THREE-DIMENSIONAL MULTI-PROBE ANALYSIS OF THE GALAXY CLUSTER A1689*

KEIICHI UMETSU1, MAURO SERENO2,3, ELINOR MEDEZINSKI1,3, MARIO NONINO6, TONY MROCZKOWSKI7, JOSE M. DIEGO8, STEFANO ETTORIF,8, NOBUHIRO OKABE10,11, TOM BRODHURST12, and DORON LEMZE5

ABSTRACT

We perform a three-dimensional multi-probe analysis of the rich galaxy cluster A1689, one of the most powerful known lenses on the sky, by combining improved weak-lensing data from new wide-field BVR_{CJ}/z' Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zel’dovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of two-dimensional shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with an axis ratio of ~ 0.7 in projection, aligned well with the distributions of cluster galaxies and intracluster gas. When assuming a spherical halo, our full weak-lensing analysis yields a projected halo concentration of $c_{2D} = 8.9 \pm 1.1$ ($c_{2D}^{\text{vir}} \sim 11$), consistent with and improved from earlier weak-lensing work. We find excellent consistency between independent weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor–major axis ratio 0.39 ± 0.15 and major axis closely aligned with the line of sight $(22^\circ \pm 10^\circ)$. We obtain a halo mass $M_{200c} = (1.2 \pm 0.2) \times 10^{15} M_{\odot} h^{-1}$ and a halo concentration $c_{200c} = 8.4 \pm 1.3$, which overlaps with the $\gtrsim 1\sigma$ tail of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with minor–major axis ratio 0.60 ± 0.14. The gas mass fraction within 0.9 Mpc is $10^{\pm 3\%}$, a typical value for high-mass clusters. The thermal gas pressure contributes to $\sim 60\%$ of the equilibrium pressure, indicating a significant level of non-thermal pressure support. When compared to Planck’s hydrostatic mass estimate, our lensing measurements yield a spherical mass ratio of $M_{\text{Planck}}/M_{\text{GL}} = 0.70 \pm 0.15$ and 0.58 ± 0.10 with and without corrections for lensing projection effects, respectively.

Keywords: cosmology: observations — dark matter — galaxies: clusters: individual (A1689) — gravitational lensing: weak — gravitational lensing: strong

1. INTRODUCTION

The evolution of the abundance of galaxy clusters with cosmic epoch is sensitive to the amplitude and growth rate of primordial density fluctuations as well as to the cosmic volume-redshift relation because massive clusters lie in the high-mass exponential tail of the halo mass function (Haiman et al. 2001; Watson et al. 2014). Therefore, large cluster samples defined from cosmological surveys can provide an independent means of examining any viable cosmological model, including the current concordance Λ cold dark matter (ACDM) model defined in the framework of general relativity, complementing cosmic microwave background (CMB), large-scale galaxy clustering, and supernova observations.

Clusters provide various probes of the role and nature of “dark matter” (DM) that dominates the material universe (Clowe et al. 2006), or modified gravity theories as an alternative to DM (Rapetti et al. 2010), physics governing the final state of self-gravitating collisionless systems in an expanding universe (Navarro et al. 1996, 1997; Taylor & Navarro 2001; Hjorth & Williams 2010), and screening mechanisms in long-range modified models of gravity whereby general relativity is restored (Narikawa et al. 2013).

Substantial progress has been made in recent years in constructing statistical samples of clusters thanks to dedicated surveys (e.g., Planck Collaboration et al. 2014, 2015c; Bleem et al. 2015). Cluster samples are often defined by X-ray or Sunyaev-Zel’dovich effect (SZE) observables, so that the masses are indirectly inferred from scaling relations, which are often based on the assumption of hydrostatic equilibrium (HSE) and then statistically calibrated using weak lensing or internal dynamics using a subset of massive clusters at lower redshifts (Rines et al. 2013; Gruen et al. 2014). Since the level of mass bias from indirect observations assuming HSE is likely mass dependent (Sereno et al. 2014a) and sensitive
to calibration systematics of the instruments (Donahue et al. 2014; Israel et al. 2015), a systematic effort is needed to enable a self-consistent calibration of mass–observable relations using robust, direct cluster mass measurements (von der Linden et al. 2014; Umetsu et al. 2014; Merten et al. 2014; Ford et al. 2014; Jimeno et al. 2014; Hoekstra et al. 2015; Simet et al. 2015) and well-defined selection functions (e.g., Benitez et al. 2014).

The great attraction of gravitational lensing in the cluster regime is its ability to map the mass distribution on an individual cluster basis, independent of and free from assumptions about the physical and dynamical state of the cluster system (Miyazaki et al. 2007; Okabe & Umetsu 2008; Hamana et al. 2009). Clusters act as efficient gravitational lenses, producing various observable effects, including deflection, distortion, and magnification of the images of background sources (Bartelmann & Schneider 2001). In the weak regime, the lensing signals are approximately linearly related to the gravitational potential, so that one can determine the distribution of lensing matter at large scales in a model-independent manner (e.g., Umetsu et al. 1999, 2011b). In the strong regime, several sets of multiply-lensed images with known redshifts can be used to constrain the mass distribution in the cluster cores (e.g., Jauzac et al. 2014; Zitrin et al. 2014).

A practical difficulty of obtaining precise mass measurements from cluster lensing, however, is significant scatter present in the projected lensing signals due to inherent variations (at a fixed halo mass) in halo concentration, asphericity, orientation, and the presence of correlated large scale structure (Rasia et al. 2012). The projection effects due to such intrinsic profile variations alone can produce a $\lesssim 20\%$ uncertainty in lensing mass estimates for $\sim 10^{15} M_{\odot}$ clusters (Becker & Kravtsov 2011; Gruen et al. 2015).

A possible way to overcome this problem is to simultaneously determine the mass, concentration, shape, and orientation of a given cluster by combining lensing data with independent probes or information about its line-of-sight elongation (Sereno 2007; Corless et al. 2009; Limousin et al. 2013). Gravitational lensing probes the structure and morphology of the matter distribution in projection. X-ray observations constrain the characteristic size and orientation of the intracluster medium (ICM) in the sky plane. The elongation of the ICM along the line of sight can be constrained from the combination of X-ray and thermal SZ observations (De Filippis et al. 2005; Sereno et al. 2012). Recently, Sereno et al. (2013) developed a parametric triaxial framework to combine and couple independent morphological constraints from lensing and X-ray/SZE data, using minimal geometric assumptions about the matter and gas distributions but without assuming HSE.

The first critical step in a three-dimensional (3D) cluster analysis is an unbiased, direct recovery of the projected cluster mass distribution from weak lensing. A fundamental limitation of measuring shear only is the mass-sheet degeneracy (Schneider & Seitz 1995). This degeneracy can be broken by using the complementary combination of shear and magnification (Schneider et al. 2000; Umetsu et al. 2011b; Umetsu 2013). Umetsu et al. (2011b) have shown that the magnification effect can significantly enhance the accuracy and precision of lensing-derived cluster mass profiles when added to weak-lensing shear measurements.

Our aim in this paper is to develop and apply a comprehensive set of techniques and methods for 3D analysis of galaxy clusters based on the multi-probe framework of Sereno et al. (2013). For this aim, we first generalize the one-dimensional (1D) weak-lensing inversion method of Umetsu et al. (2011b) to a two-dimensional (2D) description of the mass distribution without assuming particular functional forms, i.e., in a free-form fashion. In this approach, we combine the spatial shear pattern with azimuthally averaged magnification information, imposing integrated constraints on the mass distribution.

Taking advantage of new $BV R_\text{C}/\nu'$ imaging obtained with Suprime-Cam on the 8.3 m Subaru Telescope, we perform a new weak-lensing analysis of the rich cluster A1689 at $z = 0.183$ and then apply our methods to weak-lensing, strong-lensing, X-ray, and SZE data sets we have obtained for the cluster. The cluster is among the best studied clusters (Tyson & Fischer 1995; Taylor et al. 1998; Andersson & Madejski 2004; Broadhurst et al. 2005b; Halkola et al. 2006; Limousin et al. 2007; Umetsu & Broadhurst 2008; Peng et al. 2009; Kawaharada et al. 2010; Coe et al. 2010; Sereno et al. 2012; Nieuwenhuizen & Morandi 2013; Sereno et al. 2013) and one of the most powerful known lenses on the sky, characterized by a large Einstein radius of $\theta_{\text{Ein}} = 47.0'' \pm 1.2''$ for a fiducial source at $z_s = 2$ (see Table 1; Coe et al. 2010); this indicates a high degree of mass concentration in projection (Broadhurst & Barkana 2008). To date, 61 candidate systems of 165 multiply-lensed images have been identified (Broadhurst et al. 2005b; Coe et al. 2010; Diego et al. 2015) from Advanced Camera for Surveys (ACS) observations with the Hubble Space Telescope (HST). Despite significant efforts, the degree of concentration inferred from different lensing analyses is somewhat controversial (see Coe et al. 2010; Sereno et al. 2013), and it is still unclear if and to what degree this cluster is over-concentrated.

The paper is organized as follows. After summarizing the basic theory of cluster weak lensing, we present in Section 2 the formalism that we use for our weak-lensing analysis."
In Section 3, we describe our Subaru observations and data processing. In Section 4, we present our Subaru weak-lensing analysis. Section 5 presents our HST strong-lensing analysis. In Section 6 we outline the triaxial modeling and describe the statistical framework for the 3D cluster analysis. In Section 7 we present the multi-probe analysis of lensing and X-ray/SZE data. In Section 8 we discuss the results and their implications for the intrinsic properties of A1689. Finally, a summary of our work is given in Section 9.

Throughout this paper, we use the AB magnitude system and adopt a concordance ΛCDM cosmology with Ω_m = 0.3, Ω_Λ = 0.7, and h = 0.7h_{70} = 0.7 where H_0 = h × 100 km s^{-1} Mpc^{-1}. In this cosmology, 1′ corresponds to 129 kpc h^{-1} ≈ 185 kpc h_{70}^{-1} for this cluster. The reference sky position is the center of the brightest cluster galaxy (BCG): R.A.(J2000.0) = 13 : 11 : 29.52, Decl.(J2000.0) = −01 : 20 : 27.59 (Table 1). We use the standard notation r_Δ to denote the spherical overdensity radius within which the mean interior density is Δ times the critical density ρ_c of the universe at the cluster redshift. For its ellipsoidal counterpart R_Δ, see Section 6.1. All quoted errors are 68.3% (1σ) confidence limits (CL) unless otherwise stated.

2. WEAK-LENSING METHODOLOGY

2.1. Weak-Lensing Basics

In the cluster regime, the lensing convergence, κ = Σ/Σ_c, is the projected mass density Σ in units of the critical surface density for lensing, Σ_c = (c^2D_l)/(4πGD_Dls); c^2/(4πGD_Dls) ∝ D_l, D_s, and D_0ls the lens source, and lens-source angular diameter distances, respectively; β(z) = D_0ls(z)/D_s(z) represents the geometric lensing strength for a source at redshift z, where β(z) = 0 for z ≲ z_1.

The gravitational shear γ = γ_1 + iγ_2 can be directly observed from ellipticities of background galaxies in the weak regime, κ ≪ 1. The shear and convergence are related by

$$\gamma(\theta) = \int d^2\theta' D(\theta - \theta') \kappa(\theta'),$$

(1)

with D(θ) = (θ_1^2 - θ_2^2 - 2iθ_1θ_2)/(πθ^4) (Kaiser & Squires 1993). The observable quantity for quadrupole weak lensing in general is not γ but the complex reduced shear, g(θ) = γ(θ)/(1 - κ(θ)).

(2)

The g field is invariant under κ(θ) → λκ(θ) + 1 - λ and γ(θ) → λγ(θ) with an arbitrary constant λ ≠ 0, known as the mass-sheet degeneracy (Schneider & Seitz 1995). This degeneracy can be broken, for example, by measuring the magnification μ(θ) in the subcritical regime,

$$\mu(\theta) = \frac{1}{|1 - \kappa(\theta)|^2 - |\gamma(\theta)|^2} \equiv \frac{1}{\Delta(\theta)},$$

(3)

which transforms as μ(θ) → λ^2μ(θ).

Let us consider a population of source galaxies described by their redshift distribution function, N(z). In general, we apply different size, magnitude, and color cuts in background selection for measuring shear and magnification, which results in different N(z). In contrast to the former effect, the latter does not require source galaxies to be spatially resolved, but it requires a stringent flux limit against incompleteness effects.

The mean lensing depth for a given population (X = g, μ) is

$$\langle \beta \rangle = \left[\int w(z) N_X(z) \beta(z) dz \right] \left[\int w(z) N_X(z) \right]^{-1},$$

(4)

where w(z) is a weight factor (see Section 3.3).

We introduce the relative lensing strength of a given source population relative to a fiducial source in the far background as (W) = (β(z)/β_∞) (Bartelmann & Schneider 2001) with β_∞ ≡ β(z → ∞; z_1). The associated critical density is Σ_c(z_1) = c^2/(4πGD_0(z_∞)). Hereafter, we use the far-field backgrounds κ_∞(θ) and γ_∞(θ) to describe the projected cluster mass distribution.

2.2. Discretized Mass Distribution

We discretize the convergence field Σ_c(θ) = Σ_z Σ_c into a regular grid of pixels and approximate Σ_c(θ) by a linear combination of basis functions B(θ - θ_m) as

$$\kappa_∞(\theta) = Σ_{z=1}^{N_{pix}} B(\theta - \theta_m) Σ_m,$$

(5)

where our model (signal) s = {Σ_m}^{N_{pix}}_{m=1} is a vector of parameters containing mass coefficients. To avoid the loss of information due to oversmoothing, we take the basis function to be the Dirac delta function B(θ - θ_m) = (Ω_0)^2/(Ω_0^2 + (Δθ)^2) with Δθ a constant spacing, so that s represents the cell-averaged projected mass density. The γ_∞(θ) field can be expressed as

$$γ_∞(θ) = Σ_{z=1}^{N_{pix}} D(\theta - \theta_m) Σ_m,$$

(6)

with D = D ⊗ B an effective kernel (Equation (1)). Hence, both κ_∞ and γ_∞ can be written as linear combinations of s.

Because of the choice of the basis function, an unbiased extraction of mass coefficients {Σ_m}^{N_{pix}}_{m=1} (or certain linear combinations of Σ_m) can be done by performing a spatial integral of Equation (5) over a certain area. In practical applications, such operations include smoothing (Figure 1), azimuthal averaging for a mass profile reconstruction (Section 5.3), and profile fitting with smooth functions (Section 7).

2.3. Weak-lensing Observables

2.3.1. Reduced Shear

The quadrupole image distortion due to lensing is described by the reduced shear, g = g_1 + ig_2. We calculate the weighted average g_m = g(θ_m) of individual shear estimates on a regular cartesian grid (m = 1, 2, ..., N_{pix}) as

$$g_m = \left[\sum_k S(\theta(k), θ_m) w(k) g(k) \right] \left[\sum_k S(\theta(k), θ_m) w(k) \right]^{-1}$$

(7)

where S(θ(k), θ_m) is a spatial window function, g(k) is an estimate of g(θ) for the kth object at θ(k), and w(k) is its statistical weight given by w(k) = 1/(c^2 + σ^2_k) with σ^2_k the error variance of g(k) and α_g the softening constant variance.

We choose α_g = 0.4, a typical value of the mean rms found in Subaru observations (e.g., Umetsu et al. 2009).
The source-averaged theoretical expectation for the estimator (7) is approximated by (see Appendix A.1)
\[\hat{g}(\theta_m) = \frac{\langle W \rangle_\infty \gamma_\infty(\theta_m)}{1 - f_{W,g}(\langle W \rangle_\infty(\theta_m))}, \]
where \(\langle W \rangle_\infty \) is the source-averaged relative lensing strength (Section 2.1), and \(f_{W,g} \) is a dimensionless quantity of the order unity. The variance \(\sigma_{g,m}^2 \equiv \sigma_g^2(\theta_m) \) for \(g_m = g_{1,m} + g_{2,m} \) is expressed as
\[\sigma_{g,m}^2 = \left[\sum_k S^2(\theta_{(k)}, \theta_m) w_{(k)}^2 \right] \left[\sum_k S^2(\theta_{(k)}, \theta_m) w_{(k)} \right]^{-2} \]
In this work, we adopt the top-hat window of radius \(\theta_t \) (Merten et al. 2009), \(S(\theta, \theta') = H(\theta_t - |\theta - \theta'|) \), with \(H(x) \) the Heaviside function defined such that \(H(x) = 1 \) if \(x \geq 0 \) and \(H(x) = 0 \) otherwise. The covariance matrix for \(g_m \) is
\[\text{Cov}(\xi_{\alpha,m}, \xi_{\beta,n}) \equiv \delta_{\alpha \beta} \left(C_g \right)_{mn} = \frac{\delta_{\alpha \beta}}{2} \sigma_{g,m} \sigma_{g,n} \xi_{H}(\{\theta_m - \theta_n\}) \]
where \(\xi_{H}(x) = 2 \pi \left[\cos^{-1} \left(\frac{x}{2 \theta_t} \right) - \frac{x}{2 \theta_t} \right] \sqrt{1 - \left(\frac{x}{2 \theta_t} \right)^2} \)
for \(|x| \leq 2 \theta_t \) and \(\xi_{H}(x) = 0 \) for \(|x| > 2 \theta_t \).

