
State of the Art in
Similarity Preserving Hashing Functions

V. Gayoso Martínez, F. Hernández Álvarez, and L. Hernández Encinas
Information Processing and Cryptography (TIC), Institute of Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC), Madrid, Spain

Abstract— One of the goals of digital forensics is to analyse
the content of digital devices by reducing its size and
complexity. Similarity preserving hashing functions help to
accomplish that mission through a resemblance comparison
between different files. Some of the best-known functions
of this type are the context-triggered piecewise hashing
functions, which create a signature formed by several hashes
of the initial file. In this contribution, we present the state of
the art of the most important similarity preserving hashing
functions, analysing their main features. We conclude our
work listing the most relevant properties that such type of
functions should satisfy in order to improve their efficiency.

Keywords: Forensics, Hash Functions, Similarity Preserving

1. Introduction
In modern society, the amount of information has in-

creased in an incommensurable way and therefore the man-
agement of big quantities of data represents a major chal-
lenge. Digital forensics is the branch of Computer Science
which, through investigation and analysis techniques, gathers
evidence from the content of a particular electronic device in
a way that is suitable for presentation in a court of law, for
example. When inspecting the content of a computer, digital
forensics experts need to reduce the large amount of data
available to them to information that can be analysed in an
easier way.

An initial approach to reach that reduction is using crypto-
graphic hash functions. Hashing algorithms like MD5 [22]
and the family SHA [17], [19], [20], among others, have
been traditionally used in computer forensics to determine
if two files were the same. Given the importance of this
topic, NIST (National Institute of Standards and Technol-
ogy) developed a database, called NSRL (National Software
Reference Library), which contains hash values of files of
several trusted operating systems [18]. With this public
service, NIST contributes to reduce the search time of known
files and to detect content forgery on the devices. However,
the main limitation of cryptographic hash functions when
comparing files is that, if one of the files is modified, the
outcome of the comparison is negative, even if the two files
are identical except in one byte.

In contrast to cryptographic hash functions, Similarity Pre-
serving Hashing Functions (SPHF), also known as Piecewise
Hashing Functions (PHF) or fuzzy hashing functions, aim
to detect the resemblance between two files by mapping
similar inputs to similar hash values. These functions, which
compare files at byte level, are useful in order to compare
a broader range of input data and detect not only similar
texts, but also embedded objects (e.g. a JPEG image in a
Word document) or binary fragments (e.g. a data packet in
a network connection or a virus inside an executable file).

The technique behind SPHF was originally devised by
Harbour [12], and consists in creating a signature formed
by several hashes of the initial file, instead of only one. In
this way, even if part of the content is modified, only the
hashes related to that updated parts would change, allowing
to detect if the rest of the file is related or similar to the
original one. There are four types of SPHF:

• Block-Based Hashing (BBH): functions that produce a
hash after a fixed amount of bytes have been handled,
so the number of hashes depends directly on the data
object size and the length of the hash input.

• Context-Triggered Piecewise Hashing (CTPH): func-
tions where the number of hashes is determined by
the existence of special points, called trigger points,
within the data object. A point is considered to be a
trigger point if it matches a certain property, defined
in a way so that the number of expected trigger points
falls within a range.

• Statistically-Improbable Features (SIF): the basic aim
of this functions is to identify a set of features (sequence
of bits) which are least likely to occur in each of the
data objects by chance and then compare the features
themselves to obtain the similarity level.

• Block-Based Rebuilding (BBR): these functions make
use of external auxiliary data, such as binary blocks,
to compare the bytes of the original file and calculate
the differences between them (e.g. using the Hamming
distance). Then, these differences are used as a base to
find possible similar data objects.

In this paper, we present a study about the most important
similarity preserving hashing functions, including a study of
their main properties, and we conclude our work listing the
main properties that such type of functions should satisfy in



order to improve their efficiency. The rest of this paper is
organized as follows: Section 2 summarizes the block-based
hashing functions, whereas in Section 3 context triggered
piecewise hashing functions are presented. In Section 4 func-
tions based on statistically-improbable features are analyzed.
Block-based rebuilding functions are studied in Section 5.
Finally, Section 6 summarizes our conclusions in this topic.

