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Large quadrature squeezing at high intensities
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The squeezing properties of a system characterized by large y and y nonlinear susceptibilities
and injected classical fields for the two relevant modes are studied as a function of the output power.
A large reduction of noise levels well above threshold has been found and a remarkable dependence
of the maximum squeezing on the input power has been shown. The possibility of an implementation
with state of the art technology is demonstrated, enabling a practical realization of a laserlike source
with a high degree of squeezing at high intensities.

PACS number(s): 42.50.Dv, 42.65.Ky

Despite the wide range of possible applications of
quadrature-squeezed light [1,2] opened up by the first ex-
perimental generation of these nonclassical fields [3], the
advances in the production of squeezed light with usable
intensities have been somewhat modest. As an example,
only very recently [4], a significant output power of 0.17
mW was achieved for a beam which, on the other hand,
was shown to exhibit a small noise reduction, leading to
a degree of squeezing of about 18'%%uo. Leaving aside the
experimental problems associated with the operation of
sources for bright squeezing well above threshold, the un-
derlying reasons for this difFiculty can be found even at a
theoretical or model-building level. As a matter of fact,
most of the reported models predict a strong degradation
of squeezing when the input power is raised at the levels
required to generate a bright output. Such a difFiculty
can be circumvented by the introduction of an injected
signal, something found to be useful for counterbalancing
the deleterious efFect caused by high input powers [5].

In the search for a suitable model device, an optical
parametric oscillator (OPO) with an added Kerr-efFect
term was considered previously [6,7]. As a result it was
found that, although the maximum available squeezing
was improved in comparison with the standard OPO,
very low eKciency in the down-conversion process re-
sulted [7]. To compensate for such a decrease, consid-
eration was made of arguments given by Tombesi [8],
where an injected classical signal was shown to lead to
a substantial reduction of the interaction time needed to
achieve strong noise reduction.

As it will be shown below, such a model device en-
ables the production of bright-squeezed. light, showing a
remarkable dependence on the output power. The rele-
vance of this study goes well beyond the theoretical study
of such a device since, as it will be illustrated below,
recent advances in the technology of multiple quantum
wells (MQW) enable its practical implementation based
upon already existing devices.

To specify such a model system, two quantized modes
a and b both excited by injected classical fields, with
frequencies u and 2~, respectively, are considered. Both
modes are resonant in an optical ring cavity where they
interact with a suitable nonlinear medium characterized
by its second y2 and third y order susceptibilities.

The losses in the input-output mirror are accounted for
by means of independent reservoir interactions for each
mode. An efFective Hamiltonian for the model system
can be written as (h = 1)

H = grata + 2wbtb + —[K(at) b —K,*a bt] + —(at) a
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with p and pb the loss rates through the input-output
mirror for the u, 2u modes, and O„and Ob the phases
of K and Eb, respectively. The deterministic part of the
stochastic equations then takes the form

dA 2n+ Pn* ——iAn*n
d7.

dp 2rp —rn +rAb, —

where

~ =pt, r= —,A =Pb 2ybI

where K and I' are proportional to the y2 and y(2) (3)

susceptibilities, respectively, E and Eb are related to
the complex amplitudes of the external classical fields
as well as to the transmission coefFicients of the input-
output mirror corresponding respectively to the ~ and 2~
modes, and I ~ and I'~ are the usual reservoir operators.
Following the same lines drawn in Ref. [7] a couple of
stochastic difFerential equations are obtained by means
of a mapping onto phase space using a P representation.
The arbitrary phases and the oscillatory part are removed
by passing to a new frame of reference,
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exp(i [8. —(8b+8b)/2]), Ab =
Y~ Yb

8 is the phase of E, and n and P are the complex am-
plitudes associated with the quantum operators ci and P.
It is worth noting that the independent term of the first
equation retains an irreducible phase, and all the other
parameters involved in the problem are now positive real
numbers (including the zero). The following relation be-
tween the phase and modulus of nf (the fixed points of
mode ur) results after equating to zero the left-hand side
of Eq. 1,

Al~fl' —tan(v-)(i~f1' —&b+ ')
tan(~-)Al~tl'+ (l~tl'+ &b+1) '

p being the phase of A . This relation holds for any
value of y within [0, 2m), so that values of pt within
[0, 2') are allowed. Note that the absence of an injected
classical signal for mode w (i.e. , A = 0) restricts this
interval to [77r/4, 2vr] [7]. At the same time, once !nfl
and pf are given, A and &p are fixed.

