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As the “cream of the crop” of the newly introduced concept of click 

chemistry,[1] the Huisgen 1,3-dipolar cycloaddition of azides and alkynes 
presented a new strategy for the synthesis of triazoles.[2,3] In 2002, a 
significant breakthrough was reported independently by the groups of 
Meldal[4] and Sharpless,[5] who showed that the use of a copper(I) 
catalyst significantly increases the reaction efficiency and regioselectivity of 
the triazole formation. This so called copper (I)- catalyzed 1,3-diploar 
cycloaddition has been regarded as “the best click reaction to date”[6] and 
the “most efficient and widely used” one,[7] due to the mild reaction 
conditions and high tolerance of the functional groups. Recently, both 
Huisgen’s and the copper (I)-catalyzed cycloaddition were applied for 
surface modification, as click reaction of monolayers was proven 
successfully on gold[8,9,10] and silica[11,12] surfaces. They were 
considered very useful for the synthesis and modification of polymers,[13–
16] hydrogels,[17] or bioactive surfaces,[18] and for surface-patterning 
techniques like microcontact printing,[19–22] microarray fabrication,[23] or 
dip-pen nanolithography.[24–26] In order to perform the click reaction, the 
presence of two functional groups is necessary: an alkyne group and an 
azide group. Already existing strategies for click chemistry on surfaces 
generally focus on having the azide group on the reactive surface. Lin et al. 
looked at surface click reactions comparing the azide and alkyne groups 
immobilized on the substrate and found higher reaction yields when the 
azide group was on the surface.[23] The azide group is usually introduced 



by immobilizing a silane with a bromide group and transforming the 
bromide into an azide. However, this process is time consuming, with 49 h 
necessary for the reaction.[11,19] On the other hand, other groups have 
successfully performed surface click chemistry with a surface-bound alkyne 
group,[12,19,20] which may be beneficial because of its higher 
stability.[24,27,28] An alkyne group can be introduced in an easy and well-
established way, taking advantage of an already-existing epoxy group, 
which reacts upon ring-opening with an amine bearing an alkyne 
moiety.[29–32]  

In this communication, we present a method to create a versatile and 
robust platform for surface click reactions on silicon oxide-based substrates, 
employing an uncomplicated and highly reproducible functionalization 
strategy which allows the direct writing of biomolecules. To this end, the 
surface is functionalized with a silane bearing an epoxy termination, which, 
in the second step, is subjected to a ring-opening reaction with 
propargylamine to give the alkyne group on the substrate (Figure 1). In 
contrast to the approach of Kuzmin et al.,[33] who have the more reactive 
epoxy group as a final group on the substrate, we preferred to have an 
alkyne group because of its stability.  

Glass substrates were cleaned, silanized with (3-glyxidy-
loxypropyl)trimethoxysilane (GPTMS) and directly afterwards used for the 
next reaction step, in order to ensure the functional reliability of the epoxy 
group. The epoxy group was opened by adding propargylamine, resulting in 
an amino alcohol. Both functionalization steps can be considered clean since 
no side products are formed and no work-up is needed. On top of that, by 
using the epoxy group instead of a carboxyl moiety, no activation was 
necessary. In order to increase the stability of the platform for biological 
applications, the formation of an amino alcohol was preferred over the 
typical coupling via an amide group (peptide bond), because the latter is 
prone to being cleaved by proteases. All functionalization steps were 
checked by X-ray photoelectron spectroscopy (XPS) or time-of-flight 
secondary ion mass spectroscopy (ToF-SIMS), respectively (see Supporting 
Information (SI)). 

 

Figure 1. Functionalization strategy for silicon oxide-based substrates to enable 

surface click chemistry. a) Silanization step, including piranha cleaning and 

silanization with GPTMS. b) Ring-opening of the epoxy group with propargylamine 

to yield an amino alcohol. c) Surface click reaction of immobilized alkyne with 

incoming azide R–N
3 
to yield the 1,2,3-triazole. 