2. Block-Based Hashing
The most basic scheme that can be used for determining

similarity of binary data is Block-Based Hashing (BBH). In
short, using this method cryptographic hashes are generated
and stored for every block of a chosen fixed size (e.g.
512 bytes). Later, the block-level hashes from two different
sources can be compared and, by counting the number of
blocks in common, a measure of similarity can be deter-
mined.

An example of this kind of similarity hashing functions
was performed by Harbour, who developed a program called
dcfldd [12]. This software splits the input data into sectors
or blocks of a fixed length and computes the corresponding
cryptographic hash value for each of these blocks.

The main advantage of this scheme is that it is already
supported by existing hashing tools and it is computationally
efficient. The disadvantages become fairly obvious when
block-level hashing is applied to files: success heavily de-
pends on the intrinsic layout of the files being very similar.
For example, if we search for versions of a given text
document, a simple character insertion/deletion towards the
beginning of the file could render all block hashes different.
This means that dcfldd is not alignment robust.

Similarly, block-based hashes will not tell us if an object,
such as a JPEG image, is embedded in a compound doc-
ument, such as a Microsoft Word document. In short, the
scheme is too fragile and a negative result does not reveal
any useful information.

3. Context Triggered Piecewise Hashing
The second type of piecewise hashing functions, which

are usually known as Context Triggered Piecewise Hashing
(CTPH) functions, were originally proposed by Tridgell
[30]. Later, Tridgell developed a context triggered piecewise
hashing based algorithm to identify mails which are similar
to known spam mails. He called his software spamsum [31].
The basic idea is to identify content markers, called contexts,
within a binary data object and to store the sequences of
hashes for each of the pieces, also called chunks, in between
contexts. In other words, the boundaries of the chunk hashes
are not determined by an arbitrary fixed block size but are
based on the content of the object.

Nowadays, ssdeep is the best known CTPH applica-
tion, but another algorithms based in the same concepts or
improvements to the original ssdeep algorithm have been
proposed: FKSum, SimFD, MRSH, etc.

3.1 ssdeep
In 2006, Kornblum released ssdeep [15], one of the

first programs for computing context triggered piecewise
hashes. In this algorithm, blocks (chunks or segments) are
not determined by an arbitrary fixed block size but are based
on the content of the object.

The algorithm’s core is a rolling hash very similar to the
rolling hash used in rsync [30] and spamsum [31]. The
rolling hash is used to identify a set of reset points (also
known as distinguished points or triggered points) in the
plaintext that depend on the content of a sliding window of
seven bytes. The algorithm reaches a reset point whenever
the rolling hash (which is based on the Adler32 function)
generates a value which meets a predefined criteria. Let

BSp = Bp−s+1Bp−s+2 . . . Bp

denote the byte sequence in the current window of size s,
which is 7 by default, at position p within the file, and
let PRF(BSp) be the corresponding rolling hash value. If
PRF(BSp) hits a certain value, the end of the current chunk
is identified. So, the byte Bp is a trigger point and the current
byte sequence BSp a trigger sequence. The subsequent
chunk starts at byte Bp+1 and ends at the next trigger point
or the end of the file. As there are only low-level operations,
Kornblum’s PRF is very fast in practice.

In order to define a hit for PRF(BSp), Kornblum intro-
duced a modulus, b, called block size, which determines the
reset frequency. The byte Bp is a trigger point if and only
if PRF(BSp) ≡ −1 mod b. If PRF outputs are equally
distributed values, then the probability of a hit is reciprocally
proportional to b. Thus if b is too small, we have too many
trigger points and vice versa.

As Kornblum aims at having 64 chunks, the block size
depends on the file size as given in Eq. (1), where bmin is
the minimum block size with a default value of 3, S is the
desired number of chunks with a default value of 64, and N
is the file size in bytes (for a complete explanation of the
formula and the chosen default values, please see [15]).

b = bmin · 2
⌊
log2

(
N

S·bmin

)⌋
(1)

Given that b ≈ N/S, the procedure generates as a result
around S chunks. Once a chunk is identified, a second
hash based on the FNV algorithm is then used to produce
hash values of the content between two consecutive trigger
points. Using its last 6 bits, each of those hash values is
translated into a Base64 character, so the resulting signature
is the concatenation of the single characters generated at all
the trigger points (with a maximum of 64 characters per
signature). In this way, if a new version of the object is
created by localized insertions and deletions, some of the
original chunk hashes will be modified, reordered, or deleted,
but enough will remain in the new composite hash to identify
the similarity.



