Influencia del ambiente en la extracción de ADN, a partir de hojas, para la identificación precoz de híbridos interespecíficos de *Prunus* mediante pruebas de paternidad basadas en la PCR

J.A. Marín, P. Andreu, P. Quílez, A. Arbeloa

Estación Experimental de Aula Dei (CSIC). Apartado 202, 50080 Zaragoza

Resumen
Se ha observado la conveniencia de realizar una selección precoz mediante tests de paternidad basados en la PCR (Reacción en Cadena de la Polimerasa), en plantas micropropagadas derivadas de cultivo in vitro de embriones inmaduros en un programa de mejora de patrones basado en cruzamientos interespecíficos. Los tests de paternidad nos han permitido cribar los clones no híbridos durante la fase inicial de propagación y reducir la incidencia de las polinizaciones accidentales. En este trabajo se estudió la eficiencia de la extracción de ADN, para la realización de los test de paternidad, de tejidos foliares de plantas crecidas en diferentes ambientes y medios de cultivo. Las hojas de las plantas in vitro se han visto afectadas tanto por el ambiente como por la composición del medio de cultivo, modificando la relación PS/PF (peso seco/peso fresco) y la extracción de ADN. Las plantas de campo mostraron el mayor PF por unidad de superficie y la mayor relación PS/PF, sin embargo, las plantas sombreadas crecidas en invernadero proporcionaron la mayor concentración de ADN extraído. Las plantas cultivadas in vitro en un medio con BAP (bencilaminopurina) mostraron menor concentración de ADN extraído que las plantas ex vitro, pero mayor que las plantas cultivadas en medio con ZEA (zeatina) que mostraron la menor cantidad de PF por superficie. Estos resultados se discuten en términos de la optimización de la extracción de ADN y del efecto del ambiente y del medio de cultivo en los tejidos foliares de las plantas.

Palabras clave: Híbridos mirobolán x albaricoquero, *Prunus cerasifera, P. armeniaca*, extracción de ADN, peso fresco, peso seco, citoquininas, ambiente

Summary

Effect of the environment in DNA leaf extraction for the early identification of* Prunus* interspecific hybrids through PCR paternity tests

Early selection in a breeding program has been performed applying PCR (Polymerase Chain Reaction) paternity tests to micropropagated plants derived from in vitro germinated embryos. Paternity tests allowed us to screen out non-hybrid clones during the initial propagation phase and thus reducing the incidence of accidental pollinations. In this work the efficiency of DNA extraction for paternity tests from foliar tissues of plants grown under different environments and culture media is studied. In vitro plant leaves have been affected by both the environment and the culture media composition, modifying the ratio DW/FW (dry weight/fresh weight) and the DNA extraction performance. The highest FW per cm² and the highest DW/FW ratio were found in field plants, however, shaded plants grown in a greenhouse yielded the highest extracted DNA concentration. In vitro plants cultured on BAP-containing medium showed lower extracted DNA concentration than ex vitro plants, but higher than that of plants cultured on ZEA-containing medium that showed the lowest FW per cm². These results are discussed in terms of the optimization of the DNA extraction for PCR analysis and of the effects of both the environment and the cytokinin type used in vitro on plant leaf tissues.

Key words: Myrobalan x apricot hybrids, *Prunus cerasifera, P. armeniaca*, DNA extraction, fresh weight, dry weight, cytokinin, environment
Introducción

La necesidad de cribar precozmente los genotipos híbridos de interés en un programa de mejora realizado a partir de cruzamientos interespecíficos de Prunus, ha sido resuelta gracias a la aplicación de pruebas de paternidad basadas en la PCR (Polímerase Chain Reaction) a partir de material micropropagado in vitro. De esta manera se ha minimizado el efecto negativo que tiene la alta incidencia de polinizaciones accidentales en cruzamientos lejanos con bajo nivel de cuajado, en los que se encuentran frecuentemente barreras genéticas que dificultan la obtención de híbridos (Arbeloa et al., 2005a, b). La posibilidad de identificar precozmente los genotipos híbridos presentados aquí, junto a la aplicación de técnicas de cultivo in vitro para la germinación de los embriones inmaduros (Daorden et al., 2004) y su posterior multiplicación in vitro (Daorden et al., 2001) permiten la aceleración de los lentos procesos presentes en los programas de mejora de frutales.

Sin embargo, el material cultivado in vitro presenta unas características particulares debido al ambiente de cultivo en el que se desarrolla la planta (George 1996), ya que junto a la miniaturización y a la estimulación de la ramificación se encuentran modificaciones anatómicas en las hojas que afectan no solo a su estructura, sino también a su contenido en materia fresca (PF) y seca (PS), y por tanto a su contenido en agua y al volumen del espacio intercelular.