 



In order to test the versatility of the substrates for click chemistry, three 
experiments were conducted. For the first one, a single-stranded 
oligonucleotide with an azide anchor was printed on an alkyne-modified 
glass slide by a robotic noncontact piezoelectric plotter (Nano-Plotter, 
GeSiM GmbH, Germany). The synthesis of the azido–oligonucleotide has 
been described previously.[34] Devaraj et al. already showed the 
immobilization of alkyne terminated oligos on an azide-terminated 
homogeneous self-assembled monolayer on gold via click reaction.[9] Spots 
of around 250 µm in diameter (corresponding to drops of 0.4 nL in volume) 
were printed in an array configuration (Figure 2a) of solutions with and 
without catalyst (in this case Cu(I), tris[(1-benzyl-1H-1,2,3-triazol-4-
yl)methyl]amine (TBTA) and N,N-diisopropylethylamine (DIPEA) in dimethyl 
sulfoxide (DMSO)). Negative control spots were also included (Table 1).  

After printing, the substrate was incubated for 12 h at room temperature 
to ensure the formation of the triazole ring between the surface-bound 
acetylene group and the incoming azide group from the oligonucleotide—
this was also the case for solution B, which does not contain the catalyst—
and subsequently hybridized with a complementary oligonucleotide strand 
bearing a fluorophore. The patterned area was visualized with fluorescence 
microscopy. Figure 2a shows the schematic set-up of the patterned area. 
The substrate modification itself did not give rise to autofluorescence. 
Figure 2b shows fluorescent signal for solutions B and E, which correspond 
to oligonucleotide with (E) and without Cu(I) (B), respectively. As expected, 
the solution with catalyst gives rise to a stronger fluorescent signal (E), 
since it is known that the presence of Cu(I) accelerates the cycloaddition 
reaction.[24,35] On the other hand, the oligonucleotide solution without 
catalyst (B, corresponding to the original Huisgen’s reaction) also gives rise 
to a fluorescent signal, though a weaker one, and it is important to know 
that the reaction will also take place without the Cu(I) catalyst because the 
presence of Cu(I) can be critical[20,36] and, over time, degradation of the 
oligonucleotide will occur. This problem has already been reported[37,38] 
and can be reduced by using a Cu(I) binding ligand,[39] but not completely 
avoided. Negative controls did not give any signal after hybridization 
(solutions A, C, and D). The stability of the surface functionalization was 
tested by extensive washing before and after patterning. In a second 
experiment, a different patterning method was chosen, with the potential of 
making smaller features. Surface click chemistry has already been reported 
with dip-pen nanolithography (DPN),[24–26] so first we evaluated the 
feasibility of our substrates with DPN click functionalization. Therefore, a 
fluorescent ink (Alexa Fluor 555 azide) was deposited via DPN on the 
previously fabricated glass substrates. As a test pattern, we chose the 
lettering “KIT INT IBEC” to demonstrate the resolution and arbitrary shapes 
of lithography. The letter height is 3 µm, and the line width can be 
estimated from optical microscopy to be 300 nm or below (optical resolution 
limit of the microscope). Figure 3a shows the resulting pattern and proves 
that the substrates are adequate for DPN click reactions. For the third 
experiment, a biotin modified with an azide group was attached covalently 
to a GPTMS/propargylamine-modified glass substrate via click chemistry. 
Having a biotin moiety on the substrate is especially interesting because it 
can be used for subsequent attachment of streptavidin and thus acts as a 
universal platform for the attachment of any molecule that can be 
biotinylated.[40,41] The biotin–streptavidin pair is well known for its highly 



sensitive molecular biorecognition mechanism[42] and is often used for 
attaching delicate biomolecules to a substrate. The biotin pattern for this 
experiment was designed with future applications in mind and consists of an 
array of dots which can be used for cell experiments (unpublished data). 
DPN utilizes multitip arrays to enable high-throughput and large-area 
lithography; in this case a 1D 26-cantilever array with 35 µm pitch was 
used. The pattern from a single cantilever consisted of 5 × 5 dots separated 
by 5 µm, yielding a 20 µm × 20 µm square filled with dots. Twenty-six of 
these squares in the x-direction were written in parallel, then the array was 
moved 35 µm in the y-direction and the next row of squares was generated. 
This procedure was repeated until 15 rows were created. After patterning, 
the surface was rinsed extensively and passivated against nonspecific 
protein adsorption. Finally, fluorescently labeled streptavidin was incubated 
on the surface in order to visualize the immobilized biotin. Figure 3b shows 
the fluorescence image of Streptavidin–Cy3, which is specifically bound only 
to the areas patterned with immobilized biotin azide. A detailed description 
of the writing parameters, binding protocols, and a large-area overview of 
the fluorescent pattern is given in the SI. 
 