As the frequency of the trigger points strongly determines
how many characters will appear in the signature, at the
beginning of its execution the algorithm estimates the value
of the block size, which would theoretically produce a
signature of around 64 characters. Once the signature is
produced, if its length is less than 32 characters ssdeep
adjusts the block size (b ← b/2) and the algorithm is
executed one more time, which generates a new signature.
This procedure continues until a signature of at least 32
characters is produced.

In the comparison process, ssdeep computes how sim-
ilar are two files based on their signatures. The similarity
measurement that ssdeep uses is an edit distance algo-
rithm based on the Damerau-Levenshtein distance [11], [16],
which compares the two strings and counts the minimum
number of operations needed to transform one string into the
other, where the allowed operations are insertions, deletions,
and substitutions of a single character, and transpositions of
two adjacent characters [13], [33].

In ssdeep, insertions and deletions are given a weight
of 1, while substitutions are given a weight of 3, and trans-
positions a weight of 5. As an example, using ssdeep’s
algorithm the distance between the strings “Saturday” and
“Sundays” is 5, as it can be checked with the following steps
and the computations of Table 1.

Saturday
del−−−−→ Sturday

del−−−−→ Surday
del−−−−→ Suday

ins−−−−→ Sunday
ins−−−−→ Sundays

Table 1: ssdeep edit distance example.
S a t u r d a y

0 1 2 3 4 5 6 7 8
S 1 0 1 2 3 4 5 6 7
u 2 1 2 3 2 3 4 5 6
n 3 2 3 4 3 4 5 6 7
d 4 3 4 5 4 5 4 5 6
a 5 4 3 4 5 6 5 4 5
y 6 5 4 5 6 7 6 5 4
s 7 6 5 6 7 8 7 6 5

A consequence of assigning the weights 3 and 5 to the
substitution and transposition operations is that, in practice,
the edit distance computed by ssdeep only takes into con-
sideration insertions and deletions. In this way, a substitution
has a cost of 2 (a deletion plus an insertion) instead of 3,
and a transposition has also a weight of 2 (again an insertion
and a deletion) instead of 5.

One of the limitations derived from this design is that,
given a string, a rotated version of the initial string is credited
with many insertion and deletion operations, when in its
nature it is basically the same string (i.e., the content is the
same, although the order of the substrings is different). Con-
sider for example the strings “1234abcd” and “abcd1234”.

The resulting distance is then scaled to produce a score
in the range 0-100, where a value of 100 indicates a perfect
match and a score of 0 indicates a complete mismatch. There
are two conditions that have to be taken into consideration at
this point: if the two signatures have a different block size,
then the score is automatically set to 0 without performing
any additional calculation. Besides, if the minimum length
of the longest common substring in the comparison is less
than the windows size (7), then ssdeep provides a score
of 0.

In retrospect, ssdeep represented a cornerstone in sim-
ilarity detection techniques. Its source code is freely avail-
able, and there are implementations for Windows and Linux
[21], [32]. The latest version of ssdeep is 2.10, which was
released in July 2013. Even though ssdeep is not a multi-
threaded program, the author states that the library on which
its based can be used in multi-threaded applications [14].

Despite the benefits brought by the release of this pro-
gram, during the last years some limitations have been
brought to attention by different researchers, proposing
improvements or even different theoretical approaches (for
example, see [1], [2], [4], [5], [8], [10], [24]).

3.2 FKSum
A improvement to Kornblum’s algorithm was proposed

by Chen et al. [10]. In their algorithm, FKSum, they showed
that it is possible to improve the efficiency of ssdeep, since
until the very last step it does not examine the signature and,
if it is too short (i.e., shorter than 32 characters), the file has
to be processed again using an adapted block size b← b/2.