2.3.2. Magnification Bias

Deep multi-band photometry allows us to explore the faint end of the luminosity function of red quiescent galaxies at \(z \sim 1 \) (Ilbert et al. 2010), for which the effect of magnification bias is dominated by the geometric area distortion and thus not sensitive to the exact form of the source luminosity function. In this work, we perform magnification measurements using a flux-limited sample of red galaxies.

If the magnitude shift \(\delta m = 2.5 \log_{10} \mu \) due to magnification is small compared to that on which the logarithmic slope of the luminosity function varies, their number counts can be locally approximated by a power law at the limiting flux (Broadhurst et al. 1995). The expectation value for the source counts \(N_\mu(\theta_m) \) on a grid of equal-area cells \((m = 1, 2, \ldots) \) is modified by lensing magnification as (see Appendix A.2)
\[E[N_\mu(\theta_m)] = \bar{N}_\mu \Delta^{1 - \alpha}(\theta_m), \]
\[\Delta(\theta) = [1 - (W_\mu)^{\gamma_\infty(\theta)}]^{2} - (W_\mu)^{\gamma_\infty(\theta)} \]
where \(\bar{N}_\mu \) is the unlensed mean source counts per cell, \(\alpha \) is the unlensed count slope evaluated at the flux limit \(F \), \(\alpha = -d \log \bar{N}_\mu(> F)/d \log F \), and \((W_\mu) \) is the source-averaged relative lensing strength (Section 2.1).

The net magnification effect on the source counts vanishes when \(\alpha = 1 \). In the regime where \(\alpha \ll 1 \), the bias is dominated by the expansion of the sky area, a net count depletion. For a population with \(\alpha > 1 \), the bias is positive, and a net density enhancement results (e.g., Hildebrandt et al. 2011; Ford et al. 2012, 2014). The faint blue population lying at \(z \sim 2 \) (e.g., Lilly et al. 2007; Medezinski et al. 2010, 2013) tends to have a steep intrinsic slope close to the lensing-invariant one, \(\alpha = 1 \).

The covariance matrix of \(N_\mu(\theta) \) includes both sample covariance and Poisson variance (Hu & Kravtsov 2003):
\[\text{Cov}[N_\mu(\theta_m), N_\mu(\theta_n)] = (C_N)_{mn} = (N_\mu)^2 \omega_{mn} + \delta_{mn} N_\mu(\theta_m), \]
where \(\omega_{mn} \) is the cell-averaged angular correlation function
\[\omega_{mn} = \frac{1}{\Omega_{\text{cell}}} \int d^2 \theta d^2 \theta' S_m(\theta) S_n(\theta') \omega(\theta - \theta') \]
with \(\omega(\theta) \) the angular two-point correlation function of the source galaxies, \(S_m(\theta) \) the boxcar window function of the \(m \)th cell, and \(\Omega_{\text{cell}} = \int d^2 \theta S_m(\theta) \). For deep lensing observations, the angular correlation length of background galaxies can be small (e.g., Connolly et al. 1998) compared to the typical resolution \(\sim 1' \) of reconstructed mass maps. Therefore, the correlation between different cells can be generally ignored, whereas the unresolved correlation on small angular scales accounts for increase of the variance of \(N_\mu(\theta) \) (Van Waerbeke et al. 2000). We thus approximate \(C_N \) by
\[(C_N)_{mn} \approx \frac{\delta(\Delta^2 N_\mu(\theta_m)) + N_\mu(\theta_m)}{\delta_{mn}}, \]
and with \(\langle \Delta^2 N_\mu^2(\theta_m) \rangle \) the variance of the \(m \)th counts.

To enhance the signal-to-noise ratio, we azimuthally average \(N_\mu(\theta) \) in contiguous, concentric annuli and calculate the surface number density \(\{n_{\mu,i} \}_{i=1}^{N_{\text{lim}}} \) of background galaxies as a function of clustercentric radius:
\[n_{\mu,i} = \frac{\eta_i}{\Omega_{\text{cell}}} \sum_{m} P_{im} N_\mu(\theta_m) \]
with \(P_{im} = (\sum_{m} A_{mi})^{-1} A_{mi} \) the radial projection matrix normalized as \(\sum_{m} P_{im} = 1 \). Here \(A_{mi} \) represents the fraction of the area of the \(m \)th cell lying within the \(i \)th annular bin \((0 \leq A_{mi} \leq 1) \), and \(\eta_i \geq 1 \) is the mask correction factor for the \(i \)th annular bin, \(\eta_i = (\sum_{m} (1 - f_m) A_{mi})^{-1} \sum_{m} A_{mi} \), with \(f_m \) the fraction of the mask area in the \(m \)th cell, due to bad pixels, saturated objects, foreground and cluster member galaxies (see Section 3.2 of Umetsu et al. 2014).

The theoretical expectation for the estimator (16) is
\[\hat{n}_{\mu,i} = \eta_i \pi_m \sum_{m} P_{im} \Delta^{1 - \alpha}(\theta_m) \]
with \(\pi_m = \bar{N}_\mu / \Omega_{\text{cell}} \). The bin-to-bin covariance matrix for the estimator (16) is obtained as
\[\text{Cov}(n_{\mu,i}, n_{\mu,j}) = (C_N)_{ij} = \frac{\eta_i \eta_j}{\Omega_{\text{cell}}} \sum_{m} P_{im} P_{jn} (C_N)_{mn} \]
Note that since \(C_N \) is diagonal, \(C_N \) is also diagonal:
\[(C_N)_{ij} \equiv \sigma_{i,j} \]
24. Mass Reconstruction

Given a model \(m \) and observed (fixed) data \(d \), the posterior probability \(P(m|d) \) is proportional to the product of the likelihood \(L(m) \equiv P(d|m) \) and the prior probability \(P(m) \). In our 2D inversion problem, \(m \) is a vector containing the signal parameters \(s \) (Section 2.2) and calibration parameters \(c \) (Section 2.4.3), \(m \equiv (s, c) \).

14 In the weak-lensing literature, \(s \equiv d \log_{10} N(< m)/dm \) in terms of the limiting magnitude \(m \) is often used instead of \(\alpha \) (e.g., Umetsu et al. 2011b, 2014; Medezinski et al. 2013).
The total likelihood function \mathcal{L} for combined weak-lensing data d is given as a product of the two separate likelihoods, $\mathcal{L} = \mathcal{L}_d \mathcal{L}_\mu$, where \mathcal{L}_d and \mathcal{L}_μ are the likelihood functions for shear and magnification, respectively. We assume that the errors on the data follow a Gaussian distribution, so that $\mathcal{L} \propto \exp(-\chi^2/2)$, with χ^2 the standard misfit statistic.

2.4.1. Shear Log-likelihood Function

The log-likelihood function $l_g \equiv -\ln \mathcal{L}_g$ for 2D shear data can be written in the general form (ignoring constant terms) as (Oguri et al. 2010; Umetsu et al. 2012)

$$l_g = \frac{1}{2} \sum_{m,n=1}^{N_{\text{pix}}} \sum_{\alpha=1}^{2} [g_{\alpha,m} - 2 \tilde{g}_{\alpha,m}(m)] (W_g)_{mn} [g_{\alpha,n} - 2 \tilde{g}_{\alpha,n}(m)]$$

(20)

where $g_{\alpha,m}(m)$ is the theoretical expectation for $g_{\alpha,m} = g_{\alpha}(\theta_{m})$, and $(W_g)_{mn}$ is the shear weight matrix,

$$(W_g)_{mn} = M_m M_n (C^{-1}_g)_{mn},$$

(21)

with $(C^{-1}_g)_{mn}$ the inverse covariance matrix for the 2D shear data and M_m a mask weight, defined such that $M_m = 0$ if the mth cell is masked out and $M_m = 1$ otherwise.

2.4.2. Magnification Log-likelihood Function

Similarly, the log-likelihood function for magnification-bias data $l_\mu \equiv -\ln \mathcal{L}_\mu$ can be written as

$$l_\mu = \frac{1}{2} \sum_{i=1}^{N_{\text{bin}}} \left[n_{\mu,i} - \bar{n}_{\mu,i}(m) \right] (W_\mu)_{ij} \left[n_{\mu,j} - \bar{n}_{\mu,j}(m) \right],$$

(22)

where $\bar{n}_{\mu,i}(m)$ is the theoretical prediction for the observed counts $n_{\mu,i}$ (see Equations (16) and (17)), and $(W_\mu)_{ij}$ is the magnification weight matrix,

$$(W_\mu)_{ij} = (C^{-1}_\mu)_{ij} = \frac{\delta_{ij}}{\sigma_{\mu,i}},$$

(23)

(Equations (18) and (19)). We use Monte Carlo integration to calculate the radial projection matrix P_{om} (Equation 16) of size $N_{\text{bin}} \times N_{\text{pix}}$, which is needed to predict $\{\bar{n}_{\mu,i}(m)\}_{i=1}^{N_{\text{bin}}}$ for a given $m = (s, c)$.

The l_g function imposes a set of azimuthally integrated constraints on the underlying projected mass distribution. Since magnification is locally related to κ, this will essentially provide the otherwise unconstrained normalization of $\Sigma(\theta)$ over a set of concentric rings where count measurements are available. We note that no assumption is made of azimuthal symmetry or isotropy of the 2D mass distribution $\Sigma(\theta)$.

2.4.3. Calibration Parameters

We account for the calibration uncertainty in the observational nuisance parameters,

$$c = (\langle W \rangle_g, f_{\langle W \rangle_g}, \langle W \rangle_\mu, \pi_\mu, \alpha).$$

(24)

To do this, we include in our analysis Gaussian priors on c given by means of quadratic penalty terms with mean values and errors directly estimated from data.

2.4.4. Best-fit Solution and Covariance Matrix

The log posterior $F(m) = -\ln P(m|d)$ is expressed as a linear sum of the log-likelihood and prior terms. The maximum-likelihood (ML) solution, \hat{m}, is obtained by minimizing $F(m)$ with respect to m. In our implementation we use the conjugate-gradient method (Press et al. 1992) to find the solution. Here we employ an analytic expression for the gradient function $\nabla F(m)$ obtained in the nonlinear, subcritical regime. To be able to quantify the errors on the reconstruction, we evaluate the Fisher matrix at $m = \hat{m}$ as

$$F_{pp'} = \left\langle \frac{\partial^2 F(m)}{\partial m_p \partial m_{p'}} \right\rangle \bigg|_{m=\hat{m}}$$

(25)

where the angular brackets represent an ensemble average, and the indices (p, p') run over all model parameters $m = (s, c)$. We estimate the error covariance matrix as

$$\text{Cov}(m_p, m_{p'}) = C_{pp'} = (F^{-1})_{pp'},$$

(26)

3. SUBARU OBSERVATIONS

Here we present a description of our data analysis of A1689 based on deep Subaru BV RC i' z' images. In this study, we analyze the data using the same methods and procedures as in Umetsu et al. (2014), who performed a weak-lensing analysis of 20 high-mass clusters selected from the CLASH survey (Postman et al. 2012). For details of our reduction and analysis pipelines, we refer to Section 4 of Umetsu et al. (2014).

3.1. Data and Photometry

We analyze deep BV RC i' z' images of A1689 observed with the wide-field camera Suprime-Cam (34' \times 27'; Miyazaki et al. 2002) at the prime focus of the 8.3 m Subaru Telescope. We combine both existing archival data taken from SMOKA15 with observations acquired by the team on the nights of 2010 March 17–18 (S10A-019). The observation details of A1689 are summarized in Table 2.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Exposure time a (ks)</th>
<th>Seeing b (arcsec)</th>
<th>m_{\lim}^c (AB mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2.40</td>
<td>0.91</td>
<td>27.1</td>
</tr>
<tr>
<td>V</td>
<td>4.08</td>
<td>0.84</td>
<td>27.0</td>
</tr>
<tr>
<td>RC</td>
<td>6.42</td>
<td>0.70 (0.60)</td>
<td>27.0</td>
</tr>
<tr>
<td>i'</td>
<td>4.08</td>
<td>0.84</td>
<td>26.4</td>
</tr>
<tr>
<td>z'</td>
<td>8.02</td>
<td>0.81</td>
<td>26.2</td>
</tr>
</tbody>
</table>

a Total exposure time.

b Seeing FWHM in the full stack of images.

c Limiting magnitude for a 3σ detection within a 2" aperture.

15 http://smoka.nao.ac.jp
after) matching between exposures in the same band. An accurate astrometric solution is derived with the SCAMP software (Bertin 2006), using the Sloan Digital Sky Survey (SDSS, Adelman-McCarthy et al. 2008) as an external reference catalog. The SWARP software (Bertin et al. 2002) is used to stack individual exposures on a common World Coordinate System (WCS) grid with pixel scale of 0.2″.

The photometric zero-points for the co-added images were derived using HST/ACS magnitudes of cluster elliptical-type galaxies. These zero points were further refined by fitting SED (spectral energy distribution) templates with the BPZ code (Bayesian photometric redshift estimation; Benítez 2000; Benítez et al. 2004) to 1445 galaxies having spectroscopic redshifts. This leads to a final photometric accuracy of ~0.01 mag in all passbands. The magnitudes were corrected for Galactic extinction according to Schlegel et al. (1998). The multi-band photometry was measured using SExtractor (Bertin & Arnouts 1996) in dual-image mode on PSF-matched images created by ColorPro (Coe et al. 2006).

This research has made use of the VizieR catalog access tool, CDS, Strasbourg, France.

16 The data used here are part of an extensive multi-object spectroscopy survey carried out with the VIMOS spectrograph on the VLT (Czoske 2004). For details, see Lemze et al. (2009).
3.2. Shape Measurement

We use our shear analysis pipeline based on the IMCAT package (Kaiser et al. 1995, KSB) incorporating improvements developed by Umetsu et al. (2010). On the basis of simulated Subaru/Suprime-Cam images (Oguri et al. 2012; Massey et al. 2007), Umetsu et al. (2010) showed that the lensing signal can be recovered with \(|m| \sim 5\% \) of the multiplicative shear calibration bias (as defined by Heymans et al. 2006; Massey et al. 2007), and \(c \sim 10^{-3} \) of the residual shear offset, which is about one order of magnitude smaller than the typical shear signal in cluster outskirts. Accordingly, we include for each galaxy a shear calibration factor of \(1/0.95 \) \((q \rightarrow q/0.95)\) to account for residual calibration.

In this work, we perform weak-lensing shape analysis using the same procedures adopted in the CLASH weak-lensing analysis of Umetsu et al. (2014). Here, we only highlight key aspects of our analysis pipeline:

- **Object detection.** Objects are detected using the IMCAT peak finder, hfindpeaks, using a set of Gaussian kernels of varying sizes. This algorithm produces object parameters such as the peak position, the best-matched Gaussian scale length, \(r_g \), and an estimate of the significance of the peak detection, \(\nu \).

- **Crowding effects.** Objects having any detectable neighbors within \(3r_g \) are identified. All such close pairs of objects are rejected to avoid possible shape measurement errors due to crowding. The detection threshold is set to \(\nu = 7 \) for close-pair identification. After this close-pair rejection, objects with low detection significance \(\nu < 10 \) are excluded from our analysis.

- **Shear calibration.** We calibrate KSB’s isotropic correction factor \(P_g \) as a function of object size \(r_g \) and magnitude, using galaxies detected with high significance \(\nu > 30 \) (Umetsu et al. 2010). This is to minimize the inherent shear calibration bias in the presence of noise. We correct for the isotropic smearing effect caused by seeing as well as by the window function used in the shear estimate as \(g_\alpha = e_\alpha / P_g \) with \(e_\alpha \) the anisotropy-corrected object ellipticity.

To measure the shapes of background galaxies, we use the \(R_C \) band data, which have the best image quality in our data sets (Table 2). Two separate co-added \(R_C \)-band images are created, one from 2009 (observed by Matsuda et al.) and another from 2010 (observed by Umetsu et al.). We separately stack data obtained at different epochs. We do not smear individual exposures before stacking, so as not to degrade the weak-lensing signal. After PSF anisotropy correction, the mean residual stellar ellipticity is consistent with zero, and the rms residual stellar ellipticity in each stack is \(\sigma(\delta e_\alpha) \sim 2.5 \times 10^{-3} \) per component. A shape catalog is created for each epoch separately. These subcatalogs are then combined by properly weighting and stacking the calibrated shear estimates for galaxies in the overlapping region (see Section 4.3 of Umetsu et al. 2014).

3.3. Background Galaxy Selection

A careful background selection is critical for a cluster weak-lensing analysis, so that unlensed objects do not dilute the true lensing signal of the background (Medezinski et al. 2007; Umetsu & Broadhurst 2008; Okabe et al. 2013; Hwang et al. 2014). In particular, dilution due to contamination by cluster members can lead to a substantial underestimation of the true signal at small cluster radii, \(r \lesssim r_{2500c} \) (Medezinski et al. 2010; Okabe et al. 2010). The relative importance of the dilution effect indicates that, the impact of background purity and depth is more important than that of shot noise (\(\propto \pi_g^{-1/2} \)).