 

 

Figure 2. a) Schematic layout of the patterned area (for explanation see Table 1). 

b) Fluorescence microscope image of a functionalized glass substrate after 

patterning the azide-terminated oligonucleotide and incubation with a 

complementary strand bearing the dye Texas Red. Scale bar equals 200 µm. 

Table 1. Solutions used for patterning with the Nanoplotter (negative 
controls are solutions A, C, and D).  

Name  Solution  

A  Solvent  
B  CT oligo (azide group), NO catalyst  
C  Catalyst mixture  
D  GA oligo (no azide group) + catalyst  
E  CT oligo (azide group) + catalyst  
 



 

 

Figure 3. Fluorescence microscope images of a) an Alexa Fluor 555 azide ink 

structure deposited by dip-pen nanolithography and b) fluorescent Streptavidin–

Cy3 bound on a biotin azide dot pattern generated by dip-pen nanolithography 

(image was corrected for background, see SI). Scale bars equal 35 µm. 

In conclusion, we have shown a facile two-step functionalization 

strategy of silica substrates in order to perform surface click chemistry. 

Notably, no workup is needed and the surface functionalization, i.e., the 

alkyne group, is very stable, which allows for mass fabrication, subsequent 

storage and, most importantly, long term experiments without loss of func-

tionality. Extensive washing steps were performed during the binding of 

oligonucleotides and biotin ink, proving an excellent stability and robustness 

of the covalently linked substrate functionalization and written patterns. 

Furthermore, the versatility of this direct patterning approach has been 

shown by using two direct-writing techniques at the micro-and nanoscale, 



as well as two different molecules, which were immobilized in a very stable 

manner. Both substrates (oligonucleotide- or biotin-modified) can be used 

for various applications ranging from biosensors to cell culture, since they 

are valuable platforms for attaching a broad range of molecules in a very 

specific and easy way. 

 

Experimental Section  

Functionalization of Silica Substrates: Glass slides were cleaned in piranha 
acid (3:1 v/v solution of H2SO4 and H2O2) for 30 min, rinsed with copious 
amounts of MilliQ water and dried with pressurized air. Caution: piranha 
acid is a strong oxidizer and a strong acid. It should be handled with 

extreme care, as it reacts violently with most organic materials. The 
samples were then immersed in a solution of (3-
glycidyloxypropyl)trimethoxysilane (GPTMS) in toluene (1% v/v) for 8 h at 
room temperature, afterwards rinsed with acetone, and dried with 
pressurized air. Immediately afterwards, the epoxy ring-opening was 
performed by immersing the substrates in a solution of propargylamine in 
acetonitrile (2% v/v) for 8 h at 45 °C. The samples were taken out of the 
solution, sonicated in ethanol for 5 min, rinsed thoroughly with ethanol and 
MilliQ water and dried with pressurized air. If the samples were not used 
directly, they were stored at 4 °C under argon atmosphere.  
 

Patterning of Oligonucleotides by Nanoplotter: Printing was carried out at 
4 °C and 60% relative humidity with a robotic noncontact piezoelectric 
plotter (Nano-Plotter, GeSiM GmbH, Germany) using a so-called Nanotip. 
The plotted volume was 0.4 nL and the correct formation of the droplet was 
checked for each solution before patterning. Washing steps were done 
before and during patterning steps to minimize cross contamination. 
Oligonucleotide sequences and composition of the respective solutions for 
printing with the Nanoplotter are given in detail in the SI. After successful 
plotting, the surface was incubated overnight to ensure triazole formation 
and then rinsed with MilliQ and DMSO to remove unreacted oligonucleotides 
and catalyst (at this point, the sample was examined with time-of-flight 
secondary ion mass spectrometry to compare the surface functionalization). 
Subsequently, the substrate was incubated for 1 h at room temperature in 
1% bovine serum albumin (BSA) in phosphate-buffered saline (PBS) to 
block unspecific adsorption, rinsed with PBS and incubated for 1 h at 36 °C 
with complementary oligonucleotide AG (10 µm) in hybridization buffer (10 
mm tris(hydroxymethyl)aminomethane (TRIS) base, 1 mm EDTA and 1 m 
NaCl). Afterwards, the sample was rinsed with hybridization buffer and 
MilliQ and examined with fluorescence microscopy.  
 

