INFLUENCIA DE DIFERENTES PATRONES HÍBRIDOS ALMENDRO X MELOCOTONERO EN LA CALIDAD DEL FRUTO DE MELOCOTONERO

E.S. Albás, S. Jiménez, J. Aparicio, M.A. Moreno*

Departamento de Pomología, Estación Experimental de Aula Dei (Consejo Superior de Investigaciones Científicas), Apartado 202, 50080 Zaragoza, España
*e-mail: mmoreno@eead.csic.es

RESUMEN

Este trabajo pretende evaluar la influencia de diferentes patrones híbridos almendro x melocotonero (‘Adafuel’, ‘Adarcias’ y ‘GF 677’) en la calidad del fruto del melocotonero ‘Catherina’ y de la nectarina ‘Flavortop’. El ensayo se ha realizado en el Valle Medio del Ebro, en un suelo pesado y calizo. Se estudian los parámetros de peso y calibre, color, firmeza, acidez, pH, concentración de sólidos solubles e índice de madurez. También se analizan por cromatografía líquida (HPLC) los azúcares mayoritarios en el zumo del fruto (sacarosa, glucosa, fructosa y sorbitol). Además, se determinan las características de vigor y producción de los árboles. Se observan diferencias significativas entre patrones para la mayoría de los parámetros estudiados. El patrón ‘Adarcias’ parece inducir las concentraciones más altas de azúcares en el fruto.

Palabras clave: Melocotonero, Patrón, Calidad fruto, Azúcares.

SUMMARY
EFFECT OF SEVERAL PEACH × ALMOND HYBRID ROOTSTOCKS ON FRUIT QUALITY OF PEACHES

The influence on fruit quality of peach × almond hybrids ‘Adafuel’, ‘Adarcias’ and ‘GF 677’, as rootstocks for ‘Catherina’ peach and ‘Flavortop’ nectarine were tested in two trials. The experiment was performed in the Ebro Valley, on a heavy and calcareous soil. To evaluate fruit quality, parameters such as fruit size, fruit weight, colour, firmness and some chemical properties of the fruit (acidity, pH and soluble solid concentration) were studied. In addition, the most important sugars found in fruit juice (sucrose, glucose, fructose and sorbitol) were analysed by High Performance Liquid Chromatography (HPLC). Significant differences in sugar concentrations, colour parameters, fruit weight and size were found among rootstocks. Nevertheless, no differences were shown for firmness. Preliminary results indicate that ‘Adarcias’ rootstock induces the highest soluble solid concentrations.

Key words: Peach, Rootstock, Fruit quality, Sugar analysis.
Introducción

El buen estado del árbol frutal permite que tanto el tamaño como las características organolépticas y composición nutricional del fruto sean los adecuados. En general, se sabe la influencia que un determinado patrón puede ejercer sobre el cultivar injertado, en lo que se refiere al vigor y producción. Sin embargo, son pocos los trabajos que estudian las características de calidad del fruto en relación con el estado del árbol y la influencia del patrón utilizado. Por ello, el estudio de la influencia de patrones, con distintos orígenes genéticos y comportamiento agronómico, sobre las características de calidad del fruto, es un aspecto más novedoso en este trabajo.

Se estudian algunos parámetros de calidad del fruto del melocotonero ‘Catherina’ y de la nectarina ‘Flavortop’ injertados sobre diferentes patrones híbridos almendro x melocotonero, ensayados en unas condiciones edafoclimáticas características del Valle Medio del Ebro.

Material y métodos

El ensayo objeto de este estudio está ubicado en una finca de la Estación Experimental de Aula Dei (CSIC) al norte de la ciudad de Zaragoza, en la margen izquierda del río Gállego. El suelo de la parcela está fuertemente carbonatado, con un 33% de carbonato cálcico, un nivel de caliza activa que oscila entre 7,1 y 8,7% y un pH = 8,4. Su textura es franco-arcollosa.

Se utilizan tres patrones híbridos almendro x melocotonero: los patrones ‘Adaful’ y ‘Adarcias’, seleccionados en la Estación Experimental de Aula Dei, y el patrón ‘GF 677’, utilizado como referencia. Todos los patrones fueron injertados in situ en abril de 1983 con el melocotonero ‘Catherina’ y con la nectarina ‘Flavortop’.