We use the color-color (CC) selection method of Medezinski et al. (2010) to define uncontaminated samples of background galaxies from which to measure the shear and magnification effects. Here we refer the reader to Medezinski et al. (2010) for further details. Our multi-color approach and its variants have been successfully applied to a large number of clusters (Medezinski et al. 2010, 2011, 2013; Umetsu et al. 2010, 2011b, 2012, 2014; Coe et al. 2012; Oguri et al. 2012; Covone et al. 2014; Sereno et al. 2014b).

We use the Subaru \(B_{R_C} \) photometry, which spans the full optical wavelength range, to perform CC selection of background samples. In Figure 2, we show the \(B - R_C \) versus \(R_C - z' \) distribution of all galaxies to our limiting magnitudes (cyan). We select two distinct populations that encompass the red and blue branches of background galaxies in CC space, each with typical redshift distributions peaked around \(z \sim 1 \).
Table 4
Background Galaxy Samples for Magnification-bias Measurements

<table>
<thead>
<tr>
<th>Sample</th>
<th>z'_{cut} a</th>
<th>N_{μ}</th>
<th>η_{μ} b</th>
<th>α c</th>
<th>$\langle z \rangle$ d</th>
<th>τ_{eff} e</th>
<th>$\langle D_{ls}/D_{s}\rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>25.6</td>
<td>26136</td>
<td>19.0 ± 0.5</td>
<td>0.39 ± 0.08</td>
<td>1.13</td>
<td>1.05</td>
<td>0.73 ± 0.04</td>
</tr>
<tr>
<td>Blue</td>
<td>25.6</td>
<td>12143</td>
<td>8.8 ± 0.3</td>
<td>0.82 ± 0.12</td>
<td>1.81</td>
<td>1.39</td>
<td>0.82 ± 0.04</td>
</tr>
</tbody>
</table>

a Fainter magnitude cut of the background sample. Apparent magnitude cuts are applied in the reddest CC-selection band available (z') to avoid incompleteness near the detection limit.
b Coverage- and mask-corrected normalization of unlensed background source counts.
c Logarithmic slope of the unlensed source counts $\alpha = 2.5 \left[\log_{10} N_{\mu}(<z')/dz'\right]_{z'=z'_{cut}}$.
d Mean photometric redshift of the sample obtained with the BPZ code, defined similarly to Equation (4).
e Effective source redshift corresponding to the mean lensing depth ($\langle \beta \rangle = \langle D_{ls}/D_s \rangle$, defined as $\beta(\tau_{eff}) = \langle \beta \rangle$.

As a cross-check we calculate the tangential (g_+) and cross (g_\times) reduced-shear components in clustercentric radial bins, which we show in Figure 3. In the absence of higher-order effects, weak lensing produces only curl-free tangential distortions, g_+. The presence of \times modes can thus be used to check for systematic errors. Using the weak-lensing-matched blue and red samples, we find a consistent, rising distortion signal all the way to the cluster center. For all cases, the \times-component is consistent with a null signal detection well within 2σ at all radii.

For the number counts to measure magnification, we define flux-limited photometry samples of background galaxies. Here we limit the data to $z' = 25.6$ mag in the reddest band (Table 4), corresponding to the 5σ limiting magnitude within 2″ diameter aperture. We plot in Figure 4 the coverage- and mask-corrected surface number density as a function of clustercentric radius, for the blue and red samples. No clustering is observed toward the center, demonstrating that there is no detectable contamination by cluster members in the background samples. The red sample reveals a systematic decrease in their counts toward the cluster center, caused by magnification of the sky area (Section 3.3). The faint blue counts, on the other hand, are nearly constant with cluster radius, as expected by their steep count slope (Table 4). A more quantitative magnification analysis is given in Section 4.1.
eter as the weight factor \(w(z) \) in Equation (4). The resulting depth estimates are summarized in Tables 3 and 4.

4. SUBARU WEAK-LENSEING ANALYSIS

We use our \(z' \)-band limited sample of red background galaxies (Table 4) for magnification measurements and a full composite sample of blue+red galaxies (Table 3) for shear measurements. In Section 4.1, we perform a 1D weak-lensing analysis of A1689 to derive azimuthally averaged lensing profiles from our new Subaru data (Section 3), and examine the consistency of complementary shear and magnification measurements. In Section 4.2, we apply the 2D inversion method developed in Section 2 and reconstruct the projected 2D mass distribution from joint shear+ magnification measurements.

4.1. Weak-lensing Profiles of A1689

A1689 exhibits a small offset \(d_{off} \approx 5 \text{kpc} \, h^{-1} \) \((\approx 2.3''\) between the BCG and X-ray centroids (Table 1), ensuring a well-defined center. The X-ray and SZE centroids agree to within 1'' (Table 1). Here we will adopt the BCG position as the cluster center for a radial profile analysis.

![Figure 5](image)

Figure 5. Azimuthally averaged cluster weak-lensing profiles obtained from Subaru multi-color observations of A1689. The upper panel shows the tangential reduced shear profile \(g_+ \) (black squares) based on the full background sample. The lower panel shows the magnification-bias profile \(n_p \) (red circles) of a \(z' \)-band limited sample of red background galaxies. For each observed profile, the shaded area represents the joint reconstruction (68% CL) from the combined shear+magnification measurements. The horizontal bar (cyan shaded region) shows the constraints on the unlensed count normalization estimated from the source counts in cluster outskirts.

We derive azimuthally averaged radial profiles of tangential reduced shear \(g_+ \) and magnification bias \(n_p \) from Subaru data. We calculate the lensing profiles in \(N_{\text{bin}} = 13 \) discrete radial bins, spanning the range \(\{ \theta_{\text{min}}, \theta_{\text{max}} \} = [1', 18'] \) with a constant logarithmic spacing. \(\Delta \ln \theta = \ln(\theta_{\text{max}}/\theta_{\text{min}})/N_{\text{bin}} \approx 0.22 \). The inner radial limit \(\theta_{\text{min}} \equiv D_{\text{A}}\theta_{\text{min}} \approx 129 \text{kpc} \, h^{-1} \) is sufficiently greater than the Einstein radius \(\theta_{\text{Ein}} = 47.00' \pm 1.29' \) \((z_s = 2) \) (Table 1), and it also satisfies \(r_{\text{min}} > 2d_{\text{off}} \approx 10 \text{kpc} \, h^{-1} \) so the miscentering effects on mass profile reconstructions are negligible.

![Figure 6](image)

Figure 6. Surface mass density profile \(\Sigma(\theta) \) (upper panel, red squares) derived from a Subaru 1D weak-lensing analysis of the combination of shear and magnification measurements shown in Figure 5. The lower panel shows the corresponding cumulative mass profile \(M_{2D}(\theta) \) (red squares). The gray area in each panel represents the best-fit projected Navarro-Frenk-White profile (68% CL) for the mass profile solution \(\Sigma(\theta) \).

(Johnston et al. 2007; Umetsu et al. 2011a; Du & Fan 2014). The outer boundary \(\theta_{\text{max}} = 18' \), or \(r_{\text{max}} \equiv D_{\text{A}}\theta_{\text{max}} \approx 2.3 \text{Mpc} \, h^{-1} \), is large enough to encompass the entire virial region with \(r_{\text{vir}} \approx 2 \text{Mpc} \, h^{-1} \) (Umetsu & Broadhurst 2008), but sufficiently small compared to the size of the Suprime-Cam field of view so as to ensure accurate PSF anisotropy correction. The number of bins \(N_{\text{bin}} = 13 \) is chosen such that the detection signal-to-noise ratio (S/N) is of the order of unity per bin, which is optimal for an inversion problem.

In this work, we follow the prescription outlined in Section 3.2.2 of Umetsu et al. (2014) to perform magnification measurements using the Subaru BRG \(z' \)-selected red galaxy sample (Table 4), which exhibits a clear depletion signal (Figure 4). We have properly accounted and corrected for masking of background galaxies due to cluster galaxies, foreground objects, and saturated pixels (see also Section 2.3.2). Unlike the nonlocal distortion signal, the magnification signal falls off sharply with increasing cluster radius. We thus estimate the count normalization and slope \(\langle \Sigma, \mu, \alpha \rangle \) from the source counts in cluster outskirts (Umetsu et al. 2011b, 2012, 2014; Medezinski et al. 2013), specifically at \(12' \sim r_{200c} < \theta < \theta_{\text{max}} \).

Figure 5 shows the radial profiles of \((g_+, n_p) \). A clear depletion of red galaxies is seen toward the center owing to geometric magnification of the sky area. The statistical significance of the detection of the tangential distortion is 22\(\sigma \). The detection significance of the magnification signal is 9\(\sigma \), which is \(\approx 40\% \) of that of distortion.

Here we construct the radial mass profile of A1689 from a joint likelihood analysis of shear and magnification measurements (Figure 5), using the method of Umetsu et al. (2011b). We have 26 constraints \(\{ g_+, n_p \}_{i=1}^{N_{\text{bin}}} \) in 13 log-spaced cluster-centric radial bins. The model is described by \(N_{\text{bin}} + 1 = 14 \) parameters, \(\{ \Sigma_{\text{min}}, \Sigma_i \}_{i=1}^{N_{\text{bin}}} \), where \(\Sigma_{\text{min}} \equiv \Sigma(< \theta_{\text{min}}) \) is the average surface mass density interior to \(\theta_{\text{min}} \), and \(\Sigma_i \) is the surface mass density averaged in the \(i \)th radial bin. To perform a reconstruction, we express the lensing observables \((g_+, \mu^-) \) in terms of \(\Sigma \) using the relations given in Appendix B. Additionally, we account for the calibration uncertainty in the observational parameters \(\epsilon = \left(\langle W \rangle, f_{W,G}, (W), \mu, \Sigma_{\text{F}} \right) \) as given in Tables 3 and 4. Following Umetsu et al. (2014),
we fix $f_{W,g}$ to the observed value (Table 3).

The results are shown in Figures 5 and 6. The ML solution has a reduced χ^2 of 11.5 for 12 degrees of freedom (dof), indicating good consistency between the shear and magnification measurements having different potential systematics. This is demonstrated in Figure 5, which compares the observed lensing profiles with the respective joint reconstructions (68% CL). The resulting mass profile $\Sigma(\theta)$ is shown in the upper panel of Figure 6. The error bars represent the 1σ errors from the diagonal part of the total covariance matrix C (Umetsu et al. 2014). The corresponding cumulative mass profile is shown in the lower panel of Figure 6.

4.2. Weak-lensing Mapmaking of A1689

We apply our 2D inversion method (Section 2) to our new Subaru observations (Sections 3) for obtaining an unbiased recovery of the projected matter distribution $\Sigma(\theta)$ in A1689. In this approach, we combine the observed spatial shear pattern ($g_1(\theta), g_2(\theta)$) with the azimuthally averaged magnification measurements $\{n_{\mu,i}\}_{i=1}^{N_{\text{bin}}}$ (Section 4.1), which impose a set of azimuthally integrated constraints on the underlying $\Sigma(\theta)$ field, thus effectively breaking the mass-sheet degeneracy. The algorithm takes into account the nonlinear subcritical regime of the lensing properties.

For mapmaking, we pixelize the lensing fields into a 56×56 grid with $\Delta \theta = 0.5'$ spacing, covering the central $28' \times 28'$ field. The model $m = (s, c)$ is specified by $N_{\text{pix}} = 56^2$ parameters, $s = \{\Sigma(\theta_m)\}_{m=1}^{N_{\text{pix}}}$, and a set of calibration parameters c to marginalize over. We utilize the FFTW implementation of fast Fourier transforms (FFTs) to calculate $\gamma_{\infty}(\theta)$ from $\kappa_{\infty}(\theta)$ using Equation (6). To minimize spurious aliasing effects from the periodic boundary condition, the maps are zero padded to twice the original length in each spatial dimension (e.g., Seljak 1998; Umetsu & Broadhurst 2008).

We use a top-hat window of $\theta_c = 0.4'$ (Section 2.3.1) to average over a local ensemble of galaxy ellipticities ($N = \pi \pi_c \theta_c^2 \sim 10$; Merten et al. 2014) at each grid point, accounting for the intrinsic ellipticity distribution of background sources. The filter size corresponds to an effective resolution of $2D_\theta \theta_c \simeq 100 \text{kpc} \text{ h}^{-1}$ at the cluster redshift. To avoid potential systematic errors, we exclude from our analysis (Section 2.4.1) those pixels lying within central $\theta_{\text{cut}} = 1'$ where Σ, c, as well as those containing no background galaxies with usable shape measurements. For distortion measurements ($g_1(\theta), g_2(\theta)$) from the full background sample (Table 3), this leaves us with a total of 3093 usable measurement pixels (blue points in Figure 7), corresponding to 6186 constraints. For magnification measurements, we have 13 azimuthally averaged constraints $\{n_{\mu,i}\}_{i=1}^{N_{\text{bin}}}$ in log-spaced clustercentric annuli (Figure 7). The total number of constraints is thus $N_{\text{data}} = 6199$, yielding $N_{\text{data}} - N_{\text{pix}} = 3063$ dof.

In Figure 8, we show the resulting $\Sigma(\theta)$ field reconstructed from a joint analysis of the 2D shear and azimuthally averaged magnification data. The χ^2 value for the ML solution is $\chi^2(m) = 4046$ for 3063 dof. Here, for visualization purposes, the $\Sigma(\theta)$ field is smoothed with a Gaussian of FWHM = 1'. The main mass peak coincides well with the cluster center. The projected mass distribution is elongated in the north-south direction (Figure 1; see also Section 7.1) and very similar to the distribution of cluster members (Kawaharada et al. 2010).

In Figure 9, we compare the projected mass profiles $\Sigma(\theta)$ obtained from our 1D and 2D analyses of the shear+magnification data. Here we have used the method described in Appendix C to construct an optimally weighted radial projection of the Σ map. Our 1D- and 2D-based Σ profiles are consistent within 1σ at all cluster radii, and both are in good agreement with the 1D results of Umetsu et al. (2011b) from the joint shear+magnification analysis of the Subaru V' data. Similarly, our 1D and 2D weak-lensing results are in excellent agreement with each other in terms of the cumulative mass $M_{2D}(<\theta)$ as shown in Figure 10.

5. HST STRONG-LENSING ANALYSIS

5.1. Image Systems

A1689 has been a subject of detailed strong-lensing studies by numerous authors (e.g., Broadhurst et al. 2005b; Halkola et al. 2006; Limousin et al. 2007; Coe et al. 2010; Diego et al. 2015). Thus far, a total of 61 multiple-image candidate systems of 165 images were identified from extremely deep optical and near-infrared data from HST and Subaru (Diego et al. 2015).

To study global structural properties of the cluster, we focus on our strong-lensing analysis on the principal modes of the cluster mass distribution, responsible for the massive, smooth halo component (see Section 7.1.2). For this aim, we conservatively select a subset of systems based on the following criteria: i) We use only spectroscopically confirmed systems. ii) We consider only systems whose members were consistently identified in different studies. iii) We limit our analysis to those lying within 80' from the BCG, so that multiple images spread fairly evenly over the analysis region. iv) We discard systems of very close pairs. They are primarily sensitive to substructures rather than the principal modes of the mass
distribution, which we are interested in.

These criteria leave us with 12 systems (ID 1, 2, 4, 5, 6, 7, 11, 15, 18, 22, 24, 29, according to the original notation in Broadhurst et al. (2005b)), for a total of 44 multiple images spanning the range 1.4′′-72.3′′ in cluster radius.

5.2. PIXELENS Free-form Mass Reconstruction

Free-form models describe the lens on a grid of pixels or a set of basis functions, allowing for a wide range of solutions (Coles 2008). We have performed a free-form strong-lensing analysis of the central region using the PIXELENS software (Saha & Williams 2004), which produces pixelated maps of the surface mass density. Each map is constrained to exactly reproduce the positions and parities of all given multiple images. PIXELENS generates a statistical ensemble of models through which uncertainties and degeneracies in solutions can be explored (Coles 2008).

Our PIXELENS analysis procedure largely follows Sereno & Zitrin (2012) and Sereno et al. (2013). To determine robust sampling strategies optimized to recover the smooth cluster signal, we tested the PIXELENS algorithm using simulated sets of multiple images in analytic lenses. The results suggest that the best strategy is to limit each analysis to three image systems, for a total of a dozen of images, and to reconstruct maps with ∼ 10 pixels in the radial direction, avoiding oversampling (Lubini & Coles 2012). We thus divide the strongly-lensed images in four groups of three systems each and analyze each group separately. We end up with four triples consisting of systems 1, 5, and 11 (11 images), systems 2, 6, and 22 (11 images), systems 4, 15, and 29 (12 images), and systems 7, 18, and 24 (10 images). Image systems with similar configurations are divided into different groups.