En este trabajo se compara la extracción de ADN de tejidos foliares de híbridos Mirobolán x albaricoquero cultivados en diferentes ambientes: campo, invernadero sombreado y micropropagación. Así mismo, se estudia el efecto de dos citoquinas (Bencilamino-purina, BAP, y Zeatina, ZEA) que producen hojas de diferente estructura anatómica.

Materiales y métodos

Material vegetal

Se han utilizado hojas de híbridos interespecíficos obtenidos en cruzamientos entre mirobolán (P. cerasifera) y albaricoquero (P. armeniaca) y cultivados in vitro mediante el rescate y germinación in vitro de los embriones inmaduros (Daorden et al., 2004) para ser posteriormente micropropagados (Daorden et al., 2001) y trasplantados a condiciones de invernadero y campo (Arbeloa et al., 2003; Marín, 2003).

Condiciones ambientales y de cultivo

Las hojas se tomaron de plantas crecidas en diferentes ambientes con distinta iluminación: 1) plantas crecidas en campo, 2) plantas crecidas en maceta en un invernadero sombreado (80% de sombra) y 3) brotes micropropagados e iluminados con tubos fluorescentes “cool-white” a una intensidad de 35 μmol m⁻² s⁻¹. Para estudiar el efecto del tipo de citoquina, los brotes se cultivaron en un medio de Murashige y Skoog modificado (Murashige y Skoog, 1962) con tiamina-HCl (0.4 mg l⁻¹), IBA (0.1 mg l⁻¹), sacarosa (30 g l⁻¹), Difco-Bacto agar (7 g l⁻¹), añadiendo BAP o ZEA (1 mg l⁻¹) al medio de cultivo. La toma de muestras se realizó en el mes de julio.

Características de la hoja

Se determinaron diversos parámetros de la hoja: peso fresco, peso seco (tras secado en estufa a 60 °C durante 48 h) y área foliar de las muestras de las hojas tomadas (8 discos de hoja en campo e invernadero de 8 mm de diámetro y 20 hojas en brotes micropropagados). Las determinaciones se realizaron por triplicado y se calcularon los valores promedio.
Extracción de ADN

La extracción de ADN genómico se realizó siguiendo el protocolo descrito en Hormaza (2002) y se empleó diferente tipo de muestra de hoja según el ambiente de cultivo. En las plantas crecidas en campo o en invernadero se tomaron 8 discos de hoja, mientras que para los brotes crecidos in vitro se tomaron 20 hojas completamente desarrolladas. Las hojas o discos de hoja fueron triturados en tubos Eppendorf de 1,5 ml con 200 µl de tampón de extracción (100 mM Tris-HCl, 1,4 M NaCl, 20 mM EDTA, 2% CTAB, 1% PVP, 0,2% β-mercaptoetanol, 0,1% NaHSO3). Las muestras se incubaron a 65°C durante 0,5 h, se mezclaron con el mismo volumen de cloroformo-alcohol isoamílico (24:1) y centrifugado a 10,000 g durante 15 min. El sobrenadante se recupero y mezcló con 130 µl de isopropanol frío. Tras la centrifugación a 13.000 g durante 5 min los ácidos nucleicos precipitados se recuperaron y lavaron con 400 µl de acetato de amonio 10 mM en etanol al 76% durante 1 h, se dejó secar hasta el día siguiente a temperatura ambiente y se resuspendieron en 200 µl de tampón TE modificado (10 mM Tris-HCl, 0,1 mM EDTA, pH 8,0). El ADN extraído se cuantificó espectrofotométricamente (Biomate 3, Thermo Electron Corporation, Madison, WI). Toda la extracción se repitió 3 veces para cada tipo de hoja y se calcularon los valores promedio.

Resultados

Las distintas condiciones de cultivo (campo, invernadero sombreado y cámara de cultivo) han determinado diferencias en las hojas, tanto en tamaño (figura 1), como en los parámetros estudiados, dando diferentes valores de PF por unidad de superficie (tabla 1), así como de la relación entre el PS y el PF. Las hojas de campo han mostrado el mayor PF por unidad de superficie, siendo aproximadamente el doble del de las hojas de invernadero. Las hojas de los brotes cultivados in vitro han mostrado diferencias apreciables tanto en el tamaño (figura 1) como en el PF (tabla 1) según la citoquinina empleada. Las hojas cultivadas en medio de cultivo con BAP han tenido un tamaño casi 6 veces menor que con ZEA, sin embargo, el PF de las hojas con BAP es aproximadamente el doble que con ZEA y del mismo orden al de las hojas de invernadero. La relación entre PS y PF, expresada como porcentaje de PS por unidad de PF, indica que las hojas de campo contienen mucho más PS que las demás, aproximadamente el doble, mientras que entre las hojas de invernadero y las de cultivo in vitro las diferencias son pequeñas.

