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Abstract

The type and distribution of oxygen functional groups in graphene oxide and re-

duced graphene oxide remain still a subject of great debate. Local analytic techniques

are required to access the chemistry of these materials at a nanometric scale. Electron

energy loss spectroscopy in a scanning transmission electron microscope can provide the

suitable resolution, but GO and RGO are extremely sensitive to electron irradiation.

In this work we employ a dedicated experimental set-up to reduce electron illumina-

tion below damage limit. GO oxygen maps obtained at a few nanometres scale show

separated domains with different oxidation levels. The C/O ratio varies from about 4:1
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to 1:1, the latter corresponding to a complete functionalization of the graphene flakes.

In RGO the residual oxygen concentrates mostly in regions few tens nanometres wide.

Specific energy-loss near-edge structures are observed for different oxidation levels. By

combining these findings with first principles simulations we propose a model for the

highly oxidized domains where graphene is fully functionalized by hydroxyl groups

forming a 2D-sp3 carbon network analogous to that of graphane.

Introduction

In the last years, graphene oxide (GO) has attracted remarkable interest as a precursor for

a large-scale and low-cost production of graphene-based materials and as a fundamental

constituent in new functional composite materials for optoelectronics, photovoltaics and

nano-biology devices.1–4 GO is obtained by liquid exfoliation of chemically oxidized graphite

(graphite oxide);5–7 at a later stage, a graphene-like material known as reduced graphene

oxide (RGO) can be derived from GO, by removing the oxygen functionalities.2,8 However,

after more than 150 years since its discovery, many questions remain open about the exact

chemistry and structure of (R)GO at the atomic scale.1–4

Currently, the most acknowledged model for GO corresponds to a non-stoichiometric

structure with a random arrangement of epoxide (-O- in bridge position) and hydroxyl (-OH)

functionalities at both sides of the carbon basal plane, with small residual non-functionalized

graphitic areas.9 Difficulties in defining the exact relative amount and local arrangement of

oxygen groups arise from the strong dependence of GO chemistry and structure on the spe-

cific graphite precursor and oxidation parameters.1,2 Moreover GO turned out to be unstable

in air and water, resulting in spontaneous reduction and flakes fragmentation.10–13 The un-

certainties on GO naturally reflect on RGO, whose chemistry and structure also depend

on the particular reduction method and parameters.1–4 This lack of knowledge represents a

strong limit for the understanding of (R)GO physical properties and hence for a controlled

use of these promising functional materials.
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New insights could be provided only through the use of improved characterization tech-

niques. Up to now, several spectroscopic techniques have been used to determine the type

and amount of oxygen functional groups. In particular, the oxygen level has been estimated

mainly by elemental analysis, XPS and EDX on a variety of samples going from graphite

oxide powders to (R)GO films and thin flakes. The oxygen content has been evaluated in

a range between about 15 and 35 atomic percent (at.%), i.e. between ∼5:1 and ∼2:1 in

terms of C/O atomic ratio. In RGO the oxygen content can be lowered to a limit of 0.4

at.% (∼250:1 C/O atomic ratio), depending on the particular reduction process.1–4 However,

these values can only be considered as spatial average quantifications, that cannot account

for the irregular chemistry of GO. Indeed, strong structural inhomogeneities at the nanome-

tre scale have been revealed in both GO and RGO by high resolution transmission electron

microscopy (HRTEM).14–17

Decisive evidences on GO chemistry could only be derived by spectroscopy at the atomic

scale. Electron energy-loss spectroscopy (EELS) in a scanning transmission electron micro-

scope (STEM) could in principle be suitable for such analysis, providing elemental quantifi-

cation by core EELS mapping and chemical structure analysis through energy-loss near-edge

structures (ELNES), down to the atomic scale.18 However, the limited use of STEM-EELS

for the study of GO and RGO19,20 resides in the strong sensitivity of these materials to high

energy electron irradiation. For instance, atoms mobility and fast amorphisation has been

clearly demonstrated by time series of HRTEM images, at 80 kV acceleration voltage.15,17