For each group, we compute 500 κ maps within 80′′ from the BCG on a circular grid of 349 pixels (10 pixels along the radial direction) with a pixel size of 8′′ (≈17.2 kpc h⁻¹). These optimal settings allow us to avoid the known problem of too flat density profiles recovered with PIXELENS model-
ing (see Grillo et al. 2010; Umetsu et al. 2012), which otherwise could bias cluster mass estimates. As discussed by Grillo et al. (2010, see their Appendix), this bias can arise from a combination of the mass-sheet degeneracy (Schneider & Seitz 1995) and the assumed prior on the positive definiteness of every pixel of the surface mass density map. In the following, we restrict our analysis to the region where the cluster mass distribution is accurately recovered by PIXEL-Lens. We exclude the central 20 kpc h$^{-1}$ region to minimize the effects of miscentering and baryonic physics (Umetsu et al. 2012, 2014). For each group of reconstruction, we determine the outer cutoff radius beyond which the logarithmic density slope is steeper than -2, the asymptotic minimum slope for the projected Navarro–Frenk–White density profile (NFW, Navarro et al. 1997). The maximum radius is 63.7$''$ (188 mass pixels) in three cases and 54.9$''$ (140 mass pixels) for the group with the triple 4–15–29.

5.3. Comparison of Weak and Strong Lensing Results

We show in Figure 9 the radial mass distribution of A1689 from our HST strong-lensing analysis. The results are shown along with the previous strong-lensing results by Broadhurst et al. (2005b) and Diego et al. (2015), as well as with independent weak-lensing results from shear and magnification information (Sections 4.1 and 4.2). The strong-lensing model of Broadhurst et al. (2005b) is based on the light-traces-mass (LTM) assumption, so that the HST photometry of cluster red-sequence galaxies was used as an initial guess for their lens solution. Diego et al. (2015) used a hybrid (free-form + LTM) approach combining Gaussian pixel grid and cluster member components for describing large- and small-scale contributions to the deflection field, respectively. They constrained the range of solutions with sufficient accuracy to allow the detection of new counter images for further improving the lensing solution of A1689. This comparison shows clear consistency among a wide variety of lensing methods with different assumptions and potential systematics, demonstrating the robustness of our results (see also Figure 10). Excellent agreement is also found between our strong-lensing mass profile and that of Limousin et al. (2007).

6. TRIAXIAL MODELING OF THE CLUSTER MATTER DISTRIBUTION

Since we can only observe clusters in projection, determining the intrinsic 3D shape and orientation of an aspherical cluster is an intrinsically underconstrained problem (Sereno 2007). In this section, we describe the modeling of the 3D cluster matter distribution as an ellipsoidal halo following Sereno et al. (2013). In this approach, we exploit the combination of X-ray and SZE observations to constrain the elongation of the ICM along the line of sight. We use minimal geometric assumptions about the matter and gas distributions to couple the constraints from lensing and SZE/X-ray data. The parameter space is explored in a Bayesian inference framework. This multi-probe method allows us to improve constraints on the intrinsic shape and orientation of the cluster mass distribution without assuming HSE.

6.1. Matter Distribution

We model the cluster mass distribution with a triaxial NFW density profile as motivated by cosmological N-body simulations (Jing & Suto 2002; Kasun & Evrard 2005). The radial dependence of the spherical NFW density profile is given by (Navarro et al. 1996, 1997)

$$\rho(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2}$$

with ρ_s the characteristic density and r_s the inner characteristic radius at which the logarithmic slope of the density profile is -2. We generalize the spherical NFW model to obtain a triaxial density profile by replacing r and r_s with the respective ellipsoidal radii R and R_s, defined such that

$$R^2 = c^2 \left(\frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2} \right) = \frac{X^2}{q_a} + \frac{Y^2}{q_b} + \frac{Z^2}{q_c}$$

where $q_a = a/c$ and $q_b = b/c$ ($a \leq b < c$) are the minor-major and intermediate–major axis ratios, respectively. The corresponding eccentricities are $e_a = \sqrt{1 - q_a^2}$ and $e_b = \sqrt{1 - q_b^2}$. The degree of triaxiality is defined as $T = e_b^2/e_a^2$ (Sereno et al. 2013).

We define an ellipsoidal overdensity radius R_Δ (e.g., Corless et al. 2009; Sereno & Umetsu 2011; Buote & Humphrey 2012b) such that the mean interior density contained within a ellipsoidal volume of semimajor axis R_Δ is $\Delta \times \rho_c$. The total mass enclosed within R_Δ is $M_{\Delta} = (4\pi/3)\Delta q_a q_b a R_{\Delta}^3$. We use $\Delta = 200$ to define the halo mass, M_{200c}. The triaxial concentration parameter is defined by $c_{200c} = R_{200c}/R_c$. The characteristic density is then expressed as $\rho_s = M_{\Delta}/(4\pi q_a q_b a R_{\Delta}^3) \times c_{200c}^3/[\ln(1+c_{\Delta})-c_{\Delta}/(1+c_{\Delta})]$ (Buote & Humphrey 2012b).

A triaxial halo is projected on to the sky plane as elliptical isodensity contours (Stark 1977), which can be expressed as a function of the intrinsic halo axis ratios ($a/c, b/c$) and orientation angles (ϑ, ϕ, ψ) with respect to the observer’s line of sight. Here we adopt the z-x-z convention of Euler angles to be consistent with Stark (1977) (see, e.g., Sereno et al. 2012). The angle ϑ describes the inclination of the major (Z) axis with respect to the line of sight. For a given projection, the elliptical projected mass distribution can be described as a function of the elliptical radius r/r_s and the inner characteristic radius r_s.

$\zeta^2 = \frac{1}{f} \left(j X'^2 + 2k Y'X' + l Y'^2 \right) = \frac{X'^2}{q_{1X}^2} + \frac{Y'^2}{q_{1Y}^2}$

where q_{1X} and q_{1Y} ($q_{1X} \geq q_{1Y}$) are

$q_{1X}^2 = \frac{2f}{j + l - \sqrt{(j-l)^2 + 4k^2}}$

$q_{1Y}^2 = \frac{2f}{j + l + \sqrt{(j-l)^2 + 4k^2}}$

with

$$j = \cos^2 \vartheta \left(\frac{c^2}{a^2} \cos^2 \phi + \frac{c^2}{b^2} \sin^2 \phi \right) + \frac{c^2}{a^2} \frac{c^2}{b^2} \sin^2 \vartheta,$$

$$k = \sin \phi \cos \phi \cos \vartheta \left(\frac{c^2}{a^2} - \frac{c^2}{b^2} \right),$$

$$l = \frac{c^2}{a^2} \sin^2 \phi + \frac{c^2}{b^2} \cos^2 \phi,$$

$$f = \sin^2 \vartheta \left(\frac{c^2}{a^2} \sin^2 \phi + \frac{c^2}{b^2} \cos^2 \phi \right) + \cos^2 \vartheta.$$

18 The intrinsic axis ratios (q_a, q_b) here correspond to ($\eta_{DM,a}, \eta_{DM,b}$) of Limousin et al. (2013) in their notation.
Here we have chosen the new coordinate system \((X'', Y'')\) such that the \(X''\) axis is aligned with the major axis of the projected ellipse. The minor–major axis ratio \(q_{\perp} \equiv q_{\perp,Y}/q_{\perp,X}\) of the elliptical density contours is given by\(^{19}\)

\[
q_{\perp}(a/c, b/e, \vartheta, \phi) = \frac{\left[j + l + \sqrt{(j - l)^2 + 4k^2} \right]^{1/2}}{\left[j + l - \sqrt{(j - l)^2 + 4k^2} \right]^{1/2}}.
\]

The principal axes of the isodensities are rotated by an angle \(\psi\) with respect to the projection on to the sky of the intrinsic major axis \(Z\), where \(2\psi = \arctan[2k/(j - l)]\) (Sereno 2007). As observable parameters to describe the projected mass distribution, we use the ellipticity

\[
e = 1 - q_{\perp}
\]

and the position angle \(\psi_e\) of the projected major axis.

The projected surface mass density \(\Sigma(\zeta)\) as a function of the elliptical radius \(\zeta\) is related to the triaxial density profile \(\rho(R)\) by (Stark 1977)

\[
\Sigma(\zeta) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} \rho(R) R dR \sqrt{\zeta^2 - \zeta_0^2} = \frac{2R_s}{\sqrt{\pi}} \int_{\xi/R_s}^{\infty} \frac{\rho(R_s) x dx}{\sqrt{x^2 - (\xi/R_s)^2}},
\]

where \(\xi = q_{\perp,X} \zeta = \sqrt{X'^2 + Y'^2}/2\) is the observable elliptical radius, and \(\xi = q_{\perp,X} R_s\) is the observable scale length (semi-major axis) in the sky plane (Sereno 2007). The quantity \(l_l = R_s/\sqrt{\pi}\) represents the line-of-sight half length of the ellipsoid of radius \(R = R_s\) (Sereno 2007). It is useful to introduce the dimensionless scale factor \(e_{\parallel}\) that quantifies the extent of the cluster along the line of sight (Sereno 2007),

\[
e_{\parallel}(a/c, b/e, \vartheta, \phi) = l_l/\xi_s = \left(q_{\perp}/q_{\perp}^b \right)^{1/2} f^{-3/4}.
\]

The larger \(e_{\parallel}\), the larger the elongation along the line of sight. The quantity \(e_{\parallel}\) corresponds to the inverse of the elongation parameter \(e_{\Delta}\) of Sereno (2007): \(e_{\Delta} = 1/e_{\parallel}\).

For a self-similar model \(\rho(R) = \rho_s f_3D(R/R_s)\), the projected mass density profile is expressed as

\[
\Sigma(\zeta) = \frac{2R_s \rho_s}{\sqrt{\pi}} \int_{\xi/R_s}^{\infty} \frac{f_3D(x) dx}{\sqrt{x^2 - (\xi/R_s)^2}} = \Sigma_s f_{3D}(\xi/\xi_s),
\]

where we have defined the scale surface mass density

\[
\Sigma_s = 2 \rho_s R_s/\sqrt{\pi} = 2 \rho_s \xi \epsilon_{\parallel}/\sqrt{q_{\perp}^b}.
\]

with \(f_{3D} = \epsilon_{\parallel}/\sqrt{q_{\perp}^b}\) (Sereno et al. 2010). Since \(r_{s,2D} = q_{\perp}^b \xi_s\) is the geometric-mean scale radius in projection, the geometrical factor \(f_{3D}\) represents the degree of correction due to the line-of-sight elongation of the cluster. The halo mass, \(M_{200c}\), can then be expressed as \(M_{200c} = \left(4\pi/3\right)(200)\rho_s(c_{200c} r_{s,2D})^3 f_{3D}\). In this work, we employ the radial dependence of the projected NFW profile \(f_{3D}(x)\) as given by Wright & Brainerd (2000). For \(f_{3D} = 1\), this reduces to a projected (circular or elliptical) mass model. An elliptical mass density model can be described by \((M_{200c}, c_{200c}, b/e, \vartheta, \phi)\) (Oguri et al. 2010; Umetsu et al. 2012).

6.2. Intracluster Gas

Both observations and theory indicate that the ICM density is nearly constant on a family of concentric, coaxial ellipsoids (Kawahara 2010; Buote & Humphrey 2012a,b). Although modeling both the gas and matter distributions as ellipsoids with constant axis ratios is not strictly valid for halos in HSE (Sereno et al. 2013), an ellipsoidal approximation for the ICM is suitable when systems with modest eccentricities are considered (Lee & Suto 2003).

Following Sereno et al. (2013), we make a few simplifying but non-informative working hypotheses to relate the matter and gas distributions. First, we assume that the matter and gas distributions in the cluster are ellipsoidal with constant but different axis ratios and co-aligned with each other. Second, the two distributions are assumed to have the same degree of triaxiality, that is, \(T(q_a, q_b) = T_{ICM}(q_a^ICM, q_b^ICM)\) with \(T_{ICM} \equiv (e_a^ICM/e_{a,ICM})^2 = [1 - (q_b^ICM)^2]/[1 - (q_a^ICM)^2]\) and \(q_a^ICM \leq q_b^ICM\). If two ellipsoids have the same degree of triaxiality, then the misalignment angle between their major axes in the plane of the sky is zero (Romanowsky & Kochanek 1998), which is consistent with what has been observed in A1689 (Sereno & Umetsu 2011; Sereno et al. 2012).

If \(T = T_{ICM}\), we have the following ratio for the degree of eccentricities between ICM and matter (Sereno et al. 2013):

\[
e_a^ICM/e_a = e_b^ICM/e_b \equiv e^ICM/e.
\]

The intracluster gas in HSE is rounder than the underlying matter distribution: \(e^ICM/e \simeq 0.7\) (Lee & Suto 2003).

With these assumptions, the number of independent axis ratios is reduced to three. Here we use \(q_a, q_b\), and \(q_{\perp}^ICM\) as free parameters. Hence, the intermediate–major axis ratio \(q_b^ICM\) of the ICM is determined by \(T(q_a, q_b)\) and \(q_{\perp}^ICM\):

\[
q_b^ICM = \sqrt{1 - \left(q_{\perp}^ICM\right)^2 T^2}. \tag{39}
\]

Finally, as supported by both theory and observations, we assume that the gas distribution is rounder than the matter distribution: \(q_a \leq q_{\perp}^ICM\).

Under these hypotheses, the projected matter and gas distributions of the cluster have different ellipticities \((\epsilon = e^ICM)\) and elongations \((\epsilon_{\parallel} \neq e^ICM)\) but share the same orientation of the projected major axis, \(\psi_e \neq \psi_{\perp}^ICM\). There are a total of six parameters \((q_a, q_b, q_{\perp}^ICM, \psi_e, \vartheta, \phi, \psi_{\perp}^ICM)\) needed to describe the intrinsic shape and orientation of the cluster system, compared to four observable geometric constraints, \((\epsilon, e^ICM, \psi_e = \psi_{\perp}^ICM, \epsilon_{\parallel}^ICM)\).

6.3. Bayesian 3D Inversion

In our analysis, the cluster model \(p\) is defined by seven fundamental parameters describing the total matter ellipsoid and one parameter determining the shape of the ICM halo:

\[
p = (M_{200c}, c_{200c}, q_a, q_b, \vartheta, \phi, q_{\perp}^ICM). \tag{40}
\]

Hence, the overall ellipsoidal model has eight free parameters. On the other hand, 2D lensing constraints reduce to four parameters (Sereno & Umetsu 2011), \((\epsilon_{\parallel}, \xi_s, \epsilon, \psi_e)\). A joint X-ray and SZE analysis of the ICM yields two additional constraints (Sereno et al. 2013), namely the ellipticity \(e^ICM\) of the ICM in projection and the elongation \(e_{\parallel}^ICM\) of the ICM along the line of sight. Accordingly, combined lensing and
X-ray/SZE data sets effectively provide six observationally accessible parameters,

$$o = (κ_s, θ_s, κ_\parallel, κ_\perp, θ_\parallel, θ_\perp, κ_\perp^\parallel).$$ \hspace{1cm} (41)

That is, the problem is underconstrained.

To make robust inference on the intrinsic properties of the cluster, we use a forward modeling approach with Bayesian inference for this underconstrained inversion problem (Sereno et al. 2013). The observational parameters \(o = o(p)\) can be uniquely specified by the intrinsic parameters \(p\). The total likelihood function of combined lensing and X-ray/SZE observations can be formally written as (Sereno et al. 2013)

$$L[o(p)] = L_{GL} \times L_{ICM}$$ \hspace{1cm} (42)

with \(L_{GL}\), the likelihood function of lensing observables and \(L_{ICM}\) that of X-ray/SZE observables.

6.4. Priors

For our base model, we use uninformative priors for the intrinsic parameters \(p\). We adopt flat priors for \(q_{\theta} \leq q_0 \leq 1\) and \(q_s \leq q_\theta \leq 1\) for the intrinsic axis ratios of the matter distribution, where \(q_{\theta}\) is introduced to exclude models with extremely small axis ratios because such configurations would be dynamically unstable and not expected for cluster halos. The probability functions can then be expressed as \(P(q_{\theta}) = 1/(1-q_{\theta})\) for \(q_{\theta} \leq q_0 \leq 1\) and \(P(q_\theta|q_\theta) = 1/(1-q_{\theta})^{-1}\) for \(q_\theta \geq q_\theta\). In what follows, we fix \(q_{\theta} = 0.1\) (Oguri et al. 2005; Sereno et al. 2013). Alternatively, we may consider the axis-ratio priors that follow distributions obtained from ΛCDM N-body simulations (Jing & Suto 2002).

For the minor–major axis ratio of the ICM, we use a uniform distribution in the interval \(q_0 \leq q_{ICM} \leq 1\) (see Section 6.2). The prior of \(q_{ICM}, P(q_{ICM}|q_0)\) can then be defined in a similar way to that of \(q_0\). For the orientation angles, we consider a population of randomly oriented halos with \(P(\cos \theta) = 1\) for \(0 \leq \cos \theta \leq 1\) and \(P(\phi) = 1/\pi\) for \(-\pi/2 \leq \phi \leq \pi/2\). Finally, we employ uniform priors for the remaining parameters.

