage genomes are about 3� larger

(42–45 kb) than the SaPI genomes (�14 kb, figure 1). This is

consistent with the cos site packaging mechanism, which

packages DNA units delimited by cos sites at either end [13].

To test this possibility, we used both the original SaPIbov5

island (SaPIbov5original) and the evolved one (SaPIbov5evolved),

each carrying the tetM marker. We also generated a third SaPI-

bov5 that maintained its correct size but in which part of the

vwb gene was replaced by an ermC marker (SaPIbov5adjusted,

figure 1). The vwb gene encodes the von Willebrand binding

protein, a virulence factor with no role in the ERP cycle of

the SaPIs [27]. All these islands were introduced into strains

LUG1170 and JP10435, lysogenic for the cos phages fSLT and

f12, respectively, and the SaPIbov5 cycle was induced.

Remarkably, the evolved and size-adjusted SaPIbov5 islands,

but not SaPIbov5original, generated the characteristic SaPI-

specific band after induction of these islands by phages fSLT

and f12 (figure 2). All SaPIs, except for the original SaPIbo-

v5original, were also highly transferred by these phages

(electronic supplementary material, table S6), confirming that

the limitation of the SaPI genome size to less than around

14 kb was a prerequisite for high-frequency SaPI transfer.

The previous results showed that the length of DNA iso-

lated from capsids produced in the presence of SaPIbov5 was

consistent with a single unit of SaPIbov5 DNA, suggestive of

formation of small capsids. To confirm that this was the case,

we subjected the particles produced by f12 in the absence

and presence of SaPIbov5 to electron microscopy (EM). f12

phage particles had the characteristic size and shape of this

http://rstb.royalsocietypublishing.org/
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Figure 3. Electron microscopy of f12 and SaPIbov5 particles. Electron micrographs of negatively stained wt f12 virions (a), and particles produced by induction of
a f12 lysogen containing SaPIbov5adjusted (b). Scale bars are 100 nm.
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mutations in the SaPIbov5 genes 8 – 12). Samples were isolated 90 min after induction with mitomycin C, separated on agarose and blotted with a SaPIbov5-
specific probe. Upper band is ‘bulk’ DNA, and represents replicating SaPIbov5. SaPI monomer represents SaPI DNA packaged in small capsids. SaPIbov5 ORF11
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class of bacteriophages [28]: a prolate head, 45 nm wide and

100 nm long, and a 325 nm long, flexuous tail (figure 3). By

contrast, virions produced in the presence of SaPIbov5 had

small, isometric heads, about 42–45 nm in diameter, attached

to a 325 nm tail (figure 3). This result showed that SaPIbov5

caused the formation of small capsids, consistent with its

smaller genome size.
(b) Identification of the SaPIbov5-encoded capsid size
redirection protein

As mobile genetics elements show synteny, and as in pac SaPIs

the genes involved in phage interference are located bet-

ween the SaPI ori site and the virulence genes, we speculated

that the cpm-like gene(s) would be located in a similar position

in the SaPIbov5 genome. This putative region comprises five

genes (operon I-like genes: open reading frames (ORFs) 8–12;

figure 1), including ppi (SaPIbov5 ORF8) and SaPIbov5

ORF12, which encodes a highly homologous protein (35% iden-

tity) to the SaPIbov1 coded PtiM. Both the Ppi and the PtiM

have been previously involved in phage interference [23–26].

To identify the gene(s) involved in the formation of the SaPI-

bov5 small capsids, we generated individual mutants in all
the aforementioned five genes by introducing a stop codon

(ochre mutation) in the middle of their coding sequences. This

strategy does not change the SaPIbov5 size. The different SaPI-

bov5 mutant islands were then introduced into the f12 lysogen

and the SaPIbov5 ERP cycle analysed after SOS induction of the

different strains. As shown in figure 4, all the SaPIbov5 mutants

except that for SaPIbov5 ORF11 generated the characteristic

SaPI-size DNA band on an agarose gel.

We also generated a SaPIbov5 mutant carrying stop codons

in all the genes from ORFs 8–12. As expected, this mutant did

not generate the characteristic SaPI band when induced by

phage f12 (figure 4). However, complementation of this

strain with a plasmid expressing ORF11 restored the pro-

duction of the SaPI characteristic band, confirming the role of

ORF11 in capsid size redirection. As the protein encoded by

ORF11 seemed to remodel the capsid size of the helper

phage, it was renamed Ccm for cos capsid morphogenesis.