Illumination sensitivity is indeed highly expected in the case of GO and RGO, since single

or few layer thick specimens and light atoms are intrinsically more affected by radiation

damages, such as knock-on of carbon atoms and radiolysis of oxygen functionalities resulting

in mass loss. Irradiation effects in a STEM could in principle be strongly reduced by the use

of low accelerating voltages, low electron-dose and sample cooling.21

In this work, thanks to a dedicated experimental set up combining a liquid nitrogen (LN)

cooling system at the sample stage with a low noise LN cooled CCD camera, we investigate
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few layer GO and RGO by core EELS spectrum imaging in a STEM microscope in low dose

acquisition modes. We show that the oxygen content in individual (R)GO flakes is strongly

heterogeneous at the nanometric scale and that specific near-edge carbon fine structures

could be associated to different oxygen contents and bindings, indicating separated chemical

phases. Finally, on the basis of these experimental evidences and complementary DFT-based

numerical simulations, we suggest a structural model for the highly oxidized regions in GO

where all carbon atoms are functionalized by -OH groups.

Experimental section

Synthesis. Graphene oxide has been synthesized by the modified Hummers’ method,7,22

and successive reduction has been achieved by hydrazine and thermal treatments. Few layers

flakes with an average lateral size of few micrometers have been obtained by dispersion of the

dried material in ethanol and ultrasonication. TEM grids were dried in air, firstly placed in

the STEM microscope air lock (< 2 · 10−5 mbar) and then moved in the microscope column

(3 · 10−8 mbar) and cooled down to about 150 K. High angle annular dark field (HAADF)

images show a non homogeneous thickness of the flakes, with thinner regions some hundreds

nm wide located at the flakes borders. Elemental investigations through core EELS indicate

a clear dominance of carbon and oxygen with only negligible residues of nitrogen (in RGO,

deriving from hydrazine reduction agent22,23) at few limited regions of the flakes (about 20

nm wide).

Electron energy loss spectroscopy. EELS spectra were acquired in a VG 501 Scanning

Transmission Electron Microscope, provided with a liquid nitrogen cooling system at the

sample stage (150 K). Low temperatures have been proven to reduce the mass loss damage

by decreasing the atomic mobility.24 Transmitted electrons were collected on a liquid nitro-

gen cooled CCD camera with a low read-out noise of three counts r.m.s. and a negligible

dark count noise. The energy dispersion of the spectra was 0.27 eV, to allow simultaneous
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acquisition of carbon and oxygen K-edges. The effective energy resolution, resulting from

microscope instabilities and spectrometer aberrations, is estimated to 0.5 eV on the carbon

K-edge. The accelerating voltage has been limited to 60 kV and a low electron dose working

mode was set by optimization of the acquiring parameters (beam current, illumination area

and time) on (R)GO few layer flakes. During spectrum imaging the beam focus (i.e. illumi-

nation area at the sample stage) has been adjusted to match the pixel size in order to avoid

oversampling. The exposure of the material to the electron beam before spectra acquisition

has been prevented by a fast blanking system before the sample, following the same pro-

cedure as in reference 25. Equally, EELS spectra were acquired prior to the corresponding

STEM images.

Elemental quantification was performed considering carbon and oxygen edges, within a

25 eV energy window. Specific cross sections were derived from the Hartree-Slater model.

An error of a few percent may be assumed on the quantification results.26

EELS spectra collected in a low electron dose mode are characterized by little intensity

of the signals. Oxygen quantification has been performed on denoised spectra. Principal

component analysis (PCA) represents a common technique for noise reduction in core EELS

elemental mapping.27 PCA analysis has been performed on spectrum images using the Hy-

perSpy software.28 After remarking significant changes in carbon fine structure peaks, the

number of PCA components (less than 10 in the usual routine) was raised to 15. Fine struc-

ture analysis has been performed on the as acquired spectrum images, not treated with PCA,

in order to avoid the introduction of any artefacts. Nevertheless, in order to appreciate fine

structure peaks, a far more intense signal with respect to quantification is required. The

signal intensity has been improved by summing spectra arising from contiguous areas up to

few tens of nanometers wide (pixels in the spectrum image) displaying a uniform oxygen

content.
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DFT Simulations. Structural optimizations have been performed within the framework

of density functional theory (DFT) under the local density approximation (LDA) as im-

plemented in the AIMPRO code.29,30 Carbon, oxygen and hydrogen pseudopotentials are

generated using the Hartwingsen-Goedecker-Hutter scheme.31 Local orbitals are represented

by a set of cartesian gaussians of s-, p-, and d-type basis functions centred at the atomic sites.