La concentración de ADN extraído ha variado igualmente según el tipo de hoja. Las hojas de campo han proporcionado el extracto con mayor concentración (tabla 1), mientras que las hojas in vitro, cultivadas con BAP, han proporcionado la menor concentración, y las hojas de invernadero y de cultivo in vitro con ZEA han mostrado una concentración intermedia. Sin embargo, las hojas de invernadero son las que han mostrado una mayor cantidad de ADN por unidad de PF, superior a las de campo. Por otra parte, las hojas cultivadas in vitro con ZEA han proporcionado la menor cantidad de ADN por unidad de PF.

Discusión

Según los resultados del presente trabajo todos los tipos de hoja obtenidos de diferentes ambientes de cultivo han sido adecuados para la extracción de ADN con el protocolo utilizado. En todos los casos, se han obtenido concentraciones adecuadas de ADN superiores a 100 µg ml⁻¹. Los datos indican igualmente que el ambiente de cul-
tivo afecta enormemente a la estructura de las hojas y, por lo tanto, a la extracción de su ADN genómico.

Las hojas de plantas cultivadas en campo han mostrado una estructura del tipo de "hoja de sol" de menor tamaño, con mayor PF por unidad de superficie y con mayor relación PS/PF, es decir con menos contenido de agua y menores espacios intercelulares en el parénquima de la hoja, propios de ambientes con mayor iluminación y menor humedad relativa. En el otro lado, las hojas de invernadero, con estructura de "hojas de sombra" y más grandes, han mostrado valores similares a las hojas de cultivo in vitro en la relación PS/PF, sin embargo, las diferencias en PF por unidad de superficie indican diferente volumen de espacios intercelulares.

![Image](image_url)

Figura 1. Hojas de mirobolán x albaricoquero crecidas en diferentes ambientes: campo, invernadero, y cultivo in vitro con BAP (bencilaminopurina) o ZEA (zeatina), mostrando el diferente tamaño alcanzado. El círculo indica el tamaño de los discos de hoja utilizados para la extracción.

Figure 1. Leaves of Myrobalan x apricot grown under different environments: field, greenhouse, and tissue culture with BAP (benzylaminopurin) or ZEA (zeatin), showing different sizes. Circles on the leaves indicate the size of the leaf discs taken for the extraction.
Tabla 1. Superficie de las muestras de hojas de mirobolán x albaricoque crecidas en diferentes ambientes (campo, invernadero, y cultivo in vitro con BAP o con ZEA), PF (peso fresco), PF por unidad de superficie, relación PS/PF (% peso seco respecto al PF) y concentración de ADN en el extracto y en relación al PF y a la superficie.

<table>
<thead>
<tr>
<th>Ambiente</th>
<th>Campo</th>
<th>Invernadero</th>
<th>In vitro-BAP</th>
<th>In vitro-ZEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de muestra</td>
<td>(8 discos)</td>
<td>(8 discos)</td>
<td>(20 hojas)</td>
<td>(20 hojas)</td>
</tr>
<tr>
<td>Superficie (cm²)</td>
<td>4,0216</td>
<td>4,0216</td>
<td>3,0233</td>
<td>17,1943</td>
</tr>
<tr>
<td>PF (g)</td>
<td>0,1006</td>
<td>0,0521</td>
<td>0,0516</td>
<td>0,1404</td>
</tr>
<tr>
<td>g PF/cm²</td>
<td>0,0250</td>
<td>0,0129</td>
<td>0,0171</td>
<td>0,0082</td>
</tr>
<tr>
<td>PS/PF (%)</td>
<td>40,95</td>
<td>18,69</td>
<td>18,22</td>
<td>20,83</td>
</tr>
<tr>
<td>ADN extraído (μg/ml)</td>
<td>280</td>
<td>205</td>
<td>112</td>
<td>205</td>
</tr>
<tr>
<td>μg ADN/g PF</td>
<td>2,783,3</td>
<td>3,937,3</td>
<td>2,170,5</td>
<td>1,460,5</td>
</tr>
<tr>
<td>μg ADN/cm²</td>
<td>69,6</td>
<td>51,0</td>
<td>37,0</td>
<td>11,9</td>
</tr>
</tbody>
</table>

res, siendo mayores en las hojas cultivadas en medio de cultivo con ZEA. Esto puede ser debido a un diferente efecto de las distintas citoquininas (BAP o ZEA), no solo en el tamaño de la hoja, sino también en su estructura. Poca información puede encontrarse sobre la acción de las citoquininas en las hojas, estando el tema de actualidad gracias a la aparición de mutantes en plantas modelo que permiten avanzar en su modo de acción (Mok y Mok, 2001; Nishimura et al., 2004), pero falta describir el papel de las citoquininas en la estructura y tamaño de la hoja.