El diseño experimental de la plantación consistió en 6 bloques al azar. Cada bloque estaba constituido por tres tratamientos correspondientes a las diferentes combinaciones patrón-cultivar. La unidad experimental fue el árbol. Los datos obtenidos en el ensayo fueron evaluados mediante análisis de varianza, usando el programa SPSS (NORUSIS, 1999). La separación de medias se realizó mediante el test de Duncan y el nivel de significación se estableció en $p \leq 0,05$.

Para determinar la calidad del fruto, en el momento de la recolección se tomaron al azar 15 frutos de cada uno de los árboles, durante todos los años del estudio (1999-2001). Entre los aspectos fundamentales para evaluar dicha calidad se tuvieron en cuenta parámetros físico-químicos como el color, sólidos solubles, distribución de los azúcares solubles mayoritarios (mediante HPLC), acidez, pH y firmeza. También se determinaron el peso y calibre del fruto (ALBÁS, 2002).

Producción anual, acumulada, vigor y productividad

La recolección de los frutos en su madurez se realizó de forma individualizada para cada árbol, pesando la cosecha. Para calcular la producción acumulada se realizó un sumatorio de las producciones obtenidas en años anteriores. El vigor de los diferentes patrones se determinó en función de la superficie de la sección transversal del tronco del árbol a 20 cm por encima del punto de injerto. Para calcular dicha superficie se utilizó el perímetro
del tronco, realizando siempre la medición al final del período vegetativo del árbol. Para determinar la productividad se calculó el cociente entre la producción acumulada, en kilogramos/árboles, y el vigor del árbol, en cm2 de sección del tronco.

Peso y calibre del fruto

Para obtener el peso medio de un fruto se calculó, en cada uno de los árboles del estudio, el cociente entre la producción total del árbol y el número de frutos de dicho árbol.

El calibre se determinó con un pie de rey digital Mitutoyo DL-10, tomando tres medidas por fruto: diámetro polar (\overline{OP}), diámetro de sutura (\overline{OS}) y diámetro equatorial (\overline{OE}). Esta terminología fue propuesta por CAILLAVET y SOUTY (1950).

Contenido de sólidos solubles

El contenido de sólidos solubles se determinó con un refractómetro digital ATAGO PR-101, obteniéndose el contenido de azúcares en °Brix. Este refractómetro tiene un rango de medida de 0 a 45 °Brix, con una precisión de ± 0,2 °Brix. Además, presenta un sistema automático de compensación de temperatura de la muestra para un rango de 5 a 40°C.

Análisis de los azúcares solubles por cromatografía líquida (HPLC)

Se extrajo el zumo de la muestra para todas las repeticiones de cada combinación patrón-cultivar. Se fijaron los azúcares solubles con una mezcla de etanol/agua (80/20, v/v) a 80°C. La mezcla fue centrifugada y se tomó la interfase para el análisis posterior.

Los azúcares solubles fueron purificados usando resinas de intercambio iónico. Se analizaron por HPLC, usando una columna de Ca y un detector del índice de refracción (Waters 2410).

La cuantificación de los azúcares se llevó a cabo con el programa Millennium 3.2 de Waters (Milford, Mas.). Los picos del cromatograma fueron identificados usando azúcares comerciales de referencia. Las áreas de los picos se calcularon mediante calibración a partir de estándares externos de los distintos azúcares de concentración conocida. Se introdujo una cantidad conocida de manitol en la mezcla de azúcares a analizar y se utilizó como patrón interno.

Acidez y pH

Tras realizar la extracción del zumo del fruto, se centrifugó a una velocidad de 4,500 rpm durante 15 minutos, y se tomó la interfase líquida para llevar a cabo los siguientes análisis.

Para realizar el estudio del pH y la acidez, se tomaron 5 ml de zumo centrifugado y se llevaron a 50 ml con agua destilada. Tras medir el pH de la muestra, se determinó la acidez, añadiendo unas gotas de indicador fenolfitaléiina y valorando con hidróxido de sodio (NaOH) 0,1 N, hasta pH = 8,1.