As this fact is very likely to happen (they showed that it
happens in 38% of the cases), the goal of their modification
to the original algorithm was to generate intermediate hashes
using numbers in the geometric progression with factor 4 as
block size. If the current block size is b, they perform the
same algorithm and compute the hashes with block sizes b
and 4b, counting the trigger points for block sizes b, 2b, 4b,
and 8b. As the authors used FNV as a homomorphic hash
function, it is possible to create the hashes for 2b by using
the hashes of b and hence the process runs more efficiently.
The drawback of this approach is that the combination of the
hashes might be only possible with the FNV hash. If we use
any cryptographic hash function such as MD5, we would
have to do more computations and the efficiency advantage
would no longer be available.

3.3 New version of ssdeep
Breitinger and Baier [5] discussed the efficiency of

ssdeep, presenting some enhancements that, in their opin-
ion, would increase the performance of his algorithm by 55%
if applied to a real life scenario:

• Each file should be processed only once. As it was
proposed by Chen et al. [10], they use four different
block size values: 2b, b, b/2, and b/4.



• Implementation should be flexible in order to be able
to change the PRF and chunk functions.

• It should be able to determine untypical behaviour of
trigger sequences (which may be caused by an active
adversary), in order to mitigate the security concerns
regarding adversary attacks detected in [2].

Their main idea is to process the file once and count the
trigger sequences for all reasonable block sizes (according
to Kornblum approach). In the next step, the file is read
again and the block size b is set to the largest value that
yields at least 32 signature characters. This fact is the main
disadvantage of this proposal, since the file has to be read
twice.

An important point related to security is the restriction
of the signature length of ssdeep. Kornblum forces the
resulting hash length to be between 32 and 64, but he
does not give any justification for those limits. Even though
Breitinger and Baier considered that the upper boundary
was a weakness, and as such it was exploited in [2], they
maintained both limits.

3.4 SimFD

Seo et al. [29] developed the SimFD algorithm by com-
bining ssdeep with other statistical analysis and improved
the false positive rate, but at the cost of efficiency.

Statistical analysis uses byte frequency analysis to detect
if a file is similar to the original one. This method generates
a result through byte frequency analysis for the original
file. As a result of it, the process is performed before any
similar file detection task, and some reference values are
established from the original file for comparing other files.
These reference values consist of three types, where each
type has a different purpose for detection.

The first reference values are computed for comparing
similar files, and they are determined from features of the
original file through numerical values obtained from data
distribution. The second reference values are computed using
metadata, such as file signature, header/footer, null values
etc, which was eliminated during the computation of the
first reference values. Finally, the third reference values
are calculated as a clustering value for all binaries. The
clustering scheme is divided into increase, decrease and
stagnation for accumulated frequency. The clustering results
have the advantage of grasping the distribution type for a
file in a character string.
SimFD consists of four modules. First the input module,

used by selecting the original copy and the target object.
Then the analysis modules, that consists of the CTPH
analysis module (mainly ssdeep) and the statistical anal-
ysis module. And finally, the detection result module, that
judges final similarity by checking the results of CTPH and
statistical analysis through the reference values.

3.5 md5bloom
Roussev et al. [26] proposed a new tool, md5bloom,

which uses Bloom filters as an efficient tool for fast com-
parisons. Bloom filters are a space-efficient probabilistic data
structure, first introduced by Bloom in [3], and widely used
in areas such as network routing and traffic filtering. They
allow to test whether an element is a member of a set.

A Bloom filter B is a representation of a set of n elements,
S = {s1, . . . , sn}, taken from a universe U . The filter
consists of an array of m bits, initially all set to 0. To repre-
sent the set of elements, the filter uses k independent hash
functions, h0, . . . , hk−1, that produce values in the range of
0 to m− 1. All hashes are assumed to be independent and
to map elements from U uniformly over the range of the
function.

To insert an element x from S, each hash function
is applied to it, which gives k values. For each value,
h1(x), . . . , hk(x), the bit with the corresponding number to
one is set (setting a bit twice has the same effect as setting
it once). To verify if an element x is in S, we must hash
it with all the hash functions and check the corresponding
bits: if all of them are set to one, we return yes; otherwise,
no. The filter will never return a false negative; that is, if
the element was inserted, the answer will always be yes.
However, we could have a false positive for an element that
has never been inserted but whose bits have been set by
chance by other element insertions. False positives are the
price we pay for the compression gains.