We have used a basis set of 22 independent functions for carbon (pdpp gaussian exponents),

40 functions for oxygen (dddd) and 12 functions for hydrogen (ppp). The optimization of

the cell parameter was performed simultaneously with the relaxation of the single atomic

positions, using a conjugate gradients algorithm.

Results and discussion

Optimizing the dose. In order to define optimal conditions for gentle illumination with

a 60 keV electron beam, we have monitored the evolution of oxygen content and carbon

near-edge fine structures in GO as a function of the irradiating electron dose. In1.a we

present a time series of core EELS spectra acquired under homogeneous illumination over

an extended area of a GO flake (44 × 44 nm2) with a 4 pA electron beam current and an

integration time of 2.4 s, corresponding to an electron dose rate as low as 1.3 · 102 e−Å−2s−1.

The illuminated region has an initial oxygen content of about 45% (as derived from the

spectrum in1.a) that progressively reduces as a result of the increasing electron dose, as

shown in1.b. Furthermore, the lowering of the oxygen content is associated with significant

changes in C K-edge ELNES fine structures (1.c). Variations in the near-edge fine structures

are a typical indicator of radiation damages affecting chemical bonding and atomic orbital

hybridization.21 On these basis, it has been possible to define an upper limit for the electron

dose of about 3 · 103 e−Å−2, below which no substantial changes occur neither in the flakes

stoichiometry nor in EELS fine structures.

The need of low electron dose imposes constraints on STEM spatial resolution.21 Indeed,
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Figure 1: Results from a time series of core EELS spectra acquired from a 44 × 44 nm2

wide thin area of a GO flakes. (a) The first EELS spectrum, as acquired. (b) Evolution
of the oxygen content during continuous exposure. The spectrum in (a) corresponds to dot
(1). (c) Carbon K-edge spectra corresponding to exposure times indicated by the integration
windows in panel (b).

the total acquired spectral intensity is proportional to the electron dose (fixed by irradiation

conditions), the elemental specific cross section, the surface projected density of atoms i.e.

the number of scattering centres (depending on the sample thickness) and the size of the

illuminated area. Gentle illumination lowers the intrinsically weak intensity of core EELS

signals and high spatial resolution implies that a very low number of scattering centres

contribute to the EELS signal. In the specific set-up of our microscope, the highly efficient

CCD camera and the higher electron dose granted by sample cooling21 allows to improve

the EELS signal intensity. The Signal/Noise (S/N) ratio that is compatible with elemental

quantification ultimately defines a ∼3 nm wide minimal illumination area for the study of

GO.

Elemental quantification. The spatial distribution of oxygen in GO and RGO has been

investigated by STEM-EELS spectrum imaging. This acquisition mode consists in collect-

ing simultaneously the HAADF intensity and a complete EELS spectrum at each position

of the electron beam during the scan, with a ∼3 nm minimal beam size and scanning step

(no oversampling), to be compatible with the illumination conditions defined above. In2 we

report an example of EELS oxygen quantification on an individual few layer GO flake. The
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Figure 2: Results from a spectrum image on GO. (a) HAADF image and (b) BF image of
the whole flake. The spectrum image has been acquired over the region marked by the red
rectangle. (c) HAADF image , maps of (d) carbon and (e) oxygen EELS K-edge integrated
signals derived from the spectrum image. (f) Map of the relative oxygen content and (g)
associated image histogram.
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HAADF and bright field (BF) images of the whole flake are presented in2.a-b respectively.