Color y firmeza

Se realizaron tres medidas por fruto del espectro de reflexión utilizando un colorímetro Minolta CR-200, y se obtuvieron las coordenadas CIELAB L^*, a^*, b^*, y L^*, C^* y H^*.

La dureza se determinó con un penetrómetro cuya lectura viene dada en kg/cm2.

Estudio del índice de madurez

El índice de madurez se calculó en base a la relación sólidos solubles/acidez (FERRER, 1998).

Resultados y discusión

Vigor, producción acumulada y productividad

Al estudiar el vigor de los árboles (expresado como área de la sección del tronco), se observa que el patrón ‘Adarcias’ induce en ‘Catherina’ un vigor significativamente inferior que los patrones ‘Adafuel’ y ‘GF 677’ (cuadro 1). En el caso de ‘Flavortop’, el patrón ‘Adafuel’ muestra un mayor vigor que ‘Adarcias’ y ‘GF 677’.

La tendencia del patrón ‘Adarcias’ hacia un menor vigor ya ha sido mencionada con anterioridad (MORENO et al., 1994; 1995).

Por el contrario, el patrón ‘Adafuel’ induce un vigor más elevado incluso que el patrón ‘GF 677’, que es considerado como un patrón vigoroso.

En el caso de ‘Catherina’, no se observan diferencias estadísticamente significativas entre patrones en la producción acumulada (cuadro 1). Sin embargo, en el caso de ‘Flavortop’, la producción acumulada sobre ‘Adafuel’ y ‘GF 677’ es significativamente mayor a la obtenida sobre el patrón ‘Adarcias’.

Al comparar la producción total acumulada de los distintos patrones, se observa la tendencia de los más vigorosos a presentar un mayor valor. Así, en el caso de la nectarina ‘Flavortop’, se observa una correlación positiva entre la producción acumulada y el vigor de los árboles, para todos los años del estudio: en 1999 (r = 0,80; p ≤ 0,01), 2000 (r = 0,83; p ≤ 0,01) y 2001 (r = 0,81; p ≤ 0,01). No obstante, la ausencia de correlaciones significativas para ‘Catherina’ pone de manifiesto una menor dependencia del vigor del patrón para algunos cultivares.

Cuadro 1. Influencia del patrón utilizado sobre el vigor y las características productivas de los cultivares injertados, a los 18 años de la plantación

Table 1. Rootstock effect on vigour and yield of peach cultivars after 18 years in the orchard

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Patrón</th>
<th>Vigor (cm²)</th>
<th>Producción acumulada (Kg/árbol)</th>
<th>Productividad (Kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catherina</td>
<td>Adafuel</td>
<td>494 b</td>
<td>565 a</td>
<td>1,14 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>355 a</td>
<td>498 a</td>
<td>1,40 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>457 b</td>
<td>598 a</td>
<td>1,31 a</td>
</tr>
<tr>
<td>Flavortop</td>
<td>Adafuel</td>
<td>522 b</td>
<td>761 b</td>
<td>1,46 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>306 a</td>
<td>504 a</td>
<td>1,66 ab</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>388 a</td>
<td>713 b</td>
<td>1,84 b</td>
</tr>
</tbody>
</table>

Para la misma columna y cultivar, los datos seguidos de las mismas letras no muestran diferencias significativas según el test de Duncan (p ≤ 0,05).

For each column and cultivar, means followed by the same letter are not significantly different according to Duncan test (p ≤ 0,05).
Al estudiar la productividad en los patrones injertados con ‘Catherine’, se observó que las diferencias entre patrones no son significativas (cuadro 1). A pesar de la tendencia de los patrones ‘Adafuel’ y ‘GF 677’ a presentar una mayor producción acumulada, su mayor vigor les hace disminuir la productividad alcanzada, como ya se ha observado en otros ensayos (MORENO et al., 1994; 1995). En el caso de ‘Flavortop’, el patrón ‘GF 677’ indujo una mayor productividad que el patrón ‘Adafuel’, también debido al mayor vigor de este último.

Peso y calibre del fruto

Respecto al calibre de los frutos, se observó la tendencia del patrón ‘Adafuel’ a inducir, en la cosecha del 2001, frutos de mayor diámetro equatorial (ØE) que el patrón ‘Adarcias’ en ‘Catherine’, y que el patrón GF 677 en la nectarina ‘Flavortop’ (datos no mostrados). No se observaron diferencias significativas en la esfericidad del fruto, ni en los cocientes ØP/ØS y ØE/ØS.