Following procedures described in Ref. [9], a set of
equations which are formally the same than those given
in our previous work [7] is found, since only an indepen-
dent term has been added to the differential equations.
The explicit form for the eigenvalues also follows as [7]

ki, k2 ———2(r + 1 —g) + 2[(—r+ 1 —g) —8rlnf! ]

k3)k4 — ,'(r + 1 + g—)—+—,'[(—r + 1 + g)' —»l~f! ]

where g is now given by

g = + !A b
—n~(1+ iA) l' —4A'!nf

l

The case considered in our previous study [7] (without
injected signal) is easily recovered by setting A = 0 and
Ab ) 1 which leads to !Ab —nf(1+ iA)l = 1.

The stability analysis evidences a Hopf bifurcation
frontier [10] at g = r + 1 where Re ki ——Re k2 ——0 g
ImA:j ———ImA:2 which gives rise to self-sustained oscil-
lations when g ) r + 1 and a saddle-node or pitchfork
bifurcation frontier [10] at g = 1+ 2!o.fl where k2 ——0.
A set of stable fixed points o., is then found for g ( r + 1
and g ( 1 + 2!n.l'.

The spectrum of squeezing is then calculated follow-
ing Collet and Gardiner [11,12], where perfect squeezing
occurs at —0.25. If the field quadratures are defined as
a(t) = e ' [x(t, 8) +i y(t, 8)] the spectrum of squeezing is
given within the conditions of validity of the input-output
formalism [11,12]
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higher order efFects are operative) the optimal value of 8
depends on u, so that the resulting spectrum: S(ur) "":
does not correspond to any measure along a given di-
rection on the phase space, but to obtain one point of
our squeezing spectrum the noise power at a given fre-
quency should be measured (using high resolution in en-

ergy) scanning the phase of the local oscillator, seeking
for the minimum spectral variance (see, for instance, Ref.
[4] for a measure of bright squeezing at 150.5 Mhz). Also,
for given values of ln, l, Ab, A, and r, : S(w) ":has
been numerically minimized in the frequency and phase
of o;, . Such a procedure provides the maximum available
squeezing, : S "t: as a function of lo.,l, and it has been
applied to both modes u and 2w.

Figure 1 exemplifies the inHuence of A on: S "': for
mode ~, where a dramatic improvement of squeezing is
found. The gap between the origin of coordinates and
the beginning of the curves corresponds to the instabil-
ity region before the saddle-node point. The end of the
curve marked a (pure sub-second-harmonic generation)
is located at the Hopf bifurcation. The presence of this
bifurcation is very sensitive to a nonzero value of A and is
not present in the other cases shown. Maximum squeez-
ing appears for higher photon numbers as A is increased
up to 1. A = 1 (i.e., in efFective terms the third and
second order effects become comparable) seems to be a
limiting case for which the maximum is located at oo,
but it comes back to lower photon numbers and disap-
pears for high enough values of A. To our knowledge
this is the first time that a nonmonotonic decreasing de-
pendence with respect to the output power is observed.
To get a large degree of bright quadrature squeezing with
the model systems proposed up to now, the working point
must be located near an instability, where perfect squeez-
ing can be reached, as an increase of input power quickly
degrades the squeezing. However, for practical realiza-
tions the working points must be far from instabilities.
The very remarkable effect of quantum noise reduction
with increasing power shown here opens the possibility
for the practical realization of a bright squeezer. The
case A = 1 merits a special consideration since it shows

: S((u, 8) "':

([x(t, 8) —(x)][+(t+ ~, 8) —(i)])e'- d~,

-0.20
0

I ~ I

where () denotes a quantum average.
An analytical minimization of: S(u, 8) "":in 8 for

each w was carried out. For cases where A g 0 (i.e. ,

FIG. 1. The maximum available squeezing as a function of
the photon number for four difFerent cases: curve a, A = 0;
curve 6, A = 05; curve c, A = 1; curve d, A = 2. In all cases
A t, = 1.5 and r = 1.
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FIG. 2. The maximum available squeezing as a function
of the photon number for five difFerent cases (a) and the
corresponding spectrum at ~n,