7. MULTI-PROBE ANALYSIS OF A1689

Here we apply the Bayesian inversion method outlined in Section 6 to our multiwavelength observations of A1689. The results are discussed in Section 8.

7.1. Weak and Strong Lensing

A full 2D lensing analysis is crucial for comparison with predictions of the properties of aspherical clusters (Oguri et al. 2005). In this work, we have employed free-form methods for both weak- and strong-lensing mass reconstructions (Sections 4 and 5), which provide a pixelated Σ map and its covariance matrix in each regime.

In this subsection, we derive constraints on the projected halo properties (Section 6.1) from lensing data. We model the observed Σ field with a projected ellipsoidal NFW profile (Section 6.1), specified by \((κ_\parallel, θ_\parallel, κ_\perp, θ_\perp)\). Additionally, we include the halo centroid \(θ_s\) as parameters to conservatively account for the degree of miscentering.

7.1.1. Weak-lensing Data

![Image](image_url)

Figure 11. Marginalized posterior distribution for the projected NFW parameters \((κ_s, θ_s)\) obtained from three different lensing data sets (see Table 5), namely weak-lensing-only (black; WL), strong-lensing-only (blue; SL), and combined weak and strong lensing (red shaded; WL+SL). For each case, the contour levels are at \(\exp(-2.3/2)\) and \(\exp(-11.8/2)\) of the maximum, corresponding to the 1σ and 3σ confidence levels, respectively, for a Gaussian distribution. The scale convergence \(κ_s = Σ_s/Σ_c\) is normalized to a fiducial source redshift of \(z_{s} = 2\).

The \(χ^2\) function for the Subaru weak-lensing observations is expressed as (Oguri et al. 2005)

$$χ^2_{WL} = ∑_{m,n=1}^{N_{pix}} \left[Σ(θ_m) - Σ(θ_m)\right] (C^{-1})_{mn} \left[Σ(θ_n) - Σ(θ_n)\right],$$ \hspace{1cm} (43)

where \(Σ = \{Σ(θ_m)\}_{m=1}^{N_{pix}}\) is the mass map from the 2D weak-lensing analysis (Section 4.2), \(C^{-1}\) is the inverse of the error covariance matrix, and the hat symbol denotes a modeled quantity. The corresponding likelihood is \(L_{WL}(κ_\parallel, θ_\parallel, κ_\perp, θ_\perp) \propto \exp(-χ^2_{WL}/2)\).

Figure 11 shows the results in terms of the marginalized posterior distribution for the scale convergence, \(κ_\parallel = Σ_\parallel/Σ_c\), and the scale radius, \(θ_\parallel = ξ_s/D_\parallel\). Table 5 summarizes marginalized constraints on the individual parameters. In the present study, we employ the robust biweight estimators of Beers et al. (1990) for the central location (mean) and scale (standard deviation) of the marginalized posterior distributions (e.g., Sereno & Umetsu 2011; Umetsu et al. 2014).

7.1.2. Strong-lensing Data

Mass maps derived from strong lensing exhibit a high degree of correlation between adjacent regions. The problem is exacerbated for parametric methods, which model the total mass distribution by a superposition of lens components assuming parametric density profiles. This also persists in free-form modeling (Lubini et al. 2014), albeit to a lesser degree.

The degree of correlation can be examined by an eigenvalue analysis. Let us decompose the \(C\) matrix as \(C = UΛU^{-1}\), with \(Λ\) the diagonal matrix of eigenvalues and \(U\) the unitary matrix of eigenvectors. The first few eigenvalues describe the principal modes of variation of the mass model (Lubini et al. 2014; Mohammed et al. 2014). Large eigenvalues correspond...
to massive pixels, namely, those composing the inner part of the mass distribution that is best constrained by strong lensing. The ordered list of eigenvalues progressively decreases with increasing rank and drops abruptly near the maximum rank, indicating a high degree of correlation (Figure 12).

Here, we employ a regularization approach to conservatively account for the high degree of correlation of the covariance matrix. This was first proposed by Umetzu et al. (2012) for the 1D analysis of strong-lensing mass profiles. If the covariance matrix \(C \) is not degenerate, we can construct a \(\chi^2 \) function for each group of multiple images as

\[
\chi^2_{SL,\alpha} = \sum_{m,n} \left[\Sigma_m - \hat{\Sigma}_m \right] \left(C^{-1} \right)_{mn} \left[\hat{\Sigma}_n - \hat{\Sigma}_m \right],
\]

where \(\Sigma_m \) is the observed \(\Sigma \) value of the \(m \)th pixel, \((\Sigma_U)_m = \sum_l U_{ml} \Sigma_l \) is the projection onto the eigenbasis, \(\alpha \) runs over the four groups of images (Section 5), and the hat symbol is used to denote a modeled quantity. Each group has its own \(\Sigma, C, U, \) and \(\Lambda \). Here we drop the index \(\alpha \) on the right hand side to simplify the notation.

In this approach, we limit ourselves to the principal modes and truncate the summation at \(N_{\text{max}} \), largest eigenvalues as

\[
\chi^2_{SL,\alpha} \approx \sum_{m=1}^{N_{\text{max}}} \frac{\left[(\Sigma_U)_m - (\hat{\Sigma}_U)_m \right]^2}{\Lambda_m}.
\]

A natural choice for \(N_{\text{max}} \) is the number of observational constraints. We thus set \(N_{\text{max}} = 2N_{\text{im}} \), with \(N_{\text{im}} \) the number of multiple images used. The total \(\chi^2 \) is given by

\[
\chi^2_{SL} = \sum_{\alpha} \chi^2_{SL,\alpha}.
\]

We find that the eigenvalues before the drop range approximately between the minimum \(\kappa^2 \) value in the ensemble-averaged pixelated model and that found from the whole ensemble of models generated by PIXELENS. The results are shown for the covariance matrix as constrained by the systems 1, 5, and 11.

Figure 12. Ordered eigenvalues \(\Lambda \) of the covariance matrix for the PIXELENS mass reconstruction. The vertical red line indicates the maximum rank considered for our analysis, \(N_{\text{max}} = 2N_{\text{im}} \), i.e., the number of observational constraints on the image position. The blue horizontal line shows the minimum \(\kappa^2 \) value found in the ensemble-averaged pixelated model. The green horizontal line shows the minimum \(\kappa^2 \) value from the entire statistical ensemble of models generated by PIXELENS. The results are shown for the covariance matrix as constrained by the systems 1, 5, and 11.

Table 5

<table>
<thead>
<tr>
<th>Data</th>
<th>(\kappa^2)</th>
<th>(\xi_s^c) (')</th>
<th>(c^i)</th>
<th>(\psi_s^c) (deg)</th>
<th>(\theta_s^c) (')</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL</td>
<td>0.97 ± 0.16</td>
<td>1.74 ± 0.27</td>
<td>0.29 ± 0.07</td>
<td>14.2 ± 8.4</td>
<td>−1.2 ± 3.0, 4.9 ± 4.1</td>
</tr>
<tr>
<td>SL</td>
<td>0.73 ± 0.14</td>
<td>3.00 ± 0.90</td>
<td>0.27 ± 0.09</td>
<td>13.0 ± 9.8</td>
<td>−0.8 ± 1.9, −4.8 ± 2.3</td>
</tr>
<tr>
<td>GL</td>
<td>1.03 ± 0.11</td>
<td>1.70 ± 0.20</td>
<td>0.29 ± 0.05</td>
<td>11.4 ± 4.9</td>
<td>0.0 ± 1.3, −1.9 ± 1.4</td>
</tr>
</tbody>
</table>

\(^a \) WL: weak lensing shear and magnification; SL: strong lensing; GL: combined strong lensing, weak-lensing shear and magnification.

\(^b \) Scale convergence, \(\kappa_s = \Sigma_s / \Sigma_m \), normalized to a reference source redshift of \(z_s = 2 \).

\(^c \) Projected scale radius of the elliptical NFW model measured along the major axis.

\(^d \) Projected mass ellipticity, \(\epsilon = 1 - q_l \), with \(q_l \) the projected minor–major axis ratio.

\(^e \) Position angle of the major axis measured east of north.

\(^f \) Halo centroid position relative to the BCG position.

7.1.3. Combining Weak and Strong Lensing

We now combine the weak- and strong-lensing likelihoods constructed in Sections 7.1.1 and 7.1.2, respectively, to jointly constrain the projected NFW parameters. The likelihood function \(L_{\text{GL}} \) for the combined weak plus strong lensing data can be written as (Sereno & Umetzu 2011)

\[
L_{\text{GL}} = L_{\text{WL}} \times L_{\text{SL}} \times \exp\left[-\frac{\chi^2_{\text{WL}} + w_{\text{SL}} \chi^2_{\text{SL}}}{2}\right],
\]

where \(\chi^2_{\text{WL}} \) and \(\chi^2_{\text{SL}} \) are defined by Equations (43) and (46), respectively.

Figure 11 shows that the scale radius (\(\theta_s \)) and the scale convergence (\(\kappa_s \)) are highly degenerate and anti-correlated. In particular, the scale radius is poorly constrained by strong
lensing alone because of the limited coverage of multiple images, \(\theta \lesssim 1.1' \) (Section 5.2). The allowed range of \(\theta \) lies well outside the region where multiple images are observed. Thus, the inference of parameters by strong lensing requires an extrapolation well beyond the observed region. For this reason, in the present study, we do not consider strong-lensing-only triaxial modeling (see Table 7). On the other hand, since the posterior distributions from the independent weak-lensing and strong-lensing analyses are compatible, combining weak lensing with strong lensing provides improved parameter constraints (Table 5).

7.2. Combined X-ray plus SZE Analysis

With a known halo geometry (e.g., sphericity) and under the ideal gas assumption, the thermodynamic quantities of the ICM are overconstrained by X-ray and SZE data. This is because the thermal pressure can be independently determined from thermal SZE data and X-ray spectroscopy/imaging data. We can therefore relax the assumption of spherical symmetry to solve for the elongation of the ICM distribution (Sereno et al. 2012). Combining gravitational lensing and X-ray/SZE observations with minimal geometric assumptions (Section 6.2) allows us to break the degeneracy between mass and elongation for the total matter distribution (Sereno et al. 2013). Such a multi-probe approach based on lensing and X-ray/SZE data is free from the assumption of HSE, compared to the lensing plus X-ray analysis, which relies on equilibrium assumptions between the gravitational potential and pressure components (see Limousin et al. 2013).

In our multi-probe approach, the ICM distribution is modeled with an ellipsoidal parametric profile which can fit X-ray surface-brightness \((S_X) \) and temperature \((T_X) \) distributions. Comparison with the SZE amplitude then determines the elongation \(e^{ICM} \). For example, for an isothermal plasma (De Filippis et al. 2005), we have

\[
1/e_{||}^{ICM} \propto D_{LS} \frac{S_X}{\Delta T_{SZE}} \frac{T_X^2}{\Delta X} \tag{48}
\]

with \(\Delta T_{SZE} \) the SZE temperature decrement and \(\Delta X \) the X-ray cooling function of the ICM. In this work, we rely on the X-ray data to constrain the ICM morphology in projection space; we use aperture-integrated constraints on the SZE signal (Table 6) to determine the line-of-sight elongation \(e^{ICM}_{||} \).

Our X-ray data are taken from Sereno et al. (2012), who performed an X-ray analysis on Chandra and XMM-Newton observations. Here we briefly summarize essential results needed for this study. For details, we refer to Sereno et al. (2012). Sereno et al. (2012) showed that exposure corrected and point-source removed Chandra X-ray images in the 0.7–2.0 keV band are well described by concentric ellipses with ellipticity \(e^{X} = 0.15 \pm 0.03 \) and orientation angle \(\psi^{X} = (12 \pm 3) \) degrees measured east of north. Following Sereno et al. (2012) and Sereno et al. (2013), we model the 3D electron density in the intrinsic coordinate system with the following parametric form (Vikhlinin et al. 2006; Ettori et al. 2009):

\[
n_e = n_0 \left[1 + \left(\frac{R}{r_c} \right)^{2\beta/3} \right]^{-(3\beta/2)} \left[1 + \left(\frac{R}{r_t} \right)^2 \right]^{-\gamma/3}, \tag{49}
\]

where \(n_0 \) is the central electron density, \(r_c \) is the ellipsoidal core radius, \(r_t > r_c \) is the ellipsoidal truncation radius, \(\beta \) is the slope in the intermediate density regions, and \(\gamma \) is the outer slope. The 3D gas density is parametrized as (Sereno et al. 2013)

\[
T = \frac{T_0}{\left[1 + (R/r_T)^2 \right]^{0.45}}, \tag{50}
\]

where \(T_0 \) is the central gas temperature, and \(r_T \) describes a temperature decline at large cluster radii. The parametrizations of Equations (49) and (50) were motivated by the absence of cool-core features in our data. For further justification, see Section 5 of Sereno et al. (2012).

The thermal SZE provides a complementary measure of the thermal energy content in a cluster. In this study, we perform a self-consistent multi-scale analysis of high-significance 30 GHz interferometric SZE observations of A1689 obtained with the Berkeley-Illinois-Maryland Array (BIMA), the Owens Valley Radio Observatory (OVRO), and the Sunyaev-Zel’dovich Array (SZA). The BIMA and OVRO observations of A1689 are presented in LaRoque et al. (2006), while the SZA observations of A1689 are presented in Gralla et al. (2011). Owing to the different scales probed by the instruments, we fit the OVRO/BIMA and SZA data separately using the spherical Arnaud et al. (2010) pressure profile. This profile is an adaptation of the generalized NFW pressure profile first proposed by Nagai et al. (2007), and first fitted to SZE observations in Mroczkowski et al. (2009). A joint fit to the OVRO, BIMA, and SZA data was also performed to determine the best-fit SZE centroid reported in Table 1.

As in Mroczkowski et al. (2009), a model for the cluster and contaminating radio sources is computed in the image plane,

Table 6

Integrated Comptonization Y’ parameter measured interior to a cylinder of radius \(r \).

<table>
<thead>
<tr>
<th>Instrument</th>
<th>(r) ((^\circ))</th>
<th>(Y(< r)) ((10^{-2} , \text{sr}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIMA/OVRO</td>
<td>1.5</td>
<td>1.00 ± 0.28</td>
</tr>
<tr>
<td>BIMA/OVRO</td>
<td>3.0</td>
<td>2.64 ± 0.97</td>
</tr>
<tr>
<td>SZA</td>
<td>1.5</td>
<td>1.11 ± 0.10</td>
</tr>
<tr>
<td>SZA</td>
<td>3.0</td>
<td>2.83 ± 0.42</td>
</tr>
<tr>
<td>SZA</td>
<td>4.5</td>
<td>4.33 ± 0.81</td>
</tr>
<tr>
<td>SZA</td>
<td>6.0</td>
<td>5.50 ± 1.18</td>
</tr>
</tbody>
</table>

Figure 13. Marginalized posterior probability distribution of the elongation \(e^{ICM}_{||} \) as derived from the combined X-ray plus SZE analysis (Section 7.2).
then Fourier transformed for comparison to the interferometric data. The best-fit model and 1σ confidence intervals are determined using a Markov chain Monte Carlo (MCMC) procedure. The OVRO and BIMA data measure radial scales from 0.5′–4′, while the SZA data probe radial scales from 1′–6′. Bonamente et al. (2012) showed that the adoption of the Arnaud et al. (2010) profile versus other non-isothermal pressure profiles accurate out to r_500c does not significantly impact the parameters derived from the fits when the radii for which the results are computed are at scales accessible to the instruments.

A summary of the SZE data used is given in Table 6. The integrated Comptonization parameter Ȳ(< r) interior to a cylinder of radius r is written in terms of the electron density and temperature profiles (Equations (49) and (50)) as

\[Y = \frac{\sigma_T k_B}{m_e c^2} \int_{\Omega_r} d\Omega \int dl n_e T \]

(51)

with \(\sigma_T \) the Thomson cross section, \(k_B \) the Boltzmann constant, \(m_e \) the electron mass, and \(c \) the speed of light in vacuum; \(\Omega_r \) is the solid angle of the integration aperture.

The model profiles given by Equations (49), (50), and (51) are then compared with combined X-ray surface brightness (\(S_X \)), X-ray spectroscopic temperature (\(T_X \)), and thermal SZE decrement (\(Y \)) observations. Briefly summarizing, the X-ray surface brightness profile \(\{ S_{X,i}\}_{i=1}^{N_S} \) observed by Chandra was extracted from \(N_S = 68 \) elliptical annuli out to an elliptical radius of \(\xi = 900 \) kpc \(h^{-1} \) km s\(^{-1}\) (≈ 5′), and the XMM-Newton temperature profile \(\{ T_{X,i}\}_{i=1}^{N_T} \) was measured in \(N_T = 5 \) elliptical annuli bins out to \(\xi = 900 \) kpc \(h^{-1} \) km s\(^{-1}\) (Sereno et al. 2012). Thanks to the improved SZE analysis, the Y parameter is measured at several apertures from BIMA/OVRO and SZA data as summarized in Table 6. We find good consistency between the BIMA/OVRO and SZA results at \(r = 1.5′ \) and 3′ where these independent data overlap. At an integration radius of \(r = 3′ \), our results are also in excellent agreement with \(Y(< 3′) = (2.5 \pm 0.6) \times 10^{-10} \) sr from 94 GHz interferometric observations with the 7-element AMI/BA (Umetu et al. 2009, their Table 5).