(c) Ccm blocks f12 reproduction
In previous work, we had demonstrated that SaPIbov5 inter-

feres with f12 reproduction [28]. To test whether this

interference was mediated by Ccm, we used two complemen-

tary strategies: first, we introduced into the non-lysogenic

http://rstb.royalsocietypublishing.org/
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Figure 5. SaPIbov5 Ccm-mediated interference. (a) Strain RN4220 containing wt or the different SaPIbov5 mutants were infected with f12 or f12evolved4, plated
on phage bottom agar, and incubated for 48 h at 328C. (b) Phage interference mediated by cloned SaPIbov5 genes. The indicated genes were cloned into plasmid
pCN51. Strain RN4220 containing the indicated plasmids was infected with phages 12 or f12evolved4, plated on phage bottom agar containing 5 mM CdCl2 (induces
the expression of the cloned genes) and incubated for 48 h at 328C. (c) Effect of the different pCN51 cloned genes in phage reproduction. The lysogenic strains for
f12 or f12evolved4, containing the different pCN51 derivative plasmids, were SOS induced and the lysates plated on phage bottom agar for 48 h at 328C.

Table 1. f12 mutants insensitive to the Ccm-mediated interference.

phage ORF33 ORF45

f12evolved1 G3576E; T357S S13R

f12evolved2 T323P I53S

f12evolved3 E236 K E203 K

f12evolved4 E236 K —
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RN4220 strain the SaPIbov5 mutants described above, includ-

ing mutants in ORFs 8–11 (ccm) and 12 individually and all

(ORFs 8–12) together. Then, the capacity of these strains to

block plaque formation by phage f12 infection was tested. As

shown in figure 5a, all mutants except those in the ccm gene

led to a 106- to 107-fold reduction in f12 titre, showing that

Ccm was primarily responsible for the SaPIbov5-mediated

interference. Although the number of plaques obtained in the

ccm mutant was basically the same as in the SaPIbov5-negative

strain, the size of the plaques was reduced. This result

suggested that some of the other genes may also be involved

in phage interference, although this residual effect was not

observed when the different genes were analysed individually

(figure 5a).

Second, SaPIbov5 genes ORFs 8–12 were expressed from

the vector pCN51 [29] under control of the exogenous cad-

mium-inducible promoter Pcad in the non-lysogenic strain

RN4420, followed by infection with f12, or in the f12 lyso-

gen JP10435, followed by SOS induction. In either case, the

resulting titres were reduced 103- to 104-fold only upon

expression of ccm (figure 5b,c).

(d) Target for Ccm-mediated interference
To identify the f12 gene(s) targeted by Ccm, we isolated f12

mutants insensitive to the Ccm-mediated interference. Four
of the mutants were sequenced. All had point mutations in

gp33, which corresponds to the f12 major capsid protein

(CP) [28], although some of the mutants also had mutations

in other genes (table 1). To clearly establish whether f12

gp33 was the target gene of the SaPIbov5 Ccm, we generated

a lysogenic RN4220 derivative carrying the phage f12evolved4

and the SaPIbov5adjusted island. SOS induction of this strain

induced SaPIbov5 replication and transfer (electronic sup-

plementary material, table S6), but not the production of

SaPI-sized DNA (figure 6). Moreover, ovexpression of SaPI-

bov5 Ccm protein from the expression constructs described

above caused only a slight reduction of f12evolved4 titres

(figure 5b,c). Taken together, these results confirm that the

f12 CP (gp33) was the target for SaPIbov5 Ccm.
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Finally, RN4220 derivatives carrying SaPIbov5 mutants in

ORFs 8-12 were infected with f12evolved4 and both the phage

titre and the plaque sizes were analysed. Based on the results

above, we expected this phage to be insensitive to SaPIbov5-

mediated interference. However, SaPIbov5 severely blocked

f12evolved4 reproduction, as it did with the original f12

phage (figure 5a), suggesting that other SaPIbov5 genes

could have a role in this process, similar to the headful

SaPIs described previously [26]. Indeed, the titre of

f12evolved4 was restored to normal by mutants in either

ORF10 or ORF11 (ccm) (figure 5a), suggesting that ORF10

also plays a role in f12 interference.
(e) SaPIbov5 Ccm and f12 CP are homologues in
sequence but not in function

In silico analysis of Ccm revealed that this protein has a HK97

major CP-like fold, similar to that of the f12 CP (gp33).