Patterning of Alexa Fluor 555 Azide and Biotin–Azide by Dip- Pen 

Nanolithography: Dip-pen nanolithography was done on a DPN 5000 system 
(Nanoink, Skokie, USA). A 1D cantilever array containing 26 Si3N4 was 
cleaned with oxygen plasma, 10 sccm at 100 mTorr with 30 W for 5 min. 
The cantilevers were subsequently immersed for 10 min in a solution of 
Alexa Fluor 555 azide (150 µg mL−1) or biotin azide (PEG4 carboxamide-6-



azidohexanyl biotin, 2 mg mL−1), each ink containing 20 mM sodium 
ascorbate and 10 mM CuSO4. After inking the cantilever arrays were blow-
dried with pressurized nitrogen. Writing of the Alexa Fluor 555 patterns was 
performed in feedback mode with a velocity of 1 µm s−1 at 74.8% relative 
humidity and 26.4 °C. The biotin azide dot patterns were generated with a 
dwell time of 2 s per dot at 74.0% relative humidity and 26.4 °C. After the 
DPN process for the biotin pattern the sample was blocked with a PBS 
solution containing 0.5% BSA for 15 min, then washed with PBS three times 
and incubated for another 15 min with PBS containing 1 vol% Streptavidin- 
Cy3 (Sigma-Aldrich GmbH, Germany). After that, the sample was washed 
again three times with PBS, rinsed with MilliQ DI water and blow-dried with 
nitrogen before inspection with fluorescent microscopy. SI, Figure S1 shows 
a large area overview of the pattern after Streptavidin-Cy3 binding.  
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SUPPPLEMENTARY INFORMATION 

 

1. Materials 

Glass Micro slides 75 x 25mm were purchased from Corning Inc. (NY, USA). 

AFM 1-D array F-type cantilevers (26 tips, Si3N4) were bought from Nanoink 

Inc. (Skokie, Chicago, USA). Sulfuric acid (H2SO4) 95-98%, absolute 

ethanol, sodium chloride (NaCl) and acetone were obtained from Panreac 

Química S.A.U. (Barcelona, Spain). 33% w/v Hydrogen peroxide (H2O2) was 

supplied by BASF (Barcelona, Spain). (3-glycidyloxypropyl)trimethoxysilane 

≥98% (GPTMS), toluene ≥99.3%, propargylamine 98%, acetonitrile 

≥99.9%, dimethyl sulfoxide ≥99.5% (DMSO), Cu(I)I purum ≥99.5%, N,N-

diisopropylethylamine ≥99% (DIPEA), tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine 97% (TBTA), ethylenediaminetetraacetic acid calcium 

disodium salt (EDTA), bovine serum albumin (BSA) and oligonucleotides 

(GA and AG) were purchased from Sigma-Aldrich Química S.A. (Madrid, 

Spain). ImmunoPure® Streptavidin was from Cultek S.L. (Madrid, Spain). 

Gold surfaces (50nm gold and 5nm titanium on float glass) were obtained 

from NTB (Buchs, Switzerland). Dulbecco’s phosphate buffered saline (PBS), 

Alexa Fluor® 555 azide ink and PEG4 carboxamide-6-azidohexanyl biotin ink 

were bought from Invitrogen GmbH (Germany). 

Tris(hydroxymethyl)aminomethane (TRIS) was obtained from Merck. 

Oligonucleotide CT was kindly provided by the group of Dr. Ramon Eritja at 

the Institute for Research in Biomedicine (IRB, Barcelona, Spain). 

 

2. Patterning of oligonucleotides by Nanoplotter 

Table S1. Oligonucleotide sequences used in experiments 

Entry Name Sequence (5’-3’) 

1 CT N3-CTTCCTCCTCT 

2 GA [6Fluorescein]-GAAGGAGGAGA 

3 AG [Texas Red]-AGAGGAGGAAG 

 

The catalyst solution, containing CuI, TBTA and DIPEA was prepared 

separately in DMSO and added to the oligonucleotide directly before 

patterning. The oligonucleotides CT and GA were dissolved in MilliQ. The 

solvent for all mixtures and for plotting was DMSO : MilliQ = 1:1. 