The X-ray part of the \(\chi^2 \) function can be written as (Sereno et al. 2012)

\[\chi_X^2 = \sum_{i=1}^{N_S} \left(\frac{S_{X,i} - \hat{S}_{X,i}}{\sigma_{S,i}} \right)^2 + \sum_{i=1}^{N_T} \left(\frac{T_{X,i} - \hat{T}_{X,i}}{\sigma_{T,i}} \right)^2 \]

(52)

with \(\{ \hat{S}_{X,i}, \hat{T}_{X,i} \} \) model predictions for the corresponding X-ray observables and \(\{ \sigma_{S,i}, \sigma_{T,i} \} \) their corresponding errors.

The \(\chi^2 \) function for the SZE observations is written as

\[\chi^2_{\text{SZE}} = \sum_{j} \sum_{i} \left(\frac{\Delta Y_{ji} - \Delta Y_{i}}{\sigma_{\Delta ji}} \right)^2 \]

(53)

where \(\Delta Y_{ji} \) is the differential Y parameter for the jth instrument (BIMA/OVRO or SZA) in the ith annular ring, \(\Delta Y_{ji} = Y_j(< r_{i,j+1}) - Y_j(< r_i) \), and \(\sigma_{\Delta ji} \) is its 1σ uncertainty. The Y values are sampled at every 1.5′ (Table 6), which is sufficiently larger than the synthesized beam. Hence, differential \(\Delta Y \) measurements in adjacent annuli are approximately uncorrelated given the annulus size considered.

A combined analysis of the X-ray and SZE data is performed using the combined function \(\chi^2 = \chi_X^2 + \chi^2_{\text{SZE}} \). The parameter space is explored using an MCMC approach as described in Sereno et al. (2013). Since parameter constraints on the \(n_e \) and \(T \) models are dominated by the Chandra surface brightness and XMM-Newton temperature data, respectively, we find our results are fully consistent with those of Sereno et al. (2012) based on the same X-ray data. The best-fit central temperature \((T_0 = 9.8 \pm 0.2 \text{ keV}, \text{ Sereno et al. 2012}) \) is in good agreement with the Suzaku X-ray results of Kawaharada et al. (2010). On the other hand, using the improved SZE data, we obtain tighter constraints on the elongation \(e_{\text{ICM}} \). The resulting posterior distribution of \(e_{\text{ICM}} \) is shown in Figure 13. The posterior mean and standard deviation are \(e_{\text{ICM}} = 1.70 \pm 0.29 \).

7.3. Multi-probe Deprojection

Here we perform joint likelihood analyses of combined lensing and X-ray/SZE data, using different combinations of lensing data sets (Section 7.1).

The likelihood \(\mathcal{L}_{\text{ICM}} \) of the X-ray/SZE data is written in terms of two observable ICM parameters (Section 6.3), namely, the ellipticity \(e_{\text{ICM}} \) and line-of-sight elongation \(e_{\parallel \text{ICM}} \) of the ICM. Following Sereno et al. (2012, 2013), we include a nuisance parameter \(\Delta e_{\text{sys}}^\parallel \) that quantifies the additional uncertainty on \(e_{\parallel \text{ICM}} \), accounting for potential calibration systematics in the X-ray/SZE measurements. It is assumed to follow a normal distribution with zero mean and standard deviation \(\sigma_{\text{sys}} = 0.07 \). Since the systematic uncertainty is quite small compared to the width of the marginalized posterior distribution \(P(e_{\parallel \text{ICM}}) \) (Figure 13), the impact on the final results is minor. The X-ray/SZE part of the likelihood \(\mathcal{L}_{\text{ICM}}(e_{\text{ICM}}, e_{\parallel \text{ICM}}, \Delta e_{\text{sys}}^\parallel) \) is written as (Sereno et al. 2013)

\[\mathcal{L}_{\text{ICM}} = \frac{1}{\sqrt{2\pi \sigma_{e,X}}} \exp \left[-\frac{(e_X - e_{\text{ICM}})^2}{2\sigma_{e,X}^2} \right] \times P(e_{\parallel \text{ICM}} - \Delta e_{\text{sys}}^\parallel) \]

\[\times \frac{1}{\sqrt{2\pi \sigma_{\text{sys}}^\parallel}} \exp \left[-\frac{1}{2} \left(\frac{\Delta e_{\text{sys}}^\parallel}{\sigma_{\text{sys}}^\parallel} \right)^2 \right], \]

(54)

where \(e_X \) and \(\sigma_{e,X} \) are the measured value of the ICM ellipticity and its uncertainty, respectively (Section 7.2).

To perform a joint analysis with the X-ray/SZE data, we consider three different likelihood functions for the lensing part, namely, \(\mathcal{L}_{\text{WL}}, \mathcal{L}_{\text{SL}}, \) and \(\mathcal{L}_{\text{GL}} = \mathcal{L}_{\text{WL}} \mathcal{L}_{\text{SL}} \), which are all functions of the projected NFW parameters \(r_s, \xi_s, \epsilon, \psi_s, \) and \(\theta_e \). Following Sereno et al. (2013), we exploit constraints from the X-ray analysis about the gas centroid \(\theta_e \) and position angle \(\psi_s \) (Section 7.2), which are used as priors for the centroid \(\theta_e \) and position angle \(\psi_s \) of the underlying halo (see Section 4 of Sereno et al. 2013). These priors are consistent with the geometric assumptions we have made in Section 6.2.

For our base model, we use flat priors for the intrinsic axis ratios of the underlying halo (Section 6.4). We also consider an alternative prior distribution predicted by cosmological N-body simulations of Jing & Suto (2002). For details, we refer to Sereno & Umetsu (2011) and Sereno et al. (2013).

8. RESULTS AND DISCUSSIONS

The resulting constraints on the intrinsic parameters for the underlying halo \((M_{200c}, c_{200c}, q_s, q_p, \cos \delta) \) are given in Ta-
Table 7
Intrinsic parameters of the total matter distribution obtained using different data sets and different priors

<table>
<thead>
<tr>
<th>Data</th>
<th>Prior</th>
<th>M_{200c} $(10^{15} M_\odot h^{-1})$</th>
<th>c_{200c}</th>
<th>q_a</th>
<th>q_b</th>
<th>$\cos \theta^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL</td>
<td>Spherical</td>
<td>1.31 ± 0.11</td>
<td>8.87 ± 1.11</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WL</td>
<td>Flat</td>
<td>1.29 ± 0.26</td>
<td>10.70 ± 2.85</td>
<td>0.39 ± 0.18</td>
<td>0.77 ± 0.15</td>
<td>0.54 ± 0.29</td>
</tr>
<tr>
<td>WL</td>
<td>N-body</td>
<td>1.42 ± 0.23</td>
<td>9.15 ± 1.77</td>
<td>0.47 ± 0.08</td>
<td>0.66 ± 0.12</td>
<td>0.60 ± 0.30</td>
</tr>
<tr>
<td>SL</td>
<td>Spherical</td>
<td>1.79 ± 0.31</td>
<td>8.69 ± 1.26</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>GL</td>
<td>Spherical</td>
<td>1.32 ± 0.09</td>
<td>10.10 ± 0.82</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>GL</td>
<td>Flat</td>
<td>1.49 ± 0.25</td>
<td>10.30 ± 2.52</td>
<td>0.45 ± 0.20</td>
<td>0.77 ± 0.14</td>
<td>0.47 ± 0.29</td>
</tr>
<tr>
<td>GL</td>
<td>N-body</td>
<td>1.41 ± 0.19</td>
<td>9.65 ± 1.54</td>
<td>0.47 ± 0.08</td>
<td>0.66 ± 0.12</td>
<td>0.60 ± 0.29</td>
</tr>
<tr>
<td>WL + X/SZ</td>
<td>Flat</td>
<td>1.21 ± 0.19</td>
<td>7.91 ± 1.41</td>
<td>0.39 ± 0.16</td>
<td>0.56 ± 0.20</td>
<td>0.93 ± 0.06</td>
</tr>
<tr>
<td>WL + X/SZ</td>
<td>N-body</td>
<td>1.16 ± 0.17</td>
<td>7.42 ± 1.21</td>
<td>0.40 ± 0.08</td>
<td>0.52 ± 0.12</td>
<td>0.94 ± 0.05</td>
</tr>
<tr>
<td>GL + X/SZ</td>
<td>Flat</td>
<td>1.24 ± 0.16</td>
<td>8.36 ± 1.27</td>
<td>0.39 ± 0.13</td>
<td>0.57 ± 0.19</td>
<td>0.93 ± 0.06</td>
</tr>
<tr>
<td>GL + X/SZ</td>
<td>N-body</td>
<td>1.20 ± 0.13</td>
<td>7.89 ± 0.96</td>
<td>0.40 ± 0.08</td>
<td>0.52 ± 0.12</td>
<td>0.94 ± 0.05</td>
</tr>
</tbody>
</table>

Note. — Intrinsic parameters of the total matter distribution of A1689 derived from a triaxial analysis of multiwavelength data sets, using spherical, flat, and N-body priors on the distribution of axis ratios (q_a, q_b).

* WL: weak-lensing shear and magnification; SL: strong lensing; GL: combined strong lensing, weak-lensing shear and magnification; X/SZ: combined X-ray and SZE measurements.

8.1. Mass and Concentration

8.1.1. Spherical Modeling

The degree of concentration of A1689 has been a subject of controversy. Here we first compare the results obtained assuming a spherical NFW halo (Table 7) to those of previous work. Our full 2D weak-lensing analysis based on Subaru $BVRI'$ i' z' data yields a projected concentration of $c_{200c} = 8.9 ± 1.1$ ($c_{vir} = 11.2 ± 1.4$) at $M_{200c} = (1.31 ± 0.11) \times 10^{15} M_\odot h^{-1}$. This is in excellent agreement with, and improved from, our earlier weak-lensing work: $c_{200c} = 10.7^{+3.2}_{-1.9}$ (Umetsu & Broadhurst 2008) and $c_{200c} = 10.2^{+2.5}_{-2.0}$ (Umetsu et al. 2011b), both of which are based on the joint analysis of shear and magnification data from Subaru $V'i'$ imaging. This accurate agreement comes in spite of using different data reduction procedures and mass reconstruction methods (Sections 2, 3, and 4).

Combining weak and strong lenses reduces the uncertainties on the concentration. The HST strong-lensing data alone also favor a high degree of projected concentration, $c_{200c} = 8.69 ± 1.26$, but with a somewhat higher halo mass, $M_{200c} = (1.79 ± 0.31) \times 10^{15} M_\odot h^{-1}$. The combined weak and strong lensing data yield $c_{200c} = 10.10 ± 0.82$ at $M_{200c} = (1.32 ± 0.09) \times 10^{15} M_\odot h^{-1}$, corresponding to the Einstein radius of $\theta_{Ein} = 52^{+6.9}_{-7}$ at $z_s = 2$. Our analysis thus reproduces the correct size of the observed Einstein radius (Table 1). These results are in good agreement with those of Umetsu & Broadhurst (2008) and Coe et al. (2010) (Table 9), in spite of using completely independent approaches to strong lens modeling (Section 5). Most recent weak-and-strong lensing studies of A1689 appear to converge toward $c_{200c} \sim 9–10$ with a typical measurement uncertainty of 10% (Table 9); with the spherical prior, thanks to the advanced analysis methods and greatly improved quality of data.

8.1.2. Triaxial Modeling

Including triaxiality weakens parameter constraints from lensing data (Oguri et al. 2005; Corless et al. 2009), compared to those derived assuming spherical symmetry. The parameter constraints become more degenerate and less restrictive because of the lack of information of the halo elongation along the line of sight (Table 7). These trends are also found in the posterior distributions from our data (Tables 7 and 9).

Now we consider the results from full triaxial analyses combining lensing with X-ray/SZE data. Table 7 shows that our posterior inference of the intrinsic parameters is insensitive to the assumed choice of priors (“Flat” or “N-body”) when the line-of-sight information from X-ray/SZE data is combined with lensing, suggesting that the posterior constraints are dominated by the likelihood (i.e., information from data) rather than the prior (Sereno et al. 2013). Whatever the assumptions regarding the axis ratios, we find the
THREE-DIMENSIONAL MULTI-PROBE ANALYSIS OF A1689

posterior (Table 7) to be statistically compatible with the predicted distribution \(c(M) \) for the full population of halos in ωCDM cosmological simulations (Bhattacharya et al. 2013; Meneghetti et al. 2014; Diemer & Kravtsov 2015).\(^{21}\)

This is demonstrated in Figure 15 for the weak-lensing plus X-ray/SZE analysis and for the weak/strong-lensing plus X-ray/SZE analysis, both based on the uninformative priors. Here we adopt the median c–M relation obtained by Diemer & Kravtsov (2015) as a reference model for comparison.

A1689 appears to be a high mass cluster of \(M_{200c} \sim 10^{15} M_\odot h^{-1} \) in the high-concentration tail of the predicted \(c(M) \) distribution (Figure 15). The posterior tail at lower concentrations of A1689 is only \(\sim 1\sigma \) away from the predicted median concentration (\(\log_{10} c_{200c} \approx 0.58 \pm 0.16 \); Figure 15). Our results are also in agreement with those obtained by a multi-probe analysis of Sereno et al. (2013) (see Table 9), who developed the triaxial inversion algorithm used in this work.

The halo concentration and orientation are strongly correlated (Sereno & Umetsu 2011; Sereno et al. 2013). For the posterior range \(0^\circ \leq \vartheta \leq 5^\circ \) assuming a nearly perfect alignment between the halo major axis and the line of sight, we find \(c_{200c} = 7.4 \pm 1.0 (6.7 \pm 1.1) \) from weak/strong lensing (weak lensing) combined with the X-ray/SZE data.

8.2. Intrinsic Shape and Orientation of A1689

\(^{21}\) The theoretical predictions from Bhattacharya et al. (2013) and Diemer & Kravtsov (2015) are based on DM-only simulations, and those from Meneghetti et al. (2014) are based on nonradiative simulations of DM and baryons.
Halo mass, M_{200c} (10$^{15} M_\odot h^{-1}$) & c_{200c} & Prior & External data
\hline
Spherical modeling & & & \\
Broadhurst et al. (2005a) & 1.20 \pm 0.13 & 10.9$^{+1.1}_{-0.9}$ & Spherical & — \\
Halkola et al. (2006) & 1.58 \pm 0.14 & 7.6 \pm 0.5 & Spherical & — \\
Umetsu & Broadhurst (2008) & 1.30 \pm 0.11 & 10.1$^{+0.8}_{-0.7}$ & Spherical & — \\
Coe et al. (2010) & 1.3$^{+0.3}_{-0.1}$ & 9.2 \pm 1.2 & Spherical & — \\
This work & 1.32 \pm 0.09 & 10.10 \pm 0.82 & Spherical & — \\
Triaxial modeling & & & \\
Oguri et al. (2005) & 1.14$^{+0.26}_{-0.51}$ & 13.6$^{+1.8}_{-10.5}$ & Flat & — \\
Sereno & Umetsu (2011) & 1.07 \pm 0.23 & 9.3 \pm 2.0 & Flat & — \\
This work & 1.49 \pm 0.25 & 10.30 \pm 2.52 & Flat & — \\
With line-of-sight information & & & \\
Corless et al. (2009) & 0.83 \pm 0.16 & 12.2 \pm 9.6 & Flat + cos ϑ & — \\
Sereno & Umetsu (2011) & 0.99 \pm 0.17 & 7.7 \pm 1.1 & Flat + cos ϑ & — \\
Morandi et al. (2011) & 1.81 \pm 0.06 & 5.71 \pm 0.47 & Flat & X-ray \\
Sereno et al. (2013) & 0.93 \pm 0.12 & 7.8 \pm 0.7 & Flat & X-ray/SZE \\
This work & 1.24 \pm 0.16 & 8.30 \pm 1.27 & Flat & X-ray/SZE \\
\hline

Note. — The results based on the combination of both weak and strong lensing are summarized (except for quoted values assuming an NFW density profile if necessary).

a Spherical: spherical prior on the intrinsic axis-ratios; Flat: flat prior on the intrinsic axis ratios; cos ϑ: ΛCDM-like prior on the biased orientation of strong-lensing cluster halos (Corless et al. 2009).
b External data sets used in combination with lensing for constraining the line-of-sight elongation.

c The weak-lensing mass map of Umetsu & Broadhurst (2008) was used in the triaxial analyses by Oguri et al. (2005), Sereno & Umetsu (2011), Morandi et al. (2011), and Sereno et al. (2013).
d NFW-equivalent of triaxial model parameters from Oguri et al. (2005).