In fact, Ccm and the f12 CP seem to be distantly related,

based on sequence similarity (figure 7). In silico modelling

of Ccm and gp33 with RaptorX [31] and Phyre2 [32] servers

predicted with high confidence (electronic supplementary

material, table S4 and S5) that the C-terminal portions

of gp33 (residues 127–402) and Ccm (residues 83–355)

both adopt the prototypical coat protein fold from the

phage HK97 (figure 7; electronic supplementary material,

figure S2) [35,36]. The modelled HK97-fold domains present

a high structural similarity both between Ccm and gp33

(RMSD , 1.5 Å for 240 residues) and with HK97 CP

(RMSD , 2 Å for 210 residues) despite the low sequence

identity (19.2%) (figure 7). By contrast, models with different

folds were predicted with low confidence (electronic sup-

plementary material, tables S4 and S5) for the N-terminal

portions of Ccm and gp33 proteins (residues 1–82 and

1–126, respectively). However, in all predictions these regions

present high a-helical content (electronic supplementary

material, figure S3), consistent with the so-called D-domain of

HK97-like phages, which works as an internal scaffolding

protein that assists in CP assembly and is subsequently

removed by a phage-encoded protease [36,37].

This putative structural homology raised the interesting

possibility that Ccm would be able to form SaPIbov5 capsids
in the absence of thef12 CP, suggesting an alternative mechan-

ism to prevent phage reproduction and favouring SaPIbov5

transfer. To address this possibility, we used a previously gen-

erated deletion mutant in the gene encoding the CP of fSLT

(gp42) [28] which is nearly identical to f12 CP (gp33). Next,

we introduced the SaPIbov5adjusted island into this strain and

measured the phage and transducing titres after SOS induction

of the mutant phage. As shown in table 2, fSLT CP was essen-

tial both for phage and SaPI transfer, showing that Ccm is

unable to take the place of the fSLT CP.
( f ) Ccm blocks cos but not pac phages
Although conceptually they perform similar functions,

S. aureus cos and pac phages use different proteins for capsid

formation and DNA packaging. Thus, we wanted to test

whether the reproduction cycle of the pac phages was also

blocked by the Ccm protein. This was not the case, and

expression of the Ccm from plasmid pJP1730 did not block

either f11 or 80a reproduction (electronic supplementary

material, table S7).
(g) Cos SaPIs reserve space for virulence-gene carriage
SaPIbov2, one of the prototypical pac SaPIs [3], is approximately

27 kb in size and cannot redirect the production of small-sized

capsids because it does not encode cpmB. Consequently, SaPI-

bov2 is exclusively packaged in large capsids [38]. To know

if a similar scenario exists in the cos SaPIs, we searched in

GenBank for cos SaPIs with an increased size and lacking the

ccm gene. All cos SaPIs that were identified encoded Ccm, but

one, SaPIS0385, had a reduced size (10.3 kb) compared with

the others (electronic supplementary material, figure S4).

This island encoded all the genes required for the SaPI cycle,

but lacked the classical SaPI-encoded virulence genes. To deter-

mine whether a cos SaPI with reduced size had a functional ERP

cycle, we generated a SaPIbov5 derivative in which the von

Willebrand binding protein (vwb) and the staphylococcal comp-

lement inhibitor (scn) genes were deleted (SaPIbov5small)

(figure 1). The resulting size was 10.9 kb, similar to SaPIS0385

(electronic supplementary material, figure S4). The f12

mediated transfer of the SaPIbov5small element was only slightly

reduced (less than twofold) compared with that observed with

http://rstb.royalsocietypublishing.org/
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Table 2. Effect of phage mutations on phage and SaPI titres. (The means
of results from three independent experiments are shown. Variation was
within +5% in all cases.)

donor strain

phage SaPI
phage
titrea SaPI titreb

f SLTpvl::tetM — 5.0 � 106

f SLTpvl::tetM

DORF42

— ,10 —

f SLTpvl::tetM SaPIbov5adjusted 1.74 � 106 1.72 � 106

f SLTpvl::tetM

DORF42

SaPIbov5adjusted ,10 ,10

aPFU ml21 induced culture, using RN4220 as recipient strain.
bNumber of transductants ml21 induced culture, using RN4220 as recipient strain.
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the wt SaPIbov5. Surprisingly, although the small island

expresses the Ccm protein and interferes with f12 reproduction

(electronic supplementary material, table S4), it does not pro-

duce the characteristic SaPI band (figure 6). Apparently,
SaPIbov5small concatemers are packaged more efficiently into

the large capsids. This result suggests that during evolution

the cos SaPIs have reserved approximately 2 kb of DNA space

for the carriage of virulence genes.
4. Discussion
In this study, we have described packaging of a family of cos
SaPIs by cos helper phages f12 and fSLT, and show that

these SaPIs interfere with phage production by forming

small capsids that are unable to package complete helper

phage genomes. This size redirection process is reminiscent

of that found in the previously described pac SaPIs, where

size redirection depends on the two proteins CpmA and

CpmB [14], and CpmB acts as an alternative internal scaffold-

ing protein for the small SaPI capsids [20,39]. Here, we have

found that size redirection by SaPIbov5 is dependent on the

ccm gene, which encodes a HK97-like CP homologue.

