Origin of inverse Rashba-Edelstein effect detected at the Cu/Bi interface using lateral spin valves

Miren Isasa, 1 M. Carmen Martínez-Velarte, 1, 2, 3 Estitxu Villamor, 1 César Magén, 1, 2, 3, 4 Luis Morellón, 2, 3 José M. De Teresa, 2, 3, 5 M. Ricardo Ibarra, 2, 3 Giovanni Vignale, 6, 7 Evgenii V. Chulkov, 8, 9, 10 Eugene E. Krasovskii, 8, 9, 11 Luis E. Hueso, 11, 11 and Félix Casanova 1, 11, *

1CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country, Spain
2Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Edificio I+D, 50018 Zaragoza, Spain
3Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
4Fundación ARAID, 50004 Zaragoza, Spain
5Instituto de Ciencia de Materiales de Aragón (ICMA), Facultad de Ciencias, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
6Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
7Dipartimento di Fisica, Italian Institute of Technology at Sapienza, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
8Departamento de Física de Materiales, Facultad de Ciencias Químicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 20080 Donostia-San Sebastian, Basque Country, Spain
9Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Basque Country, Spain
10Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastian, Basque Country, Spain
11IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain

(Received 7 September 2015; revised manuscript received 19 November 2015; published 13 January 2016)

The spin transport and spin-to-charge current conversion properties of bismuth are investigated using permalloy/copper/bismuth (Py/Cu/Bi) lateral spin valve structures. The spin current is strongly absorbed at the surface of Bi, leading to ultrashort spin-diffusion lengths. A spin-to-charge current conversion is measured, which is attributed to the inverse Rashba-Edelstein effect at the Cu/Bi interface. The spin-current-induced charge current is found to change direction with increasing temperature. A theoretical analysis relates this behavior to the complex spin structure and dispersion of the surface states at the Fermi energy. The understanding of this phenomenon opens novel possibilities to exploit spin-orbit coupling to create, manipulate, and detect spin currents in two-dimensional systems.

DOI: 10.1103/PhysRevB.93.014420

Spin-orbit interaction is an essential ingredient in materials and interfaces that has been gaining interest in the past years due to the advantages it offers to exploit the coupling between spin and orbital momenta of electrons in spintronic devices [1], leading to the emerging field of spin orbitronics [2]. For instance, magnetization switching of ferromagnetic elements has been recently achieved with torques arising from mechanisms, such as spin Hall effect (SHE), Rashba, or Dresselhaus effects [3,4]. Of particular interest is the SHE, which can be used to create and detect a pure spin current without the use of ferromagnets or magnetic fields. This is a phenomenon appearing in materials with strong spin-orbit coupling (SOC) in which a charge current flowing through a nonmagnetic material creates a spin current in the transverse direction to the charge current [5,6]. Reciprocally, a spin current through a nonmagnetic material creates a transverse charge current, i.e., the inverse SHE (ISHE) [7–9]. Very recently, a new way of converting spin current into charge current has been experimentally reported: the inverse Rashba-Edelstein effect (IREE) [10,11]. This phenomenon arises from the spin-orbit splitting in a two-dimensional electron gas (2DEG) known as the Rashba effect [Fig. 1(a)], leading to the conversion of a three-dimensional (3D) spin current into a 2D charge current [12]. There are many systems where the surface state is strongly spin-orbit split, including metals (a typical example is Au(111), [Ref. [13]]) and semiconductors with giant SOC, BiTeI and BiTeCl [14,15], although in these cases the bulk states usually dominate the conduction. An optimal choice seems to be a semimetallic system, such as bismuth.