As it turns out, the routine use of cryptographic hashes
in digital forensics makes it easy to introduce Bloom filters
into the process. Instead of computing k separate hashes, we
can take an object’s cryptographic hash, split it into several
nonoverlapping subhashes, and use them as if different
hash functions had produced them. This is the way the
md5bloom application works: the MD5 function returns
128 bits, any individual bit of the hash value can be viewed
as an independent random variable and, by extension, any
subset of the 128 hash bits can be selected to produce a value
within a desired range. Let the bits in hmd5 be numbered
0:127 (we use the notation hd1:d2 and the term subhash
to denote the selection of bits numbered d1 through d2,
inclusively), thus, hmd5 = h0:127 and can also be expressed
as the concatenation of subhashes, for example:

hmd5 = h0:15h16:31h32:47h48:63h64:79h80:95h96:111h112:127

3.6 MRSH–Multi-Resolution Similarity Hashing
In [27] Roussev et al. applied three main changes to the

ssdeep algorithm:
1) First, they stated that it is not necessary to use a

cryptographic hash function for the PRF. Therefore,
instead of using the PRF based on Adler32, they used
the following polynomial hash function, djb2:

h0 = 5381;hk+1 = 33hk+ ck mod 232; for k ≥ 0,



where ck denotes the kth character of the input.
Given that djb2 has the disadvantage that each win-
dow has to be processed from scratch, this change
influences negatively the efficiency.

2) Second, they changed the hash function for processing
each chunk. Instead of the FNV hash, they used MD5.
Then, the least significant 11 bits of the MD5 output
are used as input for a Bloom filter to represent the
final signature.

3) The next step in the design process is to determine
whether the composite hash will be of fixed or variable
size. Fixed-size hashes have an obvious appeal (min-
imum storage requirements and simple management).
However, they also have some scalability issues as they
limit the ability of the hashing scheme to compare
files of varying sizes. md5bloom, on its own, has
a very similar problem if the attempt is to produce
a composite hash which consists of a single filter.
Moreover, to compare two filters, they must be of the
same size and use the same hash functions.
This analysis points out the need to devise a variable-
sized hashing scheme that scales with the object size
but also maintains a low relative overhead. In this
sense, to enable universal comparison of filters Rous-
sev standardized a set of Bloom filters of 256 bytes, 8
bits per element, using four hash functions. To obtain
the four hashes, they take the MD5 chunk hash, split it
into four 32-bit numbers and take the least significant
11 bits from each part.

With all these design changes, the process of this new
algorithm works in the following way:

1) A 32-bit djb2 hash is computed on a sliding window
of size 7. At each step, the least significant t bits
of the hash (the trigger) are examined, and if they
are all set to 1, a context discovery is declared; t is
the essential parameter that distinguishes the different
levels of resolution. For the lowest level 0, the default
value is 8.

2) Context discovery triggers the computation of the
MD5 chunk hash between the previous context and
the current one.

3) The chunk hash is split into four pieces and four
corresponding 11-bit hashes are obtained and inserted
into the current Bloom filter. If the number of elements
in the current filter reaches the maximum allowed
(256), a new filter is added at the end of the list and
becomes the current one.

4) The hash consists of the concatenation of all the
Bloom filters, preceded by their total count.

Even though this modification slows down ssdeep,
it increases the security aspects, therefore this change is
considered to be very useful.

3.7 MRSH v2–Multi-Resolution Similarity
Hashing, version 2

In [8] Breitinger et al. reviewed in terms of efficiency
and performance the parameters used in the Multi-Resolution
Similarity Hashing function (MRSH) proposed by Roussev
(see §3.6) and developed a new version, MRSH v2, which
recovers some of the original ssdeep parameters, such as
Adler32 and FNV.

In order to be more efficient, they decided to use again
the original rolling hash (Adler32) instead of djb2, since
it computes the hash value over the 7-byte window in an
easier way just by removing the last byte and adding the new
one instead of doing seven loops per window. Moreover, as
collision resistance is not necessary, the new version makes
use of FNV, as the original ssdeep, instead of MD5. For
performance reasons they stated that the minimum block
size should be b/4, which is in line with FKSum (see §3.2).
Finally, the maximum number of elements has been changed
to 160 and 5 subhashes are used. The maximum is therefore
800 bits, so one Bloom filter could represent approximately
40,960 bytes. In order to insert the chunk hash value into a
Bloom filter, they used the least significant k · log2(m) bits
(MRSH divides the chunk hash values).