How Ccm drives the production of small capsids remains

unresolved. The HK97-like CP fold predicted for Ccm raises

the interesting possibility that this protein could participate

in the capsid assembly or even be part of the capsid shell.

Even though our experiments have shown that Ccm is

unable to form SaPI-sized capsids by itself, the Ccm fold,

http://rstb.royalsocietypublishing.org/
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highly similar to gp33, might enable both proteins to be

assembled together. It has been suggested that the length of

the N-terminal D-domain correlates with capsid size [40,41].

Our models indicate that the D-domain of Ccm is 44 residues

shorter than that in gp33. Therefore, the inclusion of Ccm

during formation of procapsids could conceivably drive the

formation of smaller capsids. This proposed mechanism of

action also explains why Ccm does not block f11 and 80a

pac phages, whose capsid proteins lack a D-domain and require

a separately expressed scaffolding protein for capsid assembly

[21]. The SaPIs mobilized by these phages use an alternative

scaffolding protein, CpmB, to induce small capsid formation

[21,42]. Thus, both Ccm and CpmB proteins drive small

capsid formation by mimicking the scaffolding function in

the assembly process, representing another example of the

SaPIs’ capacity for adaptation to their helper phages.

The role of SaPIbov5 ORF10 in this process is unclear.

Although deletion of ORF10 had no effect on the SaPIbov5-

induced suppression of wild-typef12, it restored reproduction

of f12evolved4 (figure 5). However, overexpression of ORF10

alone had no effect on either wild-type or evolved f12.

Perhaps, ORF10 and Ccm somehow work together to effect

the SaPIbov5-mediated interference, a line of reasoning that

we will explore in future research.

The production of small capsids is not just a key feature of

SaPI biology, but a widespread mechanism of phage interfer-

ence. The Enterocococus faecalis EfCIV583 element also

remodels capsid formation, promoting the formation of small

capsids [43]. A similar strategy is used by the Escherichia coli
P4 plasmid, which remodels helper phage P2 capsid formation

by the expression of the P4-encoded external scaffolding protein

Sid [44]. The proteins involved in these mechanisms share no

homology, suggesting that this is a convergent evolutionary

strategy that provides a significant advantage in nature.

All the cos SaPIs that we have identified encode proteins

basically identical to the SaPIbov5 ORFs 8–12 (electronic sup-

plementary material, figure S4), suggesting that all these

proteins are involved in the same biological process, being

required together to develop their function in the SaPIbov5

cycle. Many of the pac SaPIs also encode a variant of the

ppi gene that is found in cos SaPIs, where they act to suppress

helper phage DNA packaging. However, the SaPIbov5 ppi
gene does seem to be involved in cos phage f12 interference,

which is not surprising, as the terminase enzymes of the pac
and cos site phages are completely different. The function of

ppi in the SaPIbov5 ERP cycle thus remains unsolved.
SaPIs are widespread elements in nature. Most S. aureus
strains carry more than one of these elements. SaPIs carry

important virulence factors that are unique to these elements

and affect the fitness of their bacterial hosts [1,45]. Interest-

ingly, there appears to be little difference in the virulence

genes that are carried by the pac and cos SaPIs. Thus,

the genes encoding the TSST-1, Sel or Sec toxins, the staphy-

lococcal complement inhibitor Scin or the von Willebrand

factor-binding protein are found in both types of SaPIs.

Because of the limited number of chromosomal (attC) sites

where the SaPIs can integrate and the high number of circu-

lating SaPIs, there is strong competition for the SaPIs to

persist. These elements have evolved to carry all the genes

required for their own replication and helper phage exploita-

tion, while ‘reserving’ a space for the carriage of virulence

genes, which at the end will be essential to compete with

other SaPIs. However, the number of genes that can be car-

ried in an SaPI is limited, as an increase beyond the size

that can be carried within a small capsid would be absolutely

detrimental. Thus, the SaPI-encoded virulence genes should be

key for the adaption of S. aureus to specific niches or hosts. In

support of this, two SaPI-coded genes, bap and vwb, carried

in ruminant S. aureus strains, play an important role in

the pathogenesis of S. aureus in these animal hosts [3,27].

Thus, the identification and blockage of the activity of the

SaPI-coded virulence genes can provide novel strategies to

combat S. aureus infections in a more efficient way. The SaPIs

have evolved to exploit and interfere with phage reproduction

in a multitude of ways. Other PICIs are likely to use similar

strategies. We anticipate that there are many additional mech-

anisms of interference in SaPIs and other PICIs that remain to

be uncovered, and that will be of considerable importance to

the evolution of virulence in S. aureus.
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