A spectrum image has been acquired over the 1.3 × 0.6 µm2 wide area marked in 2.a and

the resulting HAADF image is shown in 2.c. Acquisition parameters were 10 nm spatial

resolution (probe size and scanning step), a 15 pA current and 0.15 s integration time, that

corresponds to a ∼1.3 · 103 e−Å−2 total electron dose per spectrum. The HAADF inten-

sity depends on both the amount of matter (thickness and areal density) and the chemical

species (atomic number). These information appear separated in the integrated K-shell ion-

ization edges maps derived from the spectrum image (2.d-e), that show the spatial variation

of the surface projected amount of carbon (hence the number of carbon layers) and oxygen

respectively. In the quantification map of oxygen relative to carbon (2.f) two well separated

domains with oxidation levels centred at ∼32 at.% and ∼40 at.% are visible, as confirmed

by the associated image histogram in 2.g. A third less extended domain (bottom left corner

in the map) corresponds to ∼45 at.% with maximum local content of almost 50 at.%. When

interpreting these results it must be considered that for each pixel the EELS signal is inte-

grated over the specimen thickness. Hence, a non homogeneity in the relative quantification

map can result from a spatial variation of the local oxidation level in regions with a constant

number of layers or from the local superposition of additional layers with different oxidation

level. In 2.f an increase of the oxygen relative content is visible from the left to the right side

of the map forming two well separated regions. The oxygen integrated K-edge map (2.e)

shows the same trend: the right side area does contain a higher amount of oxygen. On the

contrary, the intensity of the carbon integrated K-edge (2.d) is almost uniform, indicating

that the flake has a constant carbon thickness along the region displaying the oxygen gra-

dient. Therefore these results show a variation of the oxidation level within an individual

flake, forming spatially well separated oxidation phases which are not correlated with the

flake thickness.

Overall the oxygen content in GO has been observed to vary between ∼10 at.% and

∼50 at.% (C/O ratio of 9:1 and 1:1 respectively). The higher oxidation level (30-50 at.%)
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seems to characterize about one quarter of the analysed material, while in extremely rare

cases the oxygen content fells below the detection limit (unoxidized flakes), confirming the

heterogeneity of GO. Therefore despite the fact that the local oxygen concentration can

be extremely high, the average oxygen content in individual flakes is ∼25 at.%, which is

in good agreement with spatially averaged values reported in literature.1–4 Regions up to

few hundreds nanometres wide are characterised by an almost uniform oxidation level (at

a 3-10 nm scale), while the transition between two oxidation phases occurs in the space of

few tens of nanometres. This observation is compatible with a recently proposed oxidation

mechanism where the reaction progresses within graphite flakes in a front-like diffusive-

controlled pathway.32

STEM images and spectroscopic analysis from RGO are shown in 3. HAADF and BF

images of the whole flake are shown in 3.a-b. A spectrum image has been collected over

the region marked in 3.a, over an area of about 330 × 190 nm2. Acquisition parameters

were: 3 nm spatial resolution, 11 pA current and 0.04 s integration time, for a total electron

dose per spectrum of ∼3.0 · 103 e−Å−2. 3.c-g shows the associated HAADF image, the

integrated K-shell ionization edges maps of carbon and oxygen, the quantification map of

oxygen relative to carbon and its associated image histogram. As in GO, the carbon and

oxygen K-edge integrated intensity maps appear mainly non correlated. Weak correlations

appear occasionally, not systematically, in some limited areas. Namely, in the central region

of the spectrum image the carbon K-edge intensity is almost constant, while the oxygen

K-edge signal varies and may be responsible for the contrast variation in the HAADF image.

The distribution of oxygen forms patches few tens of nm wide (3.e-f) that correspond to

an unimodal distribution centred at about 5 at.% (3.g), with a local upper limit of 12 at.%

(local residual oxygen up to 20 at.% has been observed in other flakes, over limited regions).

These values are situated in the range of spatially averaged oxygen quantifications reported

in literature.1–4
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Figure 3: Spectrum imaging on a RGO flake. (a) HAADF image and (b) BF image of the
whole flake. The region investigated in the spectrum image is marked by a red rectangle. (c)
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Core EELS fine structures. Besides oxygen quantification, coordination states and

chemical bonds for different oxidation phases can be extracted from spectrum images through