Additionally, they demonstrated that the algorithm is com-
pliant with the five properties that in their opinion a SPHF
should have, namely: compression, ease of computation,
similarity score, coverage, and obfuscation resistance.

4. Statistically-Improbable Features
This approach is based on the idea that finding similarities

between two objects can be understood as identifying a set
of features in each of the objects and then comparing the
features themselves. A feature in this context is simply a
sequence of consecutive bits selected by some criterion from
the object.

Roussev [23] uses entropy as the way of finding
statistically-improbable features and measures the false pos-
itive range for different kind of files (doc, xls, txt, html, pdf,
etc.). With this idea, he proposed a new algorithm, called
sdhash, whose goal is to pick object features that are least
likely to occur in other data objects by chance.

Instead of dividing an input into pieces, sdhash iden-
tifies statistically-improbable features using an entropy cal-
culation. These characteristic features, forming a sequence
of length 64 bytes, are then hashed using the cryptographic
hash function SHA-1 and inserted into a Bloom filter. Hence,
files are similar if they share identical features.

A security analysis was performed by Breitinger et al.
in [9], finding some bugs in the implementation as well as
showing some possible attacks to circumvent the algorithm
and analyzing the resistance of the parameters designed.
Another analysis [7] in terms of measuring the compres-
sion, ease of computation, coverage and similarity score



showed different weaknesses of sdhash, e.g. there is no
full coverage (a change up to 20% of the input does not
alter the fingerprint) and that the chosen design of the
comparison function is made for fragment detection but not
for comparing two files.

Moreover, in [24] Roussev performs a comparison be-
tween sdhash and ssdeep, analyzing two different ex-
periments (random files and real files) with three different
scenarios (embedded object detection, single-common-block
file correlation, and multiple-common-blocks file correla-
tion) concluding that sdhash’s accuracy and scalability
outperforms ssdeep.

Finally, in [25] the sdhash basic algorithm was made
scalable by parallelizing it. The new modification was called
sdhash-dd and to reach this objective, some chain de-
pendencies among the Bloom filter component filters were
moved away in order to allow concurrent generation. The
idea was to split the target into blocks of fixed size and run
the signature generation in block-parallel fashion.

5. Block-Based Rebuilding
There are mainly three algorithms, SimHash,

mvHash-B, and bbHash, which make use of external
auxiliary data or blocks that can be chosen randomly,
uniformly or as a fixed base, in order to rebuild a file.
The process compares the bytes of the original file to the
auxiliary data and calculates the differences between them
(e.g., using the Hamming distance).

5.1 SimHash
Sadowski et al. presented an algorithm, called SimHash

[28], which preselects 16 blocks of 8 bits each in order to
find matches by scanning and comparing the original file to
these blocks. When a match is found, it is stored in a sum
table and then the hash key is computed as a function of the
sum entries. Another function, called SimFind, identifies the
files with key values within a certain threshold of a particular
file, then performs a pairwise comparison among the sum
table entries to return a filtered selection of similar files.

They performed some experiments using a Uniform Key
which has all the 16 blocks weighted equally and a Skew
Key which has uneven weights in 4 of the blocks.

5.2 mvhash-B
The mvhash-B function was described by Breitinger et

al. [4], having three phases to create the fingerprint:
1) First, majority voting is used to map every byte of the

input file to either 0x00 or 0xFF. Majority voting in
this case means counting the amount of 0s/1s in the
neighborhood of the currently processed input byte. If
the neighborhood is crowded by 1s, the majority vote
yields an output 0xFF and vice versa.

2) Next, Run Length Encoding (RLE) compresses these
sequences of 0x00s or 0xFFs bytes.

3) Finally, the RLE sequence is inserted into Bloom
filters to represent the actual fingerprint.

By design, mvHash-B aims at having a fingerprint length
of 0.5% of the input length, but a drawback of this im-
plementation is the dependence on the file type: each file
type requires its own configuration (no standard configu-
ration works for all file types). In other words, although
mvhash-B works on the byte level, it needs different
configurations.