~

= 0.64 for the three most
favorable cases (b): curve a, second-harmonic generation

(A b = 1.5); curve b, subharmonic generation (A b = 1.5);
curve c, sub-second-harmonic generation (Ab = 1.5); curve

d, A = 3.5 (A b = 1.5); curve e, A = 7.5 (A b = 4). In all cases
r=1.

a residual squeezing (i.e. , at very large output power)
around 83% which represents an improvement of 86%
with respect to the residual squeezing of the conventional
OPO. Large noise reduction is also obtained for mode 2~,
although less than that achieved for the other mode. It
is worth remarking that the system presents a large flex-
ibility enabling large degrees of squeezing at almost any
output power.

A comparison of the present results with those of
subharmonic generation (the standard OPO), second-
harmonic generation, and sub-second-harmonic genera-
tion, with parameters chosen to reach the maximum at
moderate output power (with the normalization used,
about 0.6 times the input power of the OPO at thresh-
old), is shown in Fig. 2(a). All the curves end at the
Hopf bifurcation of second-harmonic generation. In the
cases shown in Fig. 1 the increase in output power is
a consequence of higher input power of mode u as Ab is
kept constant (1.5). In counterposition, curve e now cor-
responds to Ab ——4 with A chosen to reach the maximum

at the same photon number, and as can be easily seen,
the rise in input power increases the reduction of quan-
tum noise. Furthermore, the variance of the unsqueezed.
quadrature is also reduced. A strikingly large squeezing
of 90% is reached in this case. Figure 2(b) shows the op-
timum output spectrum, : S (w) ":,of the three most
favorable cases of Fig. 1(a) at ~n,

~

= 0.64. As it is clear
from the figure the best case implies an improvement
of around 37% with respect to the sub-second-harmonic
generation, and, furthermore, the spectrum now covers
a wider extent in frequencies. We have scanned a wide
range of parameters and a large enhancement of squeez-
ing has been obtained in all cases.

Although the practical implementation of such a sys-
tem requires large values of the y& and y suscepti-(2) (3)

bilities, recent advances in multiple quantum wells have
enabled the construction of devices showing huge reso-
nant nonlinear susceptibilities [13,14]. In particular, the
doubly resonant case of [13] is an ideal device since both

and y susceptibilities are largely enhanced.
Although, to the authors' knowledge, no measurements
of ~y ~

have been made, some estimations can be
made using for the purpose the same kind of approxima-
tion as employed for the calculation of y2 . As a result,(2)

we have estimated ~y ~

1.4 x 10 (m/V) at
resonance (122.2 meV). Using the experimental value of

~
(7.5 x 10 m/V) and setting A = 3.5, r = 1, and

a cavity length of 1 cm we obtain p 2 x 10 s . This
implies a reflectivity of R 99%, something which allows
the use of the input-output theory. The efFective interac-
tion length is 87 pm with a coherence length of 120
pm, something which obviates stringent phase matching
conditions. The corresponding parameter p for the ab-
sorption measured in the material is five orders of mag-
nitude less than p and could be neglected. For Ab

——1.5
which corresponds to case d of Fig. 2(b) (80% of squeez-
ing) an input power of 120 mW at 2w and 190 mW
at u is needed, giving an output power of 30 mW at
frequency ~ . These power requirements are feasible with
standard laser systems. It is worth emphasizing that no
special requirements for the MQW are considered for this
estimation so that a heterostructure specifically designed
for this purpose could well improve the efBciency. On
the other hand it should be noticed that due to the huge
nonlinear susceptibilities involved the added fourth order
term is a necessary correction for squeezing calculations
in doubly resonant asymmetric MQW.

In summary, the present contribution has analyzed
a model system which shows a large enhancement of
squeezing with respect to systems proposed up to date
and a very remarkable dependence of squeezing on the
increase of input power. The large flexibility of work-
ing points and the possibility of its practical realization
with state of the art MQW technology enables a realis-
tic possibility of laserlike sources with a high degree of
quadrature squeezing.
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