Bismuth in particular is a group-V semimetal with an anisotropic Fermi surface where small electron and hole pockets give rise to a low carrier density $n \sim 0.3 \times 10^{17} \text{cm}^{-3}$, high resistivity ($\sim 100 \mu\Omega \text{cm}$), and a relatively large Fermi wavelength ($\sim 30 \text{ nm}$) [16]. For thin films, the energy band structure changes. When film dimensions are comparable to the Fermi wavelength, a semimetal-to-semiconductor transition is predicted [17]. At the same time, metallic surface states are found to gain relevance in transport, leading to a 2D confinement of the carriers as recently observed experimentally [16]. The strong SOC in Bi and the loss of inversion symmetry at the surface produces Rashba splitting of the surface states [18]. For this reason, not only the SOC on the Bi surface has attracted a great deal of attention [19], but also the surface alloying of Bi with other materials has been studied. The largest spin splitting has been found for a silver (Ag)/Bi interface [20,21], however other systems, such as copper (Cu)/Bi are also expected to manifest a sizable effect [22].

In this paper, we study the spin transport properties and spin-to-charge conversion in Bi using a lateral spin valve (LSV) structure [Fig. 1(b)]. By applying the spin absorption method [8,23–27], we observe that Bi strongly absorbs the spin current and demonstrate a spin-to-charge current conversion (SCC) in the LSV. The analysis of the obtained results leads us to argue that the spin absorption and subsequent

*Email address: f.casanova@nanogune.eu
spin-to-charge conversion do not occur at the bulk of Bi but at the Cu/Bi interface, therefore detecting IREE. Moreover, we evaluate the IREE length, which characterizes the spin-to-charge conversion ratio, as a function of temperature. This ratio exhibits a sign change at a certain temperature threshold (~125 K). In order to understand this puzzling behavior, we perform a theoretical analysis based on the first-principles band structure, which reveals that the strong spin splitting of the surface states in Bi (111) is responsible for the IREE and that the nonmonotonic dispersion of such states can account for the sign change.

We fabricated four samples by multiple-step electron-beam (e-beam) lithography on top of a SiO$_2$ (150 nm)/Si substrate, followed by metal deposition and lift-off. These samples consist of two Cu/permalloy (Py) LSVs, each one with the same separation ($L \sim 630$ nm) in between Py electrodes. The only difference between both LSVs is that one of them has an additional Bi wire in between the electrodes [see Fig. 2(a)]. The two pairs of Py electrodes were patterned in the first lithography step, and 35 nm of Py were e-beam evaporated. Different widths of Py electrodes were chosen, ~95 and ~130 nm in order to obtain different switching magnetic fields. In the second lithography step, the middle wire in between one of the two pairs of electrodes was patterned. Afterwards, ~150-nm-wide and 20-nm-thick Bi was e-beam evaporated at a pressure of ~1 × 10$^{-7}$ mbars. Since our Bi films grow on top of SiO$_2$, they are predominantly textured along the (111) direction [28]. In the third lithography step, the ~150-nm-wide channel was patterned, and 100-nm-thick Cu was thermally evaporated at a pressure of ~1 × 10$^{-8}$ mbars. Before the Cu deposition, the Py and Bi wire surfaces were cleaned by Ar-ion milling to remove the possible resist leftovers and oxide formation. Figure 2(a) is a SEM image of a sample showing the two pairs of LSVs with (left LSV) and without (right LSV) Bi wire. Although the measurements for all four samples yield similar results, for the sake of simplicity, we will mostly show the results obtained for one of them (sample 1).

Nonlocal transport measurements have been carried out in a liquid-He cryostat (applying an external magnetic field H and varying the temperature) using a “dc reversal” technique [29]. When a charge current I_c is injected from the Py electrode, a spin accumulation is built at the Py/Cu interface that diffuses away along the Cu wire creating a spin current. When it reaches the second Py electrode, a spin accumulation is built at the Cu/Py interface, which will result in a measurable voltage V. This V normalized to the injected current I_c is defined as the nonlocal resistance $R_{NL} = V/I_c$ [see Fig. 2(a) for a measurement scheme]. R_{NL} changes from positive to negative when the relative magnetization of the Py electrodes changes from a parallel to an antiparallel state by sweeping H. The change in R_{NL} is defined as the spin signal ΔR_{NL}^r, which is proportional to the spin accumulation at the detector [red curve in Fig. 2(b)]. If a middle wire (Bi in this case) is inserted in between the Py electrodes, spin absorption into the Bi occurs, and thus the detected spin signal ΔR_{NL}^a decreases [blue curve in Fig. 2(b)]. By normalizing the two different spin signals (ΔR_{NL}^r and ΔR_{NL}^a) we can define the parameter η, which is related to the efficiency of the Bi wire to absorb the spin current diffusing along the Cu channel. The one-dimensional spin-diffusion model gives us a relation between η and the spin diffusion length of the middle wire through the following