 



Table S2. Solutions used for the Nanoplotter experiment 

Entry Name Concentration 

1 E (CT + cat) 11 µM CT, 1.1 mM Cu(I)I, 1.1 mM TBTA, 1.3 mM DIPEA 

2 B (CT) 11 µM CT 

3 D (GA + cat) 11 µM GA, 1.1 mM Cu(I)I, 1.1 mM TBTA, 1.3 mM DIPEA 

4 C (catalyst) 1.1 mM Cu(I)I, 1.1 mM TBTA, 1.3 mM DIPEA 

5 A (solvent) DMSO : MilliQ 

 

3. Patterning of Alexa Fluor® 555 azide and biotin-azide by Dip-pen 

Nanolithography 

Out of focus stray light from alignment marks located right of the pattern in 

figures 3b and S1was removed by ImageJ software (version 1.44p; Wayne 

Rasband, National Institutes of Health, USA) applying the “background 

subtract” option with the “sliding paraboloid” featurewith a rolling ball radius 

of 50 pixels. 

 

Figure S1. Fluorescent microscopy image of Streptavidin-Cy3 bound to a 

biotin azide pattern generated by DPN. Scale bar equals 175 µm. 



4. Surface characterization via XPS and ToF-SIMS 

The two-step surface functionalization was monitored by XPS. ToF-SIMS 

experiments were performed as complementary measurements because it 

was not possible to analyze the phosphorus signature (P 2p peak) with XPS 

measurements, as has been reported by Zhang et al.[1] Thus, the presence 

of DNA on the sample and negative controls was checked by ToFSIMS 

experiments. XPS measurements were performed using a PerkinElmer PHI 

5500 Multitechnique System from Physical Electronics (Waltham, MA, USA) 

with a monochromatic X-ray source (Aluminum KR line of 1486.6 eV energy 

and 350 W) placed perpendicular to the analyzer axis and calibrated using 

the 3d 5/2 line of Ag with a full width at half-maximum (fwhm) of 0.8 eV. 

Core level scan spectra of carbon 1s, oxygen 1s, nitrogen 1s and silicon 2p 

were recorded, whereas the analysis area was ∼0.5 mm2). The resolution 

selected for the spectra was 187.5 eV of pass energy and 0.8 eV/step for 

general spectra and 23.5 eV of pass energy and 0.1 eV/step for spectra of 

the different elements. All measurements were performed in an ultra-high 

vacuum (UHV) chamber with pressure levels between 7 x 10-9 and 3 x 10-8 

mbar. When necessary, a low energy electron flood gun (0-3 eV) was used 

to discharge the samples. Peak fitting was performed using MultiPak V6.0A 

software from Physical Electronics Inc. (Chanhassen, MN, USA).  

Figure S2 shows the results of the XPS analyses of high resolution spectra 

for C 1s. Figure S2a shows the overlay of C 1s signals of the different steps 

during the surface functionalization (see Figure 1, main article). The initial 

weak carbon peak is thought to be a result of the facile contamination of the 

activated surface after piranha treatment. It can be seen that the signal 

increases intensity when the GPTMS is anchored on the surface and at the 

same time, the maximum is shifted to higher energies and the signal 

becomes more complex. This can also be seen for the step of alkyne 

immobilization. Figure S2b shows the deconvolution of the glass surface 

where two peaks are obtained and are attributed to surface contamination 

as mentioned above. Figure S2c shows the deconvolution of the epoxy 

terminated surface where the initially obtained peaks from the glass surface 

were kept and the curve was fitted with 3 new peaks which correspond to 

284.2 eV (Si-C, purple), 285.8 eV (CC/ C-H, green) and 287.7 eV (C-O from 

ether groups, red). Figure S2d shows the deconvolution of the alkyne 

terminated surface where peaks were identified at 284.1 eV (Si- C, purple) 

and 285.0 eV (C-C/C-H/C∼C, green), 286.3 eV (C-O from ether and 

alcohol, red) and 288.8 eV (C-N, blue). The shift of the C-O peak was 

expected since the newly created alcohol group has a lower binding energy 

(286 – 286.8 eV) compared to the ether group (286.3-288 eV). [2,3] 

 

 



 

Figure S2. High resolution C 1s XPS spectra of (a) overlay of the three 

steps of the functionalization strategy and curve fits and deconvolution of 

(b) glass surface, (c) epoxy surface and (d) alkyne surface, to demonstrate 

the identified atomic components. 