Energy-Loss Near-Edge Structures analysis. The spatial resolution of the spectrum images

has been optimised for elemental analysis; the higher S/N ratio required for fine structure

investigation can be obtained by integrating the spectrum images over regions few tens of

nanometres wide, having a uniform oxygen content. In 4 we present fine structures at the

carbon K-edge that are representative of particular ranges of oxygen content. 4.a shows the

fine structure signatures observed in GO areas characterised by 10 to 50 oxygen at.%. In

both spectra corresponding to low oxygen concentration (∼20 at.%), the π∗ and σ∗ signatures

associated to sp2 carbon are visible respectively at 285.0 eV and 292.7 eV.33 Two additional

peaks at 287.2 eV (A) and 288.2 eV (B) could be isolated over two distinct areas of GO (in

this particular cases showing 20 and 25 oxygen at.% respectively). These features generally

show a feeble intensity and can appear simultaneously in the same spectrum, resulting in

mixed features that can hardly be identified. In GO regions containing ∼30 oxygen at.%,

the intensity of the π∗ peak lowers while the 287.2 eV peak (A) remains intense (32 oxygen

at.% for the here reported spectrum). An additional feature rises at 290.1 eV (C) followed

by a broad triangular-shaped signal at about 300 eV (D). For higher oxidized GO regions

(40-50 at.%, the reported spectrum corresponding to 40%), the π∗ peak further lowers while

the peaks at 287.2 eV (A) and 290.1 eV (C) get stronger and very well-defined. The 290.1

eV peak appears particularly sensitive to irradiation damages, as shown by 1.c.

After reduction (4.b) the sharpness of the π∗ and σ∗ peaks, with a trace of σ∗ excitonic

feature at 291.6 eV34,35, reveals a very good recovery of the graphitic network. An additional

well-defined peak at 287.2 eV (A) is observed (the two spectra shown correspond to 7 oxygen

at.% and 12 at.%). Rarely and in some limited regions, other weak fine structure peaks have

been distinguished, i.e. peak B (5 oxygen at.%). These A and B spectral features are below

the detection limit for lower oxygen concentrations.

These results show that specific near-edge fine structures and thus coordination states of
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the carbon atoms correspond to different oxidation rates. The energies of EELS peaks in 4

are compatible with previous XANES results which however could not separate the specific

near-edge fine structures shown here due to spatial averaging over wide regions with different

oxygen levels. Absorption peaks indicated as A-C had been attributed in the literature to

C-O π symmetry antibonds: lower energy peaks to single bonds and higher energy peaks

to double bonds. More precisely, hydroxyl groups had been generally associated to peak A,

epoxide groups to peak A or B, carbonyl and carboxyl groups to peak B or C.36–42 In the σ∗

region, carbonyl groups have been related to peak D.17,37 In a recent STEM-EELS investi-

gation a shallow peak A has been observed at the carbon K-edge and assigned to epoxide,

while no peak C has been detected.20 These assignments, still largely debated, have been

obtained by comparison with reference spectroscopic signatures of aromatic molecules43,44 or

spectra simulations on hypothetical GO atomic structures.20,45 However, as shown a number

of times by numerical simulations,46–50 the spatial configuration of functional groups within

(R)GO deeply affects their orbital associated energies and these might strongly differ from

those of the same groups within molecules. Moreover, the sensitivity of the material suggests

the need of caution while comparing spectroscopic results. In particular, the illumination

conditions can induce changes in the relative intensity of fine structure peaks by transfor-

mation of the functional groups (possibly hydroxyls into epoxides) or selective sputtering of

the oxygen groups.

Structural model. The structure of GO can be revisited on the basis of the here reported

spatially resolved spectroscopic results. Several complex atomic models for GO have been

proposed in the last twenty years.1–4 Oxygen adsorption is usually described in terms of the

basic functional groups of epoxide, hydroxyl, carbonyl (-CO) and carboxyl (-COOH). The

last two groups involve multiple bonding with a single carbon atom, which can occur at

edges or at defects within the graphene lattice. On the contrary, a complete and in principle

reversible functionalization of a perfect graphene network can be achieved with epoxides and
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hydroxyls, resulting in a C/O ratio of 2:1 (33 oxygen at.%) for solely epoxides functional-

ization, 1:1 (50 oxygen at.%) for solely hydroxyls functionalization and intermediate values

for mixed structures. Up to now, the Lerf-Klinowski model9 has been the most referred-to.