\[
\eta = \frac{\Delta R_{NL}^a}{\Delta R_{NL}^r}
\]
\begin{equation}
\eta = \frac{\Delta R^{\text{obs}}_{\text{NL}}}{\Delta R^{\text{diff}}_{\text{NL}}} = \frac{R_{\text{Bi}} \sinh(L/\lambda_{\text{Cu}}) + R_{\text{Bi}} \left(\frac{R_{\text{Py}}}{R_{\text{Cu}}} e^{L/2\lambda_{\text{Cu}}} + \frac{R_{\text{Py}}}{2 R_{\text{Cu}}} e^{L/\lambda_{\text{Cu}}}(1 + \frac{R_{\text{Py}}}{R_{\text{Cu}}})^2(1 + \frac{R_{\text{Bi}}}{R_{\text{Cu}}}) - 1 \right)}{R_{\text{Cu}}[\cosh(L/\lambda_{\text{Cu}}) - 1] + R_{\text{Bi}} \sinh(L/\lambda_{\text{Cu}}) + R_{\text{Py}} \left[e^{L/\lambda_{\text{Cu}}} \left(1 + \frac{R_{\text{Py}}}{R_{\text{Cu}}}
ight)(1 + \frac{R_{\text{Bi}}}{R_{\text{Cu}}}) - 1 \right]}.
\end{equation}

where $R_{\text{Bi}} = \frac{R_{\text{Py}} \lambda_{\text{Bi}}}{R_{\text{Cu}} \lambda_{\text{Cu}}}$, $R_{\text{Cu}} = \frac{R_{\text{Py}} \lambda_{\text{Bi}}}{R_{\text{Cu}} \lambda_{\text{Cu}}}$, and $R_{\text{Py}} = \frac{R_{\text{Py}} \lambda_{\text{Py}}}{(1 - \alpha_{\text{Py}}) \lambda_{\text{Cu}} \lambda_{\text{Py}}}$ are the spin resistances, $\lambda_{\text{Bi,Cu,Py}}$ are the spin diffusion lengths, $\rho_{\text{Bi,Cu,Py}}$ are the resistivities, $w_{\text{Bi,Cu,Py}}$ are the widths, and $t_{\text{Bi,Cu}}$ are the thicknesses of Bi, Cu, and Py, respectively. α_{Py} is the current spin polarization of Py. Since the $\lambda_{\text{Cu}}, \alpha_{\text{Py}},$ and $R_{\text{Cu,Py}}$ values are well known from our previous work [30,31], all the geometrical parameters are measured by SEM, and ρ_{Bi} is measured in the same device in which the spin signals are measured [32], λ_{Bi} can be directly obtained from Eq. (1). This SA technique has been successfully used to measure short spin-diffusion lengths in metals before [8,23–27].

From our experiments at low temperatures, we obtain a spin absorption ratio of $\eta = 0.140 \pm 0.008$, which, together with the measured $\rho_{\text{Bi}} = 998 \mu\Omega \text{cm}$ at 10 K, yields $\lambda_{\text{Bi}} = 0.050 \pm 0.005 \text{nm}$. However, this value is far from $\lambda_{\text{Bi}} = 20 \text{nm}$ obtained by weak antilocalization (WAL) measurements in Bi evaporated under the same conditions [32–35]. The same occurs at room temperature where the measured $\rho_{\text{Bi}} = 830 \mu\Omega \text{cm}$ we extract a spin-diffusion length of $\lambda_{\text{Bi}} = 0.011 \pm 0.005 \text{nm}$. This value is again far from room-temperature λ_{Bi} values reported in literature using the spin-pumping technique, which range from 8 to 50 nm [11,36,37]. We must stress here that WAL and spin-pumping experiments probe the bulk λ_{Bi} value. However, both the room- and the low-temperature λ_{Bi} values that we extract from SA measurements [32] are anomalously small as they are shorter than the interatomic distance of Bi [38], evidencing that the spin current is strongly absorbed at the metallic surface rather than in the bulk, in good agreement with the unique surface properties of Bi [16].