Figure 15. Marginalized constraints on the ellipsoidal NFW model parameters (M_{200c}, c_{200c}) for A1689 compared to the $c-M$ relations predicted for the full population of halos in ΛCDM cosmological simulations (Bhattacharya et al. 2013; Meneghetti et al. 2014; Diemer & Kravtsov 2015). The yellow shaded regions show the results from weak lensing combined with X-ray/SZE data. The red contours are from the full analysis of weak/strong-lensing and X-ray/SZE data. For each case, the contours show the 68.3% and 95.4% confidence levels in the $c-M$ plane. The light blue areas show the 1σ and 2σ ranges of intrinsic halo concentrations (with a 68% scatter of 0.16 dex), respectively, as obtained by Diemer & Kravtsov (2015). All model predictions are evaluated at the cluster redshift $z = 0.183$. Overall, the inferred range of c_{200c} is high but overlaps with the 2σ tail of the predicted distribution for high-mass cluster halos.

We have obtained evidence for a triaxial mass distribution of A1689. The projected mass distribution derived from weak-lensing shear and magnification reveals a north–south elongation ($\psi_0 = 14.2^\circ \pm 8.4^\circ$ east of north, see Table 5 and Figure 1). We have determined the ellipticity of the projected mass distribution to be $\epsilon = 0.29 \pm 0.07$ (Table 5), which is typical for the population of collisionless CDM halos (Jing & Suto 2002) but slightly rounder than the standard CDM prediction for the mean halo ellipticity, $\epsilon \sim 0.4$ (Oguri et al. 2010). The matter ellipticity is detected at the 4σ level from weak lensing alone, thanks to the greatly improved quality of Subaru data. Our free-form reconstruction from HST strong lensing gives a consistent estimate of $\epsilon = 0.27 \pm 0.09$. The ICM and matter distributions are co-aligned in projection ($\psi_M = 12^\circ \pm 3^\circ$) but with different ellipticities ($\epsilon_M = 0.15 \pm 0.03$), which is consistent with the geometric assumptions made (Section 6.2).

When combined with X-ray/SZE observations, our lensing data favor a triaxial geometry of the matter distribution with minor–major axis ratio $q_b \sim 0.4$ and major axis closely aligned with the line of sight ($\vartheta = 22^\circ \pm 10^\circ$, Table 7). These results are robust against the choice of priors and combinations of lensing data sets. Despite that the intermediate–major axis ratio q_b is less constrained, the data prefer prolate ($q_0 = q_b$) over oblate ($q_0 = 1$) configurations. A spherical configuration for A1689 is strongly ruled out. Overall, triaxial configurations fit the combined lensing and X-ray/SZE data much better than axially symmetric halos do (Sereno et al. 2013).

Our analysis shows that A1689 is elongated along the line of sight, as found by previous studies (Sereno et al. 2012, Limousin et al. 2013). From the posterior samples, we find $\epsilon_\parallel = 1.19 \pm 0.37$ (1.20 ± 0.34) and $\epsilon_\perp = 1.22 \pm 0.24$ (1.24 ± 0.25), as constrained by the combined weak/strong-lensing (weak lensing) and X-ray/SZE data sets. Such biased orientations are favored, although the intrinsic orientations are a priori assumed to be random. The a priori probability of a randomly oriented halo to have $\vartheta < 45^\circ$ is $\sim 29\%$ (Sereno et al. 2013). The a posteriori probability of such a configuration is found to be 96% (99%) assuming a flat (N-bodylike) distribution of axis ratios. We emphasize that the use of X-ray plus SZE data is essential for obtaining data-driven constraints on the line-of-sight elongation. To break para-
We find that the ICM is mildly triaxial with $q_{\text{ICM}} \sim 0.6$ and $q_b^{\text{ICM}} \sim 0.7$ (Table 8). The ratio of ICM to matter eccentricities is $e_{\text{ICM}}/e = 0.87 \pm 0.07$ (Table 8), supporting the theoretical assumption we have made that the shape of the gas distribution is rounder than the underlying matter (Section 6.2). On the other hand, we find that the gas distribution is more elongated than the gravitational potential ($e_{\text{ICM}}/e \gtrsim 0.7$, Lee & Suto 2003), suggesting a deviation from HSE. These results are again insensitive to the choice of the priors. The inferred values of q_b^{ICM} and q_b^{ICM} are somewhat lower (more elongated) than, but consistent within errors with, the results of Sereno et al. (2012, 2013) based on the same X-ray data. The difference is mainly due to the improved, self-consistent SZE analysis.

Table 10
Ellipsoidal and spherically-enclosed mass estimates for A1689

<table>
<thead>
<tr>
<th>Overdensity Δ</th>
<th>Ellipsoidal R_{Δ}</th>
<th>Spherically enclosed r_{Δ}</th>
<th>$M_{\text{sph},(r_{\Delta})}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M(<R_{\Delta})$</td>
<td>r_{Δ}</td>
<td>$M_{\text{sph},(r_{\Delta})}$</td>
</tr>
<tr>
<td>500</td>
<td>1.89 ± 0.46</td>
<td>0.97 ± 0.13</td>
<td>1.08 ± 0.06</td>
</tr>
<tr>
<td>200</td>
<td>2.79 ± 0.69</td>
<td>1.24 ± 0.16</td>
<td>1.00 ± 0.16</td>
</tr>
</tbody>
</table>

Note. — The overdensity radii are given in units of Mpc h^{-1}. The enclosed masses are in units of $10^{15} M_\odot h^{-1}$.

We compute the ratio of spherically-enclosed gas mass ($M_{\text{gas,sph}}(<r)$) to total mass (M_{tot}) as a function of spherical radius r, derived from the full triaxial analysis of weak/strong-lensing and X-ray/SZE data. The middle line tracks the median. The gray shaded regions represent the 68.3% and 95.4% quantiles of the distribution. Portions of these lines are dashed to indicate extrapolations to larger cluster radii. The horizontal bar shows the cosmic baryon fraction $f_b = \Omega_b/\Omega_m$ determined by Planck Collaboration et al. (2015b).

Figure 16
Ratio of spherically-enclosed gas mass (M_{gas}) to total mass (M_{tot}) as a function of spherical radius r, derived from the full triaxial analysis of weak/strong-lensing and X-ray/SZE data. The middle line tracks the median. The gray shaded regions represent the 68.3% and 95.4% quantiles of the distribution. Portions of these lines are dashed to indicate extrapolations to larger cluster radii. The horizontal bar shows the cosmic baryon fraction $f_b = \Omega_b/\Omega_m$ determined by Planck Collaboration et al. (2015b).

Figure 17
Ratio of the thermal gas pressure (P_{gas}) to the total equilibrium pressure (P_{tot}) as a function of the ellipsoidal radius R measured along the major axis of the ICM halo. The middle line tracks the median. The gray shaded regions show the 68.3%, 99.4%, and 99.7% quantiles of the distribution, respectively. Portions of these lines are dashed to indicate extrapolations to larger cluster radii.

8.3. Gas Mass Fraction

We compute the ratio of spherically-enclosed gas mass $M_{\text{gas,sph}}(<r)$ to total mass $M_{\text{gas,tot}}(<r)$ using the posterior samples of the ellipsoidal cluster model:

$$f_{\text{gas}}(<r) = \frac{M_{\text{gas,sph}}(<r)}{M_{\text{gas,tot}}(<r)},$$

where $M_{\text{gas}}(<r)$ denotes the total mass enclosed within a sphere of radius r,

$$M_{\text{gas}}(<r) = \int_0^r 4\pi r'^2 d\Omega' \rho(r')$$

with $d\Omega'$ the solid angle. In Table 10, we list the values of elliptical and spherical overdensity mass of the cluster evaluated at $\Delta = 200$ and 500.

The resulting f_{gas} profile is shown in Figure 16 as a function of integration radius r. The gas mass fraction within 0.9Mpc $\sim 1.2r_{2500c}$ is estimated as $f_{\text{gas}}(<0.9\text{Mpc}) = 0.100^{+0.031}_{-0.016}$. When the gas mass measurements are extrapolated to r_{500c} (Table 10), we find $f_{\text{gas}}(<r_{500c}) = 0.112^{+0.039}_{-0.020}$. When compared to the cosmic baryon fraction f_b inferred from Planck Collaboration et al. (2015b), $f_{\text{gas}}(<r_{500c})/f_b = 0.71_{-0.12}^{+0.25}$. These are consistent with typical values observed for high-mass clusters (Allen et al. 2008; Umetsu et al. 2012; Okabe et al. 2014).

Previous studies based on X-ray and lensing data found relatively low f_{gas} values for A1689 using lensing total mass estimates, but assuming spherical symmetry: $f_{\text{gas}}(<0.25r_{200c}) = (0.0557 \pm 0.0039)h_0^{-3/22}$ (Lemze et al. 2008): $f_{\text{gas}}(<r_{2500c}) = 0.0552^{+0.0056}_{-0.0062}$, $f_{\text{gas}}(<r_{500c}) = 0.0812^{+0.0145}_{-0.0157}$, and $f_{\text{gas}}(<r_{200c}) = 0.1053^{+0.0227}_{-0.0246}$ (Okabe et al. 2014, see also Kawaharada et al. 2010).

Umetsu et al. (2009) measured gas fractions for a sample of four high-mass clusters including A1689 from a joint analysis of AMiBA SZE and Subaru weak-lensing observations, combined with published X-ray temperature measurements. Assuming spherical symmetry, they found for A1689 $f_{\text{gas}}(<r_{2500c}) = 0.098^{+0.025}_{-0.026}$ and $f_{\text{gas}}(<r_{500c}) = 0.115 \pm 0.029$, in excellent agreement with our results. Their gas fraction measurements are expected to be less sensitive to triaxiality because their f_{gas} estimator depends on the ratio of the SZE and lensing signals, which are subject to similar projection effects albeit with somewhat different degrees of impact.

22 Lemze et al. (2008) found $r_{200c} = 1.71$ Mpc h^{-1} from their analysis.
8.4. Degree of Hydrostatic Equilibrium

A quantitative assessment of the degree of equilibrium in the ICM is a critical issue for cluster cosmology based on hydrostatic mass estimates (e.g., Planck Collaboration et al. 2014; Sereno & Ettori 2014). A significant advantage of our method is the ability to determine the intrinsic structure, shape, and orientation of the cluster system without a priori assuming HSE (Sereno et al. 2013). This allows us to compare the ICM properties directly to the gravitating mass corrected for projection effects, and thus to quantify the contribution of the thermal gas pressure P_{th} to the total equilibrium pressure P_{tot} (Molnar et al. 2010; Kawaharada et al. 2010). Here P_{tot} is determined by the gravitational potential Φ through $\nabla P_{tot} = -\rho_{gas} \nabla \Phi$ with ρ_{gas} the gas mass density. A consequence of the pressure equilibrium is the X-ray shape theorem (Buote & Canizares 1994), namely, that the gas in strict HSE is expected to follow iso-potential surfaces of the underlying matter distribution. For A1689, we find that the gas is more elongated than the gravitational potential (see Section 8.2), which points to a deviation from equilibrium.

In Figure 17, we show the ratio of thermal to equilibrium gas pressure, P_{th}/P_{tot}, as a function of ellipsoidal radius r of the ICM distribution. For this aim, we have recomputed the posterior probability distributions for the cluster parameters, by imposing a sharp prior of $e^{ICM}/e = 0.7$ (see Sereno et al. 2013), corresponding to the assumption that the gas shape follows the gravitational potential. We find $P_{th}/P_{tot} \sim 0.6$ out to $\sim 0.9\text{ Mpc} \sim 0.4r_{200c}$, indicating a significant level ($\sim 40\%$) of non-thermal pressure support. The results here are consistent with Sereno et al. (2013), although our analysis favors a slightly higher level of non-thermal pressure support. We find no significant radial trend in the P_{th}/P_{tot} ratio profile.

Our results are in agreement with Molnar et al. (2010), who analyzed a simulated sample of massive regular clusters of $(1-2) \times 10^{15} M_{\odot} h^{-1}$ having a smooth density profile, drawn from high-resolution cosmological simulations. Their simulations are therefore highly relevant to interpreting the observations of A1689. They found a significant non-thermal contribution due to subsonic gas motions in the core region (20\%–45\%), a minimum contribution (5\%–30\%) at about $0.1 r_{vir}$ (Lau et al. 2009), growing outward to about 30\%–45\% at the virial radius r_{vir} (Nelson et al. 2014).

Molnar et al. (2010) also tested the validity of HSE in A1689 using gravitational lensing (see Umetsu & Broadhurst 2008; Kawaharada et al. 2010) and Chandra X-ray observations under the assumption of spherical geometry, finding a non-thermal contribution of $\sim 40\%$. As discussed by Sereno et al. (2013), this however indicates that this test is highly sensitive to biases in the X-ray temperature measurements (Donahue et al. 2014). For the cluster, we find the Chandra temperatures are about 10\% higher than the XMM-Newton results used here (Sereno et al. 2012), so that the thermal contribution $P_{th}/P_{tot} \sim 0.6$ obtained by Molnar et al. (2010) could be correspondingly overestimated relative to our results based on the XMM-Newton temperatures.

By combining Suzaku X-ray observations with the same lensing data as used in Molnar et al. (2010), Kawaharada et al. (2010) showed, assuming spherical symmetry, that the thermal gas pressure within r_{500c} is at most 40\%–60\% of the equilibrium pressure and 30\%–40\% around the virial radius. Intriguingly, their Suzaku observations reveal anisotropic distributions of gas temperature and entropy in cluster outskirts at $\sim r_{500c}$, correlated with large-scale structure of galaxies surrounding the cluster. The outskirt regions in contact with low-density void environments have low gas temperatures and entropies, indicating that the outskirts of A1689 are in the process of being thermalized (Kawaharada et al. 2010). Their Suzaku temperature measurements are in agreement with the XMM-Newton results (Sereno et al. 2012).

Morandi et al. (2011, see also Limousin et al. (2013)) obtained $M_{200c} = (1.81 \pm 0.06) \times 10^{15} M_{\odot} h^{-1}$, $c_{200c} = 5.71 \pm 0.47$, and $q_a \sim 0.5$ for A1689 from a joint analysis of Chandra X-ray, weak-lensing, and strong-lensing data (see Table 9). The inferred level of triaxiality is similar to what we have found (Table 7), whereas the concentration is somewhat smaller and the mass is significantly higher than our results. They found that about 20\% of the total ICM pressure is in non-thermal form, by assuming that P_{th}/P_{tot} is constant with radius and the gas shape follows the form expected for HSE. We note again that the P_{th}/P_{tot} results are also sensitive to calibration biases in the X-ray temperature measurements.

The mass discrepancy between the present results and those by Morandi et al. (2011) can be explained by the difference in their relative weights assigned to the weak- and strong-lensing data sets. As we have seen in Section 8.1.1, the HST strong-lensing data favor higher values of $M(< r_{200c})$ (Table 7), although this represents a significant extrapolation beyond the radial range covered by the multiple images. Hence, if the parameter constraints are highly dominated by strong lensing, this could lead to an overestimate of M_{200c}.

8.5. Comparison with Planck data

We compare the SZE measurements from the interferometric data presented in Section 7.2 with a total power estimate based on the recent Planck data (Planck Collaboration et al. 2015a). A1689 is detected by Planck with high significance $(S/N > 15$, Planck Collaboration et al. 2015d). We construct Planck SZE maps in two different ways with different assumptions, using the data in the 143 GHz, 217 GHz, and 353 GHz channels. The 217 GHz and 353 GHz bands are used primarily to remove the CMB and Galactic foregrounds. The difference between the two maps accounts for different assumptions about the Galactic components: one is based on local estimates of the dust properties, and the other is on global properties. The resulting SZE maps are obtained at an effective resolution of 8\' FWHM. The SZE signal is integrated as a function of clustercentric radius. We obtain a direct estimate for the total Compton Y parameter of $Y_{Planck} = (3.8 \pm 0.8) \times 10^{-10}$ sr integrated out to a sufficiently large radius $13\' \sim 2r_{200c}$, beyond which the integrated SZE signal converges. Here the error is estimated from aperture photometry in the background regions.

This direct Planck measurement of the total SZE signal can be compared to the results inferred from the interferometric SZA observations (Section 7.2). Taking $Y_{SZA}(< 6\')$ (Table 6) as a lower limit on the total SZE flux, we find $Y_{SZA}(< 6\')/Y_{Planck} = 1.45 \pm 0.44$. Hence, the results from two independent SZE instruments operating at different angular scales are compatible with each other at 1σ. The relatively low Y value derived from the Planck data could be understood in light of the low gas temperature and entropy at $\sim r_{500c}$ observed by the Suzaku X-ray satellite (Section 8.4). The Suzaku X-ray observations are in agreement with the thermal pressure profile of A1689 obtained from Planck data out to $\sim 2r_{500c}$ (Y. Mochizuki et al. 2014, submitted to ApJ).