In this representation, different oxygen groups are randomly distributed on both sides of the

carbon sheets, with coexisting graphitic and oxidized regions, thus forming a partially func-

tionalized structure. Hydroxyls and epoxides are supposed to be the dominant groups on

the basal plane while carboxyls are expected to fill carbon dangling bonds at the sheet edges

and vacancy sites.9 Carbonyl groups as ketones and/or quinones are also generally expected

at the plane edges. A high proximity among hydroxyls and epoxides and the presence of

five and six-membered lactols and ester carbonyls have been proposed on the basis of NMR

studies.51,52 With respect to our experimental observation, the traditional Lerf-Klinowski

model is consistent with GO regions with a 20 oxygen at.% content but it neads to be fur-

ther discussed in the limit case of the much higher oxygen concentration locally observed by

EELS (∼45 at.%).

The presence of water molecules in the atomic structure of GO is still under debate. Water

molecules are expected to form hydrogen bonds with oxygen functional groups on GO.9 We

expect reasonably that any possible intercalated water would have been removed from the

here observed flakes, during the preparation process. Indeed, differently from the common

protocol where GO is directly deposited on a substrate as a water dispersion, in this work

we employed dried GO which was successively redispersed in ethanol and ultrasonicated.

Moreover observation conditions involve high vacuum levels (3 · 10−8 mbar), resulting in

evaporation of residual water molecules. On the basis of these considerations we expect

a negligible amount of water. This hypothesis is corroborated by our observed EELS fine

structures. Indeed, the strong intensity and sharpness of the fine structure peaks at the

carbon K-edge correlated with a high oxygen content (4.a) suggest that a significant amount

of carbon atoms are involved in a specific kind of carbon-oxygen bond. Thus, the ∼45 oxygen

at.% in GO cannot arise from intercalated water and should be ascribed to oxygen directly
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bound to carbon.

Recently it has also been proposed that GO surface could be decorated by strongly

bound highly oxidized debris coming from the oxidation process.53 In the present work, an

important contribution of such debris to the calculated oxygen content is not compatible

with our spectroscopic investigations: their presence would result in an increase of intensity

in the K-edge maps of both oxygen and carbon (as an additional GO layer), and hence in

a correlation between the two maps, which is not observed in 2.d-e. Moreover, the highly

oxidized residues could contain at most ∼50 oxygen at.%, considering a fully functionalized

structure (hydroxyls on the basal plane and carbonyls-carboxyls at the edges, as discussed

above). In 2.g the local oxygen content reaches almost 50 at.% and represents an integrated

measurement over the flake thickness: even assuming the presence of debris, the underlying

GO layer(s) has to be necessarily almost 50 at.% oxidized. These experimental evidences

reinforce the criticism recently risen against the debris GO model.54

First principle simulations have shown that in GO there is a strong driving force towards

a phase separation in fully functionalized regions (epoxides and/or hydroxyls) and pristine

graphene regions.11,48,49,55 The limit of 50 at.% local oxygen concentration observed in this

work is not consistent with a full functionalization dominated by epoxides, since the oxygen

content would tend to 33 at.%. A large presence of carboxyl and carbonyl groups should

also be excluded, because such a highly defective structure could hardly be reduced to a

highly graphitic arrangement compatible with the carbon K-edge fine structures observed

in RGO flakes. GO containing almost 50 at.% of oxygen and converting into a highly

graphitic structure when reduced can be explained only by an almost hydroxyl saturated

graphene lattice. This limit structure is analogous to graphane56 (i.e. hydrogen saturated

graphene) and hydroxyl groups should alternate at the two sides of the carbon plane in

order to minimize strain.46,57 This limit configuration is presented in 5 after optimization

by DFT-LDA. The graphene network is shown to be strongly distorted, with carbon atoms

puckered out of plane by about 0.26 Å leading to a change of their hybridization state
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Figure 5: Limit structure allowing a C/O ratio of 1:1. Top (a) and side (b) view. The
indicated structural parameters have been obtained after full DFT-LDA relaxation.

from pure sp2 to partial sp3. In contrast with graphane, where the sp3 carbon hybridization

reduces the in plane cell parameter (∼2.42 Å),56 we obtain an increased cell parameter of