Once this spin-current absorption is confirmed, we can now study the SCC in the Cu/Bi interface. For this experiment we use the same device in which SA is measured with the configuration shown in Fig. 2(c). Using the Py electrode as a spin-current injector, a 3D spin current is created along the Cu channel, which will be partially absorbed into the Bi wire. The ratio between the injected charge current I_c and the spin current reaching the Bi wire I_s is defined as [8,23]

$$I_s = \frac{\alpha_{\text{Py}} R_{\text{Py}} \left[\sinh(L/\lambda_{\text{Cu}}) + \frac{R_{\text{Py}}}{2 R_{\text{Cu}}} e^{L/\lambda_{\text{Cu}}} \left(1 + \frac{R_{\text{Py}}}{R_{\text{Cu}}}
ight)(1 + \frac{R_{\text{Bi}}}{R_{\text{Cu}}}) - 1 \right]}{R_{\text{Cu}}[\cosh(L/\lambda_{\text{Cu}}) - 1] + R_{\text{Bi}} \sinh(L/\lambda_{\text{Cu}}) + R_{\text{Py}} \left[e^{L/\lambda_{\text{Cu}}} \left(1 + \frac{R_{\text{Py}}}{R_{\text{Cu}}}
ight)(1 + \frac{R_{\text{Bi}}}{R_{\text{Cu}}}) - 1 \right]}.$$

This spin current I_s, that is absorbed into the metallic-Bi surface will be converted into a 2D charge current at the Cu/Bi interface via the inverse Rashba-Edelstein effect [Fig. 1(b)] as recently reported for a similar (Ag/Bi) interface [10,11]. The parameter that relates the 3D spin current to the 2D charge current, and therefore quantifies the IREE, is the IREE length λ_{IREE}. Although it has length units, λ_{IREE} is actually not a physical length. It can be calculated as

$$\lambda_{\text{IREE}} = \frac{I_s}{\rho_{\text{Bi}} \lambda_{\text{Bi}}} \left(\frac{I_c}{I_s} \right) \Delta R_{\text{SCC}},$$

where x is a correction factor that takes into account the current that is shunted through Cu due to its lower resistivity compared to Bi. x is obtained from numerical calculations using a finite element method (SPINFLOW3D software) [25,32]. ΔR_{SCC} is the change in nonlocal resistance (SCC) that we measure when a magnetic field is applied in the configuration shown in Fig. 2(c). As can be seen in Fig. 2(d), by increasing the magnetic field, SCC changes continuously following the magnetization of the Py electrode until it gets saturated above the saturation field [8,23–27]. The difference in R_{SCC} between the two saturated regions is thus ΔR_{SCC}

The λ_{IREE} value that we extract from our measurements [Fig. 2(d)] is $\lambda_{\text{IREE}} = 0.009 \pm 0.002 \text{nm} (0.0010 \pm 0.0003 \text{nm})$ at 300 K (10 K), which is smaller than $\lambda_{\text{IREE}} = 0.3 \text{nm}$ reported for Ag/Bi at 300 K [10].

![FIG. 3. (a) Temperature evolution of the IREE length of Bi as obtained from four different samples. (b) Energy dependence of the spectral current density $j^0(E)$ calculated by using $s_1(k_\parallel)$ for $n_s(k_\parallel)$.

014420-3
spin-flip scattering at the interface, leading to spin memory with spin absorption in the bulk Bi by assuming a large Cu channel (the contribution of that branch of the contour to j_{\parallel} lines) and slab levels with a Gaussian of 0.15 eV FWHM. (b) Constant energy contours in the 30°↑ and the line thickness is proportional to the absolute value of the spin projection. The value at the experiment. Taking is not clear which value should be ascribed to it in the present experiment. Taking $\alpha_R = 0.56$ eV Å as in Ref. [10], the momentum relaxation time in our Cu/Bi system is calculated to be $\tau = 2 \times 10^{-16}$ s, which is about an order of magnitude smaller than the momentum relaxation time estimated in Ref. [10] ($\tau = 5 \times 10^{-15}$ s). Although it differs by an order of magnitude, it is consistent with the electrons in the Dyakonov-Perel diffusive regime, which underlies the calculation of Ref. [12].