Color

Esta medida es importante ya que el espectro de reflectancia ha sido propuesto como índice de madurez, solo o en combinación con otros parámetros. Además, hay que tener en cuenta la importancia del color del fruto en la aceptación en el mercado por el consumidor (GRIGELMO y MARTÍN, 2000).

Cuadro 2. Influencia del patrón utilizado sobre el peso medio de un fruto de los cultivares injertados

Table 2. Rootstock effect on mean fruit weight of peach cultivars

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Patrón</th>
<th>Peso medio de un fruto (g) 1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catherina</td>
<td>Adafuel</td>
<td>154 a</td>
<td>162 a</td>
<td>195 b</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>163 a</td>
<td>166 a</td>
<td>177 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>161 a</td>
<td>166 a</td>
<td>178 ab</td>
</tr>
<tr>
<td>Flavortop</td>
<td>Adafuel</td>
<td>165 a</td>
<td>190 a</td>
<td>187 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>169 a</td>
<td>180 a</td>
<td>191 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>174 a</td>
<td>178 a</td>
<td>194 a</td>
</tr>
</tbody>
</table>

Para la misma columna y cultivar, los datos seguidos de las mismas letras no muestran diferencias significativas según el test de Duncan (p ≤ 0,05).

For each column and cultivar, means followed by the same letter are not significantly different according to Duncan test (p ≤ 0,05).
En ‘Catherina’, el patrón ‘GF 677’ indujo frutos más rojizos que los patrones ‘Adafuel’ y ‘Adarcias’, que indujeron frutos de color más verde en la cosecha del 2001. Esta diferencia de color pudo observarse en las diferencias en la coordenada a*, en el sistema L* a* b*, y en la coordenada H*, en el sistema L* C* H* (cuadro 3). Estos resultados sólo aparecieron en la cosecha del 2001, ya que en este año se recogió la fruta un poco más verde, con el fin de observar la influencia del adelanto de la recolección en la calidad del fruto. Se observó que el patrón ‘GF 677’ indujo un color de fruto más maduro, mientras que ‘Adarcias’ y ‘Adafuel’ presentaron una apariencia más verde.

Con ‘Flavortop’ se observó la tendencia del patrón ‘GF 677’ a inducir frutos más claros (mayor L*) que el patrón ‘Adarcias’, aunque sólo presentó diferencias significativas en la cosecha del año 2000.

Sólidos solubles

Por otra parte, se observó una correlación negativa entre la concentración de azúcares del fruto y la producción total del árbol. En ‘Catherina’, la correlación se observó en los tres años del estudio: 1999 (r = -0.53; p ≤ 0,05), 2000 (r = -0.70; p ≤ 0,05) y 2001 (r = -0.59; p ≤ 0,05). En ‘Flavortop’ también se observó esta correlación para el conjunto de los patrones en los tres años del estudio: 1999 (r = -0,54; p ≤ 0,05), 2000 (r = -0,64; p ≤ 0,05) y 2001 (r = -0,49; p ≤ 0,05).

Estudio de los azúcares solubles por HPLC

En la cosecha del último año (2001) se determinó también la concentración de los azúcares mayoritarios presentes en el fruto. La mayor concentración, entre dichos azúca-

Cuadro 3. Influencia del patrón utilizado sobre el color del fruto de los cultivares injertados