Nuestros datos muestran una clara influencia del ambiente en la eficiencia del protocolo de la extracción de ADN genómico. Las hojas de invernadero sombreado han resultado ser las donantes más eficaces, ya que por unidad de PF han proporcionado la mayor cantidad de ADN. Es de destacar que las hojas de campo, con mayor PF por unidad de superficie y mayor relación PS/PF han proporcionado una cantidad de ADN extraído por unidad de PF menor que las hojas de invernadero, indicando algún tipo de inhibición producida por las condiciones de campo, es decir mayor iluminación y menor humedad relativa, junto a una mayor probabilidad de exposición a diferentes estreses bióticos y abióticos. En estas condiciones las plantas producen una mayor cantidad de metabolitos secundarios con una función protectora (Dixon y Paiva, 1995), como los fenoles, que se han descrito como inhibidores de la extracción de ADN (Porebski et al., 1997). Sin embargo, las plantas crecidas en invernadero no estarían sometidas a esos estreses, por lo que la presencia de sustancias inhibidoras como los fenoles sería menor.

In vitro también se han observado variaciones de tamaño en las hojas que no han podido ser inducidas por diferencias en el ambiente, sino por la acción de los dos tipos de citoquinina utilizadas BAP y ZEA, con un efecto diferencial que se asemeja al producido por los diferentes ambientes en campo e invernadero. Como el mayor tamaño de la hoja está ligado a un menor PS por unidad
de superficie, la cantidad de ADN extraída por unidad de superficie ha sido menor en las hojas de mayor tamaño, tanto en las de invernadero comparadas con las de campo, como en las de cultivo in vitro con ZEA, comparadas con las de in vitro con BAP.

La concentración de ADN extraído guarda una relación muy estrecha con la relación PS/PF (coeficiente de correlación de 0,81), y una relación nula o mucho menor con la superficie y con el PF, de manera que la extracción es tanto mayor cuanto mayor es el PS de la hoja. Así, las hojas de campo proporcionan la mayor cantidad de ADN extraído, pero esta cantidad no es proporcional al PF, y a pesar de que tanto el PF por unidad de superficie como la proporción de PS/PF han sido mayores en las hojas de campo, la mayor cantidad de ADN extraído por unidad de PF ha sido en las hojas crecidas en un invernadero sombreado. Como para la extracción de ADN la cantidad de tejido foliar se toma en función de su peso fresco, que es fácilmente medible, y como las hojas crecidas en campo contienen sustancias inhibidoras de la extracción de ADN, las hojas de invernadero sombreado han resultado ser las más adecuadas para la obtención de ADN. Las hojas crecidas in vitro han presentado una menor cantidad de peso fresco y de ADN extraído, pero con diferencias según la citoquinina añadida al medio de cultivo. Las hojas cultivadas en medio con ZEA, que tenían un tamaño foliar superior, han mostrado valores mucho menores de ADN extraído por unidad de PF que las crecidas con BAP, que tenían un tamaño mucho menor.

Aplicando estos resultados al caso práctico de la realización del protocolo de extracción de ADN, el material más adecuado ha sido las hojas crecidas en un invernadero sombreado, que muestran la mayor eficiencia (mayor contenido de ADN por unidad de PF), pero los brotes crecidos en condiciones de cultivo in vitro han mostrado ser un material adecuado para la extracción de ADN, aunque ha de prestarse atención al efecto de la composición del medio de cultivo en la estructura de las hojas. En nuestro caso, veinte hojas de brotes cultivados in vitro con BAP han proporcionado un PF similar a los 8 discos de hoja de invernadero, mientras que bastarían 7 hojas de ZEA (casi 3 veces menos) para igualar ese PF (0,05 g). Sin embargo, dada la diferente eficiencia en la extracción de ADN, para igualar al ADN extraído de las hojas de invernadero la cantidad de hojas de los dos tipos de citoquininas se acercan, ya que mientras hacen falta unas 37 hojas de BAP son necesarias 20 hojas de ZEA (casi la mitad).

Este trabajo muestra que el material cultivado in vitro es una fuente adecuada para la extracción de ADN, lo que posibilita la identificación y la selección asistida con marcadores en etapas tempranas de la selección, permitiendo acortar los largos procesos que tienen lugar en los programas de mejora con especies leñosas.

Agradecimientos
Este trabajo se ha financiado en parte por los proyectos CONSID - DGA: P012/2001 y CICYT: AGL2001-2414-C04-01 y AGL2002-03231-AGR-FOR.

Bibliografía
effect of accidental pollinations on the progeny of low setting Prunus interspecific crosses. Euphytica (en prensa).

(Aceptado para publicación el 26 de octubre de 2005).