One could argue that the ISHE, and not the IREE, is the responsible mechanism to convert spin current into charge current. This would be the case if the spin current diffusing along the Cu channel was absorbed by the bulk Bi, instead of the interface. In such a scenario, however, the spin-diffusion length obtained from the SA experiment should be much longer, similar to the lengths obtained from WAL [32,34,35] or spin-pumping [11,36,37] measurements. Since this is not the case, the observed discrepancy could only be compatible with spin absorption in the bulk Bi by assuming a large spin-flip scattering at the interface, leading to spin memory loss (SML) [40]. The ratio between the spin current absorbed into the Bi wire and the total spin current coming from the Cu channel (r_{SML}) can be calculated from the SA-measured and the bulk λ_{Bi} values [32]. r_{SML} must be taken into account when evaluating the ISHE. The spin Hall angle θ_{SH}, which quantifies the spin-to-charge current conversion due to ISHE in the bulk, is then calculated to be $|\theta_{\text{SH}}| > 100\%$ both at 10 and at 300 K [32]. This unphysical value rules out the possibility of ISHE as the spin-to-charge current conversion mechanism in our system.

Once we have determined the mechanism that converts spin current into charge current, we investigate the temperature dependence of the IREE. As can be seen in Fig. 3(a), there is a change in the sign of λ_{IREE} between 100 and 150 K. This implies that opposite charge currents are created with the same spin-current polarization at low and high temperatures. The λ_{IREE} values obtained from samples 2–4 confirm that the sign change is very robust.

In order to understand this behavior, a careful microscopic analysis of the spin-resolved surface electronic structure is needed. Let us consider the nonequilibrium distribution of carriers in Bi produced by the injection of a pure spin current. The nonequilibrium carriers are restricted to a close vicinity of the Fermi energy, and the probability of an electron state to host the injected electron depends on its probability to have the respective spin \uparrow or \downarrow in the vicinity of the surface (by controlling the overlap between the wave function of the injected electron and the current carrying state).

Following the experimental configuration [Fig. 1(b)], let the in-plane spin quantization axis be perpendicular to the induced current direction, and consider the difference between the current due to spin-\uparrow and spin-\downarrow electrons. In a semi-infinite crystal, the eigenstates are labeled by the Bloch vector parallel to the surface k_{\parallel}, the energy ϵ, and the band number λ. In a slab calculation, the energy continuum at each k_{\parallel} is approximated by a discrete set of levels. Each eigenstate is characterized by a spin value $s_{\lambda}(k_{\parallel})$, which is defined as an integral over a surface region from depth z_0 to vacuum z_e,

$$s_{\lambda}(k_{\parallel}) = \int_{z_0}^{z_e} \rho_{\lambda\parallel}^{\uparrow}(k_{\parallel}, z) - \rho_{\lambda\parallel}^{\downarrow}(k_{\parallel}, z) \, dz. \quad (4)$$

The spin spectral density for k_{\parallel} along $\Gamma\overline{M}$ and the spin quantization axis perpendicular to k_{\parallel} are shown in Fig. 4(a) [the integration in Eq. (4) is over the outermost bilayer]. The electric current density j is then a sum of the partial currents over all states outside the equilibrium distribution. The contribution of a narrow energy interval dE around energy E to the nonequilibrium current is $\delta j = j_{\lambda}(E)dE$ with the current spectral density given by the integral over a constant energy contour,

$$j_{\lambda}(E) = \sum_{k_{\parallel}} \int_{\epsilon_{FS}}^{E} d\epsilon \frac{n_{\lambda}^+(k_{\parallel}^\ast) v_{\lambda\parallel}(k_{\parallel}^\ast)}{|\nabla_{k_{\parallel}} \epsilon_{\lambda}(k_{\parallel}^\ast)|}, \quad (5)$$

where $v_{\lambda\parallel}(k_{\parallel})$ is the group velocity and $n_{\lambda}^+(k_{\parallel})$ is the deviation of the occupation number from its equilibrium value. At
elevated temperatures the Fermi distribution smears out, and the states below E_F become available to the injected electrons, which changes the balance of different contributions to the integral and, thus, may change the sign of the effect [see Fig. 3(b)].