5.3 bbHash
Another example of this way of finding similar files is the

bbHash function, designed by Breitinger et al. in [6]. Their
new fuzzy hashing technique is based on two concepts:

• Deduplication: is a backup scheme for saving files
efficiently because instead of saving it completely, it
makes use of small pieces. If two files share a common
piece, it is only saved once, but referenced for both
files.

• Eigenfaces: they are used in biometrics for face recog-
nition, for example by representing any face as a com-
bination of a set of N eigenfaces previously selected.

In this algorithm, they use a fixed set of N random byte
sequences called building blocks of 128 bytes. The process
is to slide through the file byte-by-byte and compute the
Hamming distance of all building blocks against the current
input sequence. If the building block with the smallest Ham-
ming distance is smaller than a certain threshold, its index
contributes to the files’s hashing result. The disadvantage of
this algorithm is that its runtime is high.

6. Conclusions
Breitinger and Baier presented a list of four general

properties for SPHF [7], which they later extended to the
following five general characteristics [8]:

1) Compression: the output must be much smaller than
the input for space-saving and performance reasons.

2) Ease of computation: generating the hash value of a
given file and making comparisons between files must
be a fast procedure.

3) Similarity score: the comparison function must provide
a number which represents a matching percentage
value.

4) Coverage: every byte of the input must be used to
calculate the hash value.

5) Obfuscation resistance: it must be difficult to obtain a
false negative/false positive result, even after manipu-
lating the input data.

Nevertheless, after analysing the characteristics of these
functions, we have been able to identify a list of additional
specific features that any SPHF should provide, either by
improving a feature already existing or implementing it for
the first time. These additional features are:



• Generate more realistic results consistent with the con-
tent of the files compared: this requirement implies the
existence of a simple and clear definition of the concept
of similarity, and how to express it as a number.

• Detect content rotation: by rotation we mean moving
some part of the end of the document to the beginning
(or vice versa). A visual examination of a pair of such
rotated files would provide a result close to 100, as both
files have the same content.

• Detect content swapping: by content swapping we mean
taking some portion of the document and moving it
into a different location, so graphically it could be seen
as moving data blocks inside the document. For a file
where several swaps have been made, the result should
be close to 100, as again the content of both files is
basically the same.

• Compare files of different sizes without limit: in some
cases, it is necessary to compare files of very dissimilar
sizes (e.g., considering a book, this could be seen as
comparing one chapter with ten chapters in order to
detect plagiarism).

• Avoid insertion attacks: there are two ways by which
a user could alter the comparison results. He could
repeatedly insert a specific byte string at the beginning
of the file, or could insert a specific byte string scattered
along the document (not necessarily at the beginning).
Any new piecewise hashing application should try to
provide countermeasures to ameliorate the effects of
this type of attacks, at least to some extent.

Acknowledgements

This work has been partially supported by the Minis-
terio de Ciencia e Innovación (España) under the project
TIN2011-22668.

References

[1] K. Astebøl, “mvHash–A new approach for fuzzy hashing,” Master’s
thesis, Gjøvik University College, 2012.

[2] H. Baier and F. Breitinger, “Security aspects of piecewise hashing in
computer forensics,” in Sixth International Conference on IT Security
Incident Management and IT Forensics (IMF 2001), 2011, pp. 21–36.

[3] B. H. Bloom, “Space time tradeoffs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, 1970.

[4] F. Breitinger, K. Astebøl, H. Baier, and C. Busch, “mvhash-b - A new
approach for similarity preserving hashing,” in Seventh International
Conference on IT Security Incident Management and IT Forensics
(IMF 2013), 2013, pp. 33–44.

[5] F. Breitinger and H. Baier, “Performance issues about context-
triggered piecewise hashing,” in Proc. of 3rd ICST Conference on
Digital Forensics & Cyber Crime (ICDF2C), vol. 3, 2011.

[6] ——, “A fuzzy hashing approach based on random sequences and
hamming distance,” in 7th annual Conference on Digital Forensics,
Security and Law (ADFSL 2012), 2012.

[7] ——, “Properties of a similarity preserving hash function and their
realization in sdhash,” in Information Security for South Africa (ISSA
2012), 2012, pp. 1–8.

