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Introduction

This auxiliary material provides additional examples of the comparison of SMOS Sea

Surface Salinity (SSS) maps with Sea Surface Height (SSH). These examples are composed

of an additional figure and a movie depicting the propagation of Algerian eddies as seen

in SSS and SST

Text S1. Description of the temporal evolution of two Algerian eddies

The westernmost fresh-core anticyclonic eddy shown in Figure 2 of the Manuscript was

tracked from January 3 to March 4 with SSS and SSH maps as shown in Movie M1. This

eddy propagated downstream along the Algerian Coast. On 18 January 2013 a smaller

eddy started to detach from the coastal eddy although this signature is only evident

in the Okubo-Weiss parameter and cannot be clearly observed in SSS until 21 January

2013 and as close SSH contours until 24/25 January 2013. Since then the coastal eddy

continued to propagate eastwards while the open sea eddy detached from it started to

propagate westwards/southwestwards. The SSS signature of these Algerian eddies and its

evolution was found to be in agreement with SSH maps. Nevertheless, some flaws could

be observed: the time variability of SSS maps was sometimes too large and some potential

artifacts may still be present, e.g. the coastal minimum of salinity located ∼ 2◦E around

15 February 2013. Both vortex exhibited temporal variations of amplitude in SSS as it

propagated. The vortex that split from the coastal eddy propagated westwards until it

disappeared definitively, while it was still visible in SST and SSS. Notice, however, that

the SSS signature of this westwards propagating eddy reduced and probably become close

to the sensitivity limit of the present generation of SMOS products, which could explain
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the lack of continuity in its tracking. On the other side, the coastal eddy also disappeared

on 19 February 2013 and 22-23 February 2013 although it reappeared.

Text S2. Description of the methodology used to build SMOS SSS maps

SMOS SSS maps have been constructed from L1 SMOS data downloaded from ESA.

First, Brightness Temperatures (TB) have been geolocalized in a Lambert Azimutal grid

at 25 km and have been downloaded from the antenna to the Bottom of Atmosphere

(BOA) reference frame using the dielectric constant model proposed in Klein and Swift

[1977]. Then, resulting data were corrected for the galactic [Tenerelli et al., 2008], Sun

glint [Reul et al., 2007] and roughness [Guimbard et al., 2012]) contributions and SSS have

been derived from every resulting TB. Only SSS values between 0 and 50 PSU have been

retained. The resulting TB have been processed following the methodology explained

in Olmedo et al. [Enhanced retrieval of the geophysical signature of SMOS SSS maps,

submitted to Rem. Sens. Env.]. This method is as follows. The statistical distributions of

SSS acquired under the same conditions (location, antenna coordinates, orbit direction)

have been derived and their second, third and fourth moments have been used to asses

their significance and to define filtering criteria. Once a salinity distribution has been

considered as significative, its modal value has been taken as the representative value of

the corresponding class. All the salinities belonging to a given class have been corrected

accordingly with its representative value before being used to produce each SSS daily map.

Only SSS of classes considered as significative have been used. This approach provides

SSS anomalies which are free of biases, particularly, close to the coast. Absolute values are

then retrieved adding the annual climatology from the World Ocean Atlas (WOA) [Zweng
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et al., 2013]. Daily L3 SSS maps at 0.25 × 0.25◦ resolution have been, then, generated

by means of a classical scheme of objective analysis applied over time periods of 9-days

using the same influence radii as those used in the WOA SSS climatology, i.e. (321 km,

267 km and 175 km). Finally, Reynolds SST at 0.25 × 0.25◦ spatial resolution and daily

temporal scale [Reynolds et al., 2007] have been used to reduce the noise and increase the

time resolution of the L3 SSS maps using the vectorial approach of the multifractal fusion

method presented at [Olmedo et al., 2016] The method imposes that the SSS and SST

gradients are related by means of a matrix which is a composition of a scaling factor and

a rotation. Although the methodology has some limitations when it is applied in a global

map (due to boundaries problems when integrating the reconstructed gradient of SSS),

these limitations are mitigated here by applying the algorithm locally (to the Western

Mediterranean only).

Movie S1.

Temporal evolution of SMOS SSS maps with the SSH contours over-plotted. Black dots

connected by a thin black line indicates the central position of the two eddies mentioned

in the text.

Data set S1.

Sea Surface Salinities generated from SMOS measurements and Reynolds SST data in

NetCDF format.
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