2.58 Å, (about 5% higher than DFT-LDA optimized graphene) and a C-C bond length higher

than diamond (1.59 Å). Oxygen steric hindrance and hydrogen bonding between neighboring

groups forming hydroxyl chains are responsible for this in plane expansion as for graphene

edges functionalized by hydroxyl groups where the accumulated strain is released via the

formation of static out-of-plane ripples.58 It might be challenging to directly observe this

lattice expansion through diffraction because uniform and continuous highly functionalized

domains are of little extension. Furthermore, the accurate determination of the unit cell

parameter by electron diffraction is a non trivial technique itself, for in 2D materials the

reciprocal space of monolayers consists of rods and thus the total intensity of the diffraction

spots changes little as a function of the tilt angle, while the spots broadening is important.59

EELS fine structures for highly oxidized GO (30-50 oxygen at.%, 4.a) can thus be inter-

preted in the limit of this hydroxyl saturated graphene model. The extremely low intensity

of the π∗ peak can be ascribed to the loss of sp2 hybridization at carbon atoms. The 287.2

eV peak (A), which is observed also for lower oxygen rates, can be assigned to C-OH anti-

bonds, in agreement with previous XANES works.40–42 The peak at 290.1 eV (C) cannot be

associated to C-O antibonds of other oxygen functional groups, because they are expected

to be present only in a small amount and this is not compatible with the strong intensity of

the peak. Nevertheless, the interpretation of this feature remains not clear.
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Fine structures for lower oxidation rates (10-30 oxygen at.%, 4.a) are much less defined.

This can be due to a higher variety of functional groups and the high number of possible

configurations that they can assume at the graphene network. The presence of the π∗ peak

and of a weak sp2 σ∗ peak lets infer a limited presence of non functionalized carbons. Aside

the peak A ascribed to hydroxyl groups, peak B can be attributed to epoxide groups. After

reduction the very intense and sharp peak A observed at higher residual oxygen regions

(4.c, ∼15 oxygen at.%) would then correspond to the presence of solely hydroxyl groups.

This interpretation is compatible with the identification of several simple reaction routes for

epoxide reduction by hydrazine, while hydroxyl removal mechanisms are still debated.23,60

Considering the same assignments as in GO, the weak peak B in RGO indicates a small

residual amount of epoxides. Again, the difference in the intensity of features A and B can

derive from their relative amount (hydroxyl probably remain the dominant species also after

reduction) and the different number of configurations that these functional groups can form

at the carbon network.

Conclusion

In conclusion we have investigated the oxygen distribution in GO and RGO by core EELS

spectroscopy in a STEM microscope. A spatial resolution of 3 nm for Spectrum Images has

been achieved by reducing radiation damage through optimized acquisition conditions and

an experimental set up combining a low noise CCD detection camera with a liquid nitro-

gen cooled sample stage. Previous spectroscopic quantifications have provided only overall

oxygen contents and GO and RGO have been often described as chemically homogeneous

materials at a nanometric scale. We have shown that within individual flakes the oxygen

content strongly varies, forming homogeneous domains with a lateral side of few tens of

nanometers. In GO different oxidation levels have been identified, with a maximum local

concentration of almost 50 at.% of oxygen, corresponding to a C/O ratio of 1:1. In RGO
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the residual oxygen mainly concentrates in domains with about 5 oxygen at.%. Specific

fine structures at the carbon K-edge can be clearly associated to different oxidation phases.

Highly oxidized GO displays a shallow graphitic signature with extremely intense and sharp

additional peaks, not observed before. In RGO the graphitic character is extensively recov-

ered with weakened additional features. The assignment of the spectroscopic peaks is still

debated in literature and the previously proposed mixed epoxides-hydroxyls atomic model

for GO cannot account for the highest oxygen concentrations observed in this work. We pro-

pose a limit structural model for these highly oxidized regions, in which all carbon atoms are

functionalized with -OH groups, leading to an sp3 carbon 2D material analogous to graphane.

A strong signature for -OH antibonds can then be identified in GO carbon near-edge fine

structures. In RGO, a sharp -OH antibond peak, localized at highest oxidized regions, lets

infer that this group is the dominant surviving species.

The presence of domains fully covered with hydroxyl groups has critical implications for

the engineering of the electronic structure of individual flakes. Indeed, it strongly affects

the hydrophilicity of the flakes and the interaction with molecules from the gas and vapour

phase.61 Furthermore, the presence of a dense hydroxyl layer on (R)GO sheets has important

consequences for the anchoring of metal and ceramic nano particles or biomolecules and the

assembly of individual flakes into corresponding macroscopic forms.62
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