Figure S3 shows the high resolution XPS spectra of N 1s with Figure S3a 

being the overlay of all substrates, including the one where the click 

chemistry has been performed. It can be appreciated that on both, the glass 

and the epoxy surface, the N 1s signal is almost not existent. The alkyne 

surface shows an increase in signal and the deconvolution can be seen in 

Figure S3b, where the peak at 400.1 eV (blue) is attributed to the amino 

group. [4] Figure S3c shows the deconvolution of the peak obtained for the 

click reaction surface, where 2 new components were identified as N-N-C at 

400.1 eV (green) and N-N-N at 401.5 eV (pink). [5] 

 

 



 

Figure S3. High resolution N 1s XPS spectra of (a) overlay of the three 

steps of the functionalization strategy and the click reaction substrate; 

Curve fit and deconvolution of (b) alkyne and (c) click reaction surface to 

demonstrate the identified atomic components. 

Figure S4 shows the high resolution spectra of (a) O 1s and (b) Si 2p. In 

both cases, the overlay of the three different steps of the surface 

functionalization (glass, epoxy and alkyne) can be seen. As expected, in 

both cases, the signal decreased slightly due to the covalent attachment of 

the mainly carbon and hydrogen containing molecules. 

 

 

 

 



 

Figure S4. Overlay of the high resolution XPS spectra of (a) O 1s and (b) Si 

2p for the different steps of the functionalization strategy.  

Measurement of the phosphorus signature for DNA was performed using a 

ToF-SIMS IV instrument (ION-ToF, Münster, Germany) operated at a 

pressure of 5 x 10-9 mbar. Samples were bombarded with a pulsed bismuth 

liquid metal ion source (Bi 3þ), at 25 keV. The gun was operated with a 20 

ns pulse width, 0.3 pA pulsed ion current for a dosage lower than 5 x 1011 

ions/cm2 , well below the threshold level of 1 x 1013 ions/cm2 generally 

accepted for static SIMS conditions. Secondary ions were detected by a 

reflection time-of-flight analyzer, a multichannel plate (MCP) and time-to-

digital converter (TDC). Measurements were performed with a typical 

acquisition time of 20 s, at a TDC time resolution of 200 ps. Charge 

neutralization was achieved with a low energy (20 eV) electron flood gun, 

thus no sample conductive coating was needed before the measurements. 

Secondary ions were extracted with 2 kV voltage and were postaccelerated 

to 10 keV kinetic energy just before hitting the detector. The maximum 

mass resolution, R = m/∆m, was around 8000, where m is the target ion 

mass and ∆m is the resolved mass difference at peak half-width. Secondary 

ion spectra in negative mode were acquired from randomly rastered surface 

areas of 500 µm x 500 µm along the slide.  

Figure S5 shows the results of the ToF-SIMS experiments for the click 

reaction. Two substrates were incubated with the azide bearing CT oligo, 

one with catalyst (CT + cat) and one without catalyst (CT). Furthermore, 

two control surfaces were measured as well, namely bare glass and GA 

oligo without azide group but with catalyst (GA +cat). It is obvious that 

more oligonucleotide has been immobilized on the substrate for CT oligo 

with catalyst. Some CT oligo without catalyst has reacted with the alkyne 

group on the substrate but in a much lesser extent, as was expected from 

beforehand. There is still some GA oligo on the substrate, but this is rather 

due to unspecific adsorption than because of reaction, since the GA oligo 

lacks the azide group. More extensive washing and sonicating the surface 

will overcome this problem. 



 

Figure S5. ToF-SIMS measurements of the surface click reaction. CT 
oligonucleotide was used with (Ct + cat) and without catalyst (CT) and 
compared to negative controls: glass and GA oligo with cat (GA + cat), 
which lacks the azide group. 
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