When compared to Planck’s hydrostatic mass estimate,
When the gas mass measurements are extrapolated to r_{500c}, our lensing mass measurements (Table 10) give a spherical mass ratio of $\frac{M_{\text{planck}}}{M_{\text{GL}}} = 0.70 \pm 0.15$ and 0.58 ± 0.10 with and without corrections for lensing projection effects, respectively.

9. SUMMARY

We have carried out a 3D multi-probe analysis of the rich cluster A1689, one of the most powerful known lenses on the sky ($\theta_{\text{Ein}} = 47.0^\circ \pm 1.2^\circ$ at $z_a = 2$, Table 1), by combining improved weak-lensing data from new wide-field $BV RC' z'$ Subaru/Suprime-Cam observations (Sections 3 and 4) with complementary strong-lensing (Section 5), X-ray and SZE (Section 7) data sets.

We have generalized the 1D weak-lensing inversion method of Umetu et al. (2011b) to a 2D description of the mass distribution without assuming particular functional forms (Section 2). This free-form method combines the spatial shear pattern with azimuthally averaged magnification information, the combination of which breaks the mass-sheet degeneracy.

We have reconstructed the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints (Section 4). The resulting mass distribution reveals elongation with an axis ratio of $q_{\perp} \sim 0.7$ in projection (Figures 1 and 8), aligned well with the distributions of cluster galaxies and ICM (see Kawaharada et al. 2010). When assuming a spherical NFW halo, our full weak-lensing analysis yields a projected halo concentration of $c_{200c}^{2D} = 8.9 \pm 1.1$ ($c_{200}^{2D} \sim 11$), which is consistent with and improved from earlier weak-lensing work based on Subaru $V' i'$ imaging (Umetu & Broadhurst 2008; Umetu et al. 2011b).

We obtain excellent consistency between weak and strong lensing in the region where these independent data overlap, $\lesssim 200$ kpc (Figures 6 and 10). We also find an improved agreement between weak and strong lensing in terms of constraints on projected NFW parameters (Figure 11) relative to previous work (Sereno & Umetu 2011). This is largely due to improved techniques for strong-lensing reconstruction and to careful regularization of the covariance matrix (Section 7.1.2).

In a parametric triaxial framework, we have determined the intrinsic structure, shape, and orientation of the matter and gas distributions of the cluster, by combining weak/strong lensing with X-ray/SZE data under minimal geometric assumptions (Section 7). We have shown that the data favor a triaxial geometry with minor–major axis ratio $q_a = 0.39 \pm 0.15$ and major axis closely aligned with the line of sight ($\phi = 22^\circ \pm 10^\circ$). A spherical configuration for A1689 has been strongly ruled out. We obtain a halo mass $M_{200c} = (1.24 \pm 0.16) \times 10^{15} M_\odot h_{70}^{-1}$ and a halo concentration $c_{200c} = 8.36 \pm 1.27$, which is higher than typical concentrations found for high-mass clusters ($\lesssim c_{200c} \lesssim 6$; e.g., Okabe et al. 2013; Umetu et al. 2014; Merten et al. 2014), but overlaps well with the $\sim 1\sigma$ tail of the predicted distribution (Figure 15; Bhattacharya et al. 2013; Meneghetti et al. 2014; Diemer & Kravtsov 2015).

We find that the ICM is mildly triaxial with $q_a^{\text{ICM}} = 0.60 \pm 0.14$ and $q_b^{\text{ICM}} = 0.70 \pm 0.16$ (Table 8). The gas distribution is rounder than the underlying matter, $e^{\text{ICM}} / e = 0.87 \pm 0.07$, but more elongated than the gravitational potential ($e^{\text{ICM}} / e \gtrsim 0.7$), suggesting a deviation from equilibrium. The gas mass fraction enclosed within a sphere of radius $r = 0.93 h_{70}^{-1}$, found to be $\bar{f}_{\text{gas}} = 10.0^{+3.1}_{-1.6} \%$. When the gas mass measurements are extrapolated to r_{500c}, $\bar{f}_{\text{gas}}(< r_{500c}) = 11.2^{+3.9}_{-3.0} \%$. When compared to the cosmic baryon fraction f_b (Planck Collaboration et al. 2015b), we find $\bar{f}_{\text{gas}}(< r_{500c}) / f_\text{b} = 0.71^{+0.25}_{-0.12}$ (Figure 16). These are consistent with typical values observed for high-mass clusters. The thermal gas pressure contributes to $\sim 60\%$ of the total pressure out to ~ 0.9 Mpc (Figure 17), indicating a significant level of non-thermal pressure support. The results are, however, sensitive to calibration biases in the X-ray temperature measurements (Donahue et al. 2014). When compared to Planck’s hydrostatic mass estimate, our lensing mass measurements yield a spherical mass ratio of $\frac{M_{\text{planck}}}{M_{\text{GL}}} = 0.70 \pm 0.15$ and 0.58 ± 0.10 with and without corrections for lensing projection effects, respectively.

Extending this work to larger samples of clusters will enable us to recover intrinsic distributions of cluster structural properties (e.g., M_{200c}, c_{200c}) and axis ratios (q_a, q_b), for a direct statistical comparison with the standard LCDM paradigm and for a wider examination of alternative DM scenarios (e.g., Schive et al. 2014). The CLASH survey (Postman et al. 2012) provides such ideal multiwavelength data sets of high quality (Donahue et al. 2014; Umetu et al. 2014; Zitrin et al. 2014; Czakon et al. 2014; Rosati et al. 2014), for a sizable sample of 25 high-mass clusters.

We thank the anonymous referee for constructive comments and suggestions. We are grateful for discussions with Sherry Suyu, Adi Zitrin, and Radek Wojtak. We acknowledge the Subaru Support Astronomers plus Kai-Yang Lin and Hiroaki Nishikawa, for assistance with our Subaru observations. We thank Nick Kaiser for making the IMCAT package publicly available. We thank Olvier Czoske for providing the redshift survey information for A1689. The work is partially supported by the Ministry of Science and Technology of Taiwan under the grant MOST 103-2112-M-001-030-MY3. M.S. acknowledges financial contributions from contracts ASI/INAF I/023/12/0, by the PRIN MIUR 2010-2011 ‘The dark Universe and the cosmic evolution of baryons: from current surveys to Euclid’ and by the PRIN INAF 2012 ‘The Universe in the box: multiscale simulations of cosmic structure’. M.N. acknowledges financial support from PRIN INAF 2014. J.M.D acknowledges support of the consolidor project CSD2010-00064 and AYA2012-39475-C02-01 funded by the Ministerio de Economia y Competitividad. N.O. is supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (26800097). This work was partially supported by “World Premier International Research Center Initiative (WPI Initiative)” and the Funds for the Development of Human Resources in Science and Technology under MEXT, Japan. This research was performed while T.M. held a National Research Council Research Associateship Award at the Naval Research Laboratory (NRL). We thank John Carlstrom, Megan Grailla, Marshall Joy, Dan Marrone, and the entire SZA and OVRO/BIMA teams for providing the SZA and OVRO/BIMA data used in this study. Support for the SZA observations presented in this work was provided by NSF through award AST-0838187 and PHY-0114422 at the University of Chicago. The OVRO and BIMA observations presented here were supported by National Science Foundation grants AST-99-81546 and 02-28963.

REFERENCES

APPENDIX

A. NONLINEAR EFFECT ON THE SOURCE-AVERAGED LENSING FIELDS

A.1. Reduced Gravitational Shear

The reduced shear, $g = \gamma/(1 - \kappa)$, is nonlinear with κ, so that the averaging operator with respect to the source redshift acts nonlinearly on κ. In general, a spread of the source redshift distribution, in combination with the single source-plane approximation, may lead to an overestimation of the gravitational shear in the nonlinear regime.

Let us expand the reduced shear $g = g(z)$ with respect to $\kappa(z) = W(z)\kappa_\infty$ and $\gamma(z) = W(z)\gamma_\infty$ as

$$g = \gamma/(1 - \kappa) = W\gamma_\infty(1 - W\kappa_\infty)^{-1} = W\gamma_\infty\sum_{k=0}^{\infty}(W\kappa_\infty)^k.$$ \hfill (A1)

The reduced shear averaged over the source redshift distribution is expressed as

$$\langle g \rangle = \gamma_\infty\sum_{k=0}^{\infty} (W^{k+1})g^{k}\kappa_{\kappa}^k,$$ \hfill (A2)

where the angular brackets represent an ensemble average over the redshift distribution of background sources. In the weak-lensing limit where $\kappa_\kappa \ll 1$, $\langle g \rangle \approx \langle W \rangle g\gamma_\infty \equiv \langle \gamma \rangle$. The next order of approximation is

$$\langle g\rangle \approx \gamma_\infty (\langle W \rangle g + \langle W^2 \rangle g^2\kappa_\infty^2) \approx \frac{\langle W \rangle g\gamma_\infty}{1 - \kappa_\kappa\langle W^2 \rangle g/\langle W \rangle g}. \hfill (A3)$$

Seitz & Schneider (1997) showed that Equation (A3) yields an excellent approximation in the mildly-nonlinear regime with $\kappa_\kappa \approx 0.6$. Defining $f_{W,g} \equiv \langle W^2 \rangle g/\langle W \rangle^2$, we have the following expression for the source-averaged reduced shear valid in the mildly-nonlinear regime:

$$\langle g \rangle \approx \frac{\langle \gamma \rangle}{1 - f_{W,g}\langle \kappa \rangle}, \hfill (A4)$$

with $\langle \kappa \rangle = \langle W \rangle g\kappa_\infty$. For a lens at relatively low redshift, $\langle W^2 \rangle g \approx \langle W \rangle^2 g$ and $f_{W,g} \approx 1$, leading to the single source-plane approximation: $\langle g \rangle \approx \langle \gamma \rangle/(1 - \langle \kappa \rangle)$. The level of bias introduced by this approximation is $\Delta g/g \approx (f_{W,g} - 1)\langle \kappa \rangle$. In typical ground-based deep observations of $z_s \approx 0.5$ clusters, $\Delta f_W \equiv f_W - 1$ is found to be of the order of several percent (Umetsu et al. 2014), so that the relative error is negligibly small in the mildly-nonlinear regime.

A.2. Magnification Bias

Let us consider a maximally-depleted sample of background sources with $\alpha = -d \log N_s(> F)/dF = 0$, for which the effect of magnification bias is purely geometric, $b_V = \mu^{-1}$, and insensitive to the intrinsic source luminosity function. In the nonlinear subcritical regime, the source-averaged magnification bias is expressed as (Umetsu 2013; Umetsu et al. 2014)

$$\langle \mu^{-1} \rangle = (1 - \langle \kappa \rangle)^2 - |\langle \gamma \rangle|^2 + (f_{W,\mu} - 1)\langle \kappa \rangle^2 - |\langle \gamma \rangle|^2 \approx (1 - \langle \kappa \rangle)^2 - |\langle \gamma \rangle|^2, \hfill (A5)$$
where \(f_{W;\mu} \equiv \langle W^2 \rangle_{\mu}/\langle W \rangle_{\mu}^2 \) is of the order of unity, \((\kappa) = \langle W \rangle_{\mu}\kappa_{\infty} \) and \((\gamma) = \langle W \rangle_{\mu}\gamma_{\infty} \). Hence, the error associated with the single source-plane approximation is \((\Delta \kappa^{-1}) = (f_{W;\mu} - 1)(\langle \kappa \rangle^2 - \langle \gamma \rangle^2) \equiv \Delta f_{W;\mu}(\langle \kappa \rangle^2 - \langle \gamma \rangle^2)\), which is much smaller than unity for background populations of our concern \((\Delta f_{W;\mu} \sim O(10^{-2}))\) in the mildly-nonlinear subcritical regime where \((\kappa) \sim (|\gamma|) \sim O(10^{-1})\). It is therefore reasonable to use the single source-plane approximation for calculating the magnification bias of depleted source populations with \(\alpha \ll 1 \).

B. Discretized Expressions for Cluster Lensing Profiles

First, we derive a discrete expression for the mean interior convergence \(\kappa_\infty(< \theta) \) as a function of clustercentric radius \(\theta \) using the azimuthally averaged convergence \(\kappa_\infty(\theta) \). In the continuous limit, the mean convergence \(\kappa_\infty(< \theta) \) interior to radius \(\theta \) can be expressed in terms of \(\kappa_\infty(\theta) \) as

\[
\kappa_\infty(< \theta) = \frac{2}{\theta^2} \int_0^\theta d\ln \theta' \theta'^2 \kappa_\infty(\theta').
\]

For a given set of \((N_{\text{bin}} + 1)\) concentric radii \(\theta_i \) \((i = 1, \ldots, N_{\text{bin}} + 1)\), defining \(N_{\text{bin}} \) radial bands in the range \(\theta_{\text{min}} \equiv \theta_1 \leq \theta \leq \theta_{N_{\text{bin}} + 1} \equiv \theta_{\text{max}} \), a discretized estimator for \(\kappa_\infty(< \theta) \) can be written in the following way:

\[
\kappa_\infty(< \theta_i) = \left(\frac{\theta_{\text{min}}^2}{\theta_i^2} \right)^2 \kappa_\infty(< \theta_{\text{min}}) + \frac{2}{\theta_i^2} \sum_{j=1}^{i-1} \Delta \ln \theta_j \theta_j^2 \kappa_\infty(\theta_j),
\]

with \(\Delta \ln \theta_i \equiv (\theta_{i+1} - \theta_i)/\theta_i \) and \(\bar{\theta}_i \) the area-weighted center of the \(i \)th annular bin defined by \([\theta_i, \theta_{i+1}]\). In the continuous limit, we have

\[
\bar{\theta}_i = 2 \int^{\theta_{i+1}}_{\theta_i} d\theta' \theta'^2/(\theta_{i+1}^2 - \theta_i^2) = \frac{2}{3} \frac{\theta_i^2 + \theta_{i+1}^2 + \theta_i \theta_{i+1}}{\theta_i + \theta_{i+1}}.
\]

Next, we derive discretized expressions for the tangential reduced shear \(g_+(\theta) \) and the inverse magnification \(\mu^{-1}(\theta) \) in terms of the binned convergence \(\kappa_\infty(\bar{\theta}_i) \), using the following relations:

\[
g_+(\bar{\theta}_i) = \frac{\langle W \rangle_{\mu} \left[\kappa_\infty(< \bar{\theta}_i) - \kappa_\infty(\bar{\theta}_i) \right]}{1 - f_{W;\mu} \langle W \rangle_{\mu} \kappa_\infty(\bar{\theta}_i)},
\]

\[
\mu^{-1}(\bar{\theta}_i) = \left[1 - \langle W \rangle_{\mu} \kappa_\infty(\bar{\theta}_i) \right]^2 - \langle W \rangle_{\mu}^2 \left[\kappa_\infty(< \bar{\theta}_i) - \kappa_\infty(\bar{\theta}_i) \right]^2,
\]

where both the quantities depend on the mean convergence interior to the radius \(\bar{\theta}_i \), \(\kappa_\infty(< \bar{\theta}_i) \). By assuming a constant density in each radial band, we find the following expression for \(\kappa_\infty(< \bar{\theta}_i) \):

\[
\kappa_\infty(< \bar{\theta}_i) = \frac{1}{2} \left[(\theta_i/\bar{\theta}_i)^2 \kappa_\infty(< \theta_i) + (\theta_{i+1}/\bar{\theta}_i)^2 \kappa_\infty(< \theta_{i+1}) \right].
\]

where \(\kappa_\infty(< \theta_i) \) and \(\kappa_\infty(< \theta_{i+1}) \) can be computed using Equation (B2).

Accordingly, all relevant cluster lensing observables, \(g_+(\theta) \) and \(n_{\gamma}(\theta) \), can be uniquely specified by the binned convergence profile \(\{\kappa_{\infty,\min, \kappa_{\infty,i}}\}_{i=1}^{N_{\text{bin}}} \) with \(\kappa_{\infty,\min} \equiv \kappa_\infty(< \theta_{\text{min}}) \) and \(\kappa_{\infty,i} \equiv \kappa_\infty(\bar{\theta}_i) \).

C. Two-Dimensional to One-Dimensional Projection

To make a direct comparison between the results from 1D and 2D weak-lensing analyses, we construct a projected mass profile \(\Sigma(\theta) \) from an optimally weighted radial projection of the \(\Sigma(\theta) \) field as (Morandi et al. 2011)

\[
\Sigma(1) = \left[A^t C_{(2)}^{-1} A \right]^{-1} A^t C_{(2)}^{-1} \Sigma(2)
\]

where \(\Sigma(2) = \{\Sigma(\theta_m)\}_{m=1}^{N_m} \) is a pixelated mass map, \(C_{(2)} \) is the pixel–pixel covariance matrix of \(\Sigma(2) \), \(\Sigma(1) \) is a vector of radially binned \(\Sigma \) values, and \(A \) is a mapping matrix whose elements \(A_{mn} \) represent the fraction of the area of the \(m \)th pixel lying within the \(i \)th clustercentric radial bin (Section 2.3.2). The covariance matrix for \(\Sigma(1) \) is given by

\[
C_{(1)} = \left[A^t C_{(2)}^{-1} A \right]^{-1}.
\]