Table 3. Rootstock effect on fruit colour of peach cultivars

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catherina</td>
<td>Adafuel</td>
<td>65,6 a</td>
<td>67,4 a</td>
<td>18,2 a</td>
<td>-19,5 a</td>
<td>55,0 a</td>
<td>40,5 a</td>
<td>58,0 a</td>
<td>45,0 a</td>
<td>71,5 a</td>
<td>115,7 b</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>56,0 a</td>
<td>67,2 a</td>
<td>16,6 a</td>
<td>-19,6 a</td>
<td>47,6 a</td>
<td>40,1 a</td>
<td>50,1 a</td>
<td>44,1 a</td>
<td>62,3 a</td>
<td>115,8 b</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>65,1 a</td>
<td>67,2 a</td>
<td>17,9 a</td>
<td>-18,4 b</td>
<td>54,2 a</td>
<td>40,5 a</td>
<td>55,6 a</td>
<td>45,0 a</td>
<td>71,7 a</td>
<td>114,6 a</td>
</tr>
<tr>
<td>Flavortop</td>
<td>Adafuel</td>
<td>39,8 ab</td>
<td>47,0 a</td>
<td>28,7 a</td>
<td>27,5 a</td>
<td>25,6 a</td>
<td>27,2 a</td>
<td>35,7 a</td>
<td>39,3 a</td>
<td>35,0 a</td>
<td>44,1 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>38,9 a</td>
<td>46,2 a</td>
<td>28,6 a</td>
<td>28,7 a</td>
<td>19,4 a</td>
<td>26,0 a</td>
<td>34,9 a</td>
<td>33,6 a</td>
<td>33,2 a</td>
<td>41,9 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>42,0 b</td>
<td>48,3 a</td>
<td>27,0 a</td>
<td>26,5 a</td>
<td>23,4 a</td>
<td>28,4 a</td>
<td>37,0 a</td>
<td>39,7 a</td>
<td>39,0 a</td>
<td>46,7 a</td>
</tr>
</tbody>
</table>

Para la misma columna y cultivar, los datos seguidos de las mismas letras no muestran diferencias significativas según el test de Duncan (p ≤ 0,05).

For each column and cultivar, means followed by the same letter are not significantly different according to Duncan test (p ≤ 0,05).
Cuadro 4. Influencia del patrón utilizado en la concentración de sólidos solubles del fruto

Table 4. Rootstock effect on soluble solid content of fruits

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Patrón</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catherina</td>
<td>Adafuel</td>
<td>11,3 a</td>
<td>10,3 a</td>
<td>11,1 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>13,7 c</td>
<td>11,1 a</td>
<td>11,6 b</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>12,7 b</td>
<td>10,2 a</td>
<td>10,9 a</td>
</tr>
<tr>
<td>Flavortop</td>
<td>Adafuel</td>
<td>13,9 a</td>
<td>12,6 a</td>
<td>13,8 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>14,6 a</td>
<td>13,9 a</td>
<td>14,9 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>14,0 a</td>
<td>13,5 a</td>
<td>14,1 a</td>
</tr>
</tbody>
</table>

Para la misma columna y cultivar, los datos seguidos de las mismas letras no muestran diferencias significativas según el test de Duncan (p ≤ 0,05).

For each column and cultivar, means followed by the same letter are not significantly different according to Duncan test (p ≤ 0,05).

res, correspondió a la sacarosa, oscilando entre un 65 y un 80% del total. Aunque muy de lejos, le siguieron en orden de importancia los azúcares: glucosa (9-21%), fructosa (3-25%) y sorbitol (4-11%). Estas concentraciones parecen ser habituales en melocotón (DIRLEWANGER et al., 1999). La concentración de dichos azúcares se ha visto influida tanto por el patrón como por el cultivar considerado (cuadro 5).

En los dos cultivares, el patrón ‘Adarcias’ indujo una mayor concentración de sacarosa que ‘Adafuel’. El patrón ‘GF 677’ mostró una situación intermedia, no presentando

Cuadro 5. Influencia del patrón utilizado en la concentración de azúcares solubles del fruto de los cultivares injertados

Table 5. Rootstock effect on fruit sugars concentration for peach cultivars

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Patrón</th>
<th>Sacarosa (mg/ml)</th>
<th>Glucosa (mg/ml)</th>
<th>Fructosa (mg/ml)</th>
<th>Sorbitol (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catherina</td>
<td>Adafuel</td>
<td>73,6 a</td>
<td>9,2 a</td>
<td>10,1 ab</td>
<td>2,0 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>84,0 b</td>
<td>8,6 a</td>
<td>9,7 a</td>
<td>2,3 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>79,5 ab</td>
<td>8,8 a</td>
<td>10,3 b</td>
<td>1,8 a</td>
</tr>
<tr>
<td>Flavortop</td>
<td>Adafuel</td>
<td>86,2 a</td>
<td>16,0 a</td>
<td>17,3 a</td>
<td>4,0 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>105,2 b</td>
<td>17,7 a</td>
<td>19,3 a</td>
<td>7,2 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>99,0 ab</td>
<td>17,5 a</td>
<td>19,1 a</td>
<td>6,0 a</td>
</tr>
</tbody>
</table>

Para la misma columna y cultivar, los datos seguidos de las mismas letras no muestran diferencias significativas según el test de Duncan (p ≤ 0,05).