Let us consider current along the Bi(111) surface in the ΓM direction. Because the coefficients $n_s(k_{\parallel})$ are not known (they depend on specific features of the injection process), for a qualitative discussion let us assume $n_s(k_{\parallel})$ to be proportional to the spin at the surface $s_s(k_{\parallel})$, see Eq. (4). Two constant energy contours for two energies close to E_F are shown in Fig. 4(b). Although the bulk states at the Fermi level are spin polarized at the surface, see Fig. 4(a), the main contribution to the inverse Rashba-Edelstein effect turns out to come from the surface states. Within the same surface-state band the net spin projection does not change sign, but the direction of the group velocity changes. As a result, the contributions from different k_{\parallel} regions have different signs, and their relative weights vary with energy. The function $j_s^E(E)$ calculated for a 16-bilayer Bi(111) slab is shown in Fig. 3(b). The $j_s^E(E)$ curve turns out to be nonmonotonic, and it changes sign at 0.04 eV below the Fermi energy.

This offers the following hypothetical scenario of the sign change in the inverse Rashba-Edelstein effect with increasing temperature: Suppose that in the actual case the current spectral density changes sign just below the Fermi level. As the equilibrium occupation of the states below E_F decreases, they become selectively (depending on the spin) occupied by the injected electrons and may produce a current in the opposite direction. This may not happen for surface states of the Rashba model because of their monotonic dispersion [unless $n_s(k_{\parallel})$ show sharp variations], but this may happen for the more complicated surface states of Bi(111). The present calculation suggests a minor role of the bulk states in IREE, which stems from their low density at E_F (semimetallic character of Bi). Moreover, both the polarization and the group velocity have the same sign for the bulk hole pocket at Γ and electron pocket at \bar{M}, so a change in their occupation numbers does not explain the inversion of the induced current. Despite the limitations of the present analysis (that arise from our lack of knowledge of the actual structure of the Cu/Bi interface and its k_{\parallel}- and spin-resolved transport properties), it suggests a microscopic mechanism of converting spin current into charge current via surface states, which possesses the property of changing the sign depending on occupation numbers.

To summarize, we demonstrate that the Bi metallic surface acts as a strong spin absorber. We show that a conversion of 3D spin currents to 2D charge currents occurs at such a metallic surface by means of the inverse Rashba-Edelstein effect. Moreover, the temperature dependence of the IREE features a sign crossover at \sim125 K, which, according to our theoretical analysis, arises from a spin structure with nonmonotonic dispersion of the surface states at the Fermi level. This rich phenomenology of the complex electronic behavior of Bi could be further exploited to unveil yet unpredicted spin-dependent effects.

We thank Professor A. Fert for fruitful discussions on the experimental results, Y. Omori and Professor Y. Otani for the calculation of the shunting factor using SPINFLOW3D, and Dr. S. Sangiao for discussions on the properties of bismuth. This work was supported by the European Commission under the Marie Curie Actions (Grant No. 256470-ITAMOSCINOM), the SUDOE (Grant No. TRAIN2-SEOE2/PIE-280), and the European Research Council (Grant No. 257654-SPINTROS), by the Spanish MINECO under Projects No. MAT2012-37638, No. MAT2011-13099-E, No. MAT2011-27553-C02, No. MAT2014-51982-C2-1-R, No. MAT2015-69725-REDT, and No. FIS2013-48286-C2-1-P, including FEDER funds, by the Basque Government under Project No. PI2011-1, and by the Aragon Regional Government under Project No. E26. M.I. and E.V. thank the Basque Government for Ph.D. fellowships (Grants No. BFI-2011-106 and No. BFI-2010-163).