[8] ——, “Similarity preserving hashing: Eligible properties and a new
algorithm mrsh-v2,” in Digital Forensics and Cyber Crime, ser. Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, M. Rogers and K. Seigfried-
Spellar, Eds. Springer Berlin Heidelberg, 2013, vol. 114, pp. 167–
182.

[9] F. Breitinger, H. Baier, and J. Beckingham, “Security and implemen-
tation analysis of the similarity digest sdhash,” in 1st International
Baltic Conference on Network Security & Forensics (NeSeFo 2012),
2012.

[10] L. Chen and G. Wang, “An efficient piecewise hashing method for
computer forensic,” in Proc. of Workshop on knowlegde discovery
and data mining, IEEE, Ed., 2008, pp. 635–638.

[11] F. J. Damerau, “A technique for computer detection and correction
of spelling errors,” Communications of the ACM, vol. 7, no. 3, pp.
171–176, 1964.

[12] N. Harbour, “Dcfldd. defense computer forensics lab,” 2002. [Online].
Available: http://dcfldd.sourceforge.net

[13] M. Karpinski, “On approximate string matching,” Lecture Notes in
Computer Science, vol. 158, pp. 487–495, 1983.

[14] J. Kornblum, “ssdeep 2.10 released.” [Online]. Available: http:
//jessekornblum.livejournal.com/293679.html

[15] ——, “Identifying almost identical files using context trigger piece-
wise hashing,” Digital Investigation, vol. 3(S1), pp. 91–97, 2006.

[16] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707 – 710, 1966. [Online]. Available: http://profs.sci.univr.it/~liptak/
ALBioinfo/files/levenshtein66.pdf

[17] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of applied
Cryptography. Boca Raton, FL: CRC Press, 1997.

[18] NIST. National Software Reference Library. [Online]. Available:
http://www.nsrl.nist.gov

[19] ——, “SHA-3 competition,” National Institute of Standards and Tech-
nology, 2012, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[20] ——, “The Keccak sponge function family,” 2013,
http://keccak.noekeon.org/specs_summary.html.

[21] Python Software Foundation. (2013) ssdeep python wrapper. [Online].
Available: https://pypi.python.org/pypi/ssdeep

[22] R. L. Rivest, “The MD5 message digest algorithm,” 1992, request
for comments (RFC 1321), Internet Activity Boards, Internet Privacy
Task Force.

[23] V. Roussev, “Building a better similarity drap with statistically im-
probable features,” in Proc. of 42 Hawaii International Conference
on System Science, 2009, pp. 1–10.

[24] ——, “An evaluation of forensic similarity hashes,” Digital Investi-
gation, vol. 8, Supplement, no. 0, pp. 34 – 41, 2011.

[25] ——, “Scalable data correlation,” in Proc. of International Conference
on Digital Forensics (IFIP WG 11.9), 2012.

[26] V. Roussev, Y. Chen, T. Bourg, and G. Richard, “Md5bloom: Forensic
filesystem hashing revisited,” Digital Investigation, vol. 3, pp. 82–90,
2006.

[27] V. Roussev, G. Richard, and L. Marziale, “Multi-resolution similarity
hashing,” Digital Investigation, vol. 4, Supplement, no. 0, pp. 105 –
113, 2007.

[28] C. Sadowsky and G. Levin, “Simhash: Hash-based similarity
detection,” Tech. Rep., 2007. [Online]. Available: http://simhash.
googlecode.com/svn/trunk/paper/SimHashWithBib.pdf

[29] K. Seo, K. Lim, J. Choi, K. Chang, and S. Lee, “Detecting similar
files based on hash and statistical analysis for digital forensic inves-
tigation,” in 2nd International Conference on Computer Science and
its Applications (CSA ’09), 2009, pp. 1–6.

[30] A. Tridgell, “Efficient algorithms for sorting and synchronization,”
Master’s thesis, The Australian National University. Department of
Computer Science, Canberra, Australia, 1999.

[31] ——, “Spamsum readme,” 1999. [Online]. Available: http://samba.
org/ftp/unpacked/junkcode/spamsum/README

[32] ——. (2013) Getting started with ssdeep. [Online]. Available:
http://ssdeep.sourceforge.net/usage.html

[33] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.