For each column and cultivar, means followed by the same letter are not significantly different according to Duncan test (p ≤ 0,05).
diferencias significativas con los otros dos patrones. En ‘Catherine’ se observó la tendencia del patrón ‘GF 677’ a inducir una mayor concentración de fructosa que el patrón ‘Adarcias’, sin que ninguno de estos patrones presentara diferencias significativas con ‘Adafuel’. No se observaron diferencias significativas entre patrones ni en la concentración de glucosa ni en la de sorbitol.

Acidez y pH

No se observaron diferencias significativas entre patrones sobre el pH del fruto.

Índice de madurez

No se observaron diferencias significativas entre patrones para la firmeza de los frutos en ninguno de los años del estudio.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Patrón</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catherine</td>
<td>Adafuel</td>
<td>0,60 a</td>
<td>0,67 ab</td>
<td>0,63 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>0,75 b</td>
<td>0,70 b</td>
<td>0,69 b</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>0,67 a</td>
<td>0,56 a</td>
<td>0,66 ab</td>
</tr>
<tr>
<td>Flavortop</td>
<td>Adafuel</td>
<td>0,73 a</td>
<td>1,00 a</td>
<td>1,05 a</td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>0,68 a</td>
<td>0,88 a</td>
<td>1,01 a</td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>0,68 a</td>
<td>0,88 a</td>
<td>1,19 a</td>
</tr>
</tbody>
</table>

Para la misma columna y cultivar, los datos seguidos de las mismas letras no muestran diferencias significativas según el test de Duncan (p ≤ 0,05).

For each column and cultivar, means followed by the same letter are not significantly different according to Duncan test (p ≤ 0,05).
Cuadro 7. Influencia del patrón utilizado sobre el índice de madurez del fruto de los cultivares inertados

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Patrón</th>
<th>Índice de madurez (g sólidos solubles/g ácido málico)</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catherine</td>
<td>Adafuel</td>
<td>18,8 a</td>
<td>15,5 a</td>
<td>17,5 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>18,3 a</td>
<td>16,6 a</td>
<td>17,9 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>18,9 a</td>
<td>19,2 a</td>
<td>16,6 a</td>
<td></td>
</tr>
<tr>
<td>Flavortop</td>
<td>Adafuel</td>
<td>19,0 a</td>
<td>13,1 a</td>
<td>13,2 ab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adarcias</td>
<td>21,5 b</td>
<td>15,9 a</td>
<td>14,9 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GF 677</td>
<td>20,6 ab</td>
<td>15,4 a</td>
<td>12,2 a</td>
<td></td>
</tr>
</tbody>
</table>

Para la misma columna y cultivar, los datos seguidos de las mismas letras no muestran diferencias significativas según el test de Duncan (p ≤ 0,05).

For each column and cultivar, means followed by the same letter are not significantly different according to Duncan test (p ≤ 0,05).

Conclusión

El patrón ‘Adarcias’ parece inducir una mayor calidad organoléptica del fruto, en base a la mayor concentración de sólidos solubles y/o azúcares solubles que los patrones ‘Adafuel’ y ‘GF 677’, especialmente en el caso de ‘Catherine’. Además, el patrón ‘Adarcias’ inertado con este cultivar no presentó un mayor índice de madurez, que pudiera explicar esa mayor concentración de sólidos solubles. Tampoco se observaron diferencias significativas en la firmeza del fruto, que pudieran atribuirse a los distintos patrones y que pudieran indicar diferencias en el grado de madurez.

Agradecimientos

Este trabajo fue financiado por los Proyectos CICYT AGF97-1138 y AGL2001-2303. Los autores agradecen a los compañeros del Departamento de Pomología: Julio Pérez y María Pilar Soteras, por su ayuda en la preparación y manejo del material vegetal.